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Non-Hermitian quantum mechanics and localization in physical systems
Naomichi Hatano®

aMS-B262, Theoretical Division, Los Alamos National Laboratory
Los Alamos, NM 87545, USA

Recent studies on a delocalization phenomenon of a non-Hermitian random system
is reviewed. The complex spectrum of the system indicates delocalization transition of
its eigenfunctions. It is emphasized that the delocalization is related to various physical
phenomena such as flux-line pinning in superconductors and population biology of bacteria
colony.

1. INTRODUCTION

In the last few years, there has been a novel development in the study of localization
phenomena, namely non-Hermitian localization and delocalization {1-30]. A new type of
delocalization transition was found in a simple quantum-mechanical model with a non-
Hermite Hamiltonian. I here describe interesting properties of the non-Hermitian system
and a few physical motivations of studying it.

The model is defined by the Hamiltonian (1,2

1, .,
H= 2—7;1-(17+19)2 + V(2), (1)

where a constant § makes the Hamiltonian non-Hermite. The operator 7 is the momentum
and V(Z) is a random potential. The system is reduced to a fundamental model of the
Anderson localization in the Hermitian case § = 0. In this Hermitian limit, it is well
accepted that the eigenfunctions are localized in one and two dimensions and that there
are energy regions of localized eigenfunctions in three dimensions and higher. It was
pointed out [1,2] that, in any dimensions, as the non-Hermitian field g is introduced and
increased,

(i) Each of the originally localized states is delocalized at its own critical point g;

(ii) The delocalization transition coincides with the instance where the corresponding
eigenvalue becomes complex (Up to this point the eigenvalue is fixed to the real
value for § = 0.);

(iii) The inverse localization length  of the original eigenfunction (for § = 0) is equal
to |g.|/h.
It is a remarkable fact to have delocalization even in one dimension. It is also a very char-
acteristic and new feature of this system that one can detect the delocalization transition
by calculating the spectrum of the system.



2. PHYSICAL MOTIVATIONS

2.1. Flux-line depinning in high-7, superconductors

Flux line (or vortex line) in high-T, materials has spawned a new branch of physics [31].
This one-dimensional object exhibits novel “solid,” “liquid” and “glass” phases. One of
the interesting topics is flux-line pinning due to impurities and defects in superconductors,
particularly due to columnar and planar defects. When the magnetic field applied to the
" superconductor is parallel to these extended defects, the flux lines generated by the field
are easily pinned by the defects, which stabilizes the superconductivity. A depinning
transition has been observed when the field is tilted from the axis of the defects [32-34].

The depinning transition was successfully described by a phenomenological model of
flux lines [35], where a flux line is regarded as an elastic string. Using the inverse of
path-integral mapping, we can further transform the partition function of this classical
model to the Green’s function of a quantum mechanical system, where the elastic string
is regarded as the world line of a quantum particle.

The flux-line depinning due to the tilt of the external magnetic field is then equivalent to
the delocalization of the non-Hermitian system described in the previous section [1,2]. The
depinning point is hence estimated by calculating the spectrum of the Hamiltonian (1).
The criticality of the depinning transition can be also discussed by applying the argument
of the Mott variable-range hopping to the non-Hermitian system.

2.2. Localization length of the Hermitian Anderson model

The relation (3) between the inverse localization length of the Hermitian Anderson
model and the delocalization point of the non-Hermitian Anderson model (1) enables
us to estimate the localization length of the Hermitian Anderson model by calculating
the spectrum of the system (1) [2,19,20,29]. (The conventional method of estimating the
localization length is to calculate the Lyapunov exponent of the random transfer matrix
of a long stripe of the Anderson model.)

2.3. Fokker-Planck system
The imaginary-time Schrédinger equation for the Hamiltonian (1) may be regarded as
a Fokker-Planck equation of the form

6—87_-0(5:', T) = DV2c(Z,7)— 7 - Ve(Z,7) + V(Z)c(Z, 7) + const. (2)
The first and the second terms of the right-hand side represents diffusion in a flow, while
the third term yields growth or decay due to a first-order reaction with random reac-
tion rate. Thus the above equation can describe bacteria population in a constant flow
with random distribution of nutrients [15,30] and chemical reaction system with random
catalyst distribution.

An important difference between the quantum-mechanical problem and the Fokker-
Planck problem is that, in the former problem, the particle density distribution is given
by the product of the left and right eigenfunctions, while in the latter problem the right
eigenfunction itself is the density distribution. In fact, recent studies in one dimension [24-
26] showed that, even when the product of the two eigenfunctions is delocalized, each of
the eigenfunction shows a behavior intermediate between localized and delocalized. It is



also suggested [3,15] that the eigenfunction in two dimensions is a fractal object in the
delocalized regime.

2.4. Other motivations
Mudry et al. [18] pointed out a relation between the non-Hermitian Anderson model (1)

and the Dirac fermion in a weak random gauge field. Using the method of Hermitiza-

tion [36,8], the spectrum of the non-Hermitian model (1) can be studied by calculating
the Green’s function of the Hermite matrix

HE(Hf(iz* Haz>’ )

In the weak-disorder limit, the low-energy low-momentum expansion of the matrix (3)
yields the Hamiltonian of a Dirac Fermion in a random non-Abelian gauge field. The
random Dirac Fermion, particularly in two dimensions, has been an interesting topic
because the system has randomness-driven phase transitions [37] and the wave function
at the critical point was found to be multifractal [38,39].

As a related problem, non-Hermitian random matrix theory has been brought into
focus lately. There are various physical motivations for this theory, from a model of chiral
symmetry breaking in QCD [40,41,17] to neural networks [42]. A recent paper [43] studied
a non-Hermitian P7 -symmetric oscillator from the point of view that the Hermiticity of
Hamiltonian is not necessarily a physical requirement but the P7 symmetry is.

3. SUMMARY

Many physicists have thought that non-Hermite Hamiltonians have no physical mean-
ing. In fact, the last few years saw a growing number of physical non-Hermitian models.
More intensive studies of these models are awaited.
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