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Particle Beam Dynamics Simulations Using the
POOMA Framework*

William Humphrey, Robert Ryne, Timothy Cleland, Julian Cummings, Salman
Habib, Graham Mark, and Ji Qiang

Los Alamos National Laboratory, Los Alamos, NM, USA

Abstract. A program for simulation of the dynamics of high intensity
charged particle beams in linear particle accelerators has been developed
in C++ using the POOMA Framework, for use on serial and parallel ar-
chitectures. The code models the trajectories of charged particles through
a sequence of different accelerator beamline elements such as drift cham-
bers, quadrupole magnets, or RF cavities. An FFT-based particle-in-cell
algorithm is used to solve the Poisson equation that models the Coulomb
interactions of the particles. The code employs an object-oriented design
with software abstractions for the particle beam, accelerator beamline,
and beamline elements, using C++ templates to efficiently support both
2D and 3D capabilities in the same code base. The POOMA Framework,
which encapsulates much of the effort required for parallel execution, pro-
vides particle and field classes, particle-field interaction capabilities, and
parallel FFT algorithms. The performance of this application running
serially and in parallel is compared to an existing HPF implementation,
with the POOMA version seen to run four times faster than the HPF
code.

1 Introduction

Particle accelerators have played a central role in shaping our present under-
standing of the fundamental nature of matter. At the same time, the application
of accelerator theory and technology has contributed to substantial progress in
other branches of science and technology. This historical trend is expected to con-
tinue with particle accelerators playing an increasingly important role in basic
and applied science. As examples of recent applications, many countries are now
involved in efforts aimed at developing accelerator-driven technologies for trans-

mutation of radioactive waste, disposal of plutonium, energy production, and
production of tritium. Additionally, next-generation spallation neutron sources
based on similar technology will play a major role in materials science and bi-
ological science research. Finally, other types of accelerators such as the Large
Hadron Collider (LHC), the International Linear Collider (ILC), and fourth-
generation light sources will have a major impact on basic and applied scientific
research.

* This work was performed under the auspices of the U.S. Department of Energy by
Los Alamos National Laboratory under Contract No. W-7405-Eng-36.
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For all of these projects, high-resolution modeling far beyond that which has
ever been performed by the accelerator community is required to reduce cost and
technological risk, and to improve accelerator efficiency, performance, and relia-
bility. Indeed, such modeling is essential to the success of many of these efforts.
For example, high average power linear accelerators, such as those needed for
tritium production, must operate with extremely low beam loss (~ 0.1 nA/m) to

prevent unacceptably high levels of radioactivity. To ensure that this requirement
will be met, it is necessary to perform very high-resolution simulations using on
the order of 100 million particles in which the beam propagates through kilo-
meters of complicated accelerating structures. These simulations can only be
performed on the most advanced high performance computing platforms using
software and algorithms targeted to parallel and distributed environments. The
calculations require performance of hundreds of GFLOPS to TFLOPS, and core
memory requirements of hundreds of GBytes.

The beam dynamics modeling effort has concentrated so far on parallel calcu-
lations for the design of proton linear accelerators (linacs). Such accelerators are
the machines of choice for applications including radioactive waste treatment and
tritium production. Two-dimensional and fully three-dimensional beam dynam-
ics codes that take into account both external accelerating and focusing fields, as
well as the inter-particle Coulomb forces in the beam are in an advanced stage of
development and have already been used for accelerator design studies {1, 2]. This
paper describes the design and implementation of a parallel application used to
model high-intensity charged particle beams moving through a linear accelera-
tor, using an object-oriented design in C++ based on the POOMA Framework
[3, 4]. The performance of this code is compared to an HPF implementation of
the application, running serially and in parallel on the SGI Origin2000 parallel
computers available at Los Alamos National Laboratory.

2 Simulating Linear Accelerators

To simulate the motion of charged particles through a linear accelerator, we
have employed an object-oriented (OO) software design in our application. Us-
ing an OO design strategy makes it easier to develop modular, maintainable
code which can easily be extended to incorporate new algorithms, simulation
components, and capabilities. The characteristics of linear accelerators, consist-
ing of sequences of beamline elements through which particles move as they are
accelerated, lend themselves quite well to being modeled using an OO design.
We can consider this system as being comprised of the following abstractions.

Beamline Elements consist of the distinct portions of the linear accelerator beam-
line through which the particles move. Particles interact with the elements in
various ways as they propagate through them; for example, quadrupole magnet
elements focus the beam as the charged particles move through their magnetic
fields.

The Beamline comprises the collection of different beamline elements which make
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up the linear accelerator, in the order the elements are encountered by the par-
ticles.

The Beam is the set of charged particles being accelerated by the system. Par-
ticles have characteristics such as phase-space coordinates, charge, and mass,
and move through the beamline subject to the equations of motion for a linear
accelerator.
The Accelerator is the entire system, comprising the beamline and the beam.
As the particles in the beam move through the beamline, passing through
each beamline element, they experience both external forces due to the element
they are passing through and internal forces due to the space-charge interaction
of the particles with each other. The space-charge forces are calculated using a
standard FFT-based particle-in-cell (PIC) algorithm for a collisionless system
[5, 6]. In this algorithm, we first solve the Poisson equation

V24(r) = 4mp(r) (1)

to find the electrostatic potential ¢(r) from the charge density field p(r) of the
particles. From ¢(r), the space-charge force F;(r) on each particle with charge
¢; is computed using

E(r) = -V¢(r) (2)
Fi(r) = ;E(r). (3)

The standard PIC algorithm, used in codes discussed here, may be summarized
as:

[

. Scatter charge onto a grid to obtain a discretized charge density p(r);

Solve (1) to determine the electrostatic potential ¢(r) on a grid;

3. Compute the electric field vectors E(r) from (2) on a grid by finite difference
methods;

4. Gather the electric field vectors from the grid to the particle positions, and

calculate the force on each particle F;(r) using (3).

»

The beamline element forces and the space-charge interaction forces result in
changes to the momentum and position of the particles, causing them to accel-
erate through the beamline.

3 Implementation Using the POOMA Framework

Figure 1 presents an overview of the object-oriented design of the particle accel-
erator simulation code, illustrating the abstractions for the accelerator, beam,
and beamline components. Each solid box represents an object; the top half of
each box indicates the object name, while the bottom half indicates the impor-
tant methods or variable for the object. Lines terminating in arrows indicate
inheritance (“is a”) relationships; lines originating from diamonds indicate “has
a” relationships.
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The simulation code is implemented in ANSI/ISO C++ using the POOMA
Framework [3, 4], and making use of the template facilities of C++. The objects
shown in Fig. 1 correspond to C++ classes used in the application. These classes
are templated on the number of dimensions and the floating-point type, making
it possible to use the same source code base for simulations of different dimen-
sions or data type precision. For the small fraction of the code which cannot be
generalized to a dimension-independent formulation, specializations of the rel-
evant functions are provided. At present, this specialization has been done for
two and three dimensions.

Beamline Components

BeamliineElem @ Beamline

integrate integrate

N

BeamlineQuad | | BeamlineDrift BeamlineRFGap

integrate integrate integrate

Beam Components

—

spaceCharge
| Accelerator
/ \ run
ParticleAttrib Field
gather, scatter P o

Accelerator Components

Fig. 1. A summary of the object design for the linear accelerator simulation code. An

Accelerator consists of a Beam (a collection of charged particles) and a Beamline (a
set of N BeamlineElems)

The Accelerator class contains the primary components of the simulation,
namely a Beam instance and a Beamline instance. When created, Accelerator
objects determine simulation parameters and beamline components from an in-
put file, and initialize their Beam and Beamline accordingly. The run() method
carries out the steps of the computation, by calling the integrate () method of
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the Beamline. The Beamline in turn propagates the particles through each in-
dividual BeamlineElem, which are polymorphic classes that compute specialized
forces used to update the momentum and position of the Beam particles. The
BeamlineElem computations invoke the spaceCharge() method of the Beam to

calculate the space-charge interaction forces for the particles.

The accelerator simulation code is built upon the POOMA Framework, a
templated C++ class library which provides C+4- abstractions for physical
quantities such as particles and fields. POOMA provides N-dimensional parallel
data structures for the beam particles and for the space-charge field quantities
such as the charge density p(r), electrostatic potential ¢(r), and electric field
E(r). POOMA encapsulates the complexity of providing a parallel run-time
system, maintaining parallel data structures, and efficiently performing data-
parallel computations. C++ template techniques such as expression templates
[7] are used to implement a data-parallel syntax for expressions involving field
and particle quantities; such expressions are evaluated at the same speed as
hand-coded evaluation loops [3]. POOMA allows the user to write scientific sim-
ulation codes that can be run serially or in parallel with no change to the source
code. The Beam class in Fig. 1 uses POOMA ParticleAttrib objects for the
particle position and momentum data, and POOMA Field objects for p(r),
&(r), etc.

The solution of the Poisson equation from (1) is computed with an FFT-
based algorithm that uses multi-dimensional FFT routines from the POOMA
Framework. POOMA also provides a number of particle-field interaction capabil-
ities such as gather/scatter algorithms with different interpolation schemes. At
present, both cloud-in-cell [8] and nearest-grid-point interpolation mechanisms
are supported; additional algorithms are straightforward to implement and use
with the POOMA gather/scatter routines.

@ ()

Fig. 2. Visualization of a sample 2D accelerator simulation. (a) Particle positions col-
ored by kinetic energy. (b) Charge density field p(r)
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The POOMA Framework also provides a run-time visualization option that
can be used to visualize particle and field data structures either at run-time
or post-processed from data files. Figure 2 shows a sample visualization from
a 2D linear accelerator simulation, using the POOMA run-time visualization
facilities. Figure 2a displays the positions of particles within the accelerator
colored by their kinetic energy, and Fig. 2b displays the charge-density field p(r)
that results from scattering the electric charge of the particles onto a grid.

The use of a toolkit such as the POOMA Framework for development of
high-performance simulation codes has proven to be an important tool in the
implementation of the linear accelerator simulation code. The strong support in
C++ for object-oriented programming features such as polymorphism, inheri-
tance, and data abstraction, coupled with C++’s template facilities, makes it
a useful language with which to implement a scientific application such as this.
Also, templates provide a mechanism to avoid unnecessary run-time costs nor-
mally associated with the use of languages that support OO design, while still
maintaining a high degree of flexibility and extensibility in a program.

Software development frameworks such as POOMA have proven to be a
powerful tool for high-performance parallel scientific applications. The POOMA
Framework has been used for several other codes in fields such as neutron trans-
port [9], and as a basis for other frameworks such as Tecolote [10]. Several other
libraries such as PETSc [11], which includes several linear and nonlinear system
solvers, and Overture [12], which provides explicit support for overlapping grids
in complex geometries, are used as a basis for parallel simulation codes in a wide
range of applications. The advantage of using these different systems is clear:
building your simulation code on top of an existing parallel application frame-
work simplifies application design, shortens development time, and improves
portability to different parallel platforms and communication mechanisms.

4 Performance

Table 1 and Fig. 3 compare the performance of the POOMA-based linear accel-
erator simulation code with a similar application written in High-Performance
Fortran. This comparison was carried out on the Silicon Graphics Origin2000
parallel supercomputers at Los Alamos National Laborary, using the SGI C++
compiler (version 7.2) and the Portland Group HPF compiler (version 2.2). The
calculations were all 2D simulations with a beamline comprising ten beamline
elements.

Table 1 shows running times for a 2D fixed-size problem on different numbers
of processors. The problem modeled 108 particles moving through 10 beamline
elements, using a 2562 grid for the space-charge computation. The codes used
were an HPF program and two POOMA-based versions that differed in their use
of FFT routines. The POOMA code labeled “C-C” in the table used a complex-
to-complex FFT algorithm, and the POOMA code labeled “R-C” used real-to-
complex FFT routines. All three codes produced equivalent diagnostic results.
The table gives the total simulation time (averaged across the processors) and



the amount of time spent in the gather/scatter and FFT portions of the space-
charge computation, which is the single largest part of the simulation time.

Table 1. Run times (seconds) for a fixed problem size (10° particles, 2562 grid)

Total Gather/Scatter FFT

Nodes| R-C C-C HPF |R-C C-C HPF |R-C C-C HPF
1/537.2 608.6 1998.8{385.6 392.5 1500.2|31.5 83.5 120.1
2(312.0 340.2 1300.8(197.6 198.3 1037.3|23.5 44.7 70.8
4(171.2 184.2 873.2( 99.1 99.4 714.9{13.6 24.2 51.3
8| 96.9 104.0 467.2| 49.3 49.7 384.3| 7.413.0 24.5
16 61.7 65.0 195.8| 24.6 24.7 157.5| 4.7 74 11.2
32| 44.6 46.8 157.1f 12.2 12.2 120.8| 3.9 54 144

From the first three columns of Table 1, which list the total simulation time,
we see that the POOMA codes outperformed the HPF codes by a factor between

Fixed Problem Size; Parallel Speedup Fixed Problem Size: HPF vs POOMA
258 x 255 grid, 1000000 particles 256 x 256 grid, 1000000 particles

28
[t HPF

24 [~—f—er POOMARC

Paralel Speedup

(@ ®)

Fig. 3. Performance comparison between POOMA and HPF implementations of the
accelerator simulation code, in two dimensions. (a) Parallel speedup (single-processor
simulation time divided by multi-processor simulation times) for POOMA and HPF
codes for a simulation of 10° particles on a 256 grid. (b) Relative speedup of POOMA
over HPF codes for the same problem (HPF simulation time divided by POOMA
simulation time) "
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3 and 5. Figure 3a, which shows the parallel speedup of the three codes, and
Fig. 3b, which shows the speedup of the two POOMA codes relative to the HPF
code, both demonstrate that the improvement is consistent from one to 32 nodes.
The largest improvement between the timings for the HPF code and the POOMA
codes is in the time to perform the gather and scatter operations, shown in the
middle three columns of Table 1. The times to perform the FFT operations for
the POOMA codes were also shorter than for the HPF code, particularly for
the real-to-complex version of the POOMA code, but for this problem size the
gather/scatter time represents the majority of the computation.

The performance gain with a real-to-complex FF'T, which requires less stor-
age and fewer elements in the FFT calculation, is particularly noticeable for
problems with a small number of particles per cell. A set of simulations of 10°
particles on a 2562 grid using increasing numbers of nodes is summarized in
Table 2, using the C-C and R-C versions of the POOMA application. Here, the
relative improvement in performance using the real-to-complex version is much
more noticeable than in the 10%-particle simulation. While the parallel speedup
for the C-C version is greater than that of the R-C version, the R-C version
has much better single-node performance and reaches the point of diminishing
parallel returns earlier than the C-C code.

Table 1 and Table 2 demonstrate that the gather and scatter portions of
the POOMA codes scale reasonably well with the number of processors. The
POOMA version performs an initial particle load-balancing that eaqually parti-
tions the particles among processors and contributes to the nearly iinear scal-
ing behavior of the gather/scatter routines. This highlights a major difference
between the POOMA and HPF simulation codes: the paralleliz- on strategy
for the particle data. POOMA employs a spatial decomposition strategy, which
keeps particles local to the processor containing their charge density field and
electric field data by reassigning particles to processors when the particle po-
sitions are changed. With a spatial decomposition, gather/scatter operations
between the particles and fields require a minimum of communication. The HPF
code employs a static partitioning of particles across the processors, requiring ex-
tra communication for the gather/scatter phase. In both cases, a roughly equal
portion of the particles is kept on each processor. The extra time spent by
POOMA to maintain particle locality and to perform the initial load balancing
is more than made up for by reduction in the times for gather/scatter operations.

For large problem sizes, the majority of the computation time is spent in par-
ticle gather/scatter operations. In addition to the use of a spatial decomposition
strategy to minimize the communication during gather and scatter calculations,
POOMA provides an option to cache the particle-field interpolation generated
in one gather or scatter operation for later gather/scatter calls. Interpolation
between particle and field positions involves determination of nearest grid po-
sitions and interpolation weights, which do not change from one gather/scatter
call to the next unless the particle positions change. For these linac simulation
codes, the particles do not move between the time when charge is scattered onto
the charge-density field and when the electric field vectors are gathered back to
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Table 2. Run times (seconds) for a fixed problem size (10° particles, 2562 grid)

Total |Gather/Scatter|] FFT | Speedup

Nodes|R-C C-C|R-C  C-C |R-CC-C|R-C C-C

1193.4 158.6/38.8 39.4(31.2 83.4 - -

2|68.9 84.6]/20.0 19.9|23.4 25.3| 1.59 1.87

4(32.5 45.9] 9.7 9.9|13.3 24.3| 2.87 3.46

8l17.8 24.9{ 4.7 48| 7.1 12.8| 525 6.40

16/10.9 14.3| 2.3 2.4} 4.1 6.8} 8.57 11.09

. 32| 89 10.2| 1.3 1.3| 3.5 4.7|10.49 15.55

determine the electrostatic force. By caching the interpolation information from
the scatter and reusing it during the gather, the gather operations in the 2D
POOMA codes are seen to run up to three times faster than the corresponding
scatter operation.

Table 3 compares the execution times for the POOMA and HPF versions of
the linac simulation code on two different parallel architectures. In addition to
the Origin2000 machines at Los Alamos National Laboratory, the codes were run
on the Cray T3E at the National Energy Reseach Scientific Computing Center.
On the T3E, the POOMA code was compiled with the Kuck and Associates KCC
3.2b2 compiler (version 3.2d), and the HPF code was compiled with the Portland
Group HPF compiler (version 2.4). The results in Table 3 are for a 2D simulation
of 500,000 particles on a 2562 grid, and the real-to-complex FFT version of the
POOMA code was used. On the T3E, the POOMA version executes from just
about the same speed to 50 percent faster than the HPF code. This scaling is not
as dramatic as what is observed on the Origin2000 machines, but is consistent
with the previous results in that the difference in times is due primarily to faster
gather/scatter operations in the POOMA implementation.

Table 3. Run times (seconds) for different architectures (500000 particles, 256> grid)

SGI Origin2000| Cray T3E
Nodes| R-C = HPF |R-C HPF
11291.0 1064.7{473.2 586.6
2(170.1 708.01263.5 370.6
4]113.5 397.5{143.0 198.9
8| 65.9 247.2] 80.3 110.8
16| 38.7 107.3| 50.9 63.6
32} 31.8 107.6} 36.7 35.8

5 Conclusions

Using the POOMA Framework, a C++ application which models the motion
of high-intensity charged particle beams through a linear accelerator has been
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developed that runs substantially faster than an equivalent HPF application on
a number of different platforms. This performance increase can be attributed in
part to the use of a spatial decomposition strategy for the parailel computation
in the POOMA version of the code that reduces the parallel communication
required during parallel gather and scatter operations, and in part to the use
of a real-to-complex FFT algorithm in the POOMA version. The linac simu-
lation code employs an object-oriented design strategy; by using the POOMA
Framework as a basis for the development, the design is able to focus on the
specific physics abstractions of the accelerator in a modular, extensible manner.
POOMA automatically provides the parallel data structures and algorithms, ef-
ficient evaluation of data-parallel expressions, and abstractions of the hardware-
specific parallel communication issues for the accelerator code.
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