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ABSTRACT

Because of Earth’s gravitational field, its atmosphere is strongly anisotropic with respect to the
vertical; the effect of the Earth’s rotation on synoptic wind patterns also causes a more subtle form
of anisotropy in the horizontal plane. We survey various approaches to statistically robust
anisotropy from a wavelet perspective and present a new one adapted to strongly non-isotropic
fields that are sampled on a rectangular grid with a large aspect ratio. This novel technique uses an
anisotropic version of Multi-Resolution Analysis (MRA) in image analysis: we form a tensor
product of the standard dyadic Haar basis, where the dividing ratio is A, = 2, and a nonstandard
triadic counterpart, where the dividing ratio is A, = 3. The natural support of the field is therefore
2n pixels (vertically) by 37 pixels (horizontally) where n is the number of levels in the MRA. The
natural triadic basis includes the French top-hat wavelet which resonates with “bumps” in the field
whereas the Haar wavelet responds to “ramps” or “steps”. The complete 2D basis has one scaling
function and five wavelets.

The resulting anisotropic MRA 1is designed for application to the liquid water content (LWC)
field in boundary-layer clouds, as the prevailing wind advects them by a vertically pointing mm-
radar system. Spatial correlations are notoriously long-range in cloud structure and we use the
wavelet coefficients from the new MRA to characterize these correlations in a multifractal analysis
scheme. In the present study, the MRA is used (in synthesis mode) to generate fields that mimic
cloud structure quite realistically although only a few parameters are used to control the
randomness of the LWC’s wavelet coefficients.

1. INTRODUCTION

Multifractal analysis has proven invaluable in a wide variety of applications ranging from chaos
theory and turbulence (where it was first conceived) to high-energy particle physics and
cosmology. Power-law statistics also arise in many laboratory-scale (e.g., materials science)
experiments as well as in the field (e.g., in geophysics). Wavelet theory is well-suited to capture
phenomena that occur on a broad range of scales, with arbitrary intensity and degree of
localization. Wavelet-tools have thus enhanced our understanding of nonlinear dynamical systems,
some of which have so many degrees of freedom that their behavior may just as well be considered
random. So wavelet transforms (WTs) and multifractal formalism have had a natural and
prosperous marriage [1]. )
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Curiously, wavelet-multifractal analyses of data have been almost exclusively based on the
Continuous WT (CWT). In this work, we try to repair this unjustified neglect of the simpler
Discrete WT (DWT). We also try to break through the “barrier of isotropy” in 2D settings.

In the next section, we survey wavelet- assisted multifractal data analysis in 1D and illustrate
the lesser-known methods with data pertaining to cloud structure. In section 3, we recast in
discrete wavelet space procedures for generating selected scale-invariant stochastic models; some
are well-known but monofractal (fractional Brownian motion), others are less-known and strongly
multifractal (bounded multiplicative cascades). Section 4 is devoted to 2D issues: How should we
treat data that is statistically isotropic? and What are our options in highly anisotropic situations?
Again, our motivation for relaxing the all-too-standard assumption of isotropy is rooted in
atmospheric processes: cloud formation and maintenance in presence of strong stratification.

2. WAVELETS & MULTIFRACTAL DATA ANALYSIS IN 1D
2.1. Useful Wavelet Definitions

We assume in the following that data
flx),0=sx <Ly 1)

is given on a regular grid of constant £ = 1; there can be several f’s in an ensemble of interest, not
necessarily of equal lengths.

2.1.1. Continuous Wavelet Transform:
Assuming y(x) is a real admissible (zero-mean, at least once-oscillating) wavelet, we define the
CWT of f(*) as

Tyifiab) = = [fow(EL) dx, (22)

where
0 <a< L =ming{Lys}
{0 <b<lL ’ (2b)

assuming periodic extension in both directions. In practical computations, the pair (a,b) has
integer values (in pixel units). Notice that we use an L (rather than the more standard L)
normalization in (2a).

We can define a similar integral transform Tp[f](a,b) for the scaling function @(x), which is
essentially a non-oscillating “wavelet.”

Gaussian-based examples:

Oc(x) = exp[—x2/21N2r ; (3a)
WaG(x) = —0x0G(x) = x0(x); (3b)
Ynn(x) = 9206(x) = (?-1)@g(x). (3c)

The latter is the “Mexican hat” wavelet.

2.1.2. Discrete Wavelet Transform:
We will work in the frame of dyadic (A=2) or triadic (A=3) Multi-Resolution Analysis or
“MRA”, a la Mallat [2], where

m(Lp = int(logyLy), @)

is a key quantity: the number of octaves (A=2) or powers of 3 in the data. Here we narrow our
focus onto the following subset of (a,b)’s:




{a](}\,) = )\J,J = 0,...,jmax (5)

bji(?\,) =iM,i=0,... , Ainx)-1
where jmax = ny(L)-1. The total number of points in this subset is

card[{a;,bj;}] = WaD-1)/(A-1). (6)
The break-down of this MRA is:

wavelet coefficients in MRA: (X—l)xcard[{aj, it
scaling-function coeficient required at jygx: 1;
total number of coefficients in MRA: }\‘n;»(L)_

In the following, we use Ig(x) to designate the indicator function of interval S: Ig(x) =1, if
x € S; Is(x) = 0, otherwise.

A =2: The famous Haar basis is spawned by

{(pn(x) = I10,2)(%)/2
YH(X) = —1[0,1)(x)+1[1,2)(x)
with the required (lack of L) normalization. Notice how, apart from a unitary translation, the
Haar scaling-function and wavelet in (7) are piece-wise constant approximations of the Gaussian
(3a) and its anti-derivative (3b).

The computational MRA “trick,” leading to algorithms with O(V) complexity [2], is based on
the remark that yy(x) in Eq. (7) can be rewritten as 2[-Qg(x/2)+@u((x-1)/2)].

(7

A=3:
©3(x) = I0,3)(x)/3 .
Valx) = =1[0,1)(x) +112,3)(x) (8)
Ws(x) = +110,1)(x)—2x111,2)(x)+1[2,3)(x)

In this natural extension of the generators of the Haar basis in (7), Ws(x) —sometimes called the
“(French) top-hat” wavelet— is a piece-wise constant approximation to Yym(x) in (3c).

2.2. Multifractal Analysis
2.2.1. Structure Functions:

Structure functions [3] are 2-point statistics for a given “lag” r defined any “order” g:
(fetn~fGTy, o~ D ©)

where the subscript “x,f” denotes the spatial (or x-) averaging and an optional ensemble (or f-)
averaging. In Eq. (9) we have spelled out the power-law representation of structure functions that
we expect in scale-invariant (or “fractal”) signals. In practical applications (“physical” fractals), the
power-law behavior in (9) applies over a finite scaling range [7min,"max]-

With wavelets, structure functions in (9) are generalized to:

(TyN@b)ly, ;~ a*@ (10)
for [amin,amax]- In fact, (9) is a special case of (10) for the following choice of wavelet [4]:
Wpoor_man(x) = §(x-1) - 6(x), (1D

with a = r. Muzy et al. [4] describe conditions on f’s singularity spectrum and/or y’s number of
oscillations under which the same {(q)’s are obtained using (9) and (10), generally with a different




set of prefactors however. For g > 0, single-oscillation wavelets are sensitive to all orders of
(Holder) singularity less than unity, i.e., everywhere f(x) is non-differentiable. In the remainder,
we assume this to be true.

Having established an identity between {(g) exponents using different wavelets, including the
degenerate case in (11), it is important to be able to compare the scaling regimes. However,
different wavelets have different connections between the scale-parameter a and the lag r. For
instance, we should use

ri(A) = A-Daj(A), j = 0,... jmax ‘ (12a)

for yy(x) and y,(x), respectively, in DWTs with A = 2,3. There is no general rule for CWTs.
One can use the distance between the extrema which yields 2 for a = 1 when using yjg(x).
Alternatively, one can use

ri=2x ({x w(x)dx/g y(x)dx (12b)
fora properly centered (fxw(x)dx = 0) wavelet; for yyg(x), this again yields rj =2 fora = 1.
2.2.2. Partition Functions:
In lieu of the wavélet—based generalization of structure functions in (10), one can use

Z(q.a) = <b§§|Tw[f](a,b)|q ) (13)

the “partition function,” where S, is a subset of all ’s for a given a. For partition functions, the
scaling in Egs. (9-10) becomes

Z(g,a) ~ a9, (14)
The statistical quantities in (10) and (13-14) are of course related:
(TylA(@b)|y, ;= Z(g.a) / card[S,], (15)

noting that the denominator depends only on W and a. In some situations, it should be taken as the
mean of a narrowly-distributed random variable that is quasi-independent of f (hence the above
factoring). The relation between t(q) and {(q) depends on the spatial (b-wise) sampling strategy.

“Continuous” spatial sampling:
Consider first a CWT approach based on

Se={be [0,L);0<b< L}, (16)

recalling that @ and b are actually integers; so card[S,] = L in Eq. (15) and t.(q) = {(g).
This approach is amenable to computational enhancement by using a “non-decimated” DWT
(nd-DWT) [5] at a small cost in the sampling: card[S,] = L—(}»—I)Z‘,;.@Z%) N = L+1-NM(@+1,

“WIMM” spatial sampling:

Following Muzy et al. [4], consider the (Continuous) Wavelet Transform Maximum Modulus
or “WTMM” approach based on

Sa = {b; |Tyylf1(a,b)| is locally max}. 17)

Here, card[S,] = L/a because, at least for scale-invariant data, extrema in Ty[f](a,b) with respect to
b necessarily alternate at scales =a which is the characteristic smoothing scale of the kernel in (2a).
So we find 1(q) = {(g)-1.

WTMM methodology is much more than a sampling strategy and the interested reader is
referred to recent review papers [6]. WTMM approaches indeed clarify the deep connections
between wavelet theory and multifractal formalism, including thermodynamic analogies.




“DWT” spatial sampling:
Consider now a DWT-based approach with
Sa=S;={be [0,L); b =bj(A)}. (18)

Since card[S,] = AUmwx7) = L/a, as for WWTM sampling, we again find t(q) = {(q)-1.

By using the “box-car” function g1y = 2x@p(x/2) instead of the wavelet in (2a), we retrieve
the (dyadic) “box-counting” method. In turn, this leads to the original [7] definition of T(g) for a
(non-negative) measure U(x):

b+a
I udx 1= YTy [Wl@b)? ~a"@ (19)
beS, b bes,

2.3. Ilustration with Cloud Data

Figure 1 shows two traces of cloud liquid water content (mass of droplets per unit of volume)
measured by aircraft penetrations into a marine stratocumulus deck. The variability and its spatial
inhomogeneity —the variability of the variability— are remarkable but not untypical in geophysics;
see [8a] for details.
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Figure 2 shows the similar scaling at g = 2 obtained for structure functions [8b] —and selected
wavelet counterparts— using various sampling procedures on the data in Fig. 1.

For obvious reasons, DWT sampling (x’s and +’s in Fig. 2) yields noisier estimates but it has
the advantage of MRA’s computational efficiency. This makes it an attractive approach for “on-




line” multifractal analysis of data as fast as it is collected. A systematic comparison of wavelet-
multifractal data analyses is in preparation and will be published elsewhere.
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3. CASCADE MODELING WITH THE INVERSE DWT (IDWT) IN 1D

In this section we briefly describe methods to generate mono- and multi-fractal data with
known properties in discrete wavelet space [9]. The length of each realization is set by

L= }\jmax—'-]‘ (20)
where A =2 or 3. Thus, n3(L) = jmax+1 >> 1.

3.1. Dyadic Cascades (A = 2)
3.1.1. fractional Brownian motion (fBm):

It has been shown [10] that a close analog of {Bm is obtained by randomly activating DWT
coefficients according to

Ty [fBml(a,bji) = N(O,1)(2a;)H- (202)

where H; is the only free parameter and the N(0,1)’s are independent pseudo-Gaussian deviates
with zero-mean and unit-variance. This leads to {(q) = qH3 in Eq. (10). The L-1 wavelet
coefficients in (20a) are completed by

ToulBml(a;j__,0)=0 (20b)
in the MRA decomposition required for the IDWT synthesis of f{(x).




3.1.2. bounded (p,H-model) cascades:

As counterpoint to fBm’s characteristic monoscaling ({(q)/q = constant), we can recast
deterministically the construction of “bounded” multiplicative cascade models [11,17] in a DWT
context:

14+(2p-1)(2a/L)H
Ty [nl(@jbj) = #In (7 oo /L))H) (21a)

where the sign is random, and
To[nA(a;,_0)= %Zln( 1-2p-122ayL)2H) (21b)
J

Finally, we exponentiate the IDWT’s outcome.

In the log’s, we recognize respectively the ratio and harmonic mean of the two multi-plicative
weights. In this micro-canonical [12] model the weights are purposefully designed to exactly
conserve the total measure (at each cascade step and in each realization). For H = 0, we retrieve
the one-parameter “p-model” that Meneveau and Sreenivasan [13] proposed for the dissipation
field in turbulence. Marshak et al. [11] showed that, for H > 0, this model has {(g) = min{gH,1}
independent of p.

3.2. Triadic Cascades (A = 3)
3.2.1. fractional Brownian motion.:

Generalization of the above DWT-based model for fBm-type processes to this case is
straightforward; we will just state the recipe:

Ty, [fBm)(a;,bj;) = N(O,l)(2aj)H2; (22a)
Ty [fBm](a;,bj;) = N(O,l)(6aj)H2; (22b)
T%[me](ajmax,O) =0. (22¢)

3.2.2. bounded cascades:

Micro-canonical conservation allows for 2 parameters in this case; the 3 weights are:

W1(,)) = 1+3p1-1)Bay/L)H, (23a)
W) = 1+(3p-1)(BayL)E; (23b)
W3(j,0) = 3-W1(,0)-W2(.0). (23¢c)
Now let

{k1k2.k3} = perm{1,2,3} 24)

denote a random permutation of the indices. DWT coefficients are then computed as:
Ty [infl(a).bj) = In[ Wi, 6.0/ Wi, (G.0)]; (25a)
Ty [Infl(aj,bji) = In[Wi, (. W, G.0)/ Wi, (.D)21; (25b)

1 . . .

T, [10/1(a,,0) =gélln[wlo,z)Wzo,z)Wso,z)]. (25¢)

4. WAVELET-MULTIFRACTAL ANALYSIS AND MODELING IN 2D

4.1. Definitions (Isotropic Case)



We now assume the data
fix) =fix1.x2), 0 S x1< Ly, 0 S xp< Ly (26)

is given on a regular 2D grid with £; = £ = 1. 2D generalizations of the Gaussian wavelets in
Egs. (3a—) lead either to scalar or vector formulations. In the following, we will use

—(x124x~2
9o(x) = expl 5 = L exp X | @7)

4.1.1. CWTs with scalar wavelets:
The popular 2D Mexican-hat CWT is:
Tal1@d) = [fonm(352) a2 (282)
where Yam(*) = V206(x) = (x12+x2% - 2)<PG(X1,X2)-
4.1.2. CWTs with vector wavelets:

The Gaussian’s 1st-order partial derivatives can also be used in the pair of transforms [14]:

Tynlfi@B) =5 [enun(352) a2 (28b)

for m=1,2 where y(x) = {y1(x), \Uz(x)}T=—{g 8— } 0g(x), letting superscript “T” mean
1 0x2

transpose. These filters are commonly used in edge-detection applications.
Whether the CWT’s outcome is scalar or vector, the wavelet domain is:
O<a<L=ming{Lym=1,2}
{Osbm<L(m=1,2) ’

assuming periodic extensions.

(28¢c)

4.1.3. DWTs with A = 2,3:

In isotropically discretized wavelet space, the scale parameter g; is as in Eq. (5), but position
naturally become a vector:

bji\) =i, iy = 0,.. Moaxd-1 (m = 1,2),
and the total number of points is
card[{a;j,b;i}] = A2 D-1)/(A2-1). (29)
The break-down of a 2D MRA using tensor products of the basis-generators in (7-8) is:

2D MRA wavelet coef’s:  (A2—1)xcard[{ aj, ],}]
scaling-function coeficient required at jmax:
total number of coefficients in 2D MRA: ()\.2)’%([‘)

Because the scaling functions and wavelets in 1D MRA can be likened to the Oth-, 1st- and
2nd-order derivatives of the Gaussian, their A2 different tensor products are akin to the various
partial derivatives of the 2D Gaussian. E.g., og(x)wg(x2) or @3(x1)ya(xz) will approximate

Wo(x) and Ys(x)ys(x2) resembles Yyp(x).




4.2. Isotropic Partition Functions

There is no fundamental difference between 1D and 2D multifractal analyses, standard or
wavelet-based, as long as it is kept isotropic (no preferred directions at any scale). Partition
functions still scale as Z(gq,a) ~ a9, only the precise way they are computed changes.
Scalar-wavelet approach using Eq. (28a):

Zg.a) = 2TyA@b)l ), (302)
beS,
Vector-wavelet approach using Eq. (28b):
2(g.a)={ 2ITy@hI ), (30b)
bes,
where
Ty [f(a.b)l| = Ty, [A@b)?+ Ty, [Alla.b)?. (1)

2D structure functions can be defined, with and without isotropy, as {[fix+r)—-f(x)|9)y, s but they
have rarely been used in data analysis, except for g = 2 [15]. The closest wavelet analog is
NTyIA(ab)|| D .= Z(g.a)/card[S,] from (30b) and it scales as a54).

As in 1D, there are several sampling strategies: Continuous, WITMM, and DWT.

“Continuous” spatial sampling:

Sa=1{b;0<b1,bp<L} (32)
We again must account for the dimensionality effect on the scaling: T.(q) = {(q) = T(¢)+2, since
card[S,] = L2 for all a’s.

Because 2D datasets tend to be quite large, this is a situation where the computational
acceleration of nd-DWTs is welcome.

“WIMM” spatial sampling:
Sa = {b; | Ty[fl(a,b)|| is locally max} (33)
with card[S,] = (L/a)? because of correlations extending over a range ~a in wavelet space.
Arrault et al. [16] successfully applied 2D-WTMM methodology to synthetic surfaces, both
Gaussian and multifractal, with specified roughness, as well as to some high-resolution satellite
images of turbulent cloud structures.

“DWT ” spatial sampling:
Sq=S;j={b; b =b;i})} (34)
with card[S,] = A2Vmu) = (L/a)2.
Here again the disadvantage of increased statistical noise is off-set by the possibility of O(N)

efficiency in applications where it is desirable to obtain multifractal statistics almost as fast as the
images are captured.

4.3. Approaches to Anisotropy
We list here a few ways of describing anisotropy in 2D data.

4.3.1. Using Scalar Wavelets:

Here the scale parameter becomes a vector
a=(a1,a)T (35)




in the generalized form of Eq. (28a):
——b —b
Tylfl@b) = 5 o L [y (2 202 . (36)

The wavelet itself can be axi-symmetric, as in th(x). Or else it can have less symmetry, as in
(9/0x1)(9/9x2)@g(x) which is a “checker-board” filter of sorts, or y1(x) = —(9/dx1)@g(x) which is
a standard edge-detector.

4.3.2. Using Vector Wavelets:

Here we can simply use the directional information in the wavelet transform pair (28b):
{ cosaa,b) = Ty, [f1(a,b) /|| Ty[fl(ab)|
sina(a,b) =Ty, [fl(a.b)/ | Tylfl(ab)|

A quantitative test of anisotropy is to examine the possibly scale-dependent distribution of o for the
existence of modes.

@37

4.3.3. Custom Multi-Resolution Analysis:

A simple and potentially useful way of measuring and simulating anisotropy is to use (l)DWTs
based on tensor products of dyadic and triadic scaling functions and wavelets defined in Egs. (7—
8).

Given some 2D data (maybe on an oblong support), we first decide which axis is assigned to
the dyadic branching and which to the triadic, e.g., A; = 3, A; = 2. We then compute

(M) = int{logy, Ly] (m = 1,2) (38)
and reckon the number of cascade steps:
ne(L) = ne(Ly,Ly) = min{ny(A1),n2(A2) }. (39)

The constants used in the anisotroptic ()DWT —via 2D MRA-— are given in Fig. 3a. Figure 3b is
a schematic of this MRA where the total number of points is

card[{a;b;i}]1= [(M1A2)"L)-11/[AiAo-1]. (40)
The break-down of the custom 2D MRA is;

2D MRA wavelet coef’s: (Kllz—l)xcard[{aj, iitls
scaling-function coefficient required at jiyax: 1;
total number of coef’s in 2D MRA: (A A,

10




P(xy) =1/6 o(xy) =16 oxy) =1/6
Yi(x,y) =+1/3 Yi(xy) = +1/3 Yy(xy) =+1/3
Ua(x,y)=-1/2 y2(xy) =0 Yo(x,y) = +1/2
W3(x,y) = -1 Wy3(xy) =0 y3(xy) = +1
Walxy) =+1/2 Yuxy) =-1 Walxy) = +1/2
Ws(xy) =+1 Ys(xy) =2 Ys(x,y) = +1
o(xy) =1/6 oxy) =1/6 olxy) =1/6
W1(x,y) =~1/3 yilxy) =-1/3 yi(x,y) =-1/3
Wa(x,y) =172 ya(x,y) =0 ya(xy) = +1/2
ya(x,y) =+1 W3(xy) =0 yi(xy) =-1
Wy(xy) =+1/2 Yalxy) =-1 Yuxy) = +1/2
Ws(x,y) =~1 Ys(x,y) =42 Ws(x,y) =-1
Rx,y+f) = <f,0> Ratly+8) = <f,0> fx+24,y+0) = <f,¢>
- <fy;> - <> - <fy>
+ (<fiyz> +0 - (fy>
—<FB>/2)2 +0 —<fr3>12)12
+(<fug> —(<fiva> +(<fye>
—<fiys>/2)/6 —<fius>/2)/3 —<f,Ws>/2)/6
Rxy)= <fo> fx+l,y) = <f,.9> flx+24,y) = <>
+ <fiyi> + <fyr> + <fu>
+(<fyp> +0 A
+<fY3>/2)/2 +0 < B>I2)2
+(<fya> = (hwa> + (<fye>
+<f,Us>2)/6 +<f,ys>/2)/3 +<LYs>I2)/6

FIGURE 3a: Constants in DWT and IDWT

j=0

ax(j) = ].

ay(j) =1
direct tf inverse

j=1
Cad)=3

a(j) =2

direct Lf inverse

j=2
adj)=9
ayj)=4

FIGURE 3b: Custom Anisotropic MRA
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Following the procedure outlined in §3, we can use the IDWT in Figs. 3a-b to generate
anisotropic cascade models with radically different properties when integrated in the horizontal (#1)
and vertical (#2) directions.

For instance, we can dial bounded cascade behavior in the horizontal and singular cascade
behavior in the vertical, thus T1(q) # T2(g). To achieve this, we take:

To,yylinfl(@j.bji) = Ty,[1(ay;,) from Eq. (21a);
Ty, 0qlloAl(@;,bji) = Ty [ 1(ayj,) from Eq. (25a);
Ty yylinfl(a;.bji) = 0;

Ty oul0fl(a;.bji) = Ty [ 1(ay),) from Eq. (25b);
Ty oy lnfl(a;,bji) = 0; and

T(p3(pH[1nf](ajmax’0) = ET(pH[](axJ’)-l-T(pB[](ayJ’)
J

from (21b) and (25c) respectively. Figure 4 shows two specific 729x64 (n; = 6) realizations of
this model for p;=0.3, p;=0.55 and H=1/3 horizontally, p=0.2 and H=0 in the vertical.

The choice of parameters and of marginal properties is not arbitrary: the Earth’s cloudy
atmosphere is strongly stratified and clouds tend to appear in well-defined layers —hence the
singular model for the vertical unfolding— and in these layers long-range correlations are observed
in the horizontal direction [8] —hence the bounded cascade (actually this was its very first
application [17]). Recently developed radars that operate in at mm wave-lengths are able to probe
vertical and horizontal cloud structure; we will apply the above MRA in analysis mode to such data
in the near future.
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FIGURE 4: 2 realizations of a highly anisotropic cascade generated by IDWT, with unit mean.

5. SUMMARY

We surveyed, from an algorithmic stand-point, various ways of performing multifractal data
analyses using wavelet transforms. The methods range from the sophisticated WTMM approach to
the simplistic (yet overlooked) utilization of DWTs. The inevitable loss in robustness is offset by a
significant gain in efficiency, thanks to Mallat’s [1] algorithms.

Going from 1D to 2D, we show how a tensor product of dyadic and triadic DWTs can be used
to simulate (here) and measure (in the near future) strong deviations from statistical isotropy, as are
observed in many natural systems. Being highly stratified, the Earth’s cloudy atmosphere is just

one example.
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