AUR- 90-888

Capacitance Extraction from Complex 3D Interconnect Structures

David Cartwright*, George Csanak,** Denise George,***, Robert Walker, *1, Andrew
Kuprat, *11, Aykut Dengi, **{, and Warren Grobman**tt Co N F,QC/DL[. ] 5-—-

* Theoretical Division (B285), Los Alamos Nat’l Lab, Los Alamos, NM 87545, dcc@lanl.gov
** Theoretical Division (B212), Los Alamos Nat’l Lab, Los Alamos, NM 87545, georgec@lanl.gov
*** Theoretical Division (B221), Los Alamos Nat’l Lab, Los Alamos, NM 87545, dcg@Ilanl.gov

*+ Theoretical Division (B268), Los Alamos Nat’l Lab, Los Alamos, NM 87545, er@ﬂ‘EC E ' V EB
#++ Theoretical Division (B221), Los Alamos Nat’l Lab, Los Alamos, NM 87545, kuprat@lanl.gov :

**t Motorola, Austin, TX, MAY 6 3 1999

#*11 Motorola, Austin, TX

Abstract
A new tool has been developed for calculating the
capacitance matrix for complex 3D interconnect structures
involving multiple layers of irregularly shaped interconnect,

imbedded in different dielectric materials. This method
utilizes a new 3D adaptive unstructured grid capability, and
a linear finite element algorithm. The capacitance is
determined from the minimum in the total system energy as

the nodes are varied to minimize the error in the electric
field in the dielectric(s).

Summary of Method

The new computational capability allows treatment
of multiple dielectric materials, and any shapes for the metal

USTI

interconnect and dielectric, and is enabled by a 3D
unstructured grid tool recently developed at Los Alamos
National laboratory [1]. The key attributes in this new grid

too] are:
- unstructured grids to accurately fit any shape;
- accurate treatment of the material interfaces;
- automatic node-redistribution according to a

user specified field.
The general characteristics of this capacitance extraction
code (Poisson solver) are summarized in Figure 1.
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This new approach gives accurate capacitance
results for complex structures with only linear finite

clements [as opposed to higher-order finite elements]

because the capacitance is extracted from the minimum in
the total system energy (Thompson’s theorem: Collin 21,
Weber [3]) obtained by adapting the grid. That is, the grid
node-redistribution process [4] gives a minimum in the total
system energy for fixed number of nodes, which then
defines an upper limit to the capacitance. As the nodes
(fixed number) are re-distributed to minimize the error in the
calculated electric field, the system energy reaches a
minimum. As more nodes are added, the minimum energy
converges to a “best” value, from which the converged
capacitance value is obtained.

Application of the Hybrid Finite Element-
Boundary Element Method for Exterior

Electromagnetic problems

In capacitance extraction problems the electric
conductors are embedded in a possibly inhomogeneous
and/or anisotropic dielectric material in a small region of
space outside of which one can assume homogeneity,
isotropy, and the presence of no changes. The goal is to
solve the Poisson equation for the whole space with
appropriate boundary conditions in the asymptotic region.
For a general geometry of conductors and dielectric material
there is no boundary condition available at a surface around
the small region of interest. On the other hand to solve the
Poisson equation for the whole space is an arduous and
undesirable job. Fortunately, due to the homogeneity and
isotropy outside of small region, the asymptotic boundary
conditions for the potential can be replaced by a constraint on
the potential and its derivative on an arbitrary surface.
Physically, this means that the actual problem can be
replaced by a one where some charges have been introduced
on a boundary surface. This modified problem can then be
solved via a combination of the finite element method (FEM)
inside the surface and the boundary element method (BEM)
on the surface. Following McDonald and Wexler [5] the
following procedure can be implemented. Inside the
bounding surface the Poisson equation for the potential, ¢, is
solved.

- V- (eV9) = p M
via the FEM. On the bounding surface, the potential also
satisfies the following identity

i = 2f (66,1182 4y 21
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where S is the surface, 3¢/dn” is the directional derivative
of ¢ along the bounding surface, and G(T,T) is the free-
space Green’s function,
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If a system of nodes (inside the surface and on the surface) is
introduced, then the FEM can be used inside, and the BEM
on the surface. The latter gives a linear relationship between
the node-potentials on the boundary to those inside the
boundary. This relationship allows one to eliminate the
node-potential on the boundary from the problem and reduce
it to a problem only for the node-potentials inside the
boundary surface [5]. In the numerical implementation of
this method, integrals of the type:
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are calculated, where Sj is an element on the surface S
and o is a node function of a node on the surface. The
calculation of the above integrals, if done numerically,
leads to singularities which, however, can be avoided if
they are calculated analytically following Graglia [6].

Grid Adaption Using the Minimum Error
Gradient Method

The Minimum Error Gradient Adaption (MEGA) is
a generalization of the 2D adaptive smoothing scheme of
Bank and Smith [7], combined with the gradient weighting
concept of Carlson and Miller [8]. The idea is to adjust the
positions of the vertices so as to minimize the functional.
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That is, the functional is the weighted £, norm of the gradient
of the error between the true solution u and its piecewise
linear approximation u, on each tetrahedron. Minimizing the
gradient of the error leads to optimal resolution of solution
gradients which can be crucial for correct calculation of
various physical fields. A secondary benefit of minimizing
the error gradient is that it works to prevent “tet collapse” as
the mesh moves. This is because solution gradients are
poorly represented on wafer-thin tetrahedra and are thus
avoided when minimizing this functional. For sufficiently
large grids, the gradient weighting factor w can be omitted
and the grids produced become independent of the scale of u,
thus eliminating the necessity of adjusting parameters.

Since the exact solution u in (5) is generally
unknown, the method is to approximate the error by the six
quadratic “bump” functions associated with the edges of each
tetrahedron. The “bump” functions are the pairwise. products
of the four linear “hat” functions associated with the four
vertices of each tetrahedron.

The LaGriT code also has a novel 3D algorithm for
re-establishing Delaunay triangulation after node movement.
This algorithm performs internal face swaps and boundary
edge swaps in the mesh which typically modify a small
proportion of the mesh connectivity during any given time
step. As is well known, maintaining a Delaunay grid at all



times is a crucial requirement for many finite volume PDE
solvers.

Figure 2 illustrates the adaption of the grid so as to
minimize the error in the electric field for the case of a single
charged spherical conductor, as described in the next section.
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Figure 2. Sequential images of the grid as it is
adapted to minimize the error in the electric
field. Both images are of a “slice” in the yz-
plane just the thickness of the sphere. Upper
figure is the initial grid and the lower figure

shows the converged (capacitance minimum)
achieved after the fifth grid adaption.

Results

Figure 3 shows results for the capacitance as a
function of the number grid adaptations (left panel),
parametric on the number of grid points. The analytical exact
result is shown as the horizontal dashed line. These results
illustrate how the method coverges to a minimum (upper
limit) in the system capacitance, for a fixed number of nodes,
as the nodes are moved. The right panel illustrates how a
simple first-order rational function extrapolation provides the
result that would be obtained as the number of nodes goes to
infinity. The upper curve in the right panel illustrates the
capacitance obtained if no grid adaptation is used (taken from
the points for # of adaptations =0 in left panel.)
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Figure 4 illustrates the results for the test case an infinite
cubical capacitor for which there is an “exact” numerical
result as shown in this figure. The interpretation of the left
and right panels in this figure is the same as in figure 3.
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Exact (7.283 pF) given by
D.K. Reitan and T.J. Higgins
J. Appl. Phys. 22, 223 (1951)
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Figure 4. Test case of infinite cubical
capacitor. See test for discussion.



Figure 5 shows isocontours of the electric field for the case of
15 grid points in the x, y and z directions (3,416 nodes) and
illustrates the concentration of the electric field at the eight
corners of the cube addressed in [Figure 4].
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Electric Field Isosurfaces for Cube
[a=0.1,V=1,0volls; peak value E = 23,7 V/im]

Figure 5. Isocontours of the electric field for a cubically-
shaped conductor.

Additional test cases, involving multiple dielectrics will be
discussed during the meeting.
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