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MODELING COMPACTION-INDUCED
ENERGY DISSIPATION OF GRANULAR HMX *
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induced dissipation.

A thermodynamically consistent model is developed for.the compaction of granular solids.
The model is an extension of the single phase limit of two-phase continuum models used
to describe Deflagration-to-Detonation Transition (DDT) experiments. Our focus is on
the energetics and dissipation of the compaction process. Changes in volume fraction are
partitioned into reversible and irreversible components. Unlike conventional DDT models,
the model is applicable from the quasi-static to dynamic compaction regimes for elastic,
plastic, or brittle materials. When applied to the compaction of granular HMX (a brittle
material), the model predicts results commensurate with experiments including stress re-
laxation, hysteresis, and energy dissipation. The model provides a suitable starting point
for the development of thermal energy localization sub-scale models based on compaction-

INTRODUCTION

Two-phase continuum models have been widely used
to simulate Deflagration-to-Detonation Transition
(DDT) in energetic granular solids [1, 2, 3]. Of this
class of models, the Baer-Nunziato (BN) model [2, 4]
is the most developed. It is based on mixture theory
and is thermodynamically compatible. We adopt the
framework of the BN model as a basis for analyzing
compaction energetics in granular HMX. This work
is motivated by the fact that compaction work is a
dominant mechanism for hot-spot formation and thus
plays a critical role in the weak initiation of DDT.
Changes in the internal energy of a granular solid
due to compaction can be divided into two compo-
nents: 1) an irreversible component which increases
the thermal energy of the pure solid; and 2) a re-
versible component which is stored as recoverable en-
ergy. The recoverable energy enters the BN model as
a potential in the Helmholtz free energy, and does not
contribute to the thermal energy of the pure solid.
In the BN-model, the irreversible component is

*This research is funded by the Department of Energy un-
der Contract Number W-7405-ENG-36.
tCorresponding author: gonthierka@hal.lamar.edu

rate dependent and the reversible component is rate
independent. In particular, all of the compaction en-
ergy for quasi-static compaction is predicted to be
recoverable. This is at odds with quasi-static com-

. paction experiments [5] for granular HMX which dis-

play a large hysteresis effect and imply that rate-
independent compaction is mostly irreversible and
thus thermal in nature. Moreover, the compaction
potential of the BN model exceeds all plausible physi-
cal energy storage mechanisms; e.g., recoverable shear
strain energy. For dynamic compaction waves, the re-
coverable energy can be a significant fraction of the
total compaction energy, though smaller than the dis-
sipated energy.

In practice, contrary to the thermodynamic-based
derivation of the BN model, computer code imple-
mentations of the model treat rate-independent com-
paction energy as thermal energy. The variation of
the BN model formulated by Powers et al. (PSK) also
thermalizes compaction energy.

In this work, we extend the thermodynamic for-
mulation of the BN model to account for the hys-
teresis and stress relaxation observed in quasi-static
compaction experiments. The main idea of this work




is to partition the volume fraction into elastic and in-
elastic components, and to then use this additional
degree of freedom to obtain a better ansatz for the
free energy. The extension is analogous to the for-
mulation of models for elastic-plastic flow with work
hardening. Our treatment of compaction is however
much simpler than elastic-plastic flow because it is in
the context of a hydrodynamic model in which the
stress is a scalar rather than a tensor.

The following is an outline of the paper. First,
we modify the free energy potential for the granu-
lar solid based on the partitioning of volume fraction,
and propose an evolution equation for the inelastic
component of volume fraction. Next, the dynamic
compaction equations of the model are given and are
shown to be consistent with the entropy inequality.
Finally, the compaction energetics of granular HMX
is described within the context of our model. This
work is only the first step in developing an improved
burn model that properly accounts for the energet-
ics in a compaction wave. It also provides a ther-
modynamically consistent rationale for the computer
implementation of the BN-model in practice, and for
the PSK model.

FREE ENERGY

We focus on the solid phase of a granular material.
In continuum hydrodynamic models, the thermody-
namic state is characterized by a bulk (average) den-
sity p, bulk temperature T, and a solid volume frac-
tion ¢. For a densely packed granular solid, the initial
porosity, 1 — ¢, is approximately 30%.

The BN-model is based on the principle of phase
separation and in effect assumes the Helmholtz free
energy is of the form [4]

¥(V,T,¢) = ¥s(Vs, T) + B(9) 1)

where V' = 1/p is the specific volume of the gran-
ular solid, ¥, is the free energy of the pure solid,
Vi = 1/ps = ¢V is the specific volume of the pure
solid, and B is a potential for the compaction energy.
The thermodynamic conjugate force to ¢ is called the
configuration pressure 3, and is defined by

_ ov| _ 4B
ﬂ=P5¢; =P (2)

Vs, T

Here, 8 can be interpreted as the average pressure
resulting from the contact forces between grains, and
thus models material strength within the context of
a continuum fluid-like model. In order for the con-
figuration pressure to be positive and monotonic, we

require the compaction potential to be a convex func-
tion. In practice, 3 is measured in quasi-static com-
paction experiments and B is obtained by integrating

B; i.e., B(¢) = (:; £ dg.
The form of the free energy determines the effec-

tive pressure of the material

ov

P=-2"
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= ¢P:(V5,T) . (3)
The equilibrium volume fraction, determined by min-
imizing the free energy with respect to ¢, corresponds
to the condition for pressure equilibrium P; = 3. The
compaction law used in the BN-model

dp _ (1 -¢)
E_Q_T(Ps_ﬁ) (4)

amounts to a relaxation equation for pressure equi-
librium because of the stiff dependence of the solid
pressure P; on its deunsity p; = p/¢. The parameter
ftc has dimensions of dynamic viscosity (kg/m-s), and
characterizes the relaxation time.

Thermodynamic consistency requires that the ma-
terial specific energy is given by [4]

€=€s(‘/s,T)+B(¢)7 (5)

where e, is the specific energy of the pure solid. Con-
sequently, within the formulation of the BN-model,
the energy associated with changes in volume fraction
due to quasi-static compaction is reversible. How-
ever, quasi-static compaction experiments [5] display
a large hysteresis effect. In particular, when a sample
of granular material is compacted to low porosity and
then unloaded, ¢ does not return to its initial value.
This is indicative of substantial irreversibility. More-
over, the experimental value of the quasi-static com-
paction energy needed to completely squeeze out the
pores (1.¢., f;o g— d¢) is for HMX on the order of 5 J/g.
The maximum energy associated with shear strain is
determined by the yield strength and the shear modu-
lus and is less than 1 J/g. Since the quasi-static com-
paction energy exceeds the amount of energy that can
be stored as a potential, most of the compaction en-
ergy must be dissipated as heat. Both sliding friction
between grains and plastic work are likely dissipative
mechanisms in the compaction process.

Code implementations of the BN-model use for
the pressure P = ¢P,;(V,,e). This corresponds to
the material specific energy being e = e, without the
compaction potential in Eq. (5). In the regime where
compaction is of interest, the pure solid equation of
state is very stiff and thus the pressure is dominated
by small changes in the density. Consequently, the




compaction energetics has only a small effect on the
mechanical behavior of a compaction wave [4]. Fur-
thermore, the bulk temperature rise in a compaction
wave is small and reaction rates are empirically fit to
depend mainly on the pressure which is insensitive to
the treatment of compaction energy. The energetics
of a compaction wave will however be important for
developing improved burn models.

In order to reconcile the gquasi-static compaction
experiments with the model, the free energy must be
modified. Compaction experiments show that load-
ing leads to a change in grain morphology; grains can
fracture, distort plastically and rearrange their posi-
tions leading to a lower stress-free porosity. This mo-
tivates introducing an additional variable ¢ to char-
acterize the no-load volume fraction. In analogy with
elastic-plastic theory [6], we shall interpret ¢ as repre-
senting the inelastic, or irreversible, component of the
volume fraction and ¢ — ¢ as representing the elastic,
or reversible, component of the volume fraction.

As an ansatz we assume that the compaction po-
tential depends only on the elastic component of the
volume fraction. This leads to a modified free energy
of the form

Y(V,T,4,¢) = ¥(Va, )+ B(¢—¢) . (6)

We define the conjugate thermodynamic force to ¢ to
be
v

—-p — .
9¢ Vs, Ty¢

Here, f3 is the analog of a “plastic” stress. Since B
depends only on the elastic volume fraction, it follows
from Eq. (2) that 3 = #. In addition, the specific
energy of the material depends on the elastic volume
fraction rather than the total volume fraction, i.e.,

8 (7)

]

e=es(Vs,T)+ B($ - ¢) . (8)

Later we will check that our modification to the model
satisfies the entropy inequality. Here we note that the
differential form of the fundamental thermodynamic
relation is given by

Tdn = PdV +de + (P. — B)Vdg + 8Vdd, (9)

where n = —(8/0T)¥ is the entropy. It is important
to note that 7 = 7s(V;, T); thus, the material specific
entropy is identical to the entropy of the pure solid.
Terms in the thermodynamic relation proportional to
B are a consequence of the potential energy term in
Eq. (8).

Having introduced a new thermodynamic state
variable, we need to specify an evolution equation for

¢. We assume that

1 o .
@[f(d))—tﬁ] if f(¢) > ¢,

0 otherwise.

(10)

This form for § can be interpreted analogously to the
dynamics of plastic strain for rate-dependent elastic-
plastic flow. The function f(¢) represents the yield
surface for the inelastic volume fraction and the de-
pendence of the yield surface on ¢ represents work
hardening. The parameter i characterizes the relax-
ation time for ¢ to return to the yield surface.

In the elastic regime, ¢ < ¢ < f~1(¢), dp/dt = 0
and the pressure equilibrium condition is as before,
P, = 8 = pB'(¢ — &), except that the configuration
pressure now depends on both ¢ and ¢. The dynam-
ics constrain ¢ to be non-decreasing in the inelastic
regime. Consequently, from Eq. (9) the entropy can
only increase as 43 evolves. Moreover, we see from
Eq. (8) that increasing ¢ has the effect of transfer-
ring compaction potential energy to thermal energy.
The energetics implemented in codes, namely e = e,
correspond to f(¢) = ¢ in the limit that i — 0. The
limit of zero relaxation time for the return to the yield
surface is analogous to rate-independent plasticity.

MATHEMATICAL MODEL

~The equations for the flow of a granular material are

an extension of the fluid equations. These consist of
conservation of mass, momentum and energy

af P ) pu -
e +5— pu® + P =0, (11)
t\ pE 2\ pu(E + PV)

where the total specific energy is E = e + %uz, plus
rate equations for the total volume fraction

i¢=g

7 (12)

and the inelastic component of the volume fraction

d-. .

Egd’ =g, (13)
together with the constitutive relation defining the
pressure P = ¢P,(V;,e;) where V, = ¢/p and e; =
e — B(¢ — $). The fluid equations and the rate equa-
tions are coupled through the source terms and the
algebraic constitutive relations. Apart from the ad-
dition of ¢ these equations correspond to the single
phase limit of both the BN [4] and PSK [7] models.




Additionally, we need to specify the rate functions
for the compaction dyramics. As in the BN-model,
we assume that the dynamics of the total volume frac-
tion is governed by g as in Eq. (4), but with a slight
modification:

(1—¢)

,e - (P.-5) ite>3,

0 otherwise,

(14)

where 8 = pB'(¢ — $). This modification restricts ¢
to be greater than ¢ as is required by our anderlying
micro-mechanical view of the material. For the in-
elastic component of the volume fraction, we assume
that § is given as in Eq. (10), and that the relaxation
parameter is given by

L (1),

Blg) o fio
where the constants fip and é are material-dependent
parameters that characterize the slow and fast re-
sponse, respectively.

In the previous section, we discussed the energy
and dissipation associated with the compaction po-
tential B(¢) in the free energy. The dynamics of
the model contains an additional rate-dependent dis-
sipative term that is important for compaction waves.
- Combining the fundamental thermodynamic relation,
Eq. (9), with the dynamical equations for the model,
Egs. {11)-(13), we find that the dissipation is given
by

(15)

d _ Ve de

dat i T a

(16)

de dé
(P =PV o + 8V o -
S————— N
@) (ii)

The first term (i) is present in the standard BN-
model. This term is non-negative because the com-
paction rate g is chosen such that P; — 8 and d¢/di
have the same sign. For a quasi-static compaction
process, both d¢/dt — 0 and P; — 8 — 0. Conse-
quently, this term has a negligible affect on slow flow,
though it can provide substantial dissipation for fast
flow such as occurs in the rapid rise of a compaction
wave profile.

The second term (ii) results from our modification
to the model. This term is non-zero since both 8 > 0
and dé/dt > 0. For a slow process 8V can be non-
zero and this term will raise the entropy proportional
to the change in é. Thus, it will cause quasi-static
compaction to be dissipative and irreversible. Since
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FIGURE 1. A HYPOTHETICAL LOADING, STRESS
RELAXATION, AND UNLOADING COMPACTION
PROCESS.

it converts recoverable energy to thermal energy, the
second term also contributes to the dissipation in a
compaction wave. For fast processes, 3 is not in equi-
librium with respect to ¢ and thus the second term
also can be compaction rate-dependent. However, the
distinguishing property of the second term is that its
time integral does not vanish for quasi-static com-
paction.

The modified model is compatible with the hys-
teresis and stress relaxation observed in quasi-static
compaction experiments [5]. Shown in Fig. 1 is a
simple schematic of a hypothetical loading, stress re-
laxation, and unloading quasi-static compaction pro-
cess in the (¢, i)-plane. For purposes of illustration,
we have chosen the equilibrium no-load volume frac-
tion, f(¢), to be a linear function passing through
point A, the initial loosely packed unstressed state
with ¢ = ¢ = go.

During the loading process from point A to
point B, ¢ increases faster than <,z~$ leading to an in-
crease in 3. At point B, the loading is stopped and
sufficient force is applied to maintain a constant vol-
ume; the volume fraction ¢ is nearly constant because
the solid has a stiff equation of state. However, B is
outside the elastic region, bounded by the lines 43 =¢
and ¢ = f, and is not an equilibrium state. Conse-
quently, q; continues to increase as the material re-
laxes to the boundary of the elastic region, ¢ = f,
at point C. This is a period of stress relaxation since
¢ — ¢, and hence 3, decreases. During stress relax-
ation some of the stored recoverable energy is ther-
malized, i.e., Aes = B(¢p — ¢5) — B(¢pc — ¢c). The
increase in é is irreversible.
suppose the force maintaining
is removed. During the

Subsequently,
the volume fraction
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FIGURE 2. VARIATION OF ¢ WITH ¢ BASED ON
QUASI-STATIC COMPACTION EXPERIMENTS.

unloading process from point C to point D, ¢ de-
creases until it equals % The remaining stored recov-
erable energy B(¢c — ¢c) is released. This reversible
component of the compaction energy is only a frac-
tion of the energy supplied during the loading stage.
Moreover, at the stress-free end state, point D, q'S is
larger than its value at the start of the loading pro-
cess. Hysteresis is the failure of ¢ to return to its
initial value, and is a consequence of the dissipation
resulting from the change of the internal variable .

In summary, our extension of the BN-model de-
scribes both an elastic compaction region, ¢ < ¢ <
f7Y(#), and an inelastic compaction region, ¢ >
f~1(#). This is quite analogous to elastic-plastic flow.
The inelastic region is responsible for the hystere-
sis effect observed in quasi-static compaction experi-
ments.

COMPACTION OF GRANULAR HMX

In this section, we apply the model to both quasi-
static and dynamic compaction of granular HMX. It is
not the intent of this section to give a detailed analysis
of granular HMX compaction; rather, we simply give
an application of the model, noting salient features,
and determine constitutive relations appropriate for
granular HMX to be used in future work.

As is routinely done in the absence of dynamic
compaction data, we determine constitutive relations
based on quasi-static compaction experiments, and
apply these relations to dynamic compaction. To
this end, we use the quasi-static compaction data re-
ported by Coyne et al. [5] for coarse HMX. In their
experiments, Coyne et al. quasi-statically loaded
and unloaded small samples of granular HMX con-

1000 ¢
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FIGURE 3. VARIATION OF g WITH ¢ BASED ON
QUASI-STATIC COMPACTION EXPERIMENTS.

tained within a movable piston-fixed cylinder appa-
ratus. Each loaded sample was allowed to undergo
stress relaxation prior to unloading. Granular bed
displacement, applied stress, and transmitted stress
were simultaneously recorded. Based on 1) the re-
bound of the granular bed upon unloading and 2) the
maximum volume fraction prior to unloading, the
equilibrium no-load volume fraction, f(¢), can be es-
timated. The results, summarized in Fig. 2, indicate
that f can be taken as a linear function of ¢ through
the ambient state. The resulting expression for f is

f(#) = ¢o + c( ~ ¢o), (17)
where ¢ = 0.913 and ¢¢ = 0.655. Also, based on the
stress measurements of Coyne et al., we approximate
the configuration pressure by

B($, ) = Bo p h(d — ¢) (18)
where G = 1.49 MPa,
h(ge) = —p BlE=Fe), (19)

K — e

and £ = 0.03. The density dependence of 3 is ig-
nored because, for the regime in which compaction is
important, the pressure is low compared to the bulk
modulus and thus the density is nearly constant. A
comparison between the experimental stress data and
the fit given by Eq. (18) is shown in Fig. 3.

We now estimate values for the parameters fio
and ¢ in Eq. (15) based on the simulation of guasi-
static compaction experiment HMX-23 reported by
Coyne et al. The simulation consists of a (I) loading,
(IT) unloading, and(IIT) reloading cycle at a constant
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PACTION OF GRANULAR HMX.

extension rate of 18.8 cm/s during loading and reload-
ing. We take fio = 0.5s and & = 1.461 x 10%s?. A
comparison of the computed and experimental results
is shown in Fig. 4. Here, ¢ is determined based on
the loading portion of the cycle, whereas jig is chosen
based on the time scale of the stress relaxation pro-
cess immediately following cessation of loading. It is
noted that only the extrema of ¢ and 4 were reported
for the stress history shown in Fig. 1 of reference [5].
‘We linearly scaled these values between their extrema
to obtain the experimental history shown in fig. 4;
as such, these results should be interpreted as semi-
quantitative. Neither the BN model [2], which pre-
dicts full material recovery, nor the PSK model [3],
which predicts no material recovery, correctly mod-
els the compaction behavior of granular HMX in this
slow compaction limit. Additionally, neither model
predicts the observed stress relaxation.

With all model parameters fixed, we now ap-
ply the model to the dynamics of a steady com-
paction wave. For brevity, details of this analysis
are not given as comparable analyses are published
elsewhere in the literature [8, 7]. The analysis as-
sumes a steady wave propagating to the right with
speed D, and re-expresses the governing equations in
a reference frame propagating with the wave. We
make two additional simplifications. First, we as-
sume that the solid grains are incompressible, and
restrict the analysis to compaction waves propagat-
ing with speeds much less than the ambient solid
acoustic speed (D < 800m/s < ¢ &~ 2600 m/s). Sec-
ond, since the non-dimensional quantity &//i3 is large
(5.844x10*), we replace Eq. (10) with the equilibrium

condition ¢ = f(#). Thus, the steady problem can be
reduced to a single ordinary differential equation for
¢, with all remaining system variables expressed in
terms of ¢.

Figure b summarizes predictions of the dynamic
compaction wave analysis for ¢o = 0.73. Shown in
Fig. 5(a) and 5(b) are the predicted variation with
piston velocity of the compaction wave speed and
volume fraction behind the wave. Also shown in
these figures are dynamic compaction data for granu-
lar HMX obtained by Sandusky et al. [9], as reported
by Baer [8]. Reasonable agreement exists between the
computed and experimental results.

More interesting is Fig. 5(c) showing the predicted
variation with piston velocity of 1) the specific com-
paction work wc, obtained by integrating the specific
internal energy e through the wave profile, and 2)
the fraction of w. corresponding to the dissipative
terms (i) and (ii) in Eq. (16), and the recoverable
compaction energy. As evident in the figure, very lit-
tle of the total compaction energy (< 10%) is stored
as recoverable energy. Thus, the PSK model [3], for
which all compaction energy is dissipated, reasonably
predicts compaction-induced dissipation for granular
HMX. For small piston speeds (up, < 45m/s), the
rate-independent dissipation term (ii) exceeds the
rate-dependent term (i) which is seen to vanish in
the limit u, — 0. For larger piston speeds, the rate-
dependent term (i) constitutes an increasingly larger
fraction of the total specific compaction energy.

Using the caloric equation of state
es = cysT+q, with ¢ys = 1500 J/kg/K and g = 5.84 %
10% J/kg, final bulk temperatures of less than 320K
are predicted based on bulk compaction-induced dis-
sipation. As this temperature is far below the ig-
nition temperature of HMX (~ 600K), the contin-
uum model must be supplemented with a thermal
energy localization model to predict ignition of gran-
ular HMX.

CONCLUSIONS

‘We have extended the BN-model to account for irre-
versible changes in the volume fraction. Our model is
thermodynamically consistent and gives a more gen-
eral treatment of compaction energetics than do con-
ventional two-phase DDT models; thus, it can be ap-
plied to elastic, plastic, or brittle materials. When ap-
plied to compaction of granular HMX, the model pre-
dicts results commensurate with experiments includ-
ing significant dissipation and stress relaxation. The
latter is not predicted by conventional models. Fu-
ture work will address the development of 1) a model




for the evolution of granular bed morphology in terms
of a grain size distribution function, and 2) a model
for differentially localizing energy dissipated by the
compaction process in order to predict the formation
of hot-spots and the evolution of their distribution.
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