aures - 3876

Approved for public release;
distribution Is unlimited.

TITLE:

AUTHOR(S):

SUBMITTED TO:

Los Alamos

NATIONAL LABORATORY

cONF-9R0680 —-

THE NEUTRON INSTRUMENT MONTE CARLO LIBRARY
MCLIB: RECENT DEVELOPMENTS

REGEIVED
MAY 0 3 1939

OSTI

P.A. Seeger, LANSCE-12
L.L. Daemen, LANSCE-12
R.P. Hjelm, Jr., LANSCE-12

T.G. Theltiez, CIC-15

ICANS-XIV (14th Meeting of the Intl. Collaboration on Advanced
Neutron Sources),
Utica, lllinois 14 - 19 June 1998

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Depariment of Energy under contract
W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Govemnment retains a nonexclusive, royalty-free fcense to publish or reproduce the
published form of this contribution, or to allow others fo do so, for U.S. Government purposes. The Los Alamos National Laboratory requests that the publisher identify this
arlicle as work performed under the auspices of the U.S. Department of Energy. The Los Alamos National Laboratory strongly supports academic freedom and a researcher’s
right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Form No 836 RS

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible

in electronic image products. Images are
produced from the best available original

document.

ICANS-XIV
14™ Meeting of the International Collaboration on
Advanced Neutron Sources
June 14-19, 1998
Starved Rock Lodge, Utica, Illinois, U.S.A.

THE NEUTRON INSTRUMENT MONTE CARLO LIBRARY MCLIB:
RECENT DEVELOPMENTS

Philip A. Seeger, Luke L. Daemen, Rex P. Hjelm, Jr., and Thierry G. Thelliez

Manuel Lujan Jr. Neutron Scattering Center, 1.os Alamos National Laboratory
Los Alamos, NM 87545, U.S.A.

E-mail: PASeeger@aol.com

ABSTRACT

A brief review is given of the developments since the ICANS-XIII meeting made in the neutron
instrument design codes using the Monte Carlo library MCLIB. Much of the effort has been to
assure that the library and the executing code MC_RUN connect efficiently with the World Wide
Web application MC_Web as part of the Los Alamos Neutron Instrument Simulation Package
(NISP). Since one of the most important features of MCLIB is its open structure and capability to
incorporate any possible neutron transport or scattering algorithm, this document describes the
current procedure that would be used by an outside user to add a feature to MCLIB. Details of the
calling sequence of the core subroutine OPERATE are discussed, and questions of style are
considered and additional guidelines given. Suggestions for standardization are solicited, as well
as code for new algorithms.

1. Introduction

Monte Carlo is a method to integrate over a large number of variables. Random numbers are
used to select a value for each variable, and the integrand is evaluated. The process is repeated a
large number of times and the resulting values are averaged. For a neutron transport problem,
we first select a neutron from the source distribution, and project it through the instrument using
either deterministic or probabilistic algorithms to describe its interaction whenever it hits
something. If it hits a detector, we tally it in a histogram representing where and when it was
detected. This is intended to simulate the process of running an actual experiment (but it is much
slower). Monte Carlo is a useful supplement to analytical treatment of an instrument, in
particular to check and demonstrate “non-intuitive” focusing arrangements, but should never be
used as a substitute for thinking. (We are grateful to Jack Carpenter for reminding us of this
limitation of Monte Carlo.)

Keywords: MCLIB, Monte Carlo, simulation, instruments

The approach generally used in the MCLIB library routines is to treat the optical properties of
neutron transport rather than microscopic nuclear interactions (although microscopic processes
may be included in specific algorithms). The philosophy and structure of MCLIB (and of the
executing program MC_RUN) were presented at ICANS-XITII [1], and that report, augmented by
the proceedings of the 1996 Berkeley Workshop [2], has become the reference document for
MCLIB. The current version may be accessed by anonymous fip from
ftp://azoth.lansce.lanl.gov/pub/mclib/document
in three formats. Note that this document is updated frequently as features are added to the
library. The source codes are also available through this fip site.

The most exciting new features to report are the establishment of a Web application and
standardization of the code under the name Neutron Instrument Simulation Package (NISP).
That work is reported elsewhere in these proceedings [3], but all users and prospective users of
NISP are urged to visit the web site at

http://bayberry.lanl.gov/lansce/Welcome.html

2. New Library Features and MC_RUN Updates

There are two new options for neutron sources. You may specify a file of individual neutron
histories generated as a monitor output from a previous execution of MC_RUN, or you may
specify a square (uniform) distribution of velocities.

A new region type is type 14, "toroidal mirror." Since the geometry of surfaces and regions is
limited to quadratic, a torus can not be defined as a simple surface. This type illustrates how any
form of geometry may be implemented within a region, which is itself bounded by quadratic
surfaces.

The definitions of most sample types have been modified to allow the final directions of the
neutrons to be limited in solid angle, for the purpose of variance reduction when detectors don't
cover 4. In particular, the isotropic scattering type 32 may have its solid angle defined by
bands of direction casines with respect to each axis. An auxiliary routine JOMEGA is provided to
compute the resulting solid angle (if any!) for normalization. Sample types that are not isotropic
(30, 34, and 36) can not be randomized in polar angle, but may have the azimuthal angle biased
to illuminate specific detector geometries. Note that whenever solid-angle limits are used,
multiple scattering is turned off. Another change in type 32 is that you may now specify a
spectrum of 8-function energy changes instead of a single energy.

The encoding of two-dimensional detectors (type 43) now includes cylindrical and spherical
coordinates as subtypes, as well as rectilinear and plane-polar. This makes the use of detectors
with curved surfaces easier.

Many additions have been made to program MC_RUN to assist in debugging and to study
"unexpected" events. A monitor (MON) file may be written to record the passage of neutrons
across a given surface (and this file may be used subsequently as a source file, see above). It is
now possible to flag ‘a surface preceding the monitor surface for correlation; then any neutron
that crosses the correlation surface and subsequently reaches the monitor surface will be
recorded in a .COR file. Another option is that the .COR file may record where the neutron was

immediately before reaching the surface being monitored. These files are direct-access binary,
so special programs (such as SUPER_KNOW) must be adapted to extract the relevant information.

In response to a request at a recent workshop [4], a backtracking feature has been implemented.
First, a neutron may be flagged as "bad" by some procedure during its transport, for example by
coming through a chopper opening out of phase. If such a "bad" neutron reaches either the
sample or any detector, then the complete history of surface and region crossings of that neutron
will be written to a .BAD file in an ASCII format allowing subsequent study.

More variance-reduction features have been incorporated, also in response to the workshop [4].
In addition to the solid-angle biasing described above, up to 32 levels of splitting (or secondary
neutron production) may be applied to a neutron. This includes multiple use of histories
reaching the sample, or doubling when crossing flagged surfaces. User routines have the

capability to split or create neutrons, as will be discussed below.
3. Program MC_RUN

A flow chart of the execution program MC_RUN is given in Fig. 1. There are three nested loops:
the outermost loop is over the number of source neutrons (with a branch for stored and repeated
neutrons); the next is transport between regions, determination of the subsequent region, and the
interaction at the surface; and the innermost loop is what happens within any given region
(subroutine OPERATE). All geometric relations between regions are handled in this main code,
and all physics and algorithms of elements within regions are accessed through OPERATE, either

Run Sotirce
Parameters File

Source
*Inrtuahze 1 Neutron

|
m 4" Interaction u
Geg_:?:hy ns — - — at Surfacs I
1
L More? =
Defector Monitor

Summarize Qutput Output

Figure 1. Flow diagram of program MC_RUN

as in-line code or as external procedures. The operation loop continues until the neutron reaches
an exit surface of the region (or vanishes). Possible outputs of the operation include storing a
created neutron for subsequent tracking, detection of the neutron, or absorption. It is within this
loop that the MCLIB library is applied, and it is here that new features and modules may be
inserted. This report is intended to assist in the incorporation of such new features.

4. Structures used in MCLIB / MC_RUN

The source codes for the Monte Carlo Library MCLIB and MC_RUN are written in a subset of
ANSI-standard Fortran 90 (F90). To improve portability, only F90 features that are also
included as “VAX extensions” to F77 are used (F77/VAX). Declaration statements use the F77
format, which is allowed in F90. Two exceptions to the FO0 standard are that the character “.” is
used as the structure delimiter instead of “%”, and that structures are defined and declared in
STRUCTURE and RECORD statements instead of TYPE; these are again to improve portability to
F77/VAX compilers.. F90 is a structured language, but not object oriented. Some concepts of
object-oriented programming are used, but the emphasis is placed on execution speed.

The coordinate system used in MCLIB assumes that the beam axis is generally in the z-direction,
the x-direction is to the particle’s right as it travels in the z-direction, and the y-direction is
always vertically upward (because gravity always acts in the negative y-direction). This lefi-
handed coordinate system was chosen to match the X-Y coordinates of a plane detector in small-
angle geometry. A module may rotate coordinates in the X-Z plane, but changing the direction

SURFACE MC_ELEMENT
|A, B,C,D,E,F, G, P, QR,beta | PARAM
NAME INDEX pointer 1| TYPE
REGION 1|Problem (1st region) hame pointer 1
1 2 NSURF 2|Name of element in region 2 pointer 2
| X | X I | | | X | 3|Name of element in region 3 0 void
x={0, £[{1,2,34,5,6}+{0,10}]} 4iName of element in region 4 pointer3 | pointer2] TYPE
MC_GEOM . pointer3| TYPE
NSURF .
NREG NREG|Last region name pointer n
1|A,B,C,D,E, F, G, P, Q, R, beta NEXTINDX 4 TYPE
2|A,B,C,D,E, F, G, P,Q,R, beta
NSURF|A,B,C,D,E, F, G, P, Q, R, beta pointern] TYPE
11 x | x X
2l x X X
NEXTINDX
NREG| X X X

PARTICLE
[X.Y, Z VX, V¥, VZ, TOF, M, Q, WT, PX, PY,PZ_|

Figure 2. Structures used in MCLIB and MC_RUN

of gravity is strongly discouraged. The fundamental structures are PARTICLE, SURFACE,

REGION, and MC_ELEMENT. These are illustrated in Fig. 2, and defined in an include file,

MC_GEOM.INC, which is available with the source code at
ftp://azoth.lansce.lanl.gov/pub/mclib/fortran

All elements in PARTICLE and SURFACE structures are REAL*4. Compared to REAL*8, there is a

significant reduction of the length of history files containing large numbers of particles, but there
are some limitations in defining surfaces, which will be described below.

The elements of a PARTICLE structure are
(X, Y, 2) = position of the particle (m)
(VX, VY, VZ) = particle velocity (m/ps)
TOF = particle time-of-flight (us)
M = atomic mass number, e.g., 1 for a neutron or 0 for a photon
Q = atomic number of particle, e.g., 0 for a neutron or +1 for a proton
WT = statistical weight of particle. A single tracked history may represent more or less
than one neutron. This allows source weighting and the tracking of low-
probability events for variance reduction.
(PX, PY, PZ) = average polarization vector of particle beam. The magnitude of the
vector represents the degree of polarization.
A module may use and change any of the components of a particle sent to it. For instance,
motion is accomplished by updating X, Y, Z, and TOF, or partial absorption by decreasing WT. A
particle may be split by making a copy and apportioning the original WT between the two
instances.

The elements of a SURFACE structure are the ten coefficients of a general quadratic surface and a
parameter describing the surface roughness. The equation of a surface is

Ax® + Bx + Cy?> + Dy + Ez*> + Fz + G + Pxy + Qzy + Rzx = 0 (1)

The use of single-precision real numbers limits the definitions of surfaces with quadratic terms if
they are far from the origin. This is not a severe problem if the origin of the coordinate system is
placed at the sample location, since the quadratic surfaces used tend to be centered near the
sample. The surface roughness parameter BETA is presently defined only for values between 0
and +1 as a long-range waviness. It is the maximum slope error in a cosine distribution, with
rms ~ 0.58 BETA for small values of BETA. We are exploring representation of surface
irregularities on shorter length scales, which could be represented by using the sign of BETA as a
flag, or by using values > 1. A module may use any predefined surfaces, and may create a
surface for its internal use, but must not modify any existing surfaces. Any surface more
complex than quadratic (e.g., a toroid) can only be defined within a module.

A REGION structure is a vector IGEOM of signed integers (INTEGER*2) which give the
relationship of the region to every surface. If IGEOM(JSURF) = 0, the region is not bounded by
surface JSURF. If not zero, then the sign of the integer defines which side of the surface is
“inside” the region by the sign of eq. (1) when evaluated at a point (%, y, z). That is, in order for
a particle to be inside the region, the left side of eq. (1) must have the same sign as IGEOM for the
surface. (If eq. (1) evaluates to 0, then 1% and 2™ derivatives will also be considered.) The
numeric value of IGEOM is also significant:

1: ordinary surface described by roughness BETA, with possibility of refraction or critical

reflection depending on wavelength and relative index of refraction
2.: totally reflecting surface (from inside the region)
4: totally absorbing surface when hit from inside the region; i.e., no exit
5: special conditions apply before exiting region; for instance, a coordinate transform may
be required. Then treat as type 1. An example of this usage is given below.
6: treat as type 1, but split the particle into 2 equal instances after crossing
The value of IGEOM is increased by 10 if the surface is that of a region “embedded” within the
region being defined (embedded and reentrant regions are discussed in the MCLIB Document).
Modules have access to the region definitions, but should not have to deal with anything but the
sign of IGEOM. No changes of region definitions are allowed in modules.

The structure MC_ELEMENT is most relevant when writing a module, because this is the structure
used to define the contents of all regions. There is a one-to-one correspondence of elements and
regions. An element has a 40-character NAME and an integer pointer INDEX into an array of
REAL#4 parameters, PARAM. (A special case is void regions, which have INDEX = 0.) The
number in the PARAM block at the location INDEX is the ELMNT_TYPE of the region; the integer
part of the value is the type and fractions may be used for subtypes. Any number of parameters
may be defined; for each defined type nn, there is also a parameter NUMBER_nn that is one more
than the number of parameters defined. The author of a module must obtain or assign a type
number (70 through 79 are available for ad hoc or development use), and must define variables
with global names. (Global names are necessary so that the creator of the geometry file will
have exactly the same definitions as the executing program!) Descriptive names are preferred,
and a prefix may be used to identify the relevant module; documentation of the meanings of the
variables is essential, The names are defined in PARAMETER statements as integer offsets in the
PARAM block, counting from 0 at the location referenced by INDEX. The complete list of defined
types is given in the include file MC_ELMNT.INC, found at the fip site. A module may modify an
entry in the PARAM block for its own later use, but not as a mechanism for returning a value to
MC_RUN. Use of static local variables (SAVE statements) is preferred over modifying PARAM
entries. The NAME variable may be used to pass a file name to the module. The communication
between MC_RUN and the modules is described in the next section. Note that there are rough
“classes” of modules, organized by decades of the type number. In particular, samples are in the
range 30-39 and detectors in the range 40—49. Such classes share common variable names.

5. Subroutine OPERATE

This subroutine contains the “methods” for every type of element, either in-line or as external
subroutine calls. The task of an author of a new module is to incorporate the new type into

OPERATE by including a new case. For development, dummy routines for cases 70-79 are pre-
linked, so that a user may substitute his own routine for the dummy one without having to
modify OPERATE. For examples and to show the case structure, excerpts from the subroutine
are listed in Appendix A. All of the routines in the MCLIB library as listed and described in the
MCLIB document are available to use in support of new modules. The calling sequence of
OPERATE contains arguments to support a variety of classes of elements; for instance, detectors
need to return encoding information. The arguments in the calling sequence are listed in order in
Table 1. Any of these may also be used as arguments to additional lower-level subroutines. All
arguments are passed by reference, so the programmer has the responsibility to use care in
changing values.

Table 1. Arguments in Calling Sequence of Subroutine OPERATE

Input| Name Type Description Output
Neutronj PART | Structure |A PARTICLE structure. Position, velocity, |Updated Neutron
statistical weight, & polarization may change
depending on the case.
Escape Distance| EXDIST | REAL*4 jRecompute if velocity changes. Will be 0if |New Escape Distance
the neutron is moved all the way to an exit
surface.
Parameters of Region| PARAMS | REAL*4 |From the PARAM array. First value is type
(0:*) |number of the region, used in CASE
structure.
MC_GEOM Structure] GEOM | Structure |All surface and region geometry definitions.
Region Number} IREG INT+4 |Modified if region contains subregions, e.g., |Subregion Number
chopper or Soller-slit package.
Entrance Surface] JSURF INT*4 {Surface neutron is on initially, or O if not on
a surface.
Exit Surface] KSURF INT#4 {Surface toward which the velocity points; New Exit Surface
updated if direction changes; set to negative
if reflection occurs.
Name of Region] NAME |CHAR#40|The region name may be an external file
name, e.g., an S(a,p) file for inelastic
scattering.
Transmission Flag| TRANSMIT{LOGICAL |Used by sample class to know when to split
neutron into scattered and non-scattered
histories.
FLAG |LOGICAL |Setto .FALSE. if something is peculiar, e.g.,|Bad-Neutron Flag
neutron in wrong chopper frame.
PART_2 | Structure |Typically used to save the “scattered” Second Neutron
neutron independently from “transmitted.”
DET_WT | REAL#4 |Non-zero output identifies region as Detected Statistical
detector. Includes detector efficiency. Weight
IX INT*=4 |First coordinate of position-sensitive Detector Cell Number, IX
detector.
Y INT+4 |Second coordinate (if 2D detector). Detector Cell Number, 1Y
Random-Number] ISEED INT+4 |A single pseudo-random sequence is used |Random-Number Seed
Seed throughout the package.

The first argument, PART, is the neutron being tracked. The set of values from the PARAM block
that is specific to this element is passed as a vector PARAMS. Values may thus be referenced in
the form PARAMS(ParameterName), e.g.,

NSIG = PARAMS(NSIGMAQ) + PARAMS(NSIGMAV)/SQRT(PART.VX**2+PART.VY**2+PART.VZ**2)

(this and other examples will be found in context in Appendix A). Note that PARAMS is declared
in OPERATE to begin with index 0 (the type number), and this is a useful convention to use in
lower-level subroutines as well so that the indexing of locations in the block needs no offset.

When OPERATE is called, MC_RUN has already determined the distance EXDIST to escape from
the region along the initial trajectory (including gravity), and this is passed as the second

argument (useful for determining attenuation). If the velocity vector (magnitude or direction)
changes within the module, EXDIST must be recomputed by a call to DTOEX. This allows
OPERATE to loop internally (instead of returning to MC_RUN at each step) for effects such as

multiple scattering, but it means that the entire geometry structure (GEOM) and the region and
surface numbers (IREG, JSURF, and KSURF) must also be passed as arguments. For an example
of multiple scattering, see type 36 in Appendix A. By default, OPERATE will move the particle
by the distance EXDIST and will therefore return with EXDIST = 0; to avoid this for a particular
case, end the case with a RETURN statement instead of falling through. IREG and KSURF are also
output parameters in special cases. The final example in this section shows the use of
subregions, and type 13 (Appendix A) shows negative KSURF used as a flag for reflection. The
development cases 70-74 have calling sequences without detector binning or instrument
geometry, and cases 75—79 have the complete calling sequence of OPERATE.

The calling sequence includes two logical variables for state information. MC_RUN expects to
track neutrons transmitted through a sample as well as scattered neutrons. The flag TRANSMIT is
initially .TRUE. and is used to identify the first encounter of a neutron with the sample so that the
code will generate a second neutron (PART_2). That neutron will be scattered on a subsequent
entry when TRANSMIT = .FALSE. (see type 36 in Appendix A). Any call to OPERATE is allowed
to generate a new PART_2. The output variable FLAG is a debugging aide. When a module
recognizes that something about the neutron deserves attention, such as passing through a
chopper in the wrong frame (see type 20 in Appendix A), FLAG is set to .FALSE.. If such a “bad”
neutron subsequently hits a sample or a detector, then MC_RUN will tally it and (if requested)
will also write its full history to a file. This feature may also be used in ad hoc versions of
OPERATE to address.rare occurrences.

All histogramming functions are performed by MC_RUN, but detector encoding is a function of a
detector-class element. The statistical weight detected and one or two cell numbers are returned
through the calling sequence respectively as DET_WT, IX, and 1Y. (The example in Appendix C,
type 43, also shows how all of the arithmetic of a module may be moved to a separate procedure,
in this case a call to DET_2D.) Time-of-flight slices, which may be non-linear and different for
each detector, are cqmputed in MC_RUN because they involve storing arrays of slice boundaries
and (since dynamic memory allocation is not available in F77/VAX) all variable-length memory
arrays are reserved for management in the main program. The final argument is ISEED, the seed
of the random-number generator, which is propagated through all levels of subroutines in MCLIB
so that a single pseudo-random number sequence is used.

An example of a complex region (containing subregions, and also using a coordinate
transformation) is a multi-slit collimator, type 11 in Appendix A. This type encompasses
Sollers, tapered Sollers, and benders. . Instead of defining every surface and region explicitly, the
package is defined by its external geometry and by the slit spacing, taper (if any), and bend angle
(for a bender comnsisting of cylindrical slits). The code for type 11 uses the slit spacing to
determine which slit number the neutron is entering, and then translates and rotates the
coordinate system so that the neutron appears to be in the one slit which is defined. A logical
variable identifying that the neutron is in this type of region and the parameters used for the
coordinate transformation are stored in static local variables so that they will be available to undo
the transform when the neutron exits the region. There may be as many as five subregions to
describe one opening: the lumen, the coating materials on each side, and half of the substrate on

each side. (Alternatively if the center of the array is a blade instead of an opening, the
subregions could be the substrate, the two coatings, and half of the lumen on each side of the

substrate.) The code tests the five regions immediately following the type 11 region in the
geometry definitions, sets IREG to the proper value, and executes a RETURN without moving the
particle. The entrance and exit surfaces and also the outer longitudinal surfaces of the slit
descriptive regions must be tagged in the REGION structure with a value of 5 so that MC_RUN
will call EXIT_REG (a second entry point in OPERATE) when a neutron crosses. This entry point
is shown at the end of Appendix C, including the code relating to type 11. There are two
situations. If the particle is still within the exterior geometry of the slit package (i.e., still within
the bounds of the type 11 region), then it must be crossing from one slit to another within the
package. The slit npmber is changed and the coordinates transformed again so that it is once
more entering the defined opening. If on the other hand the neutron is leaving the whole
package, then the coordinate system is reconverted to match the outside world.

This example also shows how a permanent change of the coordinate system may occur in an
element. If the type 11 region was a bender, then the z-axis is rotated. Another example of
rotation in the X-Z plane is a crystal monochromator (see type 13 in Appendix A).

6. Style and Guidelines

Appendix A may also be used as a style guide for writing code for inclusion in MCLIB. By
nature, questions of “style” are arbitrary, but some level of consistency will assist later
generations in maintaining the code package. Upper case is preferred except for variable names
that make more sense with mixed or lower case characters. Continuation lines should be written
to be compatible with either fixed or floating format Fortran, by placing “&” in column 73 of the
line to be continued and another “&” in column 6 of the continuation line. Always use IMPLICIT
NONE before the INCLUDE statements or before any declaration statements, and declare every
variable. DO and IF blocks should be indented by 3 characters. Numbered statements should be
avoided. Lots of comments throughout, and enough spaces in code lines to see where the
operators are. Make me jealous by writing code that is easier to read and to understand than
mine (as well as being correct, of course).

All lines between the comment lines “C++” and “C—” will be included in the subroutine
abstracts in Appendix B of the MCLIB Document. The “required” information includes a brief
description of the pyrpose and methods used in the procedure, the original author and date and
any references to pyblications or other sources of algorithms, the update history, any INCLUDE
statements, descriptions and Fortran declarations of all variables in the calling sequence, and a
list of any external routines called and declarations for those which are functions. For more
examples, see the MCLIB Document. The complete source codes are also available (in 3 file
formats) at the anonymous fip site, fip://azoth.lansce.lanl.gov/pub/mclib/fortran.

Physical and mathematical constants should be defined and placed in PARAMETER statements at

the beginning of the procedure, or better yet given global names and included in the file
CONSTANT.INC so that everyone will be using the same values. The present quantities in
CONSTANT.INC are
GOVER2 = half the acceleration of gravity = 4.858x107" m/ps®
HOVERM = Plank’s constant/neutron mass = 0.0039560339 m-A/ps
HSQOV2M = Plank's constant squared over 2 Mneutron = 0.0818145347 eV-A?

PRECES_N = neutron magnetic-moment precession rate factor

= 27 py Mp/h? = 23160.451 radian/T/m/A
ROOTM_2 = square root of half the neutron mass = 72.298 eV®*-us/m
TWOPI =27 = 6.283185307

The units used throughout MCLIB are distance in m, time in ps, wavelength in A, and energy in
eVv.

The examples in the previous section of this report describe operations within a region. It may
be desired also to consider refraction and reflection when crossing the surface of a region, and
this requires a method to determine the index of refraction (or equivalently the scattering-length
density). Presently only two element types (amorphous materials and supermirrors) provide this
information, through the complex function GET_RHO. Addition of other types to this function
should be straightforward.

7. Conclusion

This report has described the current status of the structure of the MCLIB library, and the
procedure by which new features can be added to the low-level code. We propose this as a
standard. However, many features are arbitrary accidents of history, and we are requesting input
from users to determine what should be changed and what must be changed before the standard
is established. Although we have tried to describe the functionality requirements that led to the
present status, it must be expected that improvements will be made both from the point of view
of computer science and also run-time efficiency (which we take to be the ultimate test). Please
address any questions and suggestions to PAS eeger@aol.com.

Acknowledgments

This effort has been supported historically by the Los Alamos National Laboratory and the
Manuel Lujan Jr. Neutron Scattering Center, a national user facility funded by the United States

Department of Energy, Office of Basic Energy Sciences-Materials Science, under contract
number W-7405-ENG-36 with the University of California.

References

[1] P.A. Seeger, “The MCLIB Library: Monte Carlo simulation of neutron scattering
instruments,” 13th Meeting of the International Collaboration on Advanced Neutron
Sources, October 1114, 1995, Paul Scherrer Institut, Villigen, Switzerland, PSI
Proceedings 95-02, pp. 194-212.

[2] P.A. Seeger, “The MCLIB Library: new features,” Workshop on Methods of Neutron

Scattering Instrument Design,” Lawrence Berkeley Laboratory, Berkeley, CA, Sept 23-27,
1996.

[3] T.G. Thelliez, L. L. Dacmen, P. A. Seeger, and R. P. Hjelm, Jr., “MC-Web: A WWW-
based application for NISP,” 14th Meeting of the International Collaboration on Advanced
Neutron Sources, June 14-19, 1998, Starved Rock Lodge, IL (these proceedings).

[4] R.K. Crawford, "Report on the Workshop on Monte Carlo Simulation of Neutron
Scattering Instruments," Nov. 13-14, 1997, Argonne National Laboratory.

Appendix A. Excerpts from Subroutine OPERATE

C++
C********** o P E R A T E kkkkkkhkkk
C********** EXIT R E G *%kkkkkkdhkk
c
SUBROUTINE OPERATE (PART, EXDIST, PARAMS, GEOM, IREG, JSURF, KSURF, &
& NAME, TRANSMIT, FLAG, PART 2, DET WT, &
& IX, 1Y, ISEED)
c
C EXIT REG(PART, GEOM, IREG, JSURF)
C
C Routines to operate on a particle within (or exiting from) a region
C containing material, collimation elements, time-dependent devices,
Cc samples, or detectors. Included region types/actions are
C 1 amorphous unpolarized material: move to exit w/reduced weight
C 2 aluminum: move to exit w/reduced weight
c 5 beryllium: move to exit w/reduced weight
c 6 single-crystal filter: move to exit w/reduced weight
C 11 multi-slit collimator, vertical: selects subregion w/o moving
C 12 multi-slit collimator, horizontal: selects subregion w/o moving
C 13 crystal monochromator: reflect from surface or move to exit, and
C rotate coordinates
C 14 toroidal mirror: region divided into subregions by toroidal
C mirror: move to exit w/reduced weight
C 20 blade or disk chopper: move to exit OR select subregion
C 22 gravity focuser: selects subregion without moving
Cc 23 removable beamstop: set weight=0 if not transmission mode
Cc 30 fixed-Q or hard-sphere scatterer: transmitted or scattered
C particle moves to exit with modified weight
C 32 isotropic scatterer with spectrum of energy changes: transmitted
C or scattered particle is moved to exit with modified weight
C 34 inelastic scatter using S(alpha,beta) from MCNP: transmitted or
cC scattered particle is moved to exit with modified weight
Cc 35 reflectometry, multilayer: reflect from surface w/o moving,
Cc same weight if transmitted or reduced weight if scattered
C 36 general powder scatterer: transmitted or scattered particle moves
C to exit with modified weight
C 40 single detector: determine detection probability
c 41 linear detector, vertical: determine y-bin and probability
C 42 linear detector, transverse: determine x-bin and probability
C 43 2-dimensional detector: determine x- and y-bins and probability
C 44 linear detector, longitudinal: determine x-bin and probability
C 90 source size and phase space: welght=0 if outside surface
Cc
C P. A. Seeger, April 20, 1994
C . « «. {(modification history)
C 13 May 1998: subtype 32.2, 30.1, 30.2, 34.1, 36.1 [LLD,PAS]
c
C Definitions of STRUCTUREs:

IMPLICIT NONE

INCLUDE 'mc_geom.inc'
INCLUDE 'mc_elmnt.inc'
INCLUDE 'constant.inc'

Variables in calling sequence:
PART = record containing description of particle (input/output)
EXDIST = distance to exit surface particle is aimed at (m) (input/output)

QQ O

PARAMS = array with description of what is in this region (input)

GEOM = structure with all surface and region definitions (input)

IREG = region number of device, or subregion within device (input/output)
JSURF surface number, if particle is initially on surface (input)

KSURF = surface number that particle is pointed toward (input/output)
NAME = name of region, used as file name for type 34 (input)

TRANSMIT = flag to compute transmission of sample types 30-39 (input)
FLAG = flag set to .FALSE. if (e.g.) chopper in wrong frame (output)

PART 2 = description of particle created by operation (output)
DET _WT = statistical weight of detected particle ({(output)
IX, IY = position bin numbers of detected particle {(output)

aaaaoaaoaaoaoaaaaaoaao

ISEED = random-number generator seed (input/output)
RECORD /PARTICLE/ PART, PART 2

RECORD /MC_GEOM/ GEOM

REAL*4 PARAMS (C:*), EXDIST, DET_WT

INTEGER TREG, JSURF, KSURF, IX, IY, ISEED
CHARACTER NAME*40

LOGICAL TRANSMIT, FLAG

C
C Externals:
C ANGLI ANGTORUS ATTEN Al ATTEN Be ATTEN X DET_2D DISTORUS
C DTOEX ELSCAT GET_RHO GRAV_FOC KERNEL LMONOCRM LORRAND
C LREFLCT MQVEX NEXTRG ORRAND PLEXP PLNORM PLQSPHR
Cc POWDER RAN REFLAYER RFLN SNELL TESTIN XCHOPPER
REAL*4 ATTEN_Al, ATTEN Be, ATTEN X, DET_ZD, DISTORUS, GRAV_FOC, &
& PLEXP, PLNORM, PLQSPHR, RAN, REFLAYER, XCHOPPER
COMPLEX*8 GET_RHO
INTEGER NEXTRG
LOGICAL LMONOCRM, LORRAND, LREFLCT, TESTIN
C__
C Local variables:
REAL*4 NSIG, LAMBDA, XC, YGF, X, Y, D, TRANPROB, ATTEN, &
& ALPHA, SLIT, DELTA, TAPER, ZENTER, SIN_PHI, COS_PHI, &
& COS_TH, SIN_TH, V, AP, BP, CP, REFPROB, F, Q, Kz, ENO, &
& EN1, EN2, TWOSINTH, SIGSCAT, SIGABS, S_MULT, RATIO
COMPLEX CXRATIO
INTEGER I, ITYPE, NREG, SUBTYPE, JINDX, JTYPE, KINDX, KTYPE
LOGICAL LOPENING, LGF, LMULTX, LMULTY, LOPEN, DONE, VERTICAL, &
& INSIDE
C
SAVE LGF, IMULTX, LMULTY, ¥YGF, SLIT, DELTA, TAPER, &
& ZENTER, SIN PHI, COS_PHI, NREG, ATTEN, ALPHA, LAMBDA, Q, &
& ENO, TWOSINTH, TRANPROB
DATA LGE, ILMULTX, LMULTY, YGF,SLIT/ &
& .FALSE., .FALSE., .FALSE.,0., 0. /
C
PART 2.WT = O.
DET_WT = O,
FLAG = .TRUE.
C
ITYPE = PARAMS (0)
IF (ITYPE .EQ. 0) THEN
(o] Material is total absorber
EXDIST = 0.
PART.WT = O.
C

ELSE IF (ITYPE .EQ. 1) THEN
c Material is amorphous unpolarized
NSIG = PARAMS (NSIGMAO) + PARAMS (NSIGMAV)/SQRT (PART.VX**2 + &

PART.VY**2 + PART.VZ**2)
IF (NSIG .GT. 0.) THEN
IF (NSIG*EXDIST .LT. 12.) THEN
PART.WT = PART.WT * EXP(-EXDIST*NSIG)
ELSE
PART.WT = 0.
END IF
END IF

ELSE IF (ITYPE .EQ. 11) THEN
Region contains a multi-slit collimator with vertical blades
LMULTX = .TRUE.
Save parameters to use when exiting region

NREG = IREG

DELTA = PARAMS(C_DELTA)
TAPER = PARAMS (C_TAPER)
ZENTER = PARAMS (C_ZENTER)
SIN_PHI = PARAMS(B_SIN PHI)

COS_PHI = PARAMS (B_COS_PHI)
Translate particle into central slit
IF (TAPER.EQ.0. .OR. PART.Z.EQ.ZENTER) THEN
SLIT = ANINT(PART.X / DELTA)
PART.X = PART.X - SLIT*DELTA
ELSE
Need to account for taper when determining slit number
SLIT = ANINT(PART.X / (DELTA-TAPER* (PART.Z—ZENTER)))
PART.X = PART.X-SLIT* (DELTA-TAPER* (PART.Z-ZENTER))
END IF
IF (TAPER .NE. 0.) THEN
Tapered slits, also need to rotate particle velocity vector
COS_TH = 1. -0.5* (SLIT*TAPER) **2
SIN_TH = SLIT*TAPER*COS_TH
V = PART.VX
PART.VX = COS_TH*V + SIN TH*PART.VZ
PART.VZ =SIN ° | TH*V + COS TH*PART vz
END IF
IF (SIN_PHI .NE. 0.) THEN
Element is a bender; rotate velocity vector half the angle
= PART.VX
IF (PART.VZ .GT. 0.) THEN
Entering in proper direction, rotate CCW (if phi > 0.)
PART.VX = COS PHI*V - SIN PHI*PART.VZ
PART.VZ = SIN PHI*V + COS_PHI*PART.VZ
ELSE
Entering backwards, shift CW instead of CCW
PART.VX = COS_PHI*V + SIN_ PHI*PART.VZ
PART.VZ = -SIN_ T PHI*V + COS__ " PHI*PART.VZ
END IF
END IF
May be as many a five sub-regions; find which one
KSURF = JSURF
DO I=1,5
IF (TESTIN(PART, GEOM, IREG+I, JSURF)) THEN
IREG = IREG+I
RETURN
END IF
END DO
IREG = 0
RETURN

ELSE IF (ITYPE .EQ. 13) THEN
Region is a crystal monochromator with mosaic spread
IF (LMONOCRM (PART, PARAMS, GEOM. SURFACE (JSURF) , &
& €0S_TH, AP, BP, CP, ISEED)) THEN
CALL RFLN{PART, COS_TH, AP, BP, CP)
EXDIST = O.
Still on same surface, flag reflection with - sign
KSURF = - JSURF
ELSE
No reflection; move to exit surface before rotating coordinates
CALL MOVEX (PARRT, EXDIST)
END IF
IF (PARAMS (M SIN_2TH) .NE. 0.) THEN
Redefine instrument axis; rotate velocity vector
X = PART.X
V = PART.VX
IF (PART.VZ .GT. 0.) THEN
Moving in proper direction, rotate CCW (if 2theta > 0.)

PART.X = PARAMS(M_COS_ZTH)*X &
& —PARAMS(M_SIN_ZTH)*(PART.Z - PARAMS(M_ZO))

PART.Z = PARAMS (M Z0) + PARAMS (M_SIN_2TH)*X &
& +PARAMS(M_COS_2TH)*(PART.Z - PARAMS (M_70))

PART.VX = PARAMS (M_COS_2TH) *V—-PARAMS (M_SIN_2TH) *PART.VZ

PART.VZ = PARAMS(M_SIN~2TH)*V+PARAMS(M_COS_ZTH)*PART.VZ

ELSE

Moving backwards, shift CW instead of CCW

PART.X = PARAMS(M_COS_ZTH)*X &
& +PARAMS(M_SIN_2TH)*(PART.Z - PARAMS (M_Z0))

PART.% = PARAMS(M 20) - PARAMS(M_SIN_ZTH)*X &
& +PARAMS(M_COS_2TH)*(PART.Z - PARAMS(M_ZO))

PART.VX = PARAMS (M COS_2TH) *V+PARAMS (M_SIN_2TH) *PART.VZ
PART.VZ = PARAMS (M_SIN 2TH) *V+PARAMS (M_COS_2TH) *PART.VZ
END IF
END IF

ELSE IF (ITYPE .EQ. 20) THEN
Region contains a disk or blade chopper; find location of edge

XC = XCHOPPER(PART.TOF,PARAMS(CHP_QPEN),PARAMS(CHP_CLOSE), &
& PARAMS(CHP_JITTER), PARAMS (CHP_VEL), &
& PARAMS{CHP_PERIOD), 1LOPENING, ISEED)
SUBTYPE = NINT(10.* (PARBMS (0) - 20.0))
IF (IAND(SUBTYPE,1l) .EQ. 0) THEN
Chopper is moving horizontally, compare to PART.X
X = PART.X
ELSE
Chopper is moving vertically, compare to PART.Y
X = PART.Y
END IF
LOPEN = ((X .LT. XC) .XOR. (PARAMS (CHP_VEL) .GT. 0.)) &
& .XOR. LOPENING
If counter-rotating chopper, also test absolute values
IF (SUBTYPE.GE.Z .AND. ABS (X) .GT.ABS{XC)) LOPEN = .FALSE.
IF (LOPEN) THEN
FLAG = NINT((PART.TOF—.S*(PARAMS(CHP_QPEN) + &
& PARAMS(CHP_CLOSE))) / PARAMS(CHP_PERIOD)) .EQ. ©
ELSE

Didn't make it through this chopper opening
KSURF = JSURF

IF (TESTIN(PART, GEOM, IREG+1l, JSURF)) THEN

Next region is description of chopper blade material
IREG = IREG+1

RETURN
ELSE
Chopper blade is opaque absorber
EXDIST = 0.
PART.WT = 0.
END IF
END IF

ELSE IF (ITYPE .EQ. 36) THEN
Powder sample with Bragg scattering
IF (TRANSMIT) THEN
Save incident particle and wavelength for scattering
PART_2 = PART
LAMBDA = HOVERM / SQRT{PART.VX**2 + PART.VY**2 + PART.VZ**2)
Transmitted particle has reduced weight, get attenuation terms
CALL POWDER (PARAMS, LAMBDA, SIN_TH, SIGSCAT, SIGABS, ISEED)
ALPHA = 100.* (SIGSCAT + SIGABS)
TRANPROB = EXP(-ALPHA*EXDIST)
PART.WT = PART.WT * TRANPROB
Scattered (or absorbed) particles have the rest of the weight
PART*Z.WT = PART_2.WT * (1. - TRANPROB) * &
SIGSCAT/ (SIGSCAT+SIGABS)
ELSE
Prepare for multiple scattering; where was the interaction?
D = PLEXP(ALPHA, EXDIST, ISEED)
CALL MOVEX{PART, D)
Choose angle from possible Bragg angles
CALI POWDER (PARAMS, LAMBDA, SIN_TH, SIGSCAT, SIGABS, ISEED)
Find new velocity vector
TWOSINTH = 2.*SIN TH
IF (IAND(SUBTYPE,l) .EQ. 0) THEN
Random azimuthal angle in 2 pi
CALL ELSCAT (PART.VX, PART.VY, PART.VZ, TWOSINTH, ISEED)
Determine probability of scattering again
D = PLEXP(ALPHA, 0., ISEED)

ELSE
Limit the azimuthal angle
CALL ELSCAT2 (PART.VX, PART.VY, PART.VZ, TWOSINTH, &

PARAMS(PHI_MIN),PARAMS(PHI_MAX),FLAG,ISEED)
PART.WT = PART.WT * (PARAMS(PHI_MAX) - PARAMS(PHI_MIN)) &
/TWOPI
No multiple scattering in this case
D = 0.
END IF
Determine probability of scattering again before escaping region
CALL DTOEX (PART, GEOM, IREG, 0, KSURF, EXDIST)
DO WHILE (D.LT.EXDIST .AND. D.GT.0.)
CALL MOVEX (PART, D)
Get another Bragg angle (same attenuation length)
CALL POWDER(PARAMS, LAMBDA, SIN_TH, SIGSCAT, SIGABS, &
ISEED)
IF (RAN(ISEED) .LT. SIGABS/(SIGSCAT+SIGABS)) THEN
Particle has been absorbed
PART.WT = 0.
. D=0.
ELSE

ana

&

TWOSINTH = 2.*SIN_TH
CALL ELSCAT (PART.VX, PART.VY, PART.VZ, TWOSINTH,ISEED)
CALL DTOEX(PART, GEOM, IREG, 0, KSURF, EXDIST)
D = PLEXP(ALPHA, 0., ISEED)
END IF
END DO
END TIF

ELSE IF (ITYPE .EQ. 43) THEN
Detector, 2-dimensional position sensitive
DET_WT = DET_ZD(PART, PARAMS, IX, 1Y, ISEED)

ELSE IF (ITYPE .EQ. 70) THEN
CALL TYPE 70 (PART, EXDIST, PARAMS, NAME, TRANSMIT, FLAG,
PART_2, ISEED)
RETURN

ELSE IF (ITYPE .EQ. 75) THEN
CALL TYPE_75(PART, EXDIST, PARAMS, GEOM, IREG, JSURF, KSURF,
NAME, TRANSMIT, FLAG, PART 2, DET_WT, IX, IY, ISEED)

END IF

Move the particle
IF (EXDIST .GT. 0.) CALL MOVEX(PART, EXDIST)

IF (DET_WT .NE. 0.) THEN
Particle was detected, so check detector efficiency
IF (PARAMS(D_ALPHA 1a) .GT. 0.) THEN

LAMBDA = HOVERM / SQRT (PART.VX**2 + PART.VY**2 + PART.VZ**2)
DET WT = DET WT* (1. - EXP(-LAMBDA*PARAMS (D_ALPHA_ 1A)))
END IF
PART.WT = PART.YT - DET WT
END IF
RETURN

Need special actions when leaving some regions

ENTRY EXIT REG(PART, GEOM, IREG, JSURF)

IF (LMULTX) THEN
Crossing a surface in a multi-slit (vertical) device
IF (NEXTRG(PART, GEOM, NREG, JSURF) .EQ. NREG) THEN
Still within device, shifting to neighboring slit
IF (PART.X .GT. 0.) THEN

D = +1.
ELSE

b= ~-1.
END IF

SLIT = SLIT + D

PART.X = PART.X - D*DELTA

IF (TAPER .NE. 0.) THEN
PART.X PART.X + D*TAPER*(PART.Z - ZENTER)
COS_TH 1. - 0.5*TAPER**2
SIN TH D*TAPER*COS_TH
V = PART.VX
PART.VX
PART.VZ

COS_TH*V + SIN_TH*PART.VZ
-SIN TH*V + COS_TH*PART.VZ

[/}

&

END IF
ELSE
Actually exiting from device, restore X, VX, and VZ
PART.X = PART.X + SLIT*DELTA
IF (TAPER .NE. 0.) THEN
Tapered slits, exit not at same offset as entrance
PART.X = PART.X - SLIT*TAPER* (PART.Z - ZENTER)
Blso need to rotate particle velocity vector
COS_TH = 1.-0.5* (SLIT*TAPER) **2
SIN TH = SLIT*TAPER*COS_TH
V = PART.VX
PART.VX = COS_TH*V - SIN TH*PART.VZ
PART.VZ SIN_TH*V + COS_TH*PART.VZ
END IF
IF (SIN_PHI .NE. 0.) THEN
Element is a bender; rotate by the second half of the angle
V = PART.VX
IF (PART.VZ .GT. 0.) THEN
Exiting in proper direction, rotate CCW (if phi > 0.)

PART.VX = COS _PHI*V - SIN_PHI*PART.VZ
PART.VZ = SIN_PHI*V + COS_PHI*PART.VZ
ELSE

Exiting backwards, rotate CW instead of CCW
PART.VX = COS_PHI*V + SIN_PHI*PART.VZ
PART.VZ = ~SIN PHI*V + COS_PHI*PART.VZ
END IF
END IF
ILMULTX = .FALSE.
END IF

END IF
RETURN
END

