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1 INTRODUCTION

Motivation of the study and introduction of LiV,0,

The cubic spinel compound LiV,0y4 (see Fig. 1.1) is unusual since among a great deal of existing
spinels [1] it is one of the two oxide spinel compounds [2] which sustain a metallic transport behavior

(3] to low temperatures (Fig. 1.2), aside from the isostructural superconducting LiTi,O4 (T:. < 13.7K)
(4]. The formal oxidation number of vanadium and titanium in the respective spinels are both +3.5,
assuming that Li has 41 and O —2. These correspond to 1.5 d electrons per V ion and 0.5 d electron per
Ti ion available, respectively. In the normal spinel structure there is only one crystallographic site that
V and Ti occupy in the respective compounds. From this and the half-integer valences, the observed
metallic behaviors are readily anticipated.

LiV20y4 i5 unusual in its magnetic susceptibility. LiTioO4 in the normal state shows a comparatively
temperature T-independent susceptibility up to 300K [4], whereas the observed susceptibility x°b(T)
of LiV2Qy is strongly T-dependent [2, 5, 6, 7, 8, 9]. The observed susceptibilities of both LiTi»04 and
LiV204 are given in Fig. 1.3 [9). It is reasonable to consider that the 0.5 d-valence electron per Ti site
in LiTi204 is responsible for both of the metallic and paramagnetic behaviors. By the same token, by
assuming that 0.5 d-electron/V plays the role of metallic conduction electrons in LiV,0,4 and that the

remaining 1 d-electron/V is localized, would this be feasible for the observed transport and magnetic

measurement results? Is there something more taking place to make this V spinel more exotic? Having
1.5 d-valence electrons per V ion, LiV204 can also be considered to be a (dynamic) equal mixture of
V+3 (d?) and V+4 (d') states. This may be regarded as an electron-anologue of the high temperature
cuprate superconductors which formally contain one to two holes per Cu.

LiV304 is unusual since it has built-in geometric frustration in the antiferromagnetic coupling be-
tween V local spins. As the name suggests, due to the frustration a system cannot achieve long-range
magnetic order [10]. In fact, no long-range magnetic ordering is observed in frustrated compounds,
including LiV204 down to 20mK [11], unless something else (e.g. a structural distortion) takes place.

Frustration by itself has already drawn much attention from both theoretical and experimental physi-



Figure 1.1 Normal spinel structure Li[V3]O4. Li, V and O atoms are repre-
sented in blue, red and green, respectively.
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Figure 1.2 Resistivity p versus temperature T of hydrothermally-grown single
crystals of LiV,O4. Note the use of a logarithmic scale for the

ordinate (from [3]).
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cists for over a decade. In particular, the frustration effect due to doped holes in a CuO2 plane in high

temperature superconducting compounds is probably one of the most well-known and recent topics

[12). Another intriguing group of compounds in which frustration plays a major role is a spin glass [13).
What interesting feature would frustration bring to LiV20,4?

Last not but least, LiV,0, is extremely unusual since it shows the largest electronic heat capacity
coefficient ¥(T) at low T as a transition metal compound, to our knowledge {11, 14]. The low T part
of 7(T') is plotted in Fig. 1.4. This large v corresponds to a large quasiparticle effective mass m* of
approximately 180 times as heavy as the bare electron mass m, [14]. In other words, LiV,0,4 is a
heavy fermion (HF) 3d compound. Although the quasiparticle effective mass is relatively smaller than
those seen in the heaviest-mass f-electron HF compounds (for example, for CeAls v = 1.62J/molK?
corresponding to m"/m. ~ 860 [15]), the value of ¥(1K) = 0.42J/molK?2 for LiV,Qy is still more
than a factor of two larger than that of the “heaviest” previously known transition metal compound
Yo.97Sco.0sMn2 (< 0.2J/molK?) [16].

The first three unique characters of LiV20O4 motivated this work and led us to the discovery of the

last important feature [11].

Scope of this study and dissertation organization

The format of this dissertation is as follows. In the remainder of Chapter 1, brief introductions and
reviews are given to the topics of frustration, heavy fermions and spinels including the precedent work of
LiV304. In Chapter 2, as a general overview of this work the important publication in Physical Review
Letters by the author of this dissertation and collaborators [11] regarding the discovery of the heavy
fermion behavior in LiV,0, is introduced. The preparation methods employed by the author for nine
LiV204 and two Lij4,Ti»—-O4 (z =0 and 1 /3) polycrystalline samples are introduced in Chapter 3.
The subsequent structural characterization of the LiV204 and Li; 4, Tiz..O4 samples was done by the
author using thermogravimetric analysis (TGA), x-ray diffraction measurements and their structural
refinements by the Rietveld analysis. The results of the characterization are detailed in- Chapter 3. In
Chapter 4 magnetization measurements carried out by the author are detailed [17.

In Chapter 5, after briefly discussing the resistivity measurement results including the single-crystal
work by Rogers et al.[3], for the purpose of clear characterization of LiV504 it is of great importance to
introduce in the following chapters the experiments and subsequent data analyses done by our collabo-
rators. Heat capacity measurements (Chapter 6) were carried out and analyzed by Dr. C. A. Swenson,

and modeled theoretically by Dr. D. C. Johnston [11, 14]. In Chapter 7 a thermal expansion study
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Figure 1.4 Electronic heat capacity coefficient v(T') = C./T versus tempera-
ture T' below 9K for LiV2O4 samples 2, 3 and 6 (from [14]).



using neutron diffraction by Dr. O. Chmaissem et al. [11, 18] and capacitance dilatometry measure-
ments by Dr. C. A. Swenson [14] are introduced. The data analyses for the thermal expansion study
were mainly done by Dr. O. Chmaissem (for neutron diffraction) and Dr. C. A. Swenson (for dilatom-
etry), with assistances by Dr. J. D. Jorgensen, Dr. D. C. Johnston, and S. Kondo the author of this
dissertation. Chapter 8 describes nuclear magnetic resonance (NMR) measurements and analyses by
Dr. A. V. Mahajan, R. Sala, E. Lee and Dr. F. Borsa [11, 19].

Detailed reports of the neutron diffraction and NMR work were already published as (18] and [19],

respectively. Detailed reports of magnetization [17], heat capacity and dilatometry thermal expansion

measurements [14] are currently being prepared by the author of this dissertation and Dr. D. C. John-
ston, respectively. The other important measurements reported in the above Physical Review Letters
paper, but not detailed in a separate chapter in this dissertation, are muon spin rotation measurements
at TRIUMF by J. Merrin et al. and low-T (x 0.45 to ~ 5.5 K) heat capacity measurements under finite
external magnetic fields (up to 6 T) by Dr. M. B. Maple et al. Without their collaboration work, this
important discovery of the 3d heavy fermion compound would have never been realized. In the final

chapter, a summary and discussion are given.

Reviews of important concepts

Reviews of frustration

The concept of frustration is not new. The various anomalous phenomena of frustration have
fascinated many physicists, and still provide us with important unsolved problems. The term frustration
accounts for a situation of a spin system in which a single ground state with a certain spin configuration
cannot be determined definitively because of the presence of frustrated spin-spin interaction bonds.

The causes of frustration can essentially be placed into two categories: by the geometry of an ordered
lattice and by randomness. The simplest example which explains the first one is shown in Fig. 1.5(a)
(13}, a plaquette of a triangular lattice with the nearest-neighbor (NN) antiferromagnetic (AF) coupling
in all the three bonds. For the sake of convenience, the Ising model is consider;ad here, in which the spins
on the triangle can point only up or down. It is evident that in this model it is impossible to satisfy
all three bonds in the AF fashion simultaneously. At most, two bonds may be antiferromagnetically
coupled, but the spins on the remaining bond are coupled ferromagnetically. In this single triangular
plaquette, six different configurations, i.e. six-fold degenerate ground states, exist. This is frustration;

in particular, frustration in an ordered magnetic lattice is called geometric frustration. A triangle with



AF bonds is the key to this type of frustration. In real materials, there are several lattice structures

which contain triangles. The triangular and Kagomé lattices are two-dimensional examples. Triangular

plaquettes are also inherent in the fec lattice; this can be easily recognized if the nearest-neighbor (NN)

pairs are connected. Other three-dimensional examples of frustrating lattices are the garnet, and the
transition metal sublattice of the pyrochlore structure which is identical to the B sublattice of a normal

spinel A[B2]O4. In Table 1.1 some specific compounds are given for each frustrated structure type.

Table 1.1 Some examples of geometrically frustrated compounds. The ion in
bold face represents a magnetic species that causes frustration in
the compound. 6 is the Weiss temperature (where the Curie-Weiss
law is defined as x = C/(T" - 6)), and T the ordering temperature
(Néel and spin freezing temperatures for AF and SG, respectively).
AF, SG and HF respectively stand for antiferromagnet, spin-glass
and heavy fermion low temperature states.

Magnetic -0 T Low T

Compound lattice (K) (K) state  Ref.
VCl, triangular 437 36 AF [21]
NaTiO, triangular 1000 <2 — [22]
LiCrO, triangular 490 15 AF [23]
SrCrgGas0;9 kagomé 515 35 SG [24]
KCr3(OH)6(SO4)2 kagomé 70 18 AF [25]
KoIrClg fee 321 3.1 AF [26]
Gd3Gas0;2 garnet 23 <003 — [27]
ZnCr,04 pyrochlore 390 16 AF [28]
LiV,0, pyrochlore 40 <0.02 HF [11]

The other cause of frustration is randomness. Randomness in magnetism may originate from bond
disorder or site disorder. First, in a magnetic ordered lattice with bond disorder, NN couplings are
randomly varied between +J and —J. This mixed-interaction case is illustrated in Fig. 1.5(b) where
the presence of frustration is obvious. Second, site disorder comes from varied spatial distances be-
tween spin pairs due to, for instance, structural defects. Also, by diluting a non-magnetic metal with a
small amount of magnetic elements (~ 0.05 to ~ 10at. % [29]), one may have an alloy with a random
spatial distribution of moments. The Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction couples the
magnetic moments via conduction electrons. However, the coupling constant Jrxxy between the local
moments via the RKKY interaction is oscillatory in space with a power-law damping amplitude. There-

fore, the spatial random distribution of spins results in a corresponding random mixture of coupling
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Figure 1.5 Two simple examples typifying the two different categories of frus-
tration [13]. The geometric frustration is shown in the triangular
plaquette in (a), whereas the frustration via randomness (mixed
interactions) in (b).
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constants which vary not only in size, but also in sign.

This second type of frustration, frustration induced by randomness, leads to a unique ordered state.
called a spin glass state [29, 30] under favorable circumstances. A typical example is Mn-doped Cu
(Fig. 1.6) [31]. As temperature T decreases from above a transition temperature, namely, a spin glass
temperature (or spin freezing temperature) T, widely and randomly spread spins begin to form clusters

in each of which spins are aligned along a direction of some magnetic moment anisotropy (e.g., arising

from Ising anisotropy, single-ion anisotropy, or Dzyaloshinskii-Moriya interactions). Clusters correlate
with each other via the RKKY interactions, rotating themselves as a whole. As the system is further
cooled toward Ty, thermal disorder becomes less, and the spins begin to freeze over a larger range.
However, frustration via randomness hinders the system from finding one single spin configuration as
T — 0. Therefore, the spins have to settle down to one of many nearly degenerate ground states. Since
these states have nearly, but not exactly, the same energy, the system may be only metastable (like
ordinary glass). Spin glass behaviors in specific experiments such as dc/ac-susceptibility, heat capacity,
resistivity, neutron scattering, etc. are detailed in Mydosh’s book [29]. Among the most noticeable spin
glass features js the temperature dependence of the uniform susceptibility x(T') for low T’ < T, which
is different depending on whether a sample is cooled in an applied magnetic field (field-cooled = “FC”)
or in zero field (zero-field-cooled = “ZFC”). This is shown in Fig. 1.6. ZFC x(T') presents a cusp at Tg,
while FC x(T') becomes flat for T" < Tg.

Reviews of heavy fermion systems

One usually imagines that heavy fermion (HF) materials are f-electron intermetallic compounds,
more specifically those containing Ce or U (and Yb for some). In fact, almost all reported HF compounds
are f-electron systems since the first reported HF CeAls by Andres et al. [15] in 1975. In Table 1.2
several known f-electron HF materials are listed with characteristic quantities. At low temperatures T,
some HF compounds become superconducting, some antiferromagnetic, and others remain nonmagnetic.
In Fig. 1.7 are sketched temperature dependences of the electrical resistivity p, magnetic susceptibility
X and electronic heat capacity coefficient C/T (at the low T shown, the lattice contribution C12*(T) is
negligible, so this C/T represents the electronic part essentially) for the HF compound CeCug. This
compound is a good representative to show the general behaviors of these quantities for HF materials
in the normal state. There are several extensive reviews of the topic available [32, 33, 34, 35). HF

compounds have the following general peculiarities [32] (see Table 1.2).
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Figure 1.6 Field-cooled [(a) and (c)] and zero-field-cooled [(b) and (d)] suscep-
tibility x versus temperature T for Cu alloys containing 1.08 and

2.02at. % of Mn (from [31)).
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Table 1.2 Comparisons of low temperature T electronic heat capacity coeffe-
cient v, magnetic susceptibility x and T*-coeffecient of resistivity p
for some f-electron heavy fermion compounds and elemental met-
als. These quantities are inferred from the lowest T measurements
for the normal states. The symbol “mol” refers to a mole of a given
formula unit.

7(0) x(0) A

Material [mJ/(molK)] (10~3cm3/mol)  (uQcm/K?)
Paramagnet CeCug 1530 [38] 27 [39] 111 [3§]

CeAls 1362 [40] 36 [15] 35 [15]
Superconducting CeCu,Si, 728 [40] 82 [41] ~ 10 [41]

UBeys 1100 [42] 15 [42] —

UPts 450 [43] 103 [44] 1.2 [45]
Magnetic UsZn;7 1070 [46] 23 [47) -
Elemental metal Pd 9.9 [48] 0.6 [49] 3.3 x 1075 [48]

Na 1.4 [50] 0.03[51] 1.0 x 10~ [52]

¢ An extraordinarily large coefficient of electronic heat capacity, ¥(T") = C./T. v is proportional to
the density of states D*(Er) at the Fermi level Er, and then D*(Er) to the quasiparticle effective
mass m” in the Fermi liquid picture (see Chapter 6). Therefore, a large « implies a large m™. This
is the origin of the term “heavy” fermions. The real electron mass does not actually Increase, but
it is a way of stating in the Fermi liquid the unique character caused by many-body effects. As
in Fig. 1.7, 4(T) is strongly T dependent at low T (< 10K) unlike the constant 4 observed in a

conventional metal. This suggests a T-dependent D*(Eg). ¥(0) values inferred from the lowest

temperature measurements are listed in Table 1.2.

e The magnetic susceptibility x(T") shows a large value at low T on the order of 10—2 cm3/mol
which is two or more orders of magnitude larger than that of a conventional metal, as illustrated
in Table 1.2. A HF compound displays Curie-Weiss-like localized moment behavior in x(T) at
high T with a negative Weiss temperature 8, while the T dependence becomes much less at low

T (see Fig. 1.7).

¢ The low-T resistivity p(T) follows a T2 dependence, thus obeying the Fermi liquid prediction
(see Fig. 1.8(a)). A notable feature in p(T) in this relation is that the T2 coefficient of a HF
compound is much larger than that of a conventional metal. The T2 coefficients are given for
some HF compounds in Table 1.2. Except for UPt3 [see Fig. 1.8(c)] and UAl,, p(T) exhibits a

peak and then decreases as T increases, as shown in Fig. 1.8(b), in sharp contrast to conventional
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metals.

o It seems necessary that the inter-f-atom distance be larger than the so-called “Hill limit” of
3.25-3.5A [53] for a compound to be a HF [32, 33). When the f-f atom spacing is above the
Hill limit, the material is expected to display local moment magnetism due to the absence of
f-f orbital overlaps, unless the hybridization of f electrons with conduction electrons prevents
that from occurring. Therefore, the presence of nonmagnetic (at low T') HF compounds suggests
the importance of the hybridization. Furthermore, Fisk [32] remarks that i) HF materials with
very large v do not have an f atom as a nearest neighbors of an f-atom, ii) uranium tends to
form HF compounds with an element from “the end of d-block and the beginning of the sp-
blocks where few states are available for hybridization with the f-electrons.” This last point
implies that the hybridization tends to suppress the heavy fermion formation, which is opposite
to the above notion. However, this superficial contradiction is not problematic. It is known that
in the (periodic) Anderson model the hybridization V is necessary to establish a virtual-bound
state around a local f energy level, and with the interelectronic on-site Coulomb interaction U/
a local moment appears in the metal. In addition, the many-body scattering resonance of the
conduction electrons by the local moments yields a large electronic density of states at the Fermi
level, called the Kondo (or Abrikosov-Suhl) resonance, which in turn causes a large effective
mass. In other words, for a large effective electron mass, the presence of hybridization is essential
(without hybridization, f electrons will be uncoupled and show magnetism at low T, which is
contrary to the observed nonmagnetic ground state; see below). However, it is known that charge
configurations become unstable and fluctuate (resulting in an “intermediate valence” system) if

the degree of hybridization (strictly speaking the size of V/U) becomes large.

The nearly T-independent x(7T") and rapidly varying v(T) at low T of HF compounds are often
analyzed by and found to follow the predictions of the single spin S = 1/2-impurity Kondo model (or
the Coqblin-Schrieffer model, an extended model of the Kondo model to angular momentum J > 1/ 2).
HF compounds are lattices formed by f-electron ions and therefore are often called “Kondo lattices”
or “dense Kondo systems” for their Kondo-like behaviors. On the other hand, the resistivity p(T) of
HF compounds which decreases with decreasing T at low T (< the Kondo temperature Tk) cannot
be explained by the dilute impurity model. This decrease is normally considered as the development
of a “coherent state” at the Fermi level (i.e. Kondo peak) which corresponds to a Fermi-liquid (i.e.

metallic) quasiparticle state made from coupled local spins and conduction electrons (as detailed in the

next paragraph). As a Fermi liquid, p is proportional to 72 in this coherent region.
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The § = 1/2 Kondo model was invented in 1964 [54] in order to solve the long-standing (since 1930s)
theoretical mystery of the origin of the resistivity minimum in nonmagnetic alloy systems (such as Cu,
Ag, Pt) with small amounts of magnetic impurities (like Cr, Fe, Co). Starting with the s-d Hamiltonian
H=Jdw-d),;5- 5 where 3; is a conduction electron spin, Kondo extended the previous perturbative

calculation of p(T") to the second-order Born approximation term which includes up to the third order

in the exchange coupling constant Ji.q. This new term gives rise to a logarithmically increasing p(T)
with decreasing T', which when combined with the lattice T° contribution then causes the resistivity
minimum to occur. However, although this Kondo model succeeded in accounting for the resistivity
minima, the logarithmically diverging low-T p became another theoretical challenge (Kondo problem).
Abrikosov [55] computed even higher-order terms, but found again that the resulting p diverged as
T — 0. The susceptibility derived by Yosida and Okiji [56] in the same way was found to be diverging
again, but to the negative direction, in the zero 7" limit. All these results suggested that the perturbative
calculation could not work even qualitatively for the description of low-T properties of Kondo alloys.
The ultimate theoretical solution to this problem had to wait until Wilson [57] devised the numerical
renormalization group theory and the exact solution based upon the Bethe ansatz [58, 59, 60] became
available.

Starting with the s-d model, Yosida [61, 62] successfully accounted for the observed T-independent
low-T susceptibility. He postulated a singlet ground-state wavefunction from which he found that a
local moment is coupled by a pair of one half of a conduction electron and one half of a hole. For
instance, around one “up” local spin S = 1/2, one half of 2 “down” conduction electron spin and one
half of an “up” conduction hole spin gather, forming a spin singlet. In other words, the local spin
is screened locally by a conduction electron-hole pair, while the charge is conserved. Hence, the spin
doublet (S = 1/2) uncoupled with conduction electrons at high T' (which gives the Curie-Weiss x(T"))
is, upon cooling, transformed to the spin singlet formed by local spins and conduction electron/hole
spins which leads to the saturating x(T) at low T. In addition, by using the Friedel sum rule [63],
Yosida's theory [62] yields a finite residual resistivity, called the unitarity limit; thus, the divergence
problem is removed. The resistivity p(T") is found to decrease like T2 from this maximum value as T
increases.

The general temperature dependences of the resistivity p(T), inverse susceptibility x—! (T), electronic
heat capacity C. and thermoelectric power S of a typical dilute Kondo alloy system are presented in

Fig. 1.9 [64].
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The periodic Anderson model [65] is usually employed to describe HF materials since it may incor-
porate the strong electronic correlation via the intra-atomic Coulomb repulsion U between f-electrons
in a lattice. Both the electronic heat capacity coefficient v and magnetic susceptibility x are enhanced
via many-body effects (i.e. U). The normalized ratio of x to « is called the Wilson ratio Rw, and may

signify- the degree of many-body effects. For quasiparticles with S =1 /2, Rw is defined as

_ x(0)/(59°13)
B = SO 1)

where g is the g-factor of the quasiparticles, and up is the Bohr magneton. This Wilson ratio can be

considered as the ratio of the two densities of states at the Fermi level probed by susceptibility and

heat capacity measurements. That is,
_ DX(EF)
- DC(Er)

In almost all HF metals, Rw is roughly unity, so x and C. are probing the same low-T" quasiparticle

Rw (1.2)

excitations.
The T coefficient A of the electrical resistivity p(T) = po+AT? at low T in HF compounds is found
to be proportional to 42(0) with a universal proportionality constant. The plot of A versus v showing

this proportionality is called the Kadowaki-Woods plot [66]. See Chapter 5 for p(T) of LiV2Os.

Reviews of spinels
Spinel crystal structure

The conventional unit cell of an oxide spinel AB,Q4 shown in Fig. 1.1 is a face-centered-cubic (fcc)
structure. Both A and B are cations. In addition to oxide spinels, chalcogenide spinels with S—2, Se~2
and Te~? anions exist. The cations occupying the octahedral sites (called 16d sites) are customarily

enclosed in a pair of square brackets. A[B5]O4 is called a normal spinel. Meanwhile, B[AB]O; is called

an inverse spinel because the two types of atoms occupy the octahedral site with an equal probability.
There are also intermediate spinels which are between the normal and inverse spinels. Excellent reviews
of spinel structures are [1, 67]. The spinel compound studied in this work is normal, i.e. Li[V3]Os.
The space group of a normal spinel is Fd3m (O]). The oxygen ions constitute a nearly close-packed
fcc array. Lithium occupies the 8a sites, which correspond to one-eighth of the 64 tetrahedral holes
formed by the closed-packed oxygen sublattice in the Bravais unit cell that contains eight formula units.
Vanadium occupies the 16d sites which correspond to one half of the 32 octahedral holes in the oxygen
sublattice per unit cell. All the V ions are crystallographically equivalent, as are the Li ions and the O

ions.
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Figure 1.10 Alternative, polyhedron illustration of a cubic spinel structure
from different viewpoints [18]. Tetrahedra in blue are LiO,, while
octahedra in pink are VOg. In each polyhedron, a cation (Li or
V) is located at the center. Only a few layers are shown.
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Figure 1.10 is an alternative picture of a cubic spinel in terms of LiO, tetrahedra and VOg octahedra
(18). It is evident that the edge-sharing VOs octahedra comstitute linear chains parallel to each other
along one of the (110} directions within the plane. In the layers immediately above and below, the VOg
chains alter the direction by 90°. These octahedron chains are separated from one another by LiO,
tetrahedra. Interestingly, these tetrahedra are arranged in such a way that they are not touching each
other.

Out of the six possible (110) axes, each octahedron is edge-shared with neighboring octahedra along
only three of these axes, one from the two axes in each {110} plane. Discarding all the oxygens from
the VOs octahedron chains in Fig. 1.10, we now see V chains. These V chains form a three-dimensional
network of corner-shared tetrahedra, as shown in Fig. 1.11.

The positions of Li, V and O ions in terms of fractional coordinates with respect to the cubic lattice

parameter ao are given in Table 1.3.  The positions of the oxygen atoms can be varied depending on

Table 1.3 Lattice positions of the normal oxide spinel LiV2Oy4 [68]. Note the use of the second choice
of the origin.

Space Group No. 227, Fd3m (0O}), Origin choice 2
For equivalent coordinates
(07 010)+ ’ (0) %1 %)+ ’ ?1)_'7 Ov "_]?)'I' ) (%3 %, 0)+

Li 8 (553 (5:8:3)

Voied (B (,2,0) 2,0,8) 03,3

O 32 (u,u,u) (@+%a+4e+3) @E+Lu+ia+d) @+ia+da+d)
(u+8,u+3,83+3) (4,3, ) (x+ia+3,u+2) (@+iu+d,utd)

the oxygen parameter u. For an ideal cubic-close-packed oxygen array, u becomes equal to 1/4. If the
first choice of the origin was used, the oxygen parameter in the ideal case becomes 3/8 due to the shift of
the origin. In a real spinel, usually « # 1/4, and in the hard-sphere model u increases linearly with the
reduced difference (74 — rB)/ao of ionic radii 75 and rp [1], as illustrated in Fig. 1.12. From Shannon’s
radius table [69], we have r(V*+?) = 0.640A (CN = 6), (V+*) = 0.58A (CN = 6), r(Li*!) = 0.594
(CN = 4), r(0~%) = 1.38A (CN = 4), where CN stands for the coordination number of a given ion.
Since the V in LiV;04 has the effective valence of +3.5, the average of #(V+3) and r(V+4), which is
0.614, is used. Then the above reduced difference can be calculated

r(Lit?) — r(V+35)

ao

= —0.0024 , (1.3)

where ag = 8.240394 (at T = 295K) from Chmaissem et al. [18] is used. With the obtained oxygen
parameter u = 0.26127 [18], the location of LiV,0y4 in Fig. 1.12 calculated from the above ionic radii is
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found to be in good agreement with other spinel compounds.

As introduced below in Chapter 3, the oxygen parameter u for all of our samples was found larger

than the ideal close-packed oxygen value of 1/4. Compared to the “ideal” structure with this u value,
the volumes of an oxygen tetrahedron and an octahedron become larger and smaller, respectively. The
increase of the tetrahedron volume takes place in such a way that each of the four Li-O bonds are
lengthened along one of the <111> axes, so that the tetrahedron remains undistorted. Each of the
oxygen atoms in a tetrahedron is also bonded to three V atoms. This elongation of a Li-O bond is
illustrated in Fig. 1.13. As a result of this elongation, the tetrahedral and octahedral holes in the oxygen
sublattice become respectively larger and smaller [67). Since the fractional coordinates of both Li and
V are fixed in terms of the unit cell edge, an octahedron centered by a V atom is accordingly distorted.
The point symmetry of the Li 8a sites remains cubic, no matter how large the distortion is. However,
for u # 1/4 the point symmetry of V 16d sites becomes trigonal. In Figs. 1.14 the ideal undistorted
and real distorted V octahedra are compared.

The interatomic distances d between nearest-neighbor pairs can be calculated readily. Since it is
only oxygen that slightly alters position depending on the value of u, the cation-cation distances (Li-Li,
V-V and Li-V) do not depend on the distortion, but only on the lattice parameter ap. Defining the

deviation of u from its ideal closed-packed oxygen array value of 1/4 as A = u — 1/4, one obtains

3

dri-Li = %ao ) (1.4)
1

dv_v = ;ﬁao , (1.5)
11

dyi-v = -\/8:00 , (1.6)
3

dii—o = \/T_(l -+ SA)ao , (1.7)

dv.o = i—\/ 1—8A 4+48A2q; . (1.8)

These equations are used to derive the interatomic distances. The cation-anion distances (dri—o and
dy-o) are parameters which may be used to quantify the influences of the distortion in the oxygen

array on various properties.

Reviews of oxide spinels

The spinel structure has its origin in the mineral spinel MgAl,0s. Numerous compounds exist
which have this spinel AB,O4 structure. Among the existing spinels, the ferrites MO - Fe,Os3 (M=

a divalent cation = Fe, Co, Ni, Cu, Zn, Mg, Cd, etc. [70]) are probably the most intensively investigated.
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Figure 1.12 Linear dependence of the oxygen parameter u versus the reduced
difference of radii of A and B ions in various oxide spinels [1].
Listed are so-called 2-3 type spinels (A*2B320, with B=Ga, Al,
V, Cr and Fe) and 4-2 type spinels (A**B320, with A=Ge, Sn,

and Ti).
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Figure 1.13 Illustration of how an elongation of a Li-O bond takes place [1].
Lithium is the shaded circle, vanadium the filled circles and oxygen
the open circle. The elongation is achieved without displacements
of lithium and vanadium ions.
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Figure 1.14 An undistorted (a) and distorted (b) VOs octahedron. The distor-
tion in (b) is a consequence of the elongation of each Li-O bond as

shown. The distortion in (b} is exaggerated (u = 0.27) compared

to the actual distortion.
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In particular, Zn ferrites have an engineering application as a high-frequency magnetic core material [70].
and Cr-doped LiMn,Qy4 as a secondary battery [71]. Spinel compounds possess a variety of magnetic
behaviors; especially prominent is the ferrimagnetism in the ferrites (for a review see [72]).

The large electronegativity of oxygen has a tendency to make spinels have ionic-type bonds. In
general, this tends to yield high resistivity in oxide spinels [1]. When the A cation is non-magnetic and
B is integral-valent, this high resistivity can be expected from the viewpoint of the nearest-neighbor
B-B distance. The 3-fold orbital degenerate i55 orbitals are partially filled by valence d electrons for

a spinel with a non-magnetic A and a magnetic transition metal element B. These tog orbitals of a B

ion are extending their lobes toward the nearest-neighboring B ions, as shown in Fig. 1.15. Assuming
no conduction electrons, the transport properties are then dependent upon the direct overlaps of these
occupied d orbitals. Over the years Goodenough and his coworkers prepared a series of V+3 spinel
compounds (MV,04 where M = Mn, Fe, Mg, Zn, and Co) [73] and studied how the V-V distance
influences their electronic transport properties. In the order of the metal elements M listed in the
Table 1.4, the activation energy decreased as the V-V distance decreased in these semiconducting com-
pounds, suggesting that V ¢,; wavefunctions overlap more. By observing this decreasing activation
energy, they established an estimate of a critical V-V distance R. below which the transport is trans-
formed from semiconductive to metallic. The most recent estimate of this distance is R. = 2.90(1) A
for V+3 [74). The value of the nearest neighbor V-V distance in LiV2Qy, calculated from the lattice
parameters at T = 295K and 4K [18], are 2.913 and 2.909 A, respectively, which is on the verge of
the transition, and, in fact, LiV204 is a metal [3] (also see Fig. 1.2). However, it is not clear if this
approach of the critical V-V distance is appropriate for LiV,04 since it is not a purely V+3 system. In
this mixed-valence system it appears trivial that LiV,QOy4 is a metal by the reasons of the non-integral
valence at cry;tallographica.lly equivalent V sites, as already mentioned. The question is why LiV2Oy4

does not distort to a lower symmetry structure containing a static distribution of V+3 and V+4,

Reviews of the past work on LiV,04

In spite of being a metal (see Fig. 1.2), LiV,04 exhibits strong temperature dependence in its
magnetic susceptibility, indicating strong electron correlations. In all work reported before 1997, x(T)
was found to increase monotonically with decreasing T down to ~ 4K and to approximately follow
the Curie-Weiss law, as shown in Fig. 1.3 [2, 5, 6, 7, 8, 9]. Kessler and Sienko [5] interpreted their
susceptibility data as the sum of a Curie-Weiss term 2C/(T — 6) and temperature-independent term

xo0 = 0.4 x 10~%*cm®/mol. Their Curie constant C was 0.468 cm®K/(mol V), corresponding to a V*+4 g-
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Figure 1.15 Spatial directions of the d orbitals of a B cation in a spinel AB,Oy4
(from {20]).
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Table 1.4 Physical properties of vanadium spinels. aq is
the lattice parameter, and “V-V” is the distance
between a nearest vanadium pair (both at room
temperature). ¢ is the activation energy from
resistivity measurements for 113-473K. A pum-
ber in parentheses is the error in the last digit
of a quantity (reproduced from [73]).

Formula ag (A) V-V (4) g (eV)
MnV,04 8.522(2) 3.013 0.37(1)
FeV20,4 8.454(2) 2.990 0.25(1)
MgV504 8.418(2) 2.976 0.18(1)
ZnV204 8.410(2) 2.973 0.16(1)
CoV,04 8.407(2) 2.972 0.07(1)

factor of 2.23 with spin S = 1/2. The negative Weiss temperature § = —63 K suggests antiferromagnetic
(AF) interactions between the V spins. However, no magnetic ordering was found above 4.2 K. This may
be understood in terms of the possible suppression of long-range magnetic ordering due to the geometric
frustration among the AF-coupled V spins in their tetrahedra network. Similar values of C and 8 have
also been obtained by subsequent workers [2, 6, 7, 8, 9], as shown in Table 1.5. This local magnetic
moment behavior of LiV2Qy is in marked contrast to the magnetic properties of isostructural LiTi»O4
which manifests a comparatively temperature independent Pauli paramagnetism and superconductivity
(Te < 13.7K) [4].

Strong electron correlations in LiV20,4 were inferred by Fujimori et al. [75, 76] from their ultraviolet
(UPS) and x-ray (XPS) photoemission spectroscopy measurements. An anomalously small density of
states at the Fermi level was observed at room temperature which they attributed to the effect of
long-range Coulomb interactions. They interpreted the observed spectra assuming charge fluctuations
between d' (V**) and d* (V3*) configurations on a time scale longer than that of photoemission
(~ 10~'¥sec). Moreover, the intra-atomic Coulomb interaction energy, U, was found to be ~ 2¢€V.
This value is close to the calculated width of the 124 conduction band for-LiTi,O4, W ~ 2eV [77].
From these observations, one might infer that 7 ~ W for LiV,0y, suggesting possible proximity to a

metal-insulator transition.
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Table 1.5 Lattice parameter ag, oxygen parameter z, and magnetic parameters
X0, C and @ reported in the literature for LiVoO4. The u values are
shown using the second setting for the space group Fd3m from the
International Tables for Crystallography, Vol. A. [68] The “T range”
is the temperature range over which the fits to the susceptibility data
were done, xo is the temperature-independent contribution, C is the
Curie constant and § is the Weiss temperature. The error in the last
digit of a quantity is given in parentheses. Unless otherwise noted,
all measurements were done on polycrystalline samples.

ag U T range X0 o g Ref.
4) (K) (10 ervsy) (%) (K)

8.22 [78]
8.2403(12) 0.260(1) [79]
8.240(2) [80]
8.22 4.2-308 . 37 0.468 —63  [5]
8.240(2)  0.253(1) [81]
8.25¢ [82]
8.255(6)  0.260 50-380¢ 37 0.460 -34 [7]
50-380° 37 0.471 -42 [7®

80-300 43 0441  -31° [§]

8.241(3)° 80-300 43 0.434° -39  [9]
0.473 [6]

8.235 10-300 0 0.535 -354 [2]
8.2408(9) 100-300 230 0.35 —-33  [83]

%This value was digitized from the published figure.
5Single crystal susceptibility data, corrected for the contribution of 10% V40;.
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3 SYNTHESIS AND CHARACTERIZATION

Synthesis of LiV,0,4 and Li4;Ti,- ;04 (z =0 and 1/ 3)

LiV,0,4 preparations

Polycrystalline samples of LiV,04 were prepared using conventional solid-state reaction techniques
with two slightly different paths to the products. The five samples used in the paper by Kondo et al.
(samples 1 through 5) (see Chapter 2) [11] were prepared by the method in [4]. Two additional samples
(samples 6 and 7) were synthesized by the method of Ueda et al [83]. Different precursors are used
in the two methods: “Li;VO3zs” (see below) and LisVOy,, respectively. Both methods successfully
yielded high-quality LiV204 samples which showed a broad peak in the observed susceptibility x°°(T)
at ~ 16 K. Here only the first synthesis method is explained in detail, and the reader is referred to [83]
for details of the second method.

The starting materials were LioCO3z (99.999%, Johnson Matthey), V203, and V205 (99.995%,
Johnson Matthey). Oxygen vacancies tend to be present in commercially obtained V205 [98]. Therefore,
the V205 was heated in an oxygen stream at 500-550°C in order to fully oxidize and also dry it. V2Og
was made by reduction of either VoOs or NH4VO3 (99.995%, Johnson Matthey) in a tube furnace
under 5% H/95 % He gas flow. The heating was done in two steps: at 635°C for ~ 1 day and then at
900-1000°C for up to 3 days. The oxygen content of the nominal V2.40O3 obtained was then determined
by thermogravimetric analysis (TGA, see below). The precursor “Li;VOss” (found to be a mixture
of Li3VO4 and LiVO; from an x-ray diffraction measurement) was prepared by heating a mixture of
Li»CO3 and V20j5 in a tube furnace under an oxygen stream at &~ 525°C ﬁntil the expected weight
decrease due to the loss of carbon dioxide was obtained. Ideally the molar ratio of LioCOgz to V505
for the nominal composition Li;VO3 5 is 2 to 1. A slight adjustment was, however, made to this ratio
according to the actual measured oxygen content of the V2-403 (y =~ 0.005 to 0.017) so that the final

product is stoichiometric LiV,04. This precursor and V2-403 were ground thoroughly inside a helium-

filled glovebox. The mixture was then pelletized, wrapped in a piece of gold foil, sealed into a quartz

i
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tube under vacuum, and heated between 570°C and 700°C for £ 2 weeks. The as-prepared samples
were all removed from the oven at the final furnace temperature and air-cooled to room temperature.
For samples 2 and 3 additional heating at a higher T = 750°C was given (with a repeated sequence of
grinding, repelletizing and reheating for sample 2). From = 725 °C different methods of cooling, liquid-
nitrogen or ice-water quenching or slow-oven cooling, were applied to pieces from sample 2, yielding

samples 4, 4A and 4B, respectively.

LiTi»04 and Liy/3Tis 304 preparations

Polycrystalline LiTi2O4 and Lis/3Tis;304 samples were synthesized in essentially the same way
as for LiV,04, using solid-state reaction techniques [4]. TiO, (Johnson Matthey, 99.99%) was dried
under a pure oxygen stream at 900 °C before use. This was mixed with Li,COgz (Alfa, 99.999%) in an
appropriate ratio to produce either Lis/3Ti5/304 or a precursor “LiTiOq.5” for LiTiyO4. The mixture
was then pressed into pellets, and heated at 670°C in a pure oxygen atomosphere for ~ 1 day. The
weight loss due to release of CO, was within 0.04 wt.% of the theoretical value for LiTiO, 5. However,
for Lig/3Tis 304 additional firings at higher temperatures (up to 800°C), after being reground and
repelletized, were necessary. LiTi»O4 was prepared by heating pressed pellets of a ground mixture of
the LiTiO4 5 precursor and Ti»Ogz in an evacuated and sealed quartz tube at 700°C for one week and
then air-cooling. The Ti»O3 was prepared by heating a mixture of TiO, and titanium metal powder

(Johnson Matthey) at 1000°C for one week in an evacuated and sealed quartz tube.

Characterization

Using a Rigaku Geigerflex diffractometer with a curved graphite crystal monochrometer, x-ray
diffraction patterns were obtained at room temperature with Cu Ka radiation. Rietveld analyses of the
diffraction patterns were carried out using the angle-dispersive x-ray diffraction version of the RIETAN-
976 program [99].

TGA measurements were done using a Perkin-Elmer TGA 7 Thermogravimetric An;lyzer. Oxygen
contents of the samples were calculated from weight gains after heating in an oxygen flow to 540-600°C

for LiV204 and 620°C for V,_,Ogs, assuming that the oxidized products contained vanadium as V+5.

X-ray diffraction measurement results

X-ray diffraction patterns of our LiV,04 samples revealed that the samples were single-phase or very

nearly so. Figure 3.1 shows the diffraction pattern of sample 7 which has no detectable impurities. The



Liv O
2 4
Sample 7 4

(299) 7 ]
(gss) * :mb\

(ee2) (008) J |

ame.u -

(1g8) “(112) |
(iv) |U -

(e29) —=

(ees)”

-4

(Les) —
(ovy) = |

(eee) (11g) ————

(sjunoo 201) Aususyu

80 100

60
26 (°)

40

20

Figure 3.1 X-ray diffraction pattern of LiVo0,4 sample 7. The spinel-phase

peaks are indexed as shown.
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Figure 3.2 Expanded plots of the X-ray patterns of samples 1 (top), 2 (middle)
and 7 (bottom). Indexed peaks are those of LiVo0y spinel phase.

Sample 1 has V305 impurity (filled circles), whereas sample 2 has
V203 impurity (filled squares). Sample 7 has no impurity peaks
except possibly the very weak unidentified one marked with a star.
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nine samples described in detail in this dissertation are categorized into three groups in terms of purity:
essentially impurity-free (samples 3 and 7), V305 impurity (samples 1, 4 and 6) and V203 impurity
(samples 2, 4A, 4B and 5). The presence of these impurity phases is detected in magnified views of
the diffraction patterns as shown in Fig. 3.2. The powerful structural refinement method “Rietveld
analysis” is introduced to some extent in the next section. The refinements were carried out for all nine
LiV204 samples and two Ti spinel samples, and the results for the different samples are discussed and

compared.

Introduction of Rietveld analyses

Introduction

The so-called Rietveld method was introduced by Dr. Rietveld in the 1960s [100, 101]. The real,
potential power of the method was not realized until years after his invention. The history of the
method and its versatility are detailed in an excellent review entitled The Rietveld Method [102]. The
discovery and the subsequent intense investigation of high-temperature superconductors helped the
method to prevail as the necessary tool for structure analysis studies among solid-state physicists all
over the world. It had been thought that powder-sample diffraction data could not give as much
information as single-crystal data. However, in combination with the Rietveld method, powder-sample
data were able to show its superiority for some cases. For example, in the early stage of studying the
high-temperature superconductor YBa;CuzO7-s, the sample quality was not very good, because it had
two phases (superconducting orthorhombic and non-superconducting tetragonal phases). It was the
powder neutron diffraction data analyzed by the Rietveld method that revealed for the first time that
the distribution of oxygen and its occupancy at the copper-oxygen plane cause the creation of the two
different phases in the compound [103). Meanwhile, a single-crystal X-ray diffraction study on the same
compound failed to identify the important role of oxygen in the one-dimensional copper-oxygen chain,
mainly because of the presence of twin structure in the crystal [104]. The appreciation of the Rietveld
method and the development of one of the Rietveld method programs, RIETAN [99], are reviewed by
Izumi [105]. '

Some basics of the Rietveld method

In a typical angle-dispersive, fixed-wavelength X-ray powder diffraction measurement, thousands of
data points are collected in steps of 20 (Bragg) angle, normally 0.01° to 0.05°. For many simple analysis

methods, only the peak angles are utilized to identify the structure of 2 sample. The strong advantage
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of the Rietveld method was due to its capability of distinguishing structure parameters in greater detail.

Moreover, it makes use of an entire diffraction pattern; in other words, it uses all data points including
background signals for analyses. For instance, in this work with LiVoO, it was important to have
some knowledge of the oxygen parameter u. A few, rather simple computer programs for structure
refinements that were tried required the parameter u as an input. Hence, it would be tedious to iterate
the whole process by trial-and-error to narrow down possible values of u in such programs.

In the following section, some basics of the Rietveld method are introduced, which essentially follow
the discussions by Young [102] and Izumi [106].

The principle of the method is to minimize the weighted sum of squared residuals
Sriet() = Y wilys — fi(F)] (3.1)
i

by altering variable parameters (21, z3, ...) in &, where 7 is a data point number, w; the weight equal
to 1/y:, y: the observed intensity, and f; the calculated intensity for the i-th point. The calculated
intensity is then defined as the sum of Bragg reflection and background terms like the following model

function
fi = ®(26:)A(26:)s Y my |Fic|* P L(20x)$(26; — 26x) + w(265) (3.2)
K

where ®(26;) is the incident intensity, A(26;) the absorption factor, s the scale factor, A the Miller
indices for a Bragg reflection, mg the multiplicity, Fx the structure factor, Px the preferred orientation
function, L(20x) the Lorentz and polarization factors, and #(20; — 20k ) the profile function. The
structure factor for a reflection with Miller indices K = hkl is defined by

Fg = Zgjfﬂ} exp[2mi(hz; + ky; +12;)] , (3.3)
J

where j is the site number, g; the occupancy, f; the atomic scattering factor, T; the temperature
factor, and z;, y; and z; the fractional coordinates. The temperature factor for the isotropic thermal

displacement case is

T; = exp [—BJ- (SinA9K>2] , ' (3.4)

where B; is the isotropic thermal-displacement parameter. The absorption factor A(26;) is constant for
a typical X-ray diffractometer with a flat sample (so-called Bragg-Brentano type), so it is irrelevant for

the refinement processes. The Lorentz-polarization factor L(20k) is

_ 1+ cos? 2 cos® 20
L(26x) = sin 20 sin 205’ (3.5)

when a monochrometer is employed and ¢ is the diffraction angle of the monochrometer.
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Most of the Rietveld method programs adopt either the pseudo-Voigt function (107, 108] or the
Pearson VII function [109] for the profile function ¢. The Rietveld-method computer program utilized
in this work is RIETAN-978 by Dr. Izumi at the National Institute for Research in Inorganic Materials
(NIRIM) in Japan [99, 110]. His RIETAN-97 program utilizes the pseudo-Voigt function of Thompson,
Cox and Hastings [107] which is a combination of the Lorentz (¢1) and Gaussian functions (¢g) with

the fraction n of the former,

$620) = 182(620) + (1~ 1o (620

()] oo ()] oo

where 7 is given by Thompson et al. [107]

_ Hg1 KL Hgp -
0= 1.36603( T ) 047719( e ) +0. 11116( e ) , (3.7)

where 626 = 20; — 20x. Hg is the full-width-at-half-maximum (FWHM) of the profile function, and
Hgr (Hig) is the FWHM of the Lorentz (Gaussian) function. They numerically obtained the following

relation among Hg, Hy; and Hig

Hyx = (Hgg+2.69269H%cHkL +242843HE GHE , + 44TI63HE cHE |

+0.07842H g cH, + HE )" . (3.8)

Therefore, once Hxe and Hgj are determined, both 7 and Hg can be calculated by Egs. (3.7 and

3.8). These two FWHMs can be represented in terms of physically meaningful parameters

(S

Hyo = [8 In2(U tan® g + V tanfx + W + Psec? GK)] (3.9)

and

Hygp = (X + X, cosgg)seclg + (Y + Y. cosgg)tanfy . (3.10)

U,Y and Y, are parameters for microstrain broadening, which is proportional to tan ¢x (¢x is the

angle between the scattering vector and the broadening axis). The crystalline size broadening is also
taken into consideration in terms of X, X, and P. Both X and Y are 1sotropic broadening parameters,
whereas the corresponding symbols with the subscript e are anisotropic. V and W are diffractometer-
dependent.

These profile functions are all symmetric with respect to 626. B;xt due to several unavoidable
reasons [106], the profile shape is normally asymmetric. This is particularily noticeable for low 24 in

which a lower-26 tail of a peak tends to be spread longer. This asymmetry is approximately corrected in
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the program RIETAN-978 by using the multi-term Simpson’s rule integration [111]. This adjustment
involves four refinable parameters (4,, Z, D, and T}), each of which has a physical meaning. The
details of this adjustment are not described here, but are referred to in the original paper.

For preferred orientation functions, Py, there are two types of functions available: Sasa-Uda [112,
113}, and Ma.rch-Dollase [114, 115] functions. The latter has superiority in overall performance for
structural refinement [110).

The background function, y,(26;), in RIETAN-978 is a finite sum of Legendre polynomials with
a refinable parameter b, for each term [110]. Up to 12 background parameters (n = 1-12) can be
employed.

All the refinable parameters in the angle-dispersive version of RIETAN-978 are tabulated in Ta-
ble 3.1.

Table 3.1 Parameters that can be refined in the Rietveld analysis
using RIETAN-978.

Parameters common to all phases
Zero-point shift, Z
Specimen-displacement parameter, D,
Specimen-transparency parameter, T}

o O N

Background parameters, b1, bs,...,b12

Parameters assigned to each phase

Scale factor, s

Profile parameters, U, V, W, P, X, X, Y, Y., A,
Preferred orientation parameter, »

Lattice parameters, a, b, ¢, o, 8, v

WO 00 I O »

Fractional coordinates, z;, y;, z;
10 Thermal-displacement parameter, B;®

°In case of anisotropic thermal displacement cases, the six Bi;-

The criteria used to judge the agreement between the observed and calgulated intensities for the
entire pattern are various R-factors listed in Table 3.2. R is very similar to the R-factor which is used
in single-crystal structure analysis (R = 3 _[|F,| — |Fc]]/ 3. |F>l|, where F, and F. are observed and
calculated structure factors, respectively). Both R-Bragg and R-structure factors are model-dependent
since these two use the observed intensities deduced by the model, not the actual observed intensities.
In the Rietveld analysis, it is Ry, among the R-factors that is influenced most significantly by the

fitting agreement. This is because Ryyp has Sgie: itself (see Eq. 3.1) in the numerator inside the squared
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bracket. As a direct guide to determine the effectiveness of a given refinement, this Ryp is compared

to Re, the statistically estimated minimum Ry, which can be written

dinds ]— (3.11)

> wiy?

S is defined as Rywp/R.. An S value of 1.3 or less indicates a satisfactory refinement. (S = 1.0

|

corresponds to perfect agreement.) Nonetheless, if an S value too close to 1.0 is obtained during the
relatively early stages of a refinement, it might suggest either that the diffraction data have poor counting
statistics, or that the background is too high, which may cause Ryp to be smaller than necessary. For

further details including the meaning of the Durbin-Watson d-statistic, see references [102, 116, 117].

Practical know-how on the Rietveld refinements

The Rietveld refinement might appear to be too difficult for inexperienced graduate students. This
fear could be even larger if Rietveld refinement computer programs were not easy to use, or without
helpful and practical manuals. What follows is some practical know-how that was learned through
doing the Rietveld refinements and studying them from related papers and books.

It is quite natural to think that one can get a better quality in the measurement by increasing
the count time and/or the number of measurement steps. However, this improvement cannot go on
indefinitely. When the counting error becomes as small as other kinds of errors, no further improvement
can be made. At this point, further measurements would just be a waste of machine time. This is very
well presented by R. J. Hill in the book The Rietveld Method [117]. If one either increases the count time
or uses a smaller step size, Hill suggests that there is greater benefit to choose the latter. Moreover, as a
rule of thumb, one should aim to have 5000-10000 counts at the maximum intensity, and approximately
1/5-1/3 of the minimum full-width-at-half-maximum (FWHM) of the peaks as the measurement step.

In addition, due caution has to be taken for the width of the slits in the diffractometer. For
instance, when a divergence slit (DS) with a slit width of 1 degree is used in the Bragg-Brentano X-
ray diffractometer with a goniometer radius of 185 mm (as in our Rigaku machine), for 20 < 20° the
effective area with which incoming X-rays impinge on a flat sample surface becomes wider than the
usual sample width of 20 mm. In this case, unnecessary reflections from the sample holder material are
recorded, giving uncertainty to the measured intensities. As a reference, Fig. 3.3 explicitly shows the
relation of the DS width to the apparent X-ray width on a sample plate. Therefore, in this work, all

the X-ray diffraction measurements done with DS = 1° were analyzed by the Rietveld method without
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Table 3.2 Numerical criteria of the fitting results (reproduced from Ta-
ble 7-1 of Izumi [106]): o; is the standard deviation of the
observed intensity for the #th data point; Ix(“0”) and Ix(c)
are the estimated observed (“0”) and calculated integrated
intensities for reflection K, respectively; N is the number of
data points; P is the number of refinable parameters.

2
Ryp = [E Z:[z z;fz (2)] J R-weighted pattern

Rp= i lyfz—;} 6] R-pattern
Rp= 2l ((IK()“ ) ((©)] R-Bragg factor

ZI& |V IR (%) “\{IK @I R-structure factor
LK VIg (%

1
e £ (N2 | 2
= [21 wz}[\&}’: }{Z(z)] ] Goodness-of-fit indicator

>N, [yi—fi(f)_yz’—l_fz'—l(f)]z

73 Ti~-1

S

Durbin-Watson d-statistic
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using the data below 20 = 20°.

Before starting the Rietveld anaysis, one has to have a reasonable starting model for the crystal

structure to be determined. If the structure has been well studied in the past, the available literature
should be used. The Rietveld method will not yield convergent parameters without a good starting
model. In this sense, the method cannot be a versatile, omnipotent structure solver; rather, its maximum
potential power is to pursue and obtain details that cannot be obtained with simpler analysis methods.
Hence, the Rietveld method is a structure refinement program, not a solution program. Initial values of
the diffractometer-dependent values such as V and W may be pre-determined from a well-characterized
standard material such as silicon powder from NIST. Other parameters such as D, T, (usually these
two are set to zero), U, X and Y may be started with values determined from a standard, too.

Normally U > 0, V < 0 and W > 0, but among these three a strong correlation always exists.
Various combinations of the three parameters can give the same Gaussian FWHM. Hence, it is advisable
not to refine all three at the same time in the early stages of refinement. Instead, it is best to fix V
to the value determined from a standard sample. Nevertheless, one must start with a combination of
these three parameters so that they give a positive, hence physically meaningful value of Hg g for the
entire 20 range. In a similar manner, it can be readily seen that both X and ¥ must be positive to
make Hgy physically meaningful, assuming that the corresponding anisotropic parameters X, and Y.
are set to zero, which is not an uncommon way to begin. Later, if an anisotropic profile is seen on
plotted calculated intensities, set X, and/or Y. to nonzero values for the first time. Moreover, since
the crystalline-size effect is usually Lorentizan [119], set P = 0 unless the profile is obviously Gaussian.
It is not desirable to use more background parameters than necessary; an excess of parameters would
simply increase the value of S as can be seen from its definition in the table above.

For x-ray Eliffraction, the lighter the atom is, the weaker the diffracted intensity. This obviously
makes the Rietveld analysis more difficult. Sometimes for such a light element a value of thermal-
displacement parameter B would become very large, or negative which is unphysical. This can also
happen if an occupancy at a site is very small. Thermal-displacement parameters can readily be a sink
for all other incorrect fitting results, making the value unreasonable. In such a case there is no other
choice than to give up the refinement on B and very often other parameters, too, and to fix them to
literature values if available. In the latter case, if the same element exists at a different site with a larger
occupancy, set both B values to one value with a linear constraint between them. Dr. Izumi’s RIETAN-
974 is capable of applying linear and nonlinear constraints between parameters [110]. This fragile state of

thermal-displacement parameters B comes partly from a strong correlation with occupancy parameters.
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In general, conventional x-ray diffractometers are not as capable of determining values of B as well (the
case of anisotropic thermal-displacement parameters is even worse) as, e.g., neutron diffraction.

In the Rietveld method, one “switches on” only some of all the refinable parameters at one time.
Until the later stage of refinement, it is never a good idea to turn on all the parameters for refinement.
An important question, therefore, is in what order parameters are supposed to be switched on. Young
discusses this issue and makes a suggestion of the order, which is reproduced in Table 3.3 [102]. The
Rietveld method program RIETAN-978 has its unique and fairly reliable function that automatically
selects an order of parameters to be turned on during repetitive refinement cycles. This is very useful

and can save much time.

Table 3.3 A suggested parameter turn-on sequence. (Context:

constant wavelength x-ray or neutron powder diffrac-
tometer data.) (reproduced from Table 1.5 of Young

[102])
Parameters Linear Stable Comment Sequence
s Yes Yes Note 1 1
D, No Yes Note 2 1
Flat background Yes Yes 2
a,b,c,a, B,y No Yes Note 3 2
More background  No Yes(?) Note 4 20r3
174 No Poorly Note 5 dord
z,Y,2 No Fairly Note 6 3
g’s and B’s No ? Correlated 4
U,V, etc. No No Note 5 Last
Bij No No? Last
Z No Yes Note 2 1, 4 or not

Note 1: if the scale factor is very far off or the structural model is very bad, the scale factor may get worse, e.g. smaller,
during refinement because the difference between a pattern and nothing is less than the difference between two badly
mismatched patterns.

Note 2: for properly aligned and mechanically stable diffractometers, the zero point error should be and remain
inconsequential, In any event, it cannot change from sample to sample whereas the effective specimen displacement can
and does. The displacement parameter will also take up some of the effect of specimen transparency which occurs in
non-infinitely absorbing specimens.

Note 3: beware lest one or more incorrect lattice parameters cause one or more calculated peaks to ‘lock on’ to the
wrong observed peaks. The result can be a very solid false minimum. Artificially broadening the calculated profiles
(temporarily) may help. A parameter for wavelength may be turned on instead of one of the lattice parameters if the
wavelength is not as well known as are the lattice parameters.

Note 4: if more background parameters are turned on than needed to model the angular dependence of the background,
the result will be high correlations and, often, large shifts that are mostly mutually compensating but may lead to
erratic behaviour and failure of the refinement. The higher order ones should be turned off sequentially until the
problem is corrected.

Note 5: U, V,W tend to be highly correlated. Various combinations of quite different values can lead to essentially the
same profile breadth. In Chapter 3, Prince points out that the problem can be greatly ameliorated by offsetting the
origin of the Caglioti et al. [120] polynomial expression for the angular dependence of U, V', W as he shows in Eq. (3.12).
Note 6: graphics and the reflection indices should be used now to assess whether preferred orientation should be
modelled at this point.
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It is important to remember that when a value of S is not going below 1.3, then plotting the fitting
result often helps to identify a possible reason for the poor S value. Even if a value of S becomes small
enough, there is always the potential danger that a refinement is not actually converging to the global
minimum in the entire parameter space, but to a so-called false minimum. One of methods to confirm
convergence to the global minimum is to repeat the refinement process using a different least-square
algorithm. In the program RIETAN-978, three different algorithms are available for use: the Gauss-
Newton, modified Marquardt, and conjugate direction methods. The modified Marquardt method is
used for most refinement steps because of its overall performance quality and its speed. However, a
choice can be made in an input file to RIETAN-978 so that the program automatically alters one
algorithm to another subsequently. It is a good custom to execute this choice at the last stage of a
refinement to double check its convergence to the global minimum. A caution is given when too small 2
value of § (< 1) is obtained even after confirming the global minimum of the solution. Rietveld analysis
computer programs cannot give a perfect estimate of S; therefore, S could become less than 1 for a

correct solution.

Example of the Rietveld refinement

In this section, an example of the Rietveld refinement is given for sample 4A of LiV.04. A piece
of sample 2 was an given additional heating at 725°C for approximately one day before quenching
the sample tube into ice water, which was labeled as sample 4A. The x-ray diffraction measurement
revealed that this sample had V203 as an impurity phase. The Rietveld analysis computer program
RIETAN-974 is not a menu-driven software, but uses an input file as a batch file that executes the
application. Compared to the GUI-based (Graphical User Interface) input method seen in many recent
applications, this CUI-based (Character User Interface) input method might appear less sophisticated.
However, a GUI-based input system often has a hierachial menu which has many layers below. A user
usually has to respond at each layer to go further below in the menu, or to execute a subprogram. The
result is that the user tends to get lost while moving up and down between different levels of the menu.
However, the CUI-based input method is more direct and probably requires less time if one uses one’s
favorite editor. The creator of RIETAN97S calls this input system F3IS (Flat, Flexible and Friendly
Input System) [105].

An input file of Dr. Izumi’s F3IS consists of equation-like assignment lines
variable = value : comment , (3.12)

in which a user can write any comment after a colon as long as the number of characters in the line
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does not exceed 80. If such a colon is replaced with an exclamation point, the whole assignment line

becomes void and will be ignored on execution. In this way one can leave choices in the input file lines

for future use. In addition, the “If..., then...” command is available, as seen in an example input file
for LiV204 sample 4A given in the Appendix. Also one can put a # sign at the beginning of a line to
make the rest of a line a comment. Multiple lines can be grouped in a pair of braces, and a comment
can be added outside the braces. A template file which is available as a sample of the program is,
therefore, very useful. A beginner can start a refinement, without studying the details before use, by
simply validating and nullifying given selections.

Refinable parameters have flags to identify whether they are to be fixed (set to 0) or refined (1).
Furthermore, linear and nonlinear constraints can be given between refinable parameters by setting
a flag to 2. For instance, on the line beginning with ASYM?2 a flag of 2 is attached to the value
(= 0.110906). A constraint of such a parameter is given in the next section. For ASYM2, it is set
A(ASYM2,1)=A(ASYM1,1), where “A” itself means nothing, but the first argument in the parentheses
tells which variables are to be constraints, and the second argument specifies a variable number for the
given parameter. In this example of sample 4A, all the profile parameters of the impurity phase are set
equal to the corresponding values in the main phase. All structure parameters except lattice parameters
are fixed to literature values. Refinements usually cannot be done for a very minor second phase.

By making a choice of NEXC = 1, the data points in the 26 = 15-19.98° range were not used for the
refinement. The normal setting in our Rigaku x-ray diffractometer has a divergence slit with a width
of 1 degree, so the measured intensity values for 20 < 20° include reflections from the sample holder.
Often such low angle data are discarded simply because a peak shape exhibits more asymmetry at low
angle, which makes the refinement process more difficult. .

The best way to know the preferred-orientation vector is to view the crystalline shape under an
electron microscope. When this is unavailable, various choices of this vector and also anisotropic-
broadening axis ought to be tested.

The results of the Rietveld analyses for all nine LiV,0,4 samples are listed in Table 3.4 below (the
information for the two Ti spinel samples are in Table 6.2), and are discussed in the next section. The
fit curve to thousands of data points between 26 = 20 and 80° for this example of LiV,04 sample 4A

is shown in Fig. 3.4.
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sample 4A for diffraction angles 20 = 20-80°. Diffraction data
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upper ticks represents expected 26 angles for LiV,0, diffraction
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difference between the observed and calculated intensity is shown
at the bottom.
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Structure analyses by Rietveld method and thermogravimetric analysis results

The results from Rietveld analyses of the x-ray diffraction patterns for the nine LiV2Oy samples
are given in Table 3.4. The refinements of the spinel phase were based on the assumption of exact
LiV504 stoichiometry. The peaks of this main phase can be indexed on the space group Fd3m. The
values of the isotropic thermal-displacement parameters B of lithium and oxygen were taken from the

Rietveld analysis of neutron diffraction measurements on our LiV204 sample 5 by Chmaissem et al.

[18], and fixed throughout to Br; = 1.1A and Bo = 0.48 A, respectively. These atoms do not scatter
x-rays strongly enough to allow accurate determinations of the B values from Rietveld refinements of

our x-ray diffraction data.

Table 3.4 Results of Rietveld refinements of x-ray diffraction measurements for nine
LiV,04 samples. The oxygen parameter (u) is shown using the second
setting for the space group Fd3m from the International Tables for Crys-
tallography, Vol. A [68]. fetr imp is the impurity concentration. The error
in the last digit of a quantity is given in parentheses. The x-ray detec-
tion limit for the impurity concentration is assumed to be 1% [121]. For
samples 3 and 7 in which no discernable impurities were seen, this de-
tection limit is listed. Also, the Rietveld refinement for sample 5 yielded
a concentration less than 1%, which is replaced with the detection limit

below.

Sample Alt. Sample Cooling Impurity ao u Sstr imp

No. No. (A) (mol %)
1 4-0-1 air V305 8.24062(11) 0.26115(17) 2.01
2 3-3 air V203 8.23997(4)  0.2612(20) 1.83
3 4-E-2 air pure 8.24100(15) 0.26032(99) <1
4" 3-3-q1 LN, V3Os  8.24622(23) 0.26179(36) 3.83
4A 3-3-q2 ice H,O V203 8.24705(29) 0.26198(39) 1.71
4B 3-3-a2 slow cool V503 8.24734(20) 0.26106(32) 1.46
5 6-1 air V203 8.24347(25) 0.26149(39) <1
6 12-1 air V3Os 8.23854(11) 0.26087(23) 2.20
7 13-1 air pure 8.24114(9) 0.26182(19) <1

The nine LiV20, samples were given three different heat treatments after heating to 700 to 750°C:
air-cooling (samples 1, 2, 3, 5, 6 and 7), liquid-nitrogen quenching (sample 4), ice-water quenching
(sample 4A) or oven-slow cooling at ~ 20°C/hr (sample 4B). Possible loss of Li at the high synthesis
temperature, perhaps in the form of a lithium oxide, was a concern. This lithium loss would cause a

deficiency of lithium (or lithium and oxygen) relative to the composition LiV304. In a detailed neutron
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diffraction study, Dalton ef al. [93] determined the lithium contents in their samples of Lij 1z Tia_ 04
(0 <z <0.33), and found lithium deficiency in the 8a site of the spinel phase of all four samples studied.

If the spinel phase in the Li-V-O system is similarly Li-deficient, then samples of exact stoichiometry
LiV,04 would contain V-O impurity phase(s), which might then explain the presence of small amounts
of V203 or V305 impurity phases in most of our samples.

Sample 3 was intentionally made slightly off-stoichiometric, with the nominal composition LiV; 203 gs.
A TGA measurement in oxyéen showed a weight gain of 12.804% to the fully oxidized state. If one
assumes an actual initial composition LiV} ¢203 g9.4.5, this weight gain corresponds to § = 0.08 and an
actual initial composition of LiV; 9203 97, which can be rewritten as Li;.01V1.9304 assuming no oxygen
vacancies on the oxygen sublattice. On the other hand, if one assumes an actual initial composition
of Li;—2V1.9203.85, then the weight gain yields = 0.19, and an initial composition Lig g1V1.9203.89,
which can be similarly rewritten as Lip g3V;.9704. Our Rietveld refinements could not distinguish these
possibilities from an assumed stoichiometric composition of Li[V5]O, for the spinel phase.

Sample 4, which was given a liquid-nitrogen quench from the final heating temperature of ~ 725°C
(labelled “LN2” in Table 3.4), is one of the structurally least pure samples (see Table 3.4). Our Rietveld
refinement of the x-ray diffraction pattern for this sample did not reveal any discernable deviation of
the cation occupancy from that of ideal Li[V,]O4. There is a strong similarity among samples 4, 4A
(ice-water quenched) and 4B (oven-slow cooled), despite their different heat treatments. These samples
all have much larger lattice parameters (ag 2 8.246 A) than the other samples. The as-prepared sample
2, from which all three samples 4, 4A and 4B were obtained by the above quenching heat treatments,
has a much smaller lattice parameter. On the other hand, the oxygen parameters u of these four samples
are similar to each other and to those of the other samples in Table 3.4.

The weight gains upon the oxidization of our samples in pure oxygen in the TGA can be converted
to values of the average oxidation state per vanadium atom, assuming the ideal stoichiometry LiV,Oy4
for the initial composition. The values, to an accuracy of =£0.01, are 3.57, 3.55, 3.60, 3.56, 3.56, 3.57,
3.57, 3.55 for samples 1-7 and 4B, respectively. This measurement was not done for sample 4A. We do

not currently understand why these values are systematically higher than the expected value of 3.50.
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4 MAGNETIZATION

Magnetization measurements

Overview of observed magnetic susceptibility

An overview of the observed zero-field-cooled (ZFC) magnetic susceptibilities x°%*(T) = M°>S(T)/H
at H = 1.0T from 1.8-2K to 400K of the nine LiV,04 samples is shown in Figs. 4.1(a), (b) and (c).

The x°*(T) data for the various samples are very similar for 7' 2 50 K. Differences in x°P%(T) between
the samples appear at lower T', where variable Curie-like Cimp /T upturns occur.

Samples 1 and 6 clearly exhibit shallow broad peaks in x°® at T'~ 16 K. The x°**(T) of sample 6
is systematically slightly larger than that of sample 1; the reason for this shift is not known. Samples
3 and 4 also show the broad peak with a relatively small Curie-like upturn. Samples 2 and 7 show
some evidence of the broad peak but the peak is partially masked by the upturn. For the other three
samples, the broad peak is evidently masked by larger Curie impurity contributions. From Fig. 4.1
and Table 3.4, the samples 1, 4 and 6 with the smallest Curie-like impurity contributions contain V305
impurities, whereas the other samples, with larger paramagnetic impurity contributions, contain V2Os
impurities. The reason for this correlation is not clear. The presence of the vanadium oxide impurities
by itself should not be a direct cause of the Curie-like upturns. The susceptibility of pure V203
follows the Curie-Weiss law in the metallic T region above ~ 170K, but for 7 < 170K it becomes an
antiferromagnetic insulator, showing a decrease in x(T)) [122]. Vo—4O3 (y ~ 0.03), on the other hand,
sustains its high-T' metallic state down to low temperatures, and at its Néel temperature Ty ~ 10K
it undergoes a transition to an antiferromagnetic phase with a cusp in x(7) [122]. V3Os also orders
antiferromagnetically at Ty = 75.5K, but x(T') shows a broad maximum at a higher 7 = 125K [123).
Though not detected in our x-ray diffraction measurements, V40-, which has the same V oxidation
state as in LiV20y, also displays a cusp in x°P%(T’) at Ty ~ 33 K and x°bs (T") follows the Curie-Weiss law
for T 2 50K [31]. The susceptibilities of these V-O phases are all on the order of 10~ to 10~3 cm3/mol

at low T [31, 122]. Moreover, the T variations of x°bs(T) in these vanadium oxides for T S 10K are,
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upon decreasing T', decreasing (V2-,O3) or nearly T independent (V3Os and V407). in contrast to
the increasing behavior of the observed Curie-like magnetic impurity contribution. From the above
discussion and the very small amounts of V-O impurity phases found from the Rietveld refinements
of our x-ray diffraction measurements, we conclude that the V-O impurity phases cannot give rise to
the observed Curie-like upturns in our x°°*(T) data at low T". These Curie-like terms therefore most
likely arise from paramagnetic defects in the spinel phase and/or from a very small concentration of an
unidentified impurity phase.

Figure 4.1(b) shows how the additional heat treatments of the as-prepared sample 2, to produce
samples 4, 4A and 4B, yielded different behaviors of x°*$(T’) at low T'. Only liquid-nitrogen quenching
(sample 4) caused a decrease in the Curie-like upturn of sample 2. On the contrary, ice water quenching
(sample 4A) and oven-slow cooling (sample 4B) caused x°%(T) to have an even larger upturn. However,
the size of the Curie-like upturn in x°°5(T') of sample 4 was found to be irreproducible when the same
liquid-nitrogen quenching procedure was applied to another piece from sample 2; in this case the Curie-
like upturn was larger, not smaller, than in sample 2. The observed susceptibility (not shown) of this
latter liquid nitrogen-quenched sample is very similar to those of samples 4A and 4B. The x°P%(T) of

samples 4A and 4B resemble those reported previously [2, 5, 6, 7, 8, 9].

Isothermal magnetization versus magnetic field

Larger Curie-like upturns were found in samples with larger curvatures in the isothermal M obs( )
data at low T'. A few representative M°*(H,2K) data for samples showing various extents of curvatures
in M°P*(H) are shown in Fig. 4.2, which may be compared with the corresponding x°°5(T) data at low
T in Figs. 4.1. This correlation suggests that the Curie-like upturns in x°%%(T) arise from paramagnetic
(field-saturable) impurities/defects in the samples. On the other hand, there is no obvious correlation
between the magnetic impurity concentration and the structural V203 or V305 impurity concentration,
as noted above.

The isothermal M°S(H) data for H < 5.5T displayed negative curvature for 7 £ 10-20K and
linear behavior for higher T, as illustrated for sample 1 in Fig. 4.3. The concentrations of magnetic
impurities in the various samples were obtained from analyses of M°bs (H) isotherms, as follows. From
high-field measurements, the intrinsic magnetization M(H,0.5K) of LiV,04 is proportional to H up
to H ~ 16T [124). Therefore, the observed molar magnetization M °bs(H,T) isotherm data for each

sample were fitted by the equation

MOP(H,T) = Mimp(H,T)+ M(H,T)
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isotherms M°® at T = 2K versus applied magnetic field H for
samples 1, 3, 5 and 7.
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= fimpNagimptBSimpBsin, (2) + X(T)H . (4.1)

where fimp is the magnetic impurity concentration, Ns Avogadro’s number, gimp the impurity g-factor,
pp the Bohr magneton, Simp the impurity spin, Bs,, the Brillouin function, x the intrinsic susceptibility
of the LiV3204 spinel phase and H the applied magnetic field. The argument of the Brillouin function is
z = Gimp B Simp H/[kB(T — Gimp)]. Oimp represents the Weiss temperature of the Curie-Weiss law when
the susceptibility is obtained by expanding the Brillouin function in the limit of small H/(T — Bimp)-
Incorporating the parameter fimp # 0 takes account of possible interactions between magnetic impurities
in a mean-field way. To improve the precision of the obtained fitting parameters, we fitted M°>S(H)
isotherm data measured at more than one low temperature simultaneously by Eq. (4.1). Since the
negative curvature of the isothermal M°(H,T) data diminishes rapidly with increasing T', only low
T (1.8-6K) data were used. Furthermore, a linear T dependence of x(T') in this T range was assumed

[see Fig. 4.1(a)] in order to reduce the number of free parameters. However, x(T = 2K) and the linear

slope dy/dT still have to be determined. Hence up to six free parameters were to be determined by
fitting Eq. (4.1) to the data: fimp, Gimp, Simp» fimp, X(T = 2K) and dy/dT.

With all six parameters varied as free parameters, fits of M°®5(H,T) by Eq. (4.1) produced un-
satisfactory results, yielding parameters with large estimated standard deviations. Therefore, we fixed
Simp to various half-integer values starting from 1/2, thereby reducing the number of free parameters
of each fit to five. With regard to the gimp values, g-factors of slightly less than 2 are observed in V*¢
compounds: VO3 (1.964) [125], (NH,), V205 (1.962) [126] and Li;V2Os (1.96) [127). Having gimp ~ 2
as a guide, we selected a few values of Simp which resulted in Jimip ~ 2 in the five-parameter fit.
Then using the obtained parameter values we calculated and plotted the impurity magnetization Mimp
(= M°® — xH) versus H/(T — fimp) for all the low T data utilized in the fit by Eq. (4.1). Ifafit is
valid, then all the Mipp[H/(T — imp)] data points obtained at the various isothermal temperatures for
each sample should collapse onto a universal curve described by Minmp = fimp NAGimp 8 Simp B, (2).
The fixed value of Simp which gave the best universal behavior for a given sample was chosen. Then,
using this Simp, we fixed the value of gimp to 2 to see if the resultant Mimp[H/(T ~ 8imp)] data yielded
a similar universal behavior. For the purpose of reducing the number of free parameters as much as
possible, if this fixed-g fit did yield a comparable result, the parameters obtained were taken as the
final fitting parameters and are reported in this paper. For sample 1 only, the fit parameters obtained
by further fixing fimp = 0 are reported here. To estimate the goodness of a fit, the x? per degree of
freedom (DOF) was obtained, which is defined as (Np — P)= T2 (M; — MF2)2 /o2, where Np is the

number of data points, P is the number of free parameters, and o; is the standard deviation of the
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observed value M;. A fit is regarded as satisfactory if x/DOF X 1. and this criterion was achieved for
each of the nine samples.

The magnetic parameters for each sample, obtained as described above. are listed in Table 4.1.
Plots of Mimp versus H/(T — 6imp) for the nine samples are given in Figs. 4.4. 4.5 and 4.6. where an
excellent universal behavior for each sample at different temperatures is seen. The two magnetically
purest samples 1 and 6 have the largest relative deviations of the data from the respective fit curves.
especially at the larger values of H/(T — 6imp). Since these two samples contain extremely small
amounts of paramagnetic saturable impurities, the magnetic parameters of the impurities could not
be determined to high precision. The impurity spins Simp obtained for the nine samples vary from
3/2 to 4. In general, the magnetic impurity Weiss temperaure |6imp| increased with magnetic impurity
concentration fimp. From the chemical analyses of the starting materials (V20s, NH;VOj3; and LioCO3)
supplied by the manufacturer, magnetic impurity concentrations of 0.0024 mol % Cr and 0.0033 mol % Fe
are inferred with respect to a mole of LiV2Qy4, which are too small to account for the paramagnetic

impurity concentrations we derived for our samples.

Table 4.1 Results of magnetization M°*(H, T) isotherm analyses. where the T values used are listed
in the second column. fmag imp is the magnetic impurity concentrations. The error in the
last digit of a quantity is given in parentheses. A number without an error listed was fixed
in the data fit.

Sample No. T fixed Simp Fimp Bimp fmag imp x{(2K) dx/dT
(K) (K) (mol%) (10~?cm3/mol) (cm®/molK)
1 2,34,5 3/2 2 0 0.049(2)  1.026(1) 7.3(1)
2 24,6 3 2.00(6) -0.6(2) 0.22(1) 1.034(5) 6.7(4)
3 2,5 5/2 2.10(2) —0.51(5) 0.118(2)  0.9979(6) 7.46(7)
4 2.3,4,5 5/2 2 —0.2(1)  0.066(2)  0.9909(9) 6.7(1)
4A 2,5 3 2 —0.5(1) 077(2)  1.145(9) 6.5(9)
4B 2,345 7/2 2 -1.2(1)  0.74(2) 1.13(1) 4.4(7)
3 2,5 5/2 231(3) —0.59(4) 0.472(8) 1.091(2) 5(3)
6 2,5 4 2 —0.9(14) 0.0113(6) 1.067 5.6(2)
7 2,5 3 2 —0.2(2)  0.194(7)  1.094(4) 5.4(4)
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H /(T = 8imp) for LiVo04 samples 2, 3 and 7. For each sample, the
solid curve is the best-fit Brillouin function Eq. (4.1).
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Magnetization versus temperature measurements

Low magnetic field ZFC and FC measurements

The zero-field-cooled (ZFC) x°b%(T) data in Fig. 4.1(a) for our highest magnetic purity samples 1
and 6 show a broad maximum at 7P®** ~ 16 K. One interpretation might be that static short-range
(spin-glass) ordering sets in below this temperature. To check for spin-glass ordering, we carried out
low-field (10-100G) ZFC and field-cooled (FC) magnetization measurements from 1.8-2K to 50K on
all samples except samples 2 and 4B. For each sample, there was no hysteresis between the ZFC and
FC measurements, as illustrated for sample 4 in Fig. 4.7, and thus no evidence for spin-glass ordering
above 1.8-2K [29].

Ueda et al. [83] reported that spin-glass ordering occurs in the zinc-doped lithium vanadium oxide
spinel Lij—»Zn; V204 for 0.1 < z < 0.9. However, spin-glass ordering was not seen in the pure com-
pound LiV1Qy, consistent with our results. Further, positive-muon spin relaxation uSR measurements
for sample 1 did not detect static magnetic ordering down to 20mK [11]. However, the uSR measure-
ments did indicate the presence of static spin-glass ordering in the off-stoichiometric sample 3 below
0.8K [11]. As mentioned in Chapter 3, the stoichiometry of sample 3 was intentionally made slightly
cation-deficient, and may contain cation vacancies. Such a defective structure could facilitate the oc-
currence of the spin-glass behavior, relieving the geometric frustration among the V spins. Whether
the nature of the spin-glass ordering in sample 3 is similar to or different from that in Li;_;Zn, V204

noted above is at present unclear.

Intrinsic susceptibility

The intrinsic susceptibility x(7) was derived from the observed M°®S(T) data at fixed H = 1T

using
MO>(T) — Mimp (H,T)
H 3

x(T) = (4.2)

where Mimp (H,T) is given by Eq. (4.1) with H = 1T and by the parameters for each sample given in
Table 4.1, and T is the only variable. The x(T') for each of the nine samples is shown in Figs. 4.8(a)
and (b), along with x°®*(T’) for samples 1 and 6. A shallow broad peak in x(T’) is seen at a temperature

Tpeak = 18,16,18,18,15,17,17,5, 14K for samples 1-7, 4A and 4B, respectively. The peak profiles seen
in x(T) for the two magnetically purest samples 1 and 6 are regarded as most closely reflecting the
intrinsic susceptibility of LiV20,4. This peak shape is obtained in the derived x(T') of all the samples

except for sample 4A, as seen in Fig. 4.8(b). The physical nature of the magnetic impurities in sample
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Figure 4.7 Observed magnetic susceptibility x°*5(T) = M°PS(T)/H versus
temperature T' in a low magnetic field H = 50 G of LiV204 sample
4 cooled in zero field (ZFC) and in the low field (FC).



70

4A is evidently different from that in the other samples. Except for the anomalous samples 4A and 4B,
the x(T = 0) values were estimated from Figs. 4.8(2) and (b), neglecting the small residual increases

at lowest T" for samples 2, 6, 7 and 4B to be

x(0) =9.8, 10.8, 9.6, 9.7, 10.0, 10.2, 10.2, 9.8 x 10~3cm3/mol (samples 1-7. 4B) . (4.3)

Modeling of the intrinsic magnetic susceptibility

The Van Vleck susceptibility

The Van Vleck paramagnetic orbital susceptibility x¥VV may be obtained in favorable cases from the
so-called K-x analysis, i.e., if the transition metal NMR frequency shift A’ depends linearly on x. with

T an implicit parameter. One decomposes x(7') per mole of transition metal atoms according to
xX(T) = x*" + xVV + xP™(T) . (4.4)

We neglect the diamagnetic orbital Landau susceptibility, which should be small for d-electron bands

[128]. The NMR shift is written in an analogous fashion as
K(T) = KVY 4+ K™(T) ; (4.5)

a term A°°" does not appear on the right-hand side of Eq. (4.5) because the absolute shift due to 3 c°T¢
is expected to be about the same as in the Knight shift reference compound and hence does not appear
in the shift measured with respect to the reference compound. Each component of K is written as a

product of the corresponding component of x and of the hyperfine coupling constant A as

VYV = ﬂ VYV (4.6)
Napp
. Aspin .
I\rspm - - spin N 4.7
Naws® (4.7)

Combining Eqgs. (4.5), (4.6) and (4.7) yields

AVV vV Aspin

K =— ; -
Naps Naps

X®" (48)

If K(T) varies linearly with x(T'), then the slope is A" /Npup since xVV (and x°°™¢) is normally
independent of . We write the observed linear relation as
spin

K=K, +—=—x . 4,
PEa Naps X (4.9)
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Setting the right-hand-sides of Egs. (4.8) and (4.9) equal to each other gives

XVV _ Na LB K, + Aspin Xcore

AVV _ Aspin (4'10)

From 51V NMR. and x(T) measurements, the K vs. x relationship for LiV204 was determined by
Amako et al. [90] and was found to be linear from 100-300K, as shown in Fig. 4.9. Our fit to their

data gave

3
K =0.0117(4) - [17.08(21) "c‘z;’ ]X<r;$v) , (4.12)

shown as the straight line in Fig. 4.9. Comparison of Egs. {4.9) and (4.11) yields
K, =0.0117(4) , (4.12)

AP = _054(12) kG . (4.13)

The orbital Van Vleck hyperfine coupling constants for V*3 and V+4 are similar. For atomic V+3,
one has AVY = 403kG [129]. We will assume that AVY in LiV,O4 is given [130] by that for atomic
v+,

AVYV = 455%G . (4.14)

The core susceptibility is estimated here from Selwood’s table [131], using the contributions [in units of

—10~%cm3/(mol ion)] 1 for Li*?, 7 for V** and 12 for O~2, to be

3
YO = 63 x 1075 S (4.15)
mol
Inserting Egs. (4.12), (4.13), (4.14) and (4.15) into (4.10) yields
3
xVV =2.48(9) x 107 == (4.16)

mol

Mahajan et al. [19] have measured the 31V K (T') for our LiV204 sample 2 from 78 to 575 K. Their
data are plotted versus our measurement of x°°3(T’) for sample 2 from 74 to 400K in Fig-4.9. Applying

the same K-y analysis as above, we obtain

K, =0.0101(3) , (4.17)
AP = _76.9(8) kG (4.18)

3
xVV =2.22(6) x 10~* % , (4.19)

where the linear fit of K vs. x°° is shown by the dashed line in Fig. 4.9.
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We may compare our similar values of xVV for LiV,0y4 in Egs. (4.16) and (4.19) with those obtained
from K-x analyses of other oxides containing V*2 and V**. For stoichiometric V203 above its metal-
insulator transition temperature of ~ 160K, Jones [132] and Takigawa et al. [129] respectively obtained

V =2.10 and 2.01 x 10~* cm3/(mol V). Kikuchi et al. {133] obtained xVV = 0.92 x 10=% cm3/(mol V)
for LaVO3, whereas for VO2, Pouget et al. [130] obtained xVV = 0.65 x 10~ cm3/(mol V).

High-temperature series expansion analysis of the susceptibility

Above ~ 50K the monotonically decreasing susceptibility of LiVoO4 with increasing T has been

interpreted by previous workers in terms of the Curie-Weiss law for a system of spins S = 1/2 and
g~ 2[2 5,6, 7,8, 9]. To extend this line of analysis, we have fitted x(T) by the high—température
series expansion (HTSE) prediction [88, 134] up to sixth order in 1/T. The assumed nearest-neighbor
(NN) Heisenberg Hamiltonian between localized moments reads

H=U) 8§-5 , (4.20)

{4.3)

where the sum is over all nearest-neighbor pairs, J is the NN exchange coupling constant and J > 0
denotes AF interactions. A HTSE of xffril?SE(T) arising from this Hamiltonian up to the n™**-th order
of J/kpT for general lattices and spin S was determined by Rushbrooke and Wood [88], given per mole

of spins by

Nag*pd 3kpT o ( )
= ; 4.91
i 1)7 =~ S+ 17 2 T (4.21)

where b = 1. The b, coefficients for S = 1/2 up to sixth order (n = 6) are

=2 =2 _Enq_5m .
bl - 4’ b2 - 8"’ b3 - 24(1 ] ) 7b4 768 (13 5z — 15171 + ap2) ’
bs =~ 122+ 2 - - 2 2
5 15360 — (902 — 122+ 245p; — 60zp; — 45p% — 90ps + 25ps) ,
be = 13 432 0(1342 — 78324 713 + 9082p; — 2697p; — 1062p1 + 1284p1 2342ps

+-849p2 — 291p3 + T5ps — 288py1p2 — 51g — 87) . (4.22)

Here z is the nearest-neighbor coordination number, and p,, ¢ and r are so-called lattice parameters
which depend upon the geometry of the magnetic lattice. The Curie Law corresponds to maximum
order n™2* = 0, and the Curie-Weiss Law to maximum order n™®* = 1. For the B sublattice of a
normal-spinel structure compound A[B;]O4, which is geometrically frustrated for AF interactions, the
parameters are 2 =6,p1 =2,p2=2,p3=0,p2=2,¢=0,r=2. For S =1/2, Eq. (4-22) then yields

3 1 37 43 1361
, be=S ., by=—— = 2L =22 )
LA 3 bs bs=%10 %= 6144

16 128 ° (4.23)

[\ L)

b1=
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Figure 4.10 illustrates the HTSE predictions of Eq. (4.21) for S = 1/2 using these b, coefficients for

n™* = 1 to 6. The theoretical xg,il\"SE(T) predictions with 2™ = 2, 3 and 6 exhibit broad maxima
as seen in our experimental x(T") data. The prediction with n™** = 6 is evidently accurate at least for
kgT/J R 1.6; at lower T, the theoretical curves with n™®* = 5 and 6 diverge noticably from each other
on the scale of Fig. 4.23. Our fits given below of the experimental data by the theoretical xPi*(T)
prediction were carried out over temperature ranges for which kp7'/J 2 1.6. The Weiss temperature 6
in the Curie-Weiss law is giv-en for coordinatioin number z = 6 and S = 1/2 by

_ZJS(S+1) _ 3J

b= 3k 2kg

(4.24)

To fit the HTSE calculations of x*P*(T") to experimental data, we assume that the experimentally

determined intrinsic susceptibility x(7T') is the sum of a T-independent term xo and x;}’,ilf‘SE(T),
X(T) = xo + xifrse(T) » (4.25)

with X;?}EISE(T) given by Eq. (4.21) and the b, coefficients for S = 1/2 in Eq. (4.23). The three
parameters to be determined are xg, ¢ and J/kp. The fitting parameters for samples 1-7, 4A and 4B
using n™®* = 6, and for sample 1 also using n™** = 2 and 3, are given in Table 4.2 for the 50—400K
and 100-400K fitting ranges. The fits for these two fitting ranges for sample 1 and n™2* = 6 are shown
in Fig. 4.11. Both g and J/kp tend to decrease as the lower limit of the fitting range increases. The
HTSE fits for all the samples yielded the ranges C = Nag®u3/(4kp) = 0.36-0.48cm®K/(mol V) and
6 = —20 to —42K. These ranges are in agreement with those reported previously (see Table 1.5). xo
was found to be sensitive to the choice of fitting temperature range. For the 50-400K range, xo was
negative for some samples. Recalling the small negative value of the core diamagnetic contribution in
Eq. (4.15) anc the larger positive value of the Van Vleck susceptibility in Egs. (4.16) and (4.19), it is
unlikely that xo [defined in Eq. (4.29)] would be negative. Negative values of xo occur when the low-T'
limit of the fitting range is below 100K, and may therefore be a spurious consequence of the crossover
between the local moment behavior at high 7" and the HF behavior at low 7.

To eliminate xo as a fitting parameter, we fitted dx/dT" by the HTSE prediction for that quantity.
In order to generate the experimental dx/dT, we first employed the following function to obtain an
analytic expression for x(T),

(T) = ay + a7 + a3T? + a4T2 + asT*
x - ae + a7 + agT? + agT3 + T4

(4.26)

The x(T) of samples 1 and 6 for the entire T ranges 2-400K and 1.8—400K, respectively, can be fitted
well by Eq. (4.26) and the a, coefficients are listed in Table 4.3. The rms deviation of the fit from the
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100400 K temperature ranges.
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Table 4.2 Results of high-temperature series expansion calculation fits to
the experimental intrinsic magnetic susceptibility data for LiV4Q,.
The temperature independent susceptibility, xo, is in units of
10~*cm®/mol, and J/kgp is in K. The error in the last digit of a

quantity is given in parentheses.

Sample n™mx 50-400K 100—400K
No. Xo g J/ks Xo g J/ks
1 2 0.8(4) 2.17(1) 25.8(5) 2.7(3) 2.07(2) 20(1)
1 3 0.7(4) 2.18(2) 26.2(6) 2.6(3) 2.07(2) 20(1)
16 05(4) 21902 269(7) 26(3) 207(2) 20()
2 6 —0.2(5) 226(2) 267(8) 26(3) 211(2) 19(1)
3 6 ~13(5 223(2) 27.8(7) 14(3) 208(2) 20.5(8)
4 6  L11(6) 2.16(3) 26.4(9) 4.1(5) 1.99(3) 17(2)
A 6 —06(8) 22013) 26.(1) 23(2) 205(1) 18.1(6)
B 6 —07(5) 212(2) 262(8) 18() 1.97(3) 18(2)
5 6 12(7) 217(3) 25.(1) 49(7) 195(4) 13(2)
6 6  08(1) 2.251(6) 26.5(2) 3.3(7) 2.108(4) 18.4(2)
7 6  05(3) 220(1) 25.8(5) 3.0(1) 2051(8) 17.5(4)

data for sample 1 (sample 6) is 0.29 % (0.21 %), while the maximum deviation is 1.3% (0.48 %). Using
Eq. (4.26), dx/dT was computed and is plotted in Fig. 4.12 for sample 1. These data were fitted by
dx3Pin. . /dT obtained from the HTSE prediction Eq. (4.21) with n™** = 6, where the fitting parameters
are now g and J/kg. The fits were carried out over the same two T ranges as in Fig. 4.11; Table 4.4
displays the fitting parameters and the fits are plotted in Fig. 4.12. Of the two fitting ranges, the 100-
400K fit is the best fit inside the respective range, though it shows a large deviation from the data below
this range. Using the fitting parameters, the HTSE x*P'*(T)) is obtained from Eq. (4.21). According to
Eq. (4.25), the difference between the experimental x(7) and xif,}f‘SE(T), 6x(T) = x(T) — X;%.PSE(T)’
should represent the T-independent contribution xo. dx(T') is plotted for sample 1 versus T in Fig. 4.13
for the 50-400K and 100-400K fit ranges. Again, the superiority of the 100~400K fitting range to the
other is evident, i.e., xo is more nearly constant for this fitting range. xo for the 50-400K fit range
is negative within the range. This sign is opposite to that obtained in the first HTSE fitting results
in Table 4.2. This inconsistency found in the fit using a low T limit below 100K may again be due to
changing physics in the crossover regime, which would invalidate the parameters. By averaging the xo

values for sample 1 in the range 100-400K, we conclude that the T-independent contribution to the
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susceptibility is
xo = 2.00(4) x 10™*cm3/mol (sample 1) . (4.27)

Similarly, for sample 6 we obtain

xo0 = 2.11(1) x 10~*cm®/mol (sample 6) . (4.28)

Table 4.3 Coefficients a, in Eq. (4.26) in the fit to the intrinsic
susceptibility of LiV204 sample 1 for the temperature
range 2-400K and of sample 6 for 1.8—400K.

sample 1 sample 6
a; 6582.265 16550.251
as —249.28006 —915.01623
as 32.222161 33.136264
as 0.66645683 0.62427567
as 0.00047520063 0.00063083797
as 672225.75 1606070.2
ar —29971.386 —102780.73
as 3467.6212 4270.2043
ag 30.324884 6.8469583

Table 4.4 Parameters g and J/kp obtained by fitting the tempera-
ture derivative of the experimental intrinsic susceptibility
data by the temperature derivative of the HTSE spin sus-
ceptibility [Eq. (4.21)] with n™%% = 6 for LiV20O4 samples
1 and 6. The error in the last digit of a quantity is given
in parentheses.

50—400K 100-400K
Sample no. g J/kg (K) g J/ks (K)
1 2.275(3)  29.61(7) 2103(2)  22.27(8)
6 2.402(4)  31.61(9) 2174(3)  22.1(1)

In the itinerant plus localized moment model implicitly assumed in this section, xo can be decom-
posed as

X0 = Xcore + XVV + XPauli , (4.29)
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Figure 4.13 The differences between the experimental intrinsic susceptibility
x(T') of LiV,0,4 sample 1 and the HTSE prediction x°PI" obtained
from the T derivative analysis, 6x(T) = x(T) — x*P'®, versus tem-
perature T for the fitting T’ ranges of 50400 K (open squares) and
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be the T-independent susceptibility xo.
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where xF24! is the temperature-independent Pauli spin susceptibility of the conduction electrons. Using

the results in Egs. (4.15), (4.19) and (4.27), for sample 1 we find

xF* = 0.41(10) x 10~*cm®/mol (sample 1) . (4.30)
For sample 6, we similarly obtained

xF2l = 0.52(7) x 10~*cm®/mol (sample 6) . (4.31)

These P2l values are approximately four times smaller than that obtained for LiV,0,4 by Mahajan et
al. [19]. They used x°*5(T) in the T range 100-800K, combining our x°°$(T)) data to 400 K and those of
Hayakawa et al. [9] to 800 K. By fitting these combined data by the expression x°%*(T") = xo+2C/(T-8),
they obtained xo = 5.45 x 10~*cm®/mol. As shown above, the value of xo is sensitive to the fitting
temperature range. For LiTi»O4, T2 ~ 2 x 10~*cm?®/mol [4, 135] between 20 and 300 K, which is a

few times larger than we find for LiV204 in Eqgs. (4.30) and (4.31).

Crystal field model

The ground state of a free ion with one 3d electron is 2D3/, and has five-fold orbital degeneracy.
The point symmetry of a V atom in LiV,Qy is trigonal. If we consider the crystalline electric field
(CEF) seen by a V atom arising from only the six nearest-neighbor oxygen ions, the CEF due to a
perfect oxygen octahedron is cubic (Op symmetry), assuming here point charges for the oxygen ions.
In this CEF the degeneracy of the five d orbitals of the vanadium atom is lifted and the orbitals are
split by an energy “10Dg” into a lower orbital 54 triplet and a higher orbital eg doublet. However, in
LiV20,4 each V-centered oxygen octahedron is slightly distorted along one of the <111> directions [see
Fig. l.14(b)],~as discussed in Chapter 1. This distortion lowers the local symmetry of the V atom to
Dy (trigonal) and causes a splitting of the t,4 triplet into an Aig singlet and an E,; doublet. It is not
clear to us which of the Eg or A, levels become the ground state, and how large the splitting between
the two levels is. These questions cannot be answered readily without a knowledge of the ' magnitudes of
certain radial integrals [136], and are not further discussed here [137]. However, this trigonal splitting
is normally about an order of magnitude smaller than 10Dgq [1). In the following, we will examine the
predictions for x(T") of a d* or d? ion in a cubic CEF and compare with our experimental data for
LiV,0;.

Kotani [138] calculated the effective magnetic moment peg = pepp per d-atom for a cubic CEF

using the Van Vleck formula [139]. The spin-orbit interaction is included, where the coupling constant
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is A. For an isolated atom pes(T) is defined by

NuZe(T)

ST (4.32)

x(T) =

where p.q is in general temperature-dependent and N is the number of magnetic atoms. With spin
included, one uses the double group for proper representations of the atomic wavefunctions. Then in
this cubic double group with one d-electron the six-fold (with spin) degenerate 54 level splits into a
quartet I's(f24) and a doublet I'7(254) [138, 140, 141]. The four-fold degenerate ¢4 level does not split
and its representation is I's(eg). For a positive A as appropriate to a 3d atom with a less than half-filled
d-shell, g(24) is the ground state, and the first-order Zeeman effect does not split it; this ground state
is non-magnetic. Kotani does not include in his calculations of y.gs the possible coupling of I's(t24) and
I's(ey), which have the same symmetry, and assumes that the cubic CEF splitting 10Dg is large enough
to prevent significant mixing. On the other hand, the cubic double group with two d-electrons gives
an orbitally nondegenerate, five-fold spin-degenerate, ground state with angular momentum quantum
number J = 2 which splits into five non-degenerate levels under a magnetic field. The spin-orbit
coupling constant is A = +250cm™? for d! (V**) and +105cm™?! for d2 (V*3) [142]. The effective

moment is defined from the observed molar susceptibility of LiV,0,4 as

2NA PSR (T)P 3 (4.33)

obs _
X (T) = X0+ 3kBT ’

where xo is given by Eq. (4.27). Kotani’s results from the Van Vieck equations are

8+ (3z — 8)e= 3]/
Q= A 4.34
peﬁ' [ 27(2+ e-%x) J ( . )

for the d! ion, and

(4.35)

2
@ 3Gz +15+ (2 +9)e= — 2e-3%) ]
N 2,‘(5 + 3e—% + e—-;-:)

for the d? ion, where ¢ = A/kgT. Figure 4.14 shows p2&s, ng) and p.ﬁﬁ? as a function of T. For comparison

also shown is pgf”) obtained by assuming that p22*(T’) arises from an equal mixture of V*2 and V+¢

localized moments. None of the three calculated curves agrees with the experimental data over the full
temperature range. However, in all three calculations pes increases with T, in qualitative agreement with
the data, perhaps implying the importance of orbital degeneracy in LiV,O,4 and/or antiferromagnetic
coupling between vanadium spins. The nearly T-independent pg* ~ 1.8 for T 2 100K is close to the
spin-only value peg = g\/gm with S = 1/2 and g & 2, as expected in the absence of orbital

degeneracy.
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Figure 4.14 Observed effective magnetic moment in IB, pg};S, versus tempera-

ture T of LiV,04 sample 1 (filled diamonds). Also shown as the
curves are the predictions pg,-f) for d! ions and pgf) for d? ions by
Kotani (138], and p{;™? for an equal mixture of d* and ¢2 jons.
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Spin-1/2 Kondo model and Coqblin-Schrieffer model

x°%(T) data for f-electron HF compounds are often found similar to the predictions of the single-
ion Kondo model {57, 143, 144, 145, 58] for spin S =1/2 or its extension to S > 1/2 in the Cogblin-
Schrieffer model [146, 147]. The zero-field impurity susceptibility xcs(7T") of the Cogblin-Shrieffer model
was calculated exactly as a function of temperature by Rajan [147]. His numerical results xcs(T) for
impurity spin J = 1/2, ..., 7/2 show a Curie-Weiss-like 1/T dependence (with logarithmic corrections)
for T > Tk, where Tk is the Kondo temperature. As T decreases, xcs(T) starts to deviate from the
1/T dependence, shows a peak at T ~ 0.27k only for J > 3/2, and levels off for T < 0.2Tk for all 7.

In the zero temperature limit the molar susceptibility for J = S = 1/2 (which corresponds to the
S = 1/2 Kondo model) is [147]

_ 0.10268Nag2p%

T (4.36)

Xcs (T - 0)

Setting g = 2, and using the intrinsic x(T' — 0) = 0.0049cm3/(molV) for LiV20,4 sample 1 from
Eq. (4.3), Eq. (4.36) yields the Kondo temperature

Tk =32.1K . (4.37)

On the other hand, if the g-value of 2.103 from Table 4.4 (100-400K range) is employed instead, the
Kondo temperature is

Tk = 35.5K . (4.38)

The temperature dependence of the impurity susceptibility of the S = 1/2 Kondo model was obtained
using accurate Bethe ansatz calculations by Jerez and Andrei [148]. We fitted these results by the

following ratio of polynomials

xcsksTk a1+ asz + azz? + agz®

5 = s 4.
Nag?pd a5+ asz + arz? + agz® + 24 (4.39)

where z = T'/Tk. This analytic form converges to a finite value for T — 0, and approaches a Curie law
(< 1/T) in the high-T limit, as required by the Kondo model. The coefficients a,, for the fitting range
0.012849 < z < 102.53 are listed in Table 4.5. The numerical data of Jerez and Andrei and our fit to
their data are plotted in Fig. 4.15. The rms deviation of the fit values from the Bethe ansatz calculation
values is 0.13 %, and the maximum deviation is found to be 1.0% at the upper limit T/Tx = 102.53.

For the low-z range of 0.012849-9.5982 (relevant to a fit of the theory to our experimental data), the

rms deviation is 0.01 %, whereas the maximum deviation is 0.04% at T/Tx = 8.8867. Using the above-

stated g-values and Tk from Egs. (4.37) and (4.38), the xcs(T) calculations are compared with our
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x(T) data in Fig. 4.16. Note that in Fig. 4.16, both the T-independent xo [Eq. (4.27)] and impurity
susceptibilities are already subtracted from x°". Although the Tk values in Egs. (4.37) and (4.38) are
comparable to those obtained from heat capacity analyses [11, 14], the S = 1/2 Kondo model predictions
for x(T') with these Tk values do not agree with our observed temperature dependence. This failure
is partly due to the fact that our x(7") exhibits a weak maximum whereas the S = 1/2 Kondo model

calculation does not.

Table 4.5 Coefficients a,, in Eq. (4.39) in the fits to the theoretical data for the susceptibility
vs. temperature of the J = S = 1/2 Kondo model by Jerez and Andrei [148]
and the Cogblin-Schrieffer model (for J > 1/2) by Rajan [147). Temperature
ranges of the fits are in units of Tk, where Tk is the Kondo temperature.

J=12 J=1 J=3/2 J=2 J=5/2 J=3 J=1/2
T Range 0.01-100 0.01-50 0.01-30 0.01-30 0.01-20 0.01-20 0.01-20

a 0.73154 0.25221 0.35665 0.60875  3.207 1.0982 1.6387
as 2.2266  0.618 1.3195 1.8565 3.8544 -0.9116 —2.0406
as 2.9967 3.2186  7.051 18.001 96.277 43.219 86.929

as 0.1992  0.51585 1.1 1.7213 2.3977 3.1439 4.1247
as 7.1161  0.61359 0.34579 0.29505 0.88917  0.1899 0.18853
ag 21.571 1.5457  1.3861 1.0586 1.5409 —0.025662 —0.027465
az 38.441 6.8847  4.5961 4.8049  11.558 3.0354 3.2449
ag 20.245 6.5961  7.3312 10.359 36.633 11.234 17.468

As noted above, the Cogblin-Schrieffer model for J > 3/2 does give a peak in xcs(T"). We fitted
the digitized theoretical x(T") curves for this model calculated by Rajan [147], for various T ranges of
fits, by Eq. (4.39). The fitting coefficients a, for 1 < J < 7/2 are listed in Table 4.5. We used the
fitted curves to calculate the ratio

peak
9 — Xcs - xcs(0) _
r(f) = FE—TEE X100 (4.40)

where x2%¥ is the value of xcs at the peak. The calculations give r = 2, 7, 11, 17. and 22% for
J =3/2,2,5/2, 3 and 7/2, respectively. The observed value is » = 8.2% in sample 1, which is between
the theoretical values for J = 2 and 5/2. Using the a, coefficients for J = 2 and 5/2 from Table 4.5,
we have fitted xcs to our x(T") data of sample 1 for T = 2-400K with three free parameters, xo, ¢ and

Tx. The fits are shown in Fig. 4.17 and the parameters are
xo = 2.3(3) x 10~%*cm®/mol, ¢ =10.790(3), Tk =97.8(6)K (F =2) , (4.41)

Xo = 6.9(9) x 10~ *cm3/mol , ¢ =0.591(7), Tk =103(2)K (J =5/2) . (4.42)
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Figure 4.15 Bethe ansatz calculation of the magnetic susceptibility x for the
spin S = 1/2 Kondo model by Jerez and Andrei [148], exhibited in
terms of the dimensionless reduced susceptibility xkpTk /Nag? U3,
as a function of 7/Tk, where Tk is the Kondo temperature. The
inset shows an expanded plot at low temperatures.
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Figure 4.16 Temperature T-dependent part of the intrinsic magnetic suscep-
tibility, x — xo, versus T for LiV,O4 sample 1 (filled circles).
Also shown as solid and dashed curves are the predictions of

the spin S = 1/2 Kondo model for (g, 7kx) = (2,32.1K) and
(2-103,35.5K), respectively, where g is the g-factor and Tk is the

Kondo temperature.
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The J = 2 curve fits our x(7T") data fairly well. However, the 1.5 d-electrons per V ion could not give
rise to a J value this large; the very small value of g is also considered highly unlikely.

On the basis of the above analysis we conclude that the Cogblin-Schrieffer model for J > 1/2 and

the S = 1/2 Kondo model cannot explain the intrinsic susceptibility of LiV,04 over any appreciable

temperature range.
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Figure 4.17 Intrinsic magnetic susceptibility x of sample 1 versus temperature

T and fits by the Cogblin-Schrieffer model prediction in Eq. (4.39)
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91

5 RESISTIVITY

Resistivity measurements using powder samples

Resistivity p(T) measurements of polycrystalline oxide samples are often misleading. They of-
ten display not only qualitatively incorrect temperature dependences but also quantitatively incorrect
magnitudes. This uncertainty is usually caused by extra resistance coming from grain boundaries of
powder samples. Therefore, the intrinsic electronic transport properties cannot be evidenced from such
measurements on polycrystalline samples. Nevertheless, when a polycrystalline sample undergoes a
transition to a superconducting state, a sharp drop in p(T) at the transition temperature T. may be
usually observed.

For LiV20, the resistivity measurements on polycrystalline samples in the past showed semicon-
ducting behaviors [9, 149]. We also observed a semiconducting behavior, partly due to bad contacts
of platinum wires to powdery sample pellet surface. Superconductivity was not observed above 0.01 K

from p(T') measurements on a polycrystalline pellet (sample 3) [11].

Analysis of single crystal resistivity measurements

Despite the failure to show the metallic conductivity definitively from powder samples, single crystals
of LiV2O4 showed metallic T dependences in the resistivity p(T) as noted in Chapter 1. We digitized
the published p(T) data of Rogers et al. [3], which were plotted as log(p) vs. T, and replot here
the data on linear scales in Fig. 5.1. Although p(T) increases monotonically with T as expected for
a metal, the magnitude of p is not as small as for typical metals (O(p)=1 pQ2cm) [150): 58(1) and
638(18) uQ2cm at T = 4 and 299K, respectively, for “Crystal 2”. The resistance ratio for this crystal is
p(299 K)/p(4 K) = 11. In Fig. 5.1, a strong but smooth downturn in p(T) occurs at T ~ 30K, evidently
signifying the crossover to the heavy Fermi liquid regime with decreasing T.

In strongly correlated electron systems such as f-electron HF compounds, the low-T resistivity

exhibits a T? dependence arising from Umklapp scattering processes between conduction electrons.
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Figure 5.1 Electrical resistivity p of LiV,0y single crystals versus temperature

T, digitized from Fig. 1 of Rogers et al. [3]. Open squares, closed
circles and closed triangles correspond to Crystals 1, 2 and 3, re-
spectively. Crystal 2 had a rectangular shape, whereas the other

two had irregular shapes. Only three data points are given in (3]
for Crystal 3.
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Combined with a residual resistivity pg, the resistivity at low T is written as
p(T) = po + AT? . (5.1)

In 1986, a universal linear relation between A and v, the square of the electronic heat capacity coefficient
at T = 0, was postulated for f-electron HF compounds via the so-called Kadowaki-Woods plot [66].
The proportionality constant they found was (A/9%)gr = 1.0 x 10~° pQ cm (molK/mJ)2. Miyake et al.

(151] subsequently deduced this proportionality constant theoretically, along with a corresponding value

for common transition metals (A/v?)rm ~ 0.4x10~¢ uQcm (molK/mJ)?. They concluded that the
origin of the factor of 25 ratio between the A/v> values for the two classes of compounds arises from
different degrees of frequency dependences of the conduction-electron self-energy. Many-body effects
yield the large proportionality constant for HF compounds. Yamada et al. [65] derived this proportional
relationship in Fermi liquid theory using the periodic Anderson Hamiltonian.

Although there are not many low-T" p(T") data points available in Fig. 5.1 (the lowest T" datum is at
4K), we have fitted the lowest two data points for each of Crystals 1 and 2 by Eq. (5.1) to obtain very
rough estimates of the T'% coefficient A. For Crystal 1, we obtain pp = 81 #f2cm and A = 0.45 uQ cm/K?2,
whereas for Crystal 2 we get po = 50 Q2 cm and A = 0.49 uQ cm/K?2. The fit for Crystal 2 is plotted as
the solid curve in Fig. 5.2. If the value of A is estimated from the (4/7%)rm proportionality constant
for transition metals using po = 50 uQ cm and ¥(T = 1K) = 210mJ/[(mol V) K?], it is seen from the
plot of Eq. (5.1) in Fig. 5.2 (dotted line) that the value of (4/9?)TMm for transition metals evidently
does not fit the experimental data. Using the average of the two values of A obtained above for LiV2Os,

A = 047 uQ cm/K?, this (A,+) data point for LiVoOy is on the straight line in a plot of A versus v

which many HF compounds cluster around as shown in Fig. 5.3.
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Figure 5.2 Electrical resistivity p of LiV304 “Crystal 2” versis temperature
T, from Rogers et al. [3], and a fit (solid curve) to the lowest two
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Figure 5.3 Kadowaki-Woods plot of the electrical resistivity 72 coefficient A
in Eq. (5.1) versus electronic heat capacity coefficient v for LiV,0,4

and various other transition metals and f-electron HF compounds.
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[66] for strongly correlated electron systems. The dashed line rep-
resent the proportionality constant (4/9%)rm = 0.4 x 10~¢ uQcm
(molK/mJ)? for common transition metals [151].
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6 HEAT CAPACITY

It is no exaggeration to say that heat capacity plays the most important role in the study of heavy

fermion (HF) compounds. A large linear (i.e., electronic) in T heat capacity at low temperature T is
the first requirement for a material to be called a heavy fermion compound, because the large slope
implies a large effective mass in the Fermi liquid picture.

The measurements were carried out under ambient pressure and no applied magnetic field using a
conventional semiadiabatic pulse calorimeter from 1.2 to 108K [152] by Dr. C. A. Swenson on samples
provided by the author. Six LiV,0O4 samples with varied but small amounts of magnetic and structural
impurities were measured. In addition, in order to estimate the lattice contribution to the total observed
heat capacity, isostructural nonmagnetic insulator spinel Li/3Tis;304 and isostructural superconduct-
ing LiTi»04 samples were measured. The absolute and relative accuracies of the measurements are,
approximately, 3% and 1%, respectively. For LiV,04, the measurement accuracy was improved to
~ 0.1% at low T where the measured heat capacity is enhanced strongly due to the HF behavior.
Some structural and magnetic properties of these samples from Rietveld refinements of powder x-ray
diffraction patterns and magnetization verus applied magnetic field isotherm (' = 2-6 K) analyses are
already tabulated in Tables 3.4 and 4.1, respectively. Theoretical modeling of the heat capacity data

was done by Dr. D. C. Johnston and Dr. C. A. Swenson, and is described below. This chapter closely
follows the draft of a paper in preparation [14].

Heat capacity measurement results

Overview

An overview of our isobaric heat capacity C, measurements are given in Fig. 6.1 (a) for LiV304
sample 2 (run 2; 1.26-78 K) and sample 6 (1.16-108 K), along with the two titanium spinel Li; 1z Ti2—-04
compounds (z = 0 and 1/3; both up to 108K). Shown in terms of Cp/T in Fig. 6.1(b), the peculiar
strong upturn below ~ 25 K is readily seen for LiV,04, while the LiV20Q4 data above ~ 30 K appear to be

shifted by a constant from those of the Ti spinels. The data for both Ti spinels are in good agreement
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with those of McCallum et al. [94]. In the following sections, the detailed theoretical modeling by

Johnston et al. [14] on these measurements is reviewed.

Li1+3Ti2_$04 (:B =0 and 1/3)

It should be noted that the Cp(T) data of the two Ti spinels are slightly different. From Fig. 6.1(b),
in the range between ~ 25K and ~ 45K, Lis/3Tis/304 shows larger C;, values than LiTi»O4 which is in
the normal state in this T range (note T = 11.8K; see below). Outside this T" range, the relationship
becomes opposite. The measured Cp, of Lis/sTis 304 is equal to the lattice heat capacity C'"* of this
compound since the compound is an insulator (i.e. no electronic contribution C.). On the other hand,
LiTi»O4 has both C'2¢ and C. contributions. Since C. cannot be negative, one must conclude that

these two Ti spinels have different lattice dynamics.

Superconducting Ti spinel LiTi;04

The molar heat capacity Cp data of LiTi»O4 were fitted by the following power series for several

temperature T' segments:

Co(T) =D _AnT™ (6.1)

where the obtained coefficients A, are given in Table 6.1. The fits to LiTi,O4 Cp(T’) are shown as solid
curves in Fig. 6.1. C,/T data and fits to them (solid curves) for LiTi»O4 are shown in Figs. 6.2 up
to T = 20K with respect to T (a) and T (b) in which the sharp superconducting transition is clearly
seen.

The normal-state heat capacity parameters v and £ are determined as follows. The heat capacity
Cp(T) of a conventional metal in its normal state at low T' <« fp is normally represented in terms
of a linear electronic and cubic lattice (Debye) terms, where fp is the Debye temperature at T = 0,
Cp(T') = 4T + BT3. From Fig 6.2(b) one can easily see the invalidity of the linear relationship of Cp/T
with respect to T2 as long as the coefficient of the linear term, v, is assumed T-independent. This is
probably due to the insufficient approximation of C'**(T) by the Debye term at T.. To remedy the

problem, a T° term is added to Cp(T’), while 7 is still assumed T-independent. Under these assumptions,

the normal-state parameters v and B were determined from the fit to the normal-state C,(T’) from 14

to 19K by
Cp(T) =AT+ A3T3 + A5T5 , (62)

where v = A; and § = As. When inferring the normal-state Cp(T") behavior of a superconducting

compound, one has to preserve the entropy S in a given T range. In this case, the Cp(T’) for 14-19K
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Table 6.1 Coefficients A, in the power-series fitting function Cp(T) = 3, A,T™ for the
measured Cp, data [in units of mJ/(molK)] of LiTi»O4 in the given T ranges
for fitting. The values of A, given in the last column were obtained under a
constraint of the entropy & = 283.41mJ/(molK) at 13K.

n 04K 4-11.8K 11.8-13K 14-108K 14-19K
0 0 91.14920 21.2823 —835.1008 0
I 0 —68.14413 0.6003 267.5082 18.345
2 0 16.15982 0 —27.72682 0
3 0.4449394 —-0.9316757 0 1.472060 0.053476
4 0 0.03530610 0 —0.03288067 0
5 —0.04713193 0 0 3.885628x10~*  7.7680x10~5
6 0 0 0 —~2.351512x10"¢ 0
7 5417518103 0 0 5.732396x10~° 0
8 0 0 0 0 0
9 -2.017705x104 0 0 0 0
10 0 0 0 0 0
11 2.492636x10° 0 0 0 0

was determined by the fit using Eq. (6.2) in such a way that the value of S calculated from this fit
matches at 13K the measured entropy S = 283.41mJ/(molK) which was derived using the fitting
parameters in Table 6.1. The fit results are given in Figs. 6.2(a) and (b) and Table 6.1 (last column).
The Debye temperature 6p may be derived by using the relation fp = (127¢Nr/B)/3 [153], where
Ny is the Avogadro number and r is the number of atoms per formula unit (in this case r = 7). The

normal-state parameters for LiTi»O4 determined in this way are

= 18.4(1)mJ/(molK?) , (6.3)
: B = 0.054(1)mJ/(molK?) , (6.4)
bp = 632(4)K . (6.5)

This v value is slightly smaller than those 20-22mJ/(molK?2) reported previously [94, 135]. Including
an additional T7 term in Eq. (6.2), the fits for the T fitting range 14-17K to 14-21K yielded v =
18.97(12) mJ/(molK?) and £ = 0.0321(18) mJ/(molK*). This v value is close to that in Eq. (6.5), but
B is very different. This smaller 8 value gives a larger Debye temperature fp = 751(15)K, and the

difference is discussed below in connection with 6p values of the other Ti spinel Li, /3Ti5/302.
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Nonmagnetic insulating Ti spinel Liy/3Ti5/304

In Fig. 6.3(a), Cp/T for Lis/3Tis/304 is plotted versus T= for T < 20K. The small anomalous
bump seen at &~ 7K is most likely an experimental artifact since it was present in all samples with
small low-T heat capacity. The addenda contribution was recently remeasured, and the subsequent
corrections are in progress at the present time. The electronic term C, = vT does not exist in the
insulating Lis/3Tis/304, and + indeed appears to be zero for the data above T & 7.8K where the
anomalous bump occurs. Again, it is clear from the nonlinearity of C, /T in Fig. 6.3(a) that the low-T"
approximation of C'*(T) by the T° Debye term is not sufficient. Therefore, the following fits were
carried out to the data above the anomaly.

The first fit was to Cp, /T versus T in Fig. 6.3(a) by

o = AT 4 AST* (6.6)

The upper limit of the fitting range was taken from 12 to 16 K, and the fitting results were found to be

insensitive to the exact range. The parameters obtained from the 7.8-14K fit range are
Az = #=0.039(3) mJ/(molK*) , As=2.3524x 10~*mJ/(molKS) , (6.7)

where fp = 704(19) K can be derived from S. The fit is shown as the solid curve in Fig. 6.3(a).
The second fit was to Cp /T versus T in Fig. 6.3(b) in the 7.8-24.5K fitting range by

C
Tg = Az + AsT? + AT | (6.8)

with parameters

Az = = 0.03309(11) mJ/(mol K*) , A5 = 3.274x10"*mJ/(molK®) , A7 = —2.935x10~"mJ/(mol K¥) .

(6.9)

This value of A3 corresponds to fp = 744(1)K. The fit is given in a solid curve in Fig. 6.3(b).

Furthermore, 0p = 747(2) K was obtained from a fit including a 7' term in Eq. (6.8). Including one
additional higher order T® term, fp became 716 (28) K.

Including rather conservative error bars from all these fits, the T = 0 Debye temperature dp is

inferred to be

b =TI8(30)K . (6.10)

Debye temperature

We anticipate that the Debye temperature 6p for LiTipOy4 is smaller than that for Liy /3Ti5/304

for the following reasons. First of all, the larger molecular weight of LiTi;O4 may be responsible for



102

40— T T T T 1
35 LiysTig,50,
| Fit: p= 0.039 mJ/mol K*

21 (0, =704 K)

C/T (md/mol K?)
S

(@) 1

! ! i ! ! 1 !

0 50 100 150 200 250 300 350 400
T2 (KZ)
0-14 -3 i ¢ |1 * 11 £ [] ¢ N3 .
0.12
¥ 0.10
'5' L
£ 0.08
E L
;' 0.06
t . 3
o 0.0 <—— B =0.0331 mJ/mol K* ]
0.02f (6, = 744 K) b) -
P 1 . 1 3 1 1 1 5 ] .
0.007 =300 200 300 400 500 600

T2 (K3
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the smaller fp since the Debye temperature is inversely proportional to the square root of the formula

weight. Second the screening of interatomic electric forces by conduction electrons in LiTi,O4 would

relax the lattice motion, in a sense, decreasing the “spring constant.” This then yields a smaller 6p.
However, the Debye temperatures for LiTi»O4 obtained in the two ways from the analyses of Cp
differed by more than 100K. The higher value of p = 751K for LiTi»O4 exceeds 6p = T18(30)K
[Eq. (6.10)] for Lis;3Tis/304. This is opposite to what one expects from the reasons mentioned above.
Uncertainty exists for Lis/3Tis;304 because of its structural disorder at the octahedral (16d) sites. This
can be more easily seen if one realizes this insulating spinel is an intermediate spinel Li[Li; /3Ti5/3]O4
in which one third of the 16d sites are occupied by Li, presumably at random. It is not clear how
this influences the comparison of the fp values of the two Ti spinels. Therefore, since the two fits for
LiTisO4 were found to have similar quality, taking the two fp values into equal consideration, not being

biased by the fp of Lis/2Tis/304, one obtains with conservative error bars
6p =700 (7T0)K . (6.11)

This uncertainty in Cp, of LiTi;O4 does not have a significant effect when the lattice contribution of
LiV304 to Cy is estimated since the Cp, of LiV,04 is much larger at low T than the inferred normal-state
Cp of LiTisO4 below Te.

Along with this Debye temperature, some characteristic values of the two Ti spinels are summarized

in Table 6.2.
Table 6.2 Characteristics of Lij4.-Tis—-O4 samples.

Qo u 0 fp Te AT, ACy /4T Ref.

(A) (mI/molK?) (K) (K) (K) (mJ/molK?)

LiTi,04
8.4033(4)  0.2628(8) 18.7(4) 700(70) 11.8 <02 1.62 [14]
8.4033(1)  0.26275(5) [154]
8.41134(1) 0.26260(4) [93]
8.407 214 685 11.7 1.2 159 ) [94]
22.0 535 124  0.32  1.57 [135]
0.26290(6) (300K) [155]
0.26261(5) (6K) [155]
Liyy3Ti5/304

8.3589(3)  0.2625(3) 0 718(30) [14]
8.35685(2) 0.26263(3) [93]
8.359 0 610 [94]

0.05 518 [135]
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LiV,0,

Despite the above uncertainty in estimating fp for LiTi»Q4, we expect that the lattice dynamics
and C'*(T) of LiTi204 may reproduce those of LiV,04 much better than Liy/3Tis/304. This is partly
because LiTi,O4 with a normal spinel structure is structurally closer to the normal spinel LiV,0y,
compared to the intermediate spinel Li, /3T15/304. Also, the Ti normal spinel has a formula weight
closer to that of the V spinel. Hence, the lattice heat capacity of LiV2Q4 is assumed to be identical with
that of LiTi»O4, and the small difference between the formula weights (3.5 %) is neglected. The second
assumption is reasonable since this 8.5 % difference results in an even smaller difference in the Debye
temperature (< 1.8 %), which is now close to the accuracy of measurements at high T'. The electronic
heat capacity Ce(T) of LiV204 was determined by subtracting C'*(T") of LiTi»O4 from Cp(T') of the
former.

The C¢(T) of LiV,04 (samples 1 and 6) derived in this way is plotted as Ce versus T in Fig. 6.4(a)
and Ce/T versus T in (b). An expanded C./T versus T plot below 9K for LiV,04 samples 1, 3
and 6 is displayed in Fig. 6.4(c). Sample 2 shows a small positive curvature in C./T" below ~ 3K,
opposite to the behavior of samples 3 and 6. From Table 4.1, sample 2 has a larger magnetic impurity
concentration (0.2%) than samples 3 (0.1%) and 6 (0.01%). Therefore, this positive curvature for
sample 2 is a reflection of the larger magnetic impurity amount in the sample, and the other purer
samples are believed to reflect intrinsic behaviors. Sample 6 shows a positive deviation from the other
samples below 4K, showing the similar sample dependency in the susceptibility (see Figs. 4.8). The
cause of these quantitative differences is not known.

In order to estimate the T = 0 value of ¥(T') = C./T, fits to the C./T data for 1-9K by the following
polynomial were done for samples 3 and 6:

Ce

5
7 =70+ CanT™ (6.12)

n=1
where the obtained C,, coefficients are listed in Table 6.3. The determined electronic heat capacity
coefficients v(0) are

7(0) = 426.7(6) mJ/(mol K?) (sample 3) , (6.13)
¥(0) = 438.3(5) mJ/(mol K?) (sample 6) . (6.14)

In Fig. 6.4(c) the fit curves for samples 3 and 6 are respectively given as the solid and dashed curves.

These (0) values are an order or more larger than values for conventional transition metal compounds.
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Table 6.3 Coefficients C, in the expression
for the electronic heat capacity
Ce(T)/T = 35 _y C2nT?" (in units
of mJ/molK?) for LiV,0s sam-
ples 3 and 6 between 1.1 and 10K.

Con Sample 3 Sample 6
Co 426.70(64) 438.33(48)
Cs —4.15920 -5.32731

Cs 0.0922899 0.131312

Cs  —1.53307x10~3 —2.17162x10~3
Cs 1.28312 x10~% 1.76920 x10~5
Cioc —4.05676 x10~% —5.43349x10~8

In Fig. 6.5 the T-dependent electronic entropy with respect to that of the lowest T = 1.16K,
Se(T) — Se(1.16 K) for LiV,04 sample 6 is plotted. The observed large high-7" values above ~ 65K
surpass the local moment prediction of the maximum spin entropy 2R1n(2) (per mole of LiV,0y,) for
one spin S = 1/2 at each V site. R is the molar gas constant. For comparison, this value is given as
a horizontal line in Fig. 6.5. An additional entropy from 0 to 1.16K is 0.505J/(molK), which is found
from extrapolating the C./T data from 1.16K to 0 in Fig. 6.4(c).

The magnetically impure sample 4A shows an anomalous peak in Cp /T at about 29K, as plotted in
Fig. 6.6 along with the sample 2 data. Sample 4A also shows a larger upturn below 5 K. From Table 3.4
and Table 4.1, we have already shown some anomalous properties that sample 4A displayed. First of all,
this sample contains the largest amount of impurity phase (Simp = 2; 0.8 mol %), and the unsuccessful
derivation of the intrinsic susceptibility x(T") shape at low T may suggest some other complex magnetic
mechanism. Next, the lattice constant of this sample is above 8.247 A which is one of the largest (next to
sample 4B for which heat capacity measurements were not done). Recalling that this sample received an
ice-water quenching from 725°C (see Chapter 3), there is a possibility to have some structural disorder,
in particular, Li-V anti-site disorder which could cause this anomaly. Above the “background” a large
amount of entropy AS ~ 0.9J/(molK) ~ 0.16 RIn(2) is associated. There exist vanadium oxides V407

and V509 which have Néel temperatures of 33.3 and 28.8 K, respectively. However, these oxides cannot

contribute to the extent of the observed anomalous peak, provided the concentration of such vanadium
“Impurity” phase is at or below the few percent level [156]. Therefore, it is likely that this behavior is
inherent in this structurally and magnetically anomalous sample. Further study is needed to clarify the

origin of this heat capacity anomaly at 29K.
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Theoretical modeling of electronic heat capacity of LiV,0,

Single-band spin S = 1/2 Fermi liquid

By introducing an interaction between electrons in the Fermi gas adiabatically, one can continuously
transform to a Fermi liquid of quasiparticles. The forms of spin susceptibility x and electronic heat
capacity coefficient v = C¢/T are not changed qualitatively. In the noninteracting Fermi gas, both
quantities are independent of temperature T. On the other hand, the electron-electron interaction

occurring in the Fermi liquid may alter the distribution function. Therefore, x and v are no longer
T independent. Some important equations for the Fermi gas and liquid models are summarized in

Table 6.4.

Table 6.4 Summary of equations of the density of states at the Fermi energy D(EF), of the
spin susceptibility x, of the electronic heat capacity coefficient v and of the Wilson
ratio Rw for the Fermi gas (with superscripts “0”) and Fermi liquid (without super-
scripts) models. The definitions of symbols are: m. (m*) = bare (effective) mass,
kp = (372N./V)'/3 = Fermi wavevector, N. = number of conduction electrons in
volume V, DX(Er) [DS(Er)] = density of states at the Fermi energy Er probed by
susceptibility (heat capacity) measurements, A = electron-phonon coupling constant
(ignored for the Wilson ratios), F§ = Landau parameter, and A3 = Fermi liquid scat-

tering amplitude.

Fermi gas Fermi liquid

Vmek Vm*k *
DO(Bp) = —F D*(Bp) = — = - D0(Ep)

5 9 9 9 2 9 2,2 %
XO(O) = g_Z.B_DX(EF) = g—gB-??O(EF) x(0) = %BDX(EF) = %B"Dl-igg)

212 2.2 2,2 2.2
P = T580C(Ep) = LB+ 0)D0(Ep)  +(0) = T BDC(zp) = %‘Bu + X)D*(Ep)

DX(Ey) _ DY(Bp) _4mkEx(O) _ DX(BR) g _ 1- A3
.=

RO = = =1 = 4 = —
DC(Ep) ~ DY(Ey) W 30281(0) T DC(Bp) T T+

In most of the literature about heavy fermion materials, the electron-phonon interaction is not taken
into account. Therefore, we also neglect it here, so ‘DC(EF) = D*(EF).

For LiV,Qy, using

Mpol = formula weight = 172.82g/mol , (6.15)
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Z = number of formula units in a unit cell =8 , (6.16)
ao(12K) = lattice parameter = 8.2269 A [11], (6.17)
p°¢(12K) = calculated mass density = 4.123g/cm? , (6.18)
n = number of conduction electrons per V atom = 1.5 , (6.19)

the following quantities are derived

= 4.310x 10%2cm™3 (6.20)

F <&

1.0847A°1 . (6.21)

Then, using the value of (0) for LiV,04 sample 3 from Eq. (6.13) and x(0) = 0.0100(2) cm3/mol [11],
the equations in Table 6.4 yield

c - _ states :n_‘ _ states
DC(Er) = D*(Ef) = [0.5019 T o atom)] (me> =906 s (6.22)
m” (6.23)
=2. 24
2me ( ) 24.83 meV (6.24)

Ep

Tp= 10 =2882K (6.25)
Rw =171 , (6.26)
F2=-042 , (6.27)
AF=-0.71 , (6.28)

In the Fermi liquid theory, a term proportional to T'InT is often included in addition to the linear

term (0)T in order to account for the T' dependent ¥(T') [157, 158, 159]. That is,
Ce(T) = y(0)T + 6T3 In( T ) +0(T3) , (6.29)

where T is the scaling temperature.

A Fermi liquid model of Engelbrecht and Bedell [160] formulates § as

37> 4(0) 2 .
6.EB— 5 T2 ( ) <1—§A0> ) (6.30)

and requires that [A3] < 1and —% < F§ < co. The values of F¢ from Eq. (6.27) and A3 from Eq. (6.28)
for LiV204 both satisfy the requirements. From Egs. (6.13), (6.25), (6.28), and (6.29), one obtains

mJ

bom = 0.0199 —r

(6.31)
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The formulation by Auerbach and Levin [161, 162] and Millis et al. [163, 164] for a heavy Fermi

liquid is based upon a Kondo lattice model and yields

_ 37%9(0) w2
oM = BT 1- =) (6.32)
which for LiV,04 gives
mJ
op = 0.00135 ol (6.33)

Fits to the C./T data for LiV,04 sample 3 were carried out using

Ce(T)

T

=~(0) + §T?In <§-> +eT3 . (6.34)
h)

The fitting was done with or without €. It was found that the fitting parameters +(0), § and T depended
upon the fitting T ranges (1.5-5, 10, 15, ..., 30K). The fits for the 1-5, 10, and 15K T ranges with
€ = 0 and the 1-30K range with € # 0 are plotted in Fig. 6.7. From these reasonably good fits, one
obtains

mJ mJ

7(0):428(2)m, (5:19(3)5-(')1—:K4 )

(6.35)
which are similar to those found in the heavy fermion compound UPt3 (T = 289K and m* [me =178
[158]): ¥(0) = 429-450mJ/(molK?) and § = 1.99mJ/(molK*) [39).

A large discrepancy is found between the experimental é in Eq. (6.35) and the predicted § in
Egs. (6.31) and (6.33). Millis [163] found a similar discripancy for UPt3 and gave some possible reasons.
Also using Millis’ [163] theoretical model, one estimates a much smaller Li Knight shift for LiV.0O, than

the observed value (~ 0.04% at room T), which is as small as that in a normal metal (0.00024% at

room T [93]).

Quantum-disordered antiferromagnetically coupled metal

LiV204 shows a negative Weiss temperature from the susceptibility analysis done in Chapter 4,
which indicates antiferromagnetic (AF) coupling between S = 1/2 vanadium spins. However, no mag-
netic long-range AF order has been found in pure LiV,04 from heat ca.pa.cit-:y [14], NMR (Chapter 8;
[19]) and muon-spin relaxation [11] measurements above 0.02K. Quantum fluctuations may disorder
a magnetic system in some circumstances. Ziilicke and Millis [95] solved scaling equations and ob-
tained the temperature dependence of Ce(T') due to quantum fluctuations for a three-dimensional AF
coupled metal which is not ordered. Their theory assumes that the magnetic system is close to the

zero-temperature critical point which is defined as a transition point of an AF to quantum-disordered
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phase transition at T = 0. A single parameter called the control parameter r governs the zero-T tran-
sition for a given system. This » may depend on T, but also on other parameters such as pressure
and stoichiometry of the material. The possible T dependence of r cannot be found unless another
parameter called u is evaluated experimentally. Therefore, r is assumed to be a constant. LiV2Q4 has
the structural dimensionality d = 3, dynamical exponent z = 2 (for AF) and Ny = 3 (for Heisenberg

spin system) in their theory. The electronic heat capacity they predicted is

Ce_ a.RNO'\/T_' T
T~ 0 o L (rT") ’ (6.36)

where

F(z)=3§ s v V14 VI+4zi? . (6.37)

0 sinh?y
In Eq. (6.36) 7o is the electronic heat capacity coefficient at 7 = 0 from the Fermi liquid theory [y(0)

above], and the second term is the correction due to quantum fluctuations. T™ is a characteristic

temperature and R is the molar gas constant. The number « is a constant but cannot be determined
from the theory. It is expected, howeve;, to be on the order of the number of conduction electrons per
formula unit. Therefore, o ~ 3 is expected for LiV,04. The function F(z) is defined in such a way
that F(0) = 1.

In the disordered region in the parameter space, one can separate the quantum regime with T < r7™
from the classical regime with T > 7T, and the crossover between the two regimes is expressed
as T/T* ~ r*/2. Non-integral, approximate equations of F(z) in the low-T (quantum) and high-T'
(classical) limits are available in the original paper [95]. Here, the numerically generated F(z) data for
z = 0-100 were fitted by the following equation which is in agreement with both the low-T" and high-T'

limiting forms
Flz) = 14 b1z? + byz® + baz? + baz® + bsz®
- 1+ b6$2'5 + b733.5 + bsm‘i.s + 6925.5'

The fits yielded an rms deviation of 0.0019% and a maximum deviation of 0.017 %, and the determined

(6.38)

b, coefficients are listed in Table 6.5.

Using this expression for F(z), combined with Eq. (6.36), the fits to our C./T versus T data of
LiV204 sample 3 (see Fig. 6.4(b)) were carried out for several fitting temperature ranges. Table 6.6
shows the determined fitting parameters 7o, @, r, T™ and the derived v(0) (see below). The goodness
of fits are indicated in terms of x2/DOF, and are normally considered good when 2 /DOF « 1.

The fits with 1-20K or higher ranges were found unacceptable. From Table 6.6 the following are
the inferred parameters for LiV,04 based upon the theory of Ziilicke and Millis

mJ

Yo = 800(50) ol K2’

a=2659), r=040(6), T"=189(4)K . (6.39)
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Table 6.5 Coefficients b, determined by a
fit using Eq. (6.38) for the func-
tion F(z) in Eq. (6.36) for the
electronic heat capacity Ce(T) of
a three-dimensional antiferromag-
netically coupled Fermi liquid [95].

by
—0.21375209
—52.743910
82.963105
381.62915
0.10383570
~13.440766
—68.625506
398.22865
0.10830681

WO 00 3 O O b W N |3

The fits are given in Fig. 6.8 for 1-5, 1-10 and 1-15K fitting ranges.
When T = 0, Eq. (6.36) becomes

aRNp /T
7(0) =% - ———GT"_‘/_ , (6.40)

since F(0) = 1, as defined. This equation states that quantum fluctuations decrease the observed v(0).

Using the parameters in Eq. (6.39), Eq. (6.40) gives
7(0) = 430(1) mJ /mol K? | (6.41)

which is approximately a factor of two smaller than v, in Eq. (6.39).

The o = 2.65 is found to be close to the above expectation for LiV204, o ~ 3. However, the value of
r suggests that LiV20y4 is not very close to the quantum critical point, and would not have long-range
AF order induced by a small change of r via pressure or stoichiometry of the material. In fact, the
zinc-doped system Li;—;Zn; V204 [83] for 0.2 £ z < 0.9 has shown spin-glass (i.e., shori;-range) order,
but does not show long-range order until the Zn concentration is as high as 0.95. In addition, one of our
LiV504 sample (sample 3) showed spin-glass behavior detected by muon-spin relaxation measurements

[11], which is believed to be caused by structural defects/disorder existing in the sample (see Chapter 3).

Spin-1/2 Kondo model

The single-impurity spin S = 1/2 Kondo model was solved by the numerical renormalization theory

by Wilson [57] and by the other methods [143, 144, 145, 147, 58, 148, 165, 166). These solutions are
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Figure 6.8 Electronic heat capacity divided by temperature Co/T vs. T for

LiV,04 samples 2 and 3 from Fig. 6.4(b). Fits to the data for
sample 3 by the theory of Ziilicke and Millis [95] are also given for
the fitting ranges 1-5K (long-dashed curve), 1-10K (solid curve)
and 1-15K (short-dashed curve). The fitting parameters are listed
in Table 6.6.
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Table 6.6 Fitting parameters in Egs. (6.36) and (6.37) for the elec-
tronic heat capacity coefficient ¥(T") = Ce(T)/T of LiV204
sample 3 by the theory of Ziilicke and Millis [95] for several
temperature ranges of the fit. The goodness of fit x>/DOF
and the derived 4(0) are also given. From the large values of
x?/DOF, the 1-20K and 1-25K fits are unacceptable.

T range Yo a r T x*/DOF ¥(0)
(K) (mJ/molK*) (K) (mJ/molK*)
1-5 770 257 0374 19.1 0.014 429.6
1-10 862 2.78 0473 183 0.059 428.5
1-15 760 261 0.343 193 0.027 431.5
1-20 642 241 0.178 209 1.97 440.0
1-25 541 2.35 0.033 239 995 467.3

very often represented in complex integral equations which cannot be easily fitted to experimental data.
However, Rajan [147] obtained the zero-temperature-limit value of the electronic heat capacity
coefficient for S = 1/2 impurity spins. «(0) per mole of impurities is given by

nWNpkg  5.61714J/mol K

7(0) = 6T T , (6.42)

where N, is Avogadro’s number and Tk is the Kondo temperature (Wilson’s definition [57]). The
number W is called the Wilson number [57] and is given [167, 168] by

W = ~el/4z~1/2 1,290 268 998 , (6.43)

where Invy & 0.577 215 664 902 is Euler’s constant.

To make use of Eq. (6.42) for (0}, an accurate Bethe ansatz calculation of Co(T) by Jerez and
Andrei [148] was used. Their numerically calculated Ce(T') and C./T versus log,o(T/Tk) are plotted
respectively in Figs. 6.9(2) and (b) for 0.001 < T/Tx < 1000. These data were parameterized by the

equations
Ce(T) _ . '
Ce(T) _ _ f@®)
NEsT/ Tk g(t) = = (6.45)

t(1 + a1t + ast? + ast® + aqt?)
1+ ast + agt? + a3 + agt? + agt’®

where ¢t = T'/Tk. The form of f(t) in Eq. (6.46) was chosen as shown so that the zero-T limit of

F(t) = 0.675583268

(6.46)

Eq. (6.42) is satisfied. Table 6.7 lists the derived a,, coefficients for both fits.
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Figure 6.9 Accurate Bethe ansatz calculation of electronic heat capacity C.
(a) and C¢/T (b) of the S = 1/2 Kondo model, plotted versus
log,0(T/Tk), where T is the temperature and Tk is the Kondo
temperature [145, 148]. The fits to these data by Egs. (6.44) and
(6.45) are shown as solid curves in (a) and (b), respectively. The
fitting parameters determined are listed in Table 6.7.
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Table 6.7 Coefficients a, in Eq. (6.46) in the fits
to the Bethe ansatz prediction for the
electronic heat capacity C. and Ce/T
versus temperature T of the S = 1/2
Kondo model by Jerez and Andrei

[148].

an Ce(T) Fit C.(T)/T Fit
ar 9.1103933 6.8135534
as 30.541094 21.718636

as 2.1041608 2.3491812
ay 0.0090613513 0.017533911
as 9.1164094 6.8158433
as 36.143206 27.663307

ar 67.91795 48.229552

as 53.509135 40.216156

as 1.7964377 2.4863342

Fitting the theory to the experimental C./T data [Fig. 6.4(b)], Egs. (6.45) and (6.46) yield
TE =26.4(1)K , (6.47)

and from Eq. (6.42),
v(0) = 426(2) mJ/mol K2 . (6.48)

Figures 6.10(a) and (b) present the fit as a solid curve, along with two dashed curves with slightly dif-
ferent values of Tk = 25K and 28K for comparison. It is clear that the low-T" predicted C./T" values are
sensitive to the choice of Tk. The derived (0) = 426 mJ/molK? in Eq. (6.48) is in excellent agreement
with those obtained in the previous two theories: 428 mJ/molK? in Eq. (6.35) and 430 mJ/molK? in
Egq. (6.41). However, the high T' (2 10K) data are not fitted well, as seen in Fig. 6.10(b).

Local moment high-temperature description

The high-temperature series expansion (HTSE) analysis done in Chapter 4 for the intrinsic suscepti-
bility data presents the formulation of magnetic heat capacity Cp,(T") based upon the same Hamiltonian

(Eq. (4.20)]. The HTSE prediction of Cr(T') given by Rushbrooke and Wood [88] is

Cm(T) _ 22[S(S + 1)]? X ca(S)
Nkg 32 (1+ 2 t_") ’ (6-49)

n=1
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Figure 6.10 (a) Electronic heat capacity divided by temperature Ce(T)/T data

versus T (up to 30 K) for LiV204 sample 3 (open symbols) and a fit
(solid curve) by the S = 1/2 Kondo model, Egs. (6.46) and (6.47)
with Tx = 26.4K. Also for comparison the predictions for Tk
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range to 80 K with the same data.
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where t = kgT/J, and z = 6 is the coordination number of V by V in LiV.Q4. The ¢, coefficients for
S =1/2 with 2™ =5 are

1 23 65 1183 18971
68 5 4T a5 5= "y (6.50)

With these ¢, coefficients the HTSE prediction C(T) curve with J/kp = 20K (a typical value
found in Chapter 4) is plotted in Fig. 6.11 with our experimental C(T") for LiV2O4 sample 2 and 6. It
is evident that the HTSE prediction Cr, (T") displays much lower values than the experimental data, and
that the overall " dependence is much different. The Ce(T) cannot be explained by the local-moment

prediction over the T range of our measurements.
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Figure 6.11 Comparison between the experimental C(T') data of LiV,04 sam-
ples 2 (run 2) and 6 [from Fig. 6.4(a)] and the high-temperature
series expansion (HTSE) prediction of the magnetic heat capac-
ity Cm(T) (n™** = 5) for the B sublattice of the normal spinel
structure with S = 1/2 and ¢, coefficients in Eq. (6.50). A typical
value of J/kg = 20K was assumed.
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7 THERMAL EXPANSION

The thermal expansion of our LiV2Q,4 polycrystalline samples was measured by the use of neutron
diffraction and high-resolution capacitance dilatometry. The neutron diffraction study from 4 to 295K
was done by Dr. Jorgensen’s group at Argonne National Laboratory and reported in [18]. The dilatom-
etry measurements from 4.4 to 297 K were carried out by Dr. C. A. Swenson, the present discussion and
modeling of these results closely follow that given by Dr. D. C. Johnston and Dr. C. A. Swenson in a
paper in preparation [14]. In this chapter, the results of these two measurements are briefly introduced

and a discussion in terms of the Griineisen parameter I" follows.

Neutron diffraction

Chmaissem et al. [18] measured the thermal expansion of our LiV,O4 sample 5 at the Argonne
National Laboratory. No structural phase transition to a lower symmetry was observed down to 4K.
Also, no impurity phase was detected. This is contrary to our x-ray diffraction measurement result, as
discussed in Chapter 3. The x-ray diffraction measurement on the same sample 5 showed the V203
impurity phase. The small negative neutron scattering length of vanadium might have been the cause
of this difference. Nonetheless, we infer that the difference comes from sample dependence. This is
because using the powder sample 5 on which the neutron diffraction was done we found no V203 peaks
in a separate x-ray diffraction measurement. Although this “neutron” sample and the original “x-ray”
sample are both sample 5, they are from different pieces of the same batch. This is believed to be
the reason that causes these samples to have slightly different lattice parameter ag values, as discussed
below.

Rietveld analyses of the neutron diffraction data at temperatures T from 4 to 295K were done using
the “GSAS” (General Structure Analysis System) [169]. The refinement results are given in Table 7.1.

The temperature variation of the lattice parameter aq is plotted in Fig. 7.1. The lattice parameter
ao shows a continuous decrease from 295K on cooling. The T dependence of ag becomes very weak

from ~ 65 to ~ 20K, then another decrease below ~ 20K follows (see the inset of Fig. 7.1). This low-T
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decrease was found to be reproducible from repetitive measurements.
The slope of ap with respect to T is proportional to the thermal expansion coefficient. The linear

thermal expansion coefficient ¢ is defined

_1df

oT) =535 > (7.1)

From the neutron diffraction analysis results, we have a decreasing o(T') from high T to ~ 65 K. The

a(T) becomes nearly zero from ~ 65 to ~ 20K where there is a very weak T variation of ag. Below

~ 20K, o(T) rises again. These behaviors of a(T") were confirmed from the capacitance dilatometer

measurements which are described below.

Capacitance dilatometry

The linear thermal expansion coefficient a(T") defined in Eq. (7.1) for LiV20O4 sample 6 was obtained
from capacitance dilatometer measurements from 4.4 to 297K [14]. Figure 7.2 shows &(T') and «(T)/T
for the entire T range. LiV304 and the isostructural LiTi»O4 [170] have similar room-T values of
a: 12.4 x 1076 and ~ 15.6 x 10~5K~!, respectively. These values are comparable to a at room-
temperature of elementary metals, as shown in Table 7.2. In addition, LiV2O4 shows a decreasing o(T')
with decreasing T like conventional metals. However, unlike such metals which show a monotonically
decreasing a(T') as a(T) = A1T + AsT® at low T [171], a(T) of LiV,Oy4 shows an upturn below ~ 20K
after being nearly zero at about 23 K. This strong T dependence can be more readily seen when plotted

as a(T)/T versus T (Fig. 7.2). The curve fitting by the following polynomial equation [Eq. (7.2)] was

done for three T regions, and the A, coefficients are listed in Table 7.3.
a(T) =) A.T™ . (7.2)

The zero-temperature limit of /T is identical to the coefficient A, determined from the lowest 0-14K
fitting range, and is found to be 2.002 x 10~ 7K~2. _

From the o(T’) data set, the lattice parameter ao(T") may be generated by the integral ao(T) =
ao(0)[1 + foT a(T")dT"). Usin the above fit Eq. (7.2) for o(T) with the A, coefficients in Table 7.3,
ag(T) was calculated assuming ag(0) = 8.226709 A. This zero-T lattice parameter value was chosen so
that the calculated ao(4K) becomes equal to that from the neutron diffraction measurements. These
calculated ao(T") values based on the dilatometer measurements reproduces well the overall 7" variation
of ag(T) from the neutron diffraction measurements, as shown in Figs. 7.3(a) and (b). The downturn

of ao(T) for T < 20K found in the neutron diffraction study is also seen in the derived ao(T") from
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Figure 7.1 Lattice paramter ag versus temperature T for LiV,04 sample 5 as
determined from neutron diffraction measurements [18].
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Figure 7.2 Linear thermal coefficient o(T) (left-hand scale) and «(T)/T
(right-hand scale) versus temperature 7" for LiV,04 sample 6, ob-
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Table 7.2 Room-temperature values of linear ther-
mal expansion coefficients of LiV204 [14],
LiTi204 [170], and some elemental met-

als [171].
o (10-6K~-1)
LiVa0y4 124
LiTi,04 ~ 15.6
Al 231
Ca 22.3
Cu 16.5
Au 14.2
Mg 24.8
Ag 18.9

the dilatometeter measurements. The difference in sizes of the downturns from the two measurements
differ by more than the accuracies of both measurements; hence, this difference may indicate a sample
dependence. Sample 6 has shown its tendency to yield slightly larger values of the susceptibility and
electronic heat capacity, as already mentioned in Chapters 4 and 6, respectively.

This enhanced behavior in a(T)/T below ~ 20K may be seen in relation to that in Cp(T)/T, both
indicating the crossover to the heavy fermion regime. Figure 7.4 illustrates this similarity clearly. To
compare these similarly behaving quantities, one normally calculates the Griineisen parameter I', which
is the dimensionless, normalized ratio of the thermal expansion coeflicient to the heat capacity. Using
the volume thermal expansion f (8 = 3« for a cubic material), the Griineisen parameter is defined in
the following Griineisen relation (page 5a in [171])

B VB(T)

NT) = 252

(7.3)

where B; is the adiabatic bulk modulus and Vi, is the molar volume. The heat capacity at constant
volume Cv(T) may be replaced with the observed, isobaric heat capacity Cp(T) since these two heat
capacity values differ from each other by less than 0.1% [14]. The volume thermal expansion coefficient
B(T) is usually considered to be the sum of electronic and lattice contributions as in the heat capacity;

that is, 8 = B. + f'2* and Cp = C. + C'*. The Griineisen relation is then given as

ﬂe -+ ﬂlat

FT) = BV gy

(7.4)

from which we can readily see that we cannot simply assume I as a sum of e and I'?; the temperature
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Table 7.3 Coefficients A, of the power series Eq. (7.2) used to fit
the observed linear thermal expansion coefficient o(T)
(in units of K~1) for LiV204 sample 6 in the three
temperature ranges shown. The actual fitting range
of the “0-14K” range is 4.4-14K, but the determined
Ay coefficients in this range were used to extrapolate

toT =0.
n 0-14K 14-24.5K 24.5-297K
0 0 8.18273 x10~7  —3.85093 x10~7
1 2.00162 x10~7  —4.14713 x10~8 6.03956 x 108
2 0 —8.00360 x10~1¢ _3.55211 x10~°
3 —4.44102x10~° 4.75726 x10~11  9.94538 x10~11
4 0 0 ~1.36244 x10~12
5 5.40327 x10711 0 1.11678 x10~1¢
6 0 0 —5.68546 x10~17
7 =3.76734x10"¥ ¢ 1.75092 x10—1°
8 0 0 —2.97738 x10~22
9 1.38751x10~1% 0 2.14217 x10~25
10 0 0 0
11  —2.08005x10"%8 ¢ 0

dependences of components of § and Cp, mix. White [172] showed that

T.C.+ Tlatlat _
r= —Cee + Clet (7.5)
Then from Egs. (7.4) and (7.5) we have
TeCe + rleght = BV (ﬁe + .Blat) ) (7'6)

so this indicates the need of §'2*(T) from experiments to a corresponding insulating compound (e.g.,
LiTi204 for LiV20y) in order to separate out the two Griineisen parameter contributions. Theoretically,
for a metal, T'e = 1+ [dInD*(EF)/d1n V] (page 10a in [171]), and ['** = —dIn 6p(0)/dInV. Therefore,
Te is the direct measure of the volume dependence of the mass-enhanced quasiparticle density of states
at the Fermi level D*(Eg). For the Fermi gas, T = 2/3, and for elemental nonmagnetic metals one has
Fe = 1.8 (Al), 0.7 (Cu), 2.1 (Fe), 1.7 (Pb) and 2.4 (Pt) [173].

The Griineisen parameter I'(T) was computed from the observed o(T) data in Fig. 7.2 and the fit
to the observed Cp(T') [14] (fitting coefficients not given in this dissertation). The bulk modulus was
assumed to be Bs = (2 + 0.4) x 101 N/m?, which is the range shown by various similar compounds

[14] including the mineral spinel MgAl,04 [174]. Figure 7.5 shows the Griineisen parameter I(T) of
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LiV,04 sample 6. For the value extrapolated to T = 0, the fit to «(T') in Eq. (7.2) with the determined
coefficients from Table 7.3 was used in combination with the fit to the Cp(T"). The estimated I'(0) is 11.5.
In the limit of 7' = 0, the lattice contributions £'** and C'®* become negligible, so I'(0) = T¢(0) = 11.5.
This value is intermediate between normal metals and f-electron heavy fermion compounds [e.g., 57

(CeCus), 150 (CeRuzsiz), 25 (URIIQSiz), 34 (UBels), and 71 (UPt3) [175]].
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Figure 7.5 Griineisen parameter T versus temperature T for LiV,04 sample 6.

The solid curve is an interpolation and extrapolation of the data
(see text).
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8 NUCLEAR MAGNETIC RESONANCE

In this chapter, the results analyses of “Li and 5!V nuclear magnetic resonance (NMR) studies of
LiV204 done by Dr. F. Borsa’s group are reviewed, based upon the recent publication by Mahajan
et al. [19]. NMR plays an important role in describing how a magnetic system behaves microscopically
in terms of several coupling mechanisms with nuclei. With respect to LiV,Oy, the “Li Knight shift K
approximately varies linearly with the intrinsic susceptibility x over the whole temperature T range
measured. More specifically, Mahajan et al. obtained the hyperfine coupling constants from the slope
of the shift versus the T’ dependent spin susceptibility xP*(T’) in the high temperature regime. The 7Li
nuclear spin-lattice relaxation rate 1/T; manifests the Korringa law (1/73 « T) below 5K, indicative
of the Fermi liquid state, and shows a crossover to high-T localized moment behavior above ~ 50 K.
From the presence of only one observed °'V line in the NMR spectrum, it is inferred that there is only
one kind of V moment, eliminating the possibility of having two different magnetic moments on V+3
and V** on a time scale longer than that of NMR, i.e. 10~®sec. In the following, major results from
the published paper by Mahajan et al. are reviewed. This NMR work was done using five samples 1,
2, 4A, 4B and 6 of LiV20,.

Linewidths
7Li linewidth

A nucleus with a nuclear spin larger than I = 1/2 has an electric quadrupole moment, and may
interact with the electric field gradients that the surrounding charges create at the nuclear site only if
the point symmetry of the nucleus site is non-cubic. The Li site in LiV20, is called the 8a position,
and its point symmetry is cubic. Therefore, there is no quadrupole effect in “Li NMR measurements.
The “Li NMR linewidth A was obtained from the full width at half maximum (FWHM) of the free
induction decay. The temperature T variation of A was found to be qualitatively similar to that of

the susceptibility, as seen in Fig. 8.1. The width increases as T' decreases from high T', and appears to

be very weakly temperature dependent below ~ 30K. This behavior is similar to that of the magnetic
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susceptibility. Also the linewidth A was found to be sample-dependent. The linewidth tends to be
smaller for a sample with less magnetic impurities. In addition, for sample 2 the measurements were
done under more than one value of applied field H, and the linewidth was found field-dependent. This
suggests that the linewidth is due to inhomogeneities of local fields that the Li nucleus sees. These

results agree well with previous work [97, 149].

51V linewidth

The °1V linewidth A was determined from the FWHM of the FT of the spin echo signal. Only one
V site exists crystallographically in LiV2Oy4, and is called the 16d site. The point symmetry of the site
is trigonal. Since the 5!V nucleus has nuclear spin I = 7/2, quadrupole effects are therefore possible.
However, the 7/2 pulse length on the 5!V nuclei was found to be the same as that on the 27Al nuclei in
a reference solution under the same coil and power conditions (both nuclei has nearly the same nuclear
gyromagnetic ratio ). Hence, not only the central transition line (which corresponds to I = % > -—%
but all the six satellite lines (£ + £3 & =% & :t%) were irradiated. In other words, all these lines
are found to be so close to each other that the given pulse could not distinguish them but just saw only
one line due to the overlap. Therefore, quadrupole effects can be neglected.

As in the “Li NMR, the temperature and field-dependent linewidth A was obtained from 5!V NMR,
shown in Fig. 8.2. Only one %'V line was observed. This implies that NMR, did not distinguish between
the two possible vanadium valence configurations V+3 and V+4 on the time scale longer than that of
NMR (10~ sec), so only one kind of V moment exists. The nuclear dipole-dipole interactions in pairs
S1V-31V and S'V-"Li contribute to the observed 3!V linewidth a T and H independent term [176].
On the other hand, a T and H dependent contribution to the width comes from macroscopic field
inhomogeneities due to the demagnetization effect of powder samples [177]. By assuming a Gaussian

approximation, the ®!V linewidth can be written

2
AfFwHM = 2.35\/ (Av2)gip + (vaH %) , (8.1)

where B is the fractional rms deviation of the local field generated by the applied field H, and v/2n =
1119.3Hz/G. xv is the observed volume susceptibility, and xv = x°*d/M, where x° is the molar
susceptibility, d = 4.105g/cm? is the density, and M = 173 g/mol is the molar mass of LiV>04. With
the lattice paramter @ = 8.24 A, the Van Vleck formula [176] gives

(Av)aip = (AV)vey + (AvP)veu; (8:2)

= 4.6 x 10" Hz? + 0.41 x 107 Hz?
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Figure 8.2 %'V NMR linewidth A versus temperature T for LiV2O, sample 2.
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The solid curve is Eq. (8.1) with B = 3.6.



137
= 5.0x107Hz* .

A fit of Eq. (8.1) to the observed linewidth yielded B = 3.6, and the fit is drawn as the solid curve
in the inset of Fig. 8.2. The demagnetization effect can give rise to B = 4= - 0.114 = 1.43. assuming
closely-packed spheroids. It is suggested that, since the symmetry of the V site is not cubic, the dipolar
sum inside the Lorentz sphere can give an additional contribution to B to yield this difference. From
this analysis, one finds that the above mean-square width from dipolar interactions in Eq. (8.1) is much
smaller at low T and high H than the other contribution from macroscopic field inhomogeneities due
to the demagnetization effects of powder samples [the second term in the square root in Eq. (8.1)]. For
instance, a rough calculation using B = 3.6, x°> = 0.01cm3/mol at low T and H = 47kG (data points

were actua-lly taken under bhlS iield) glVeS
27’!

This value is 44 times larger than the above dipolar contribution. Having this dominating magnetization
term, one can conclude that no more useful information can be drawn from the linewidth analysis than
those already obtained from the susceptibility analyses, since A(T") should behave the same way as the
susceptibility. This conclusion holds for the “Li linewidth, too. Further analysis of linewidths is not

given.

Knight shifts
"Li Knight shift

The Knight shift X obtained from "Li NMR is shown versus T in Fig. 8.3. It is quite clear that the T

variation of the shift appears very similar to that of the intrinsic susceptibility x(T"). A Curie-Weiss-like

behavior at high T X 50K is observed, and K(T) shows a weak T dependence at low T with a broad
maximum at T & 25-30K. Figure 8.4 indicates the approximately linear relationship of the shift with

the T-dependent, local moment susceptibility x'°¢(T) above 100K (see below). From the analyses of
intrinsic susceptibilities x(7°), the Curie constants C expected for S = 1/2 and g ~ 2 were obtained
in Chapter 4. As mentioned before, this suggests that ~ ld-electron per V atom is localized and the

remaining 0.5 d-electrons/V are itinerant. This view is taken here for the analyses of Knight shifts.

There are five different possible magnetic contributions to Knight shifts [178, 179]. The first one

is a direct magnetic dipole-dipole coupling of the “Li nuclear spin to the V local electron spin. The
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Hamiltonian in this case is

- [§ _7S-F
'Hdip=—-7e7nh2.[-[ﬁ'—3 ( 5-)

- ] . (8.4)

Various symbols used in this and following equations are defined as follows: electron spin magnetic

moment fio = —guS = —v.hS, where g is the g-value of the electron, pp is the Bohr magneton, §

is the electron spin angular momentum in units of %, 7. is the electron gyromagnetic ratio, and  is
the Planck constant divided by 27; the nuclear spin magnetic moment sy, = gnpnf = Ynhl, where
Jn» Hn, I and Yn are the nuclear equivalents of the above defined electron quantities; 7 is the position
vector of an electron with respect to the origin where a nucleus is situated, and r = |; £ (used below)
is the electron orbital angular momentum in units of k. This dipole-dipole coupling yields a zero net
contribution to the Knight shift for an isotropic g-value. If there exists an anisotropy in the g-value, the
dipolar contribution to the shift is proportional to gﬁ — g3 [180]. For this cubic system. there can be no
anisotropy in the g-value for the “Li in cubic point symmetry and hence this dipole-dipole interaction
cannot give rise to the observed Knight shift.

The second interaction that can contribute to the Knight shift is the so-called Fermi contact inter-
action. This is due to the Zeeman-like interaction of the nuclear spin I with the effective magnetic field
that an electron at the nucleus site may create. Therefore, only unpaired s-electrons can give rise to

this Fermi contact interaction. The Hamiltonian is
8w - = -
Hpe = ?‘7e7n-[ . 56(7-') ’ (8'3)

where 4(7) is the Dirac delta function.

The d-electrons have a zero probability of existing at the site of a nucleus (origin), so the Fermi
contact interaction in the above, direct sense is not possible. However, the d-electrons can indirectly
produce a same Fermi contact effect. The d-electrons can polarize the core electrons in a closed shell
and the paired outer conduction electrons, which then interact with the nuclear spin by the ordinary
Fermi contact term.

The third contribution to the shift is due to the orbital motion of conduction electrons induced by
an applied external field. This orbital motion creates an effective magnetic field at the nuclear site, and
the nuclear spin I interacts with the effective field. In this way, the orbital moment of electrons can
couple with the nuclear spin I by

-

in-£
Horb = 7ehp:3 . (86)

The fourth contribution is due to the Laudau diamagnetic susceptibility xL2"92% of conduction

electrons. The Knight shift due to this is proportional to x'2"d2u. Byt yLandau jg pegligibly small for
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d-electron systems [128]. Therefore, this term is neglected in the following analyses.

Finally, a contribution to the Knight shift can arise from the exchange coupling of the Li nuclear
spin I to the V spins. Each Li has 4 oxygens as nearest neighbors, and each of these oxygens is bonded
to 3 vanadium atoms. Hence, there are 12 V atoms whose spins can couple with one Li nuclear spin by

exchange interactions.

The observed magnetic susceptibility x°°5(T’) is written for high T' (R 50K) as
Xobs(T) — XVV + Xcore + Xspin (T) , (87)

where xVV is the orbital Van Vleck susceptibility and x°°™ is the core diamagnetic susceptibility.
Both of these are temperature T" independent. x*P*(T') is the spin susceptibility which can be further

decomposed in a picture of local moments in metals according to
XsPin (T) _ XPauli + Xloc(T) , (88)

where xF24! is the Pauli paramagnetic susceptibility of conduction electrons, and x'°¢(T) is T-dependent
susceptibility of local moments. Dropping the dipolar and Landau diamagnetic contributions, the 7Li

Knight shift K can be given as

K({T) = KYY4 KPuli g gloo(T) (8.9)
AVVY APauli . Alee
= 2 \'A% +92 Pauli +12 loc T ,
Naps X Naps X Napp x*(T)

where the A’s are the respective hyperfine coupling constants. All of these susceptibilities are in units
of cm® per mole of vanadium atoms. The factors of 2 in Eq. (8.10) are to take into account for the fact
that there are two V atoms per formula unit of LiV,04. AVV is neglected because of the orbital singlet
Li ion.

The K-y analysis was done in Ref. [19] using the local moment susceptibility x'°¢(T"), not the total,
observed susceptibility x°**(T"). Combining the three T-independent susceptibility terms into one term
as xo, and assuming the validity of the Curie-Weiss law for the local moment contribution X'°¢(T), the

measured susceptibility x°> was fitted by Mahajan et al. [19] to the following equation

X% (T) = X0+ ——— = xo + X°(T) , (8.10)

2
T-6
in the T range of 100-800K, using the combined data set of x°** of our own data [17] and that (high
T part) of Hayakawa et al. [9], yielding (see [181])

X0 =2.72 x 10™*cm3/(mol V) (8.11)
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C = 0.329cm®K/(mol V) | (8.12)
§=—12.86K . (8.13)

These fit results enabled Mahajan et al. to plot K(T') versus x'°°(T), T being an implicit variable, in

Fig. 8.4. A straight line fit was done and the fit curve is shown in Fig. 8.4. From the slope, they found
Alee = 0.18(1) kG (8.14)

and from the y (here K) intercept,
Ko =-0.0094% . (8.15)

It is necessary to know the Pauli susceptibility x> in order to determine the hyperfine coupling
constant AP2%!i from the intercept. From the K-x analysis by Kondo et al. [17] using the 3V Knight
shift and the observed susceptibility x°* for LiV,04 sample 2, the orbital Van Vleck susceptibility was
found in Eq. (4.19)

xVV =1.11(3) x 10~%*cm3/(mol V) . (8.16)

Using the core diamagnetic contribution x°°*® = —31.5 x 10~®cm3/(mol V), from the equation Xo =

xVV + xoore + xPauli and Eq. (8.11) we obtained
xF2u = 1.64 x 107% cm®/(mol V) . (8.17)

This value is close to that of an isostructural superconducting LiTizO4 [xF2% ~ 1 x 10~* cm?/(mol Ti)]
[4, 135]. From this estimate, we determine the hyperfine coupling constant of “Li nuclei with conduction

elctrons

APl = _160kG . (8.18)

This value is roughly 1% of the atomic hyperfine coupling constant for 2s conduction electrons of Li
metal (122kG) [179]. Having mostly d-character in a conduction band, this small size is not unex-
pected. The negative sign in Eq. (8.18) implies antiferromagnetic exchange interaction between the V
d conduction electrons and the 1s core electrons of Li on the polarization. The small size of A!°¢ can be
explained by the fact that the lithium is located far from the vanadium site where the local moments

reside, so there is very little overlap of the V wavefunctions to the lithium s orbitals.

51V Knight shift

1V Knight shift K versus temperature T is shown in Fig. 8.5. The observed shift is negative

throughout, and its 7" dependence appears to be very similar to that of the susceptibility. This is again
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proved by plotting, in the inset of Fig. 8.5, the shift K as a function of the local moment susceptibility
xloe (T), displaying the linear relationship above 74 K. Therefore, the linear fit was carried out again as
shown in the inset. Like the case of “Li, the dipolar contribution is neglected and the equation for A’

in terms of the on-site hyperfine coupling terms is

K(T) N BVV vV + BPauli Pauli + Blec IOC(T) ( 8.1 9)
= Naps X Napp Napg X ’ .

where the B’s are the on-site hyperfine coupling constants. Unlike the 7Li K case, the orbital Van
Vleck contribution could not be neglected. Therefore, it is not evident how to determine separately
the hyperfine coupling constants BYY and BF2uli from the K-intercept Ky in a linear fit. The V core
polarization by unpaired V d electrons is negative and expected to dominate BP2uli_ Byt Ky was found
to be positive, Ko = 0.74kG from the fit. Thus, Mahajan et al. inferred that the positive orbital Van
Vleck term in Eq. (8.19) should be larger in magnitude than the second term. It is still possible to

determine the other hyperfine coupling constant B'°¢ from the slope of the fit. They found
Bl°¢ = _79%G , (8.20)

which agrees well with B! = —74kG determined by Onoda et al. [149]. In addition, the hyperfine

coupling constant of vanadium metal, B¢ = —112kG, is also close and has the same sign [179)].

Nuclear spin-lattice relaxation rates

’Li nuclear spin-lattice relaxation rate

The recovery of the nuclear magnetization after a 7/2 pulse was found to follow single-exponential
behavior over the whole temperature region (1.5-800K), from which the determination of the 7Li
nuclear spin-lattice relaxation rate 1/T; was made. Figure 8.6(a) shows the T' dependence of 1/T} for
sample 2. The nuclear spin-lattice relaxation rate has a maximum at T ~ 50K which separates the
T regions into two distinguishable parts. In the low T region (T' £ 10K), the relaxation rate shows
a linear decrease with decreasing T, as can be seen more clearly in the expanded plot in Fig. 8.6(b).
In this T region, it should be noted that both the Knight shift and the intrinsic susceptibility become
nearly independent of 7. On the other hand, in the higher T region, as T increases, 1/7; decreases
monotonically. As opposed to the rich temperature variation of LiV50q4, the isostructural (i.e. cubic
spinel), superconducting LiTi,O4 follows only a linear T dependence (Korringa relation) from 20 to
300K which is typical of metals in the normal (metallic and paramagnetic) phase [92]. The room

temperature value of 1/7} of LiV,0, is enhanced strongly, by a factor of about 100, compared with
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that of LiTi204. In the following sections, the results in the low-T" and high-T regions are discussed

separately.

Low temperature "Li relaxation rate

For all five LiV2O4 samples measured, the linear T dependence in the “Li nuclear spin-lattice
relaxation rate 1/T; was observed below 4K, as shown in Fig. 8.6(b). It is remarkable to see this
phenomena in samples 2 and 4B, both of which are not as magnetically pure as the other three and show a
Curie-like upturn at low T in the observed susceptibilities. (Note that magnetic impurity concentrations
are listed for all five samples in Table 8.1.) Therefore, small amounts of magnetic impurities/defects are
not capable of suppressing this robust Fermi liquid behavior. The slope 1/T7T = 2.25sec™* K~! of the
vanadium spinel (samples 1 and 6) is much larger than the corresponding value of 5.6 x 10~ %sec=! K~
for LiTi204 [92].

In a simple metal in which the Fermi contact coupling is the only source for Knight shifts and

relaxation rates, the so-called Korringa relation holds well [179]. The relation is written

KTiT=§ , (8.21)
where for “Li,
—(Y\_h_ _ -6 ;
S= (%) T = LT4x 107%secK (8.22)

From this relation and due to the nearly constant K, one may anticipate that the Korringa ratio
K*TyT/S will be constant for T £ 10K for LiV204. This was indeed observed, as shown in Fig. 8.7,
which indicates characteristics of the Fermi liquid state of LiV,Oy4 in the low T region. The nearly
constant ratio for T £ 10K is about 0.5, close to the values for normal metals [179]. The ratio for
all the five LiV,04 samples measured, as well as the Korringa product (737!, are summarized in
Table 8.1. The Korringa ratios are normally (with a few exceptions) greater than unity for d band metals
(178, 179]. For f-electron heavy fermion compounds such as CeAls [91] YbNi,B,C [182], CePd.In [183],
and CeCuGe, [184], the linear T" dependence of the relaxation rate 1/7} was observed. But it was only
for CeAls tha.t.the Korringa ratio could be determined [91]. The temperature dependence of the ratio
from 27A1 NMR on this compound appears to be qualitatively the same as that of LiV,Q4, but the size

of the ratio for CeAls, ~ 2-3, is a few times larger.
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Table 8.1 Summary of the 1/T3T values and the Kor-
ringa ratios K2T,T/S, obtained from the low T
(1.5-4.2K) "Li NMR data. Magnetic impurity
concentrations, found under the assumptions of
impurity spin Simp = 2 and impurity g-value
gimp = 2, are also listed. The error in the last
digit of a quantity is given in parentheses.

Sample Alternative  fimp (L)t K*TT/S

Name Name (mol%) (sec™!K~1)
1 401 003 22505 0.55(1)
2 3-3 035  2.5() 0.50(1)
4 3-3q1 008  2.20(5) 0.57(1)
4B 3-322 1.2 3.0(1) 0.42(1)
6 121 002  2.25(5) 0.55(1)

High temperature “Li relaxation rate

A metallic compound with local magnetic moments may have two contributions to the nuclear spin-
lattice relaxation rate 1/T;. First of all, being metallic, LiV2O4 has a relaxation process proportional
to T (i.e., Korringa type) by conduction electrons. Second, the relaxation occurs due to the local field
fluctuations which are induced by V spin fluctuations. A rough estimate of the Korringa term can be
made using the temperature independent Ky obtained in Eq. (8.15), which is the Knight shift in the
high T" limit from the linear K-y fit. Given Ko = —0.0094 % from Eq. (8.15) and S = 1.74 x 10~ %secK
from Eq. (8.22), the Korringa product 1/717T is estimated

1 _ K3 _ -3 11
TT- 8 =5(1) x 107 sec™ K™+ . (8.23)

The isostructural compound LiTi»O4 has no local moments, and its Korringa product for 20 < T <
300K is 5.6 x 10~*sec™ K~! [92], roughly ten times smaller than that of LiV20O4. This indicates that
the above estimate in Eq. (8.23) is too large. Therefore, we neglect the Korringa contribution to the
relaxation rate up to 800K, and the following analysis is done with the spin fluctuation term only.

Moriya [185] derived the following equation for the nuclear spin-lattice relaxation rate due to spin

71"1 ]2\;C2B;;Z:( )Zl qlz( Z;wL)) ; (8.24)

where here the total hyperfine coupling constant A = Az is assumed to be wave-vector ¢ independent,

fluctuations

x is the imaginary part of the dynamic susceptibility, and wy, is the Larmor frequency. To make a

comparison to our uniform susceptibility (both wy, and § = 0), the summation in Eq. (8.24) can be
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written in the limit of wy, — 0 as Nax!3°7/2, where x!S° is the uniform local moment susceptibility per
mole, and 7 is the relaxation time of the local moment. The total hyperfine coupling constant should
contain contributions from both exchange hyperfine coupling of Li nuclei to the V local moments and
direct dipole-dipole coupling to them. Assuming that these two coupling mechanisms are not correlated

with each other, the square of the total hyperfine coupling constant is
A% =12(4%%)% 4 (4%P)2 | (8.25)

The first term on the right-hand side of Eq. (8.25) describes the transferred hyperfine contributions

from the 12 nearest-neighbor V moments around one Li nucleus, whereas the second term is the “total”

electromagnetic dipolar hyperfine coupling constant due to all the surrounding V spins. A4!°¢ = 180G
has already been obtained in Eq. (8.14). A% was obtained by Mahajan ef al. to be 2.58kG [19].
Substituting these coupling constants and the other fundamental constants into Eq. (8.24) and

rearranging the equation, we now have
-i- = 1.78 x 10¥yloenyT . (8.26)

A calculation of 1/7 as a function of T from Ty data was made possible by utilizing the Curie-Weiss
susceptibility from Eq. (8.10). The results are given in Fig. 8.8. A 75 dependence of 1/ has been
obtained theoretically by Cox et al. [186] for the relaxation rates of 4f local moments in ordinary
f-electron heavy fermion compounds. Experimentally YbCuAl [186], CeCusGes [184], and YbNisB2C
[187] f-electron heavy fermion compounds satisfy the T°° prediction for 1 /7. A fit of the derived 1/7
values for LiV2Oy4 was carried out, and the 70 dependence agrees well with data for T = 200-800 K,

as Fig. 8.8 shows. A T°® dependence was found to fit better when lower T data were included in the

fit. .

An analysis of this local spin fluctuation rate 1/7 may give ideas about the sizes of {exchange)

coupling constants of a V local moments. For this analysis, a phenomenological model was employed
for room temperature and above. The fluctuation rate 1/7 can be written

l:.i-}-i . (8.27)

T Td  Tex
The first term 1/7,4 respresents the fluctuation rate of a local (impurity) spin due to conduction electrons,
given by the following Korringa-like expression [188)

Tl_d - (‘%’) ksT(Jp(er)) = ToT | (8.28)

where J indicates the coupling constant of the spin to the conduction band, and p(er) is the density

of states per spin direction at the Fermi level. The second term 1/7ex represents the spin fluctuation
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Figure 8.8 Local electronic V moment fluctuation rate 1/ as a function of tem-
perature T', calculated from the observed Li (dots) and 5!V (open
squares) nuclear spin-lattice relaxation rates 1/T; using Eqs. (8.26)
and (8.40), respectively. A fit by a 795 dependence based upon
Cox et al. [186] is shown by a solid curve.
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rate arising from the local moment spin-spin exchange interaction. The high temperature limit for this
term is given by Moriya [185] as
_1_ Wex

=——=T , (8.29)

Tex 2T

where wey is defined via
s _ 8J2z5(5+1)

Wiy TE (8.30)

Jex is the exchange coupling constant from a Heisenberg Hamiltonian in the form 2JexS; - §'J for a pair
of nearest-neighboring spins, and z is the number of nearest neighbor spins. A linear fit of 1/7 versus

T by Egs. (8.27), (8.28) and (8.29) for the 300-700K data points yields
To = 4.4(10) x 10%9sec™1 K~ | (8.31)
Ty = 1.9(3) x 10*%sec™? . (8.32)

Equation (8.28) then yields |J|p(er) = 0.05. Recalling that the Pauli paramagnetic susceptibility yF2ul

is expressed as

et = O82) ) (8:3)

the value of 24! in Eq. (8.17) yields with g = 2

states

pler) =2:54 eV — V — spin direction - (8.34)
Then the coupling constant |J| can be determined to be
|J] = 19.7(2) meV , (8.35)

or |Jex|/ks = 229K. From Eqs. (8.29), (8.30) and (8.32), we find for S = 1/2 and z = 6 (6 nearest

neighbor V atoms to a given V atom)

[Jex| = 2.3(4) meV (8.36)

or |Jex|/kB = 27K. It is worthwhile to note a few things about the coupling constants. First, one can

express the Weiss temperature ¢ in terms of |Jex|- In the mean field approximation, we have

_225(5 +1)|Jex]

161 T

=81K ; (8.37)

this value is not very close to the Weiss temperature of 12.86 K (in magnitude) in Eq. (8.13). Second,

this model suggests that the coupling of the V moment to the conduction electron band is more than

one order of magnitude stronger than that between the local moments.
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The above method was employed to reanalyze the 2°°Bi relaxation rate for the heavy fermion

compound YbBiPt [182]. The obtained coupling constants are
|J| =~ 80meV , (8.38)
assuming p(ep) = 1states/(eV-V-spin direction), and

|Jex| = 9.5meV . (8.39)

Once again, |J| is one order of magnitude larger than |Je|. In addition, from the work on CeAls
[91], |Jex] = 10meV may be inferred. These results indicate that the exchange coupling between
local moments in LiV204 is ~ 4 times smaller than corresponding values for f-electron heavy fermion

compounds.

5}V nuclear spin-lattice relaxation rate

The 5!V nuclear spin-lattice relaxation rate 1/73 was obtained by successfully fitting the recovery
of the spin echo signal by a single exponential. This single exponential fit was possible for the whole
temperature T range, 74-575K. A lower T measurement than 74K was not possible due to the loss
of signal which was caused by the very short spin-spin relaxation time 75. The measurement results
are given in Fig. 8.9, along with the data of Fujiwara et el. [97] and Onoda et al. [149]. Throughout
the measurement T range, the relaxation time 77 was found to be very short (20-50 psec). The room
temperature data from the three groups are in good agreement, while at the lower tempearature some
disagreement is seen. Mahajan et al. did not observe a signal at low T (< 74K). On the other hand,
the successful detection of the signal in this T region by continuous wave techniques (at low fields,
H < 1.5T) [149)] implies that the 51V T} and/or T» are so short that the dead time of the receiver hides
the free induction decay completely. From this, both relaxation rates are inferred to be Ti » < 5 usec
at low T

In the same way as in the previous section, an attempt was made to extract information about the
V electronic spin fluctuation rate from the 5}V 1/Tj. It is reasonable to assume that the hyperfine
coupling of the 'V nuclei with their own local moment electrons is the major contribution to 5!V T3.
Then using |B!°¢| = 79kG from Eq. (8.20) for the hyperfine coupling A in Eq. (8.24), the following

equation was derived for generating the values of V local spin fluctuation rate 1/7 in Fig. 8.8

1
—=T47x 1018yl T (8.40)
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in which the Curie-Weiss susceptibility in Eq. (8.10) was used again. In Fig. 8.8 the two data sets of
1/7 should ideally be the same, since both are the same fluctuation of the V local moment. Although
the overall temperature dependences appear to be similar, the quantitative disagreement is obvious.
This may be caused by the simple model itself, and/or the neglected contributions to T such as the

Korringa term.
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9 SUMMARY AND DISCUSSIONS

Throughout this dissertation, intriguing properties of LiV2O4 have been presented and analyzed.
This strongly correlated electron compound exhibits a crossover with decreasing temperature T from
localized magnetic moment behavior to heavy Fermi liquid behavior. This crossover has been observed
through magnetic susceptibility, nuclear magnetic resonance, heat capacity, and thermal expansion mea-
surements on high-purity polycrystalline LiV,04 samples. In this final chapter, while brief summaries
from preceding chapters are given, our current understanding and outlook for appropriate interpreta-
tions of the observed crossover in LiV,Q4 are stated.

In Chapter 3, the preparative method and characterization of our LiV,04 and Lij 4, Tia..zO4 (z=0
and 1/3) samples were described. The LiV204 samples were found to be single-phase or to have only
on the order of a percent of V203 or V305 impurity phase from the x-ray diffraction measurements
(Figs. 3.1 and 3.2). From the Rietveld refinements of the x-ray diffraction data, the lattice a and oxygen
u parameters were determined for each sample (Tables 3.4 for LiV204 and 6.2 for Li; 1, Tia—>04). Due
to the weak scattering of x-ray from lithium, it was impossible to determine whether vacancies occur in
the Li and/or V sites. Introductions of the Rietveld refinement method and of the computer program
RIETAN-973 were also given. From the low-T" x-ray [11] and neutron [11, 18] diffraction measurements,
it was found tnat LiV30y4 retains the cubic normal spinel structure down to 4K, with no evidence for
any structural transition (see Chapters 2 and 7).

Our magnetically purest samples 1 and 6 clearly showed a broad shallow maximurp in the observed
magnetic susceptibility x°**(T) at T ~ 16K, with small Curie-like upturns below ~ 5K. Field-cooled
and zero-field-cooled magnetization measurements with H = 10-100G dici not reveal any evidence
for static spin-glass ordering from 2 to 50K in any of the seven samples measured. At T 2 50K,
x°%*(T) showed local magnetic moment behavior for all samples. Low-T" isothermal magnetization
versus applied magnetic field M°*(H) data were analyzed, and the parameters of the paramagnetic
impurities giving rise to the Curie-like upturn in x°b*(T") were determined, assuming that a single type

of impurity is present. Using these parameters, the intrinsic susceptibility x(7") was obtained and
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found to be essentially the same in all samples but two (4A and 4B). Surprisingly, the spin Siyp of the

paramagnetic impurities was found to be large, Simp = 3/2 to 4 depending on the sample, suggesting the
presence of variable amounts of ferromagnetically coupled vanadium spin defect clusters in the samples.

The high-T (above ~ 50 K) localized magnetic moment picture was tested using the high-temperature
series expansion (HTSE) prediction for the spin susceptibility of the' S = 1/2 vanadium sublattice of
the spinel structure. The Curie constant C and Weiss temperature  determined from the HTSE fits
were found to be similar to those obtained in the past using the Curie-Weiss law to fit the high-T
susceptibility data for LiV,04. Using the values of the Van Vleck susceptibility obtained from the
K-x analyses, the Pauli susceptibility contribution to the temperature-independent susceptibility xo
was derived and found to be small, comparable to that of LiTi;O4. The Van Vleck formulas for the
paramagnetic susceptibility of V+3, V** and an equal mixture, assuming that each V ion is in a cubic
crystalline electric field, failed to describe the T dependence of the observed effective magnetic moment.
However, for the high-T' “localized moment” region, the effective moment is in agreement with the
spin-only value.

At low T, muon spin relaxation [11] (not detailed here) and nuclear magnetic resonance (NMR)
measurements did not detect static magnetic ordering in our purest sample of LiVo04 to 0.02K, and in
any of seven samples to 1.5 K, respectively. The low-T" behaviors observed in the intrinsic susceptibility
x(T), electronic heat capacity coefficient 4(7T’), and “Li NMR measurements are similar to those of the
heaviest mass f-electron heavy fermion (HF) compounds. The nearly T-independent and relatively
large (~ 10~2cm®/mol) x(T) below ~ 30K with a broad peak at ~ 16 K may be viewed as reflecting
the disappearance of the V magnetic moment via Kondo screening by conduction electrons, and the
formation of a Fermi liquid with an enhanced mass. The value of v(1 K) = 0.42J/molK? for LiV204
[11, 14] is, to our knowledge, the largest among existing transition metal compounds, surpassing those of
predecessors such as (Y.975co.03)Mns (% 0.2J/molK? [16, 189]) and V2_,O3 (0.07J/mol K [85]). Not
only do we infer a large quasiparticle effective mass (m* /me ~ 180) from this large -, but the rapidly
decreasing y(T) is also indicative of a similarity to f-electron HF compounds. The “Li Knight shift
K becomes nearly 7" independent below about 4.2K [19], and simultaneously the nuclear spin-lattice
relaxation rate 1/T has a linear T dependence in this low-T range. These two observations from 7Li
NMR demonstrate that the Korringa law holds, another indication that LiV,Qy4 is a Fermi liquid at
low T.

Although our neutron diffraction study did not show any structural transition to 4K, structural

evidence for the crossover to the HF regime with decreasing 7" < 20 K was found from the remarkable T'
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dependence of the thermal expansion at low T [18]. This was confirmed through capacitance dilatometer
measurements [14]. The linear thermal expansion coefficient divided by T, a/T, indicated a strong
upturn below ~ 25 K which was correlated with the strong increase of 7 in the same T region. The
derived, normalized ratio of & to Ce (which is identical to («/T)/7), called the Griineisen parameter
I'(T), showed a strong enhancement below ~ 25K, and reaches I'(0) = 11.5. At T = 0, the observed
I'(0) becomes equal to the electronic Griineisen parameter I'¢(0). Compared with a typical value of ~ 2
for a normal elemental metal and that of f-electron HF compounds, this T'e(0) is intermediate, but still
indicates that the crossover to the HF regime a stronger influence on the thermal expansion than on
the heat capacity.

The electrical resistivity p(T)) shows a metallic behavior, monotonically decreasing upon cooling,
shown by Rogers et al. [3] in 1967. We were lately informed that for the first time in more than 30
years Urano et al. [190] qualitatively reproduced the metallic p(T) of Rogers et al. by measurements
on a single crystal of LiV,04. The observed downturn of p(T") below ~ 30K in the data of Rogers et al.
may be an indication that LiV2O4 transforms to the coherent state at lower 7". The T2 dependence
of p(T’) is characteristic of the coherent, i.e. Fermi liquid state. Though not low enough T data are
available, our rough estimate of the 72 coefficient A satisfies the proportional relationship of A to ¥
(see the Kadowaki-Woods plot in Fig. 5.3) that f-electron HF compounds follow.

The Wilson ratio Rw ~ 1 of HF compounds may be visually seen in a plot of x(0) versus +(0)
since Rw is the normalized ratio of these two quantities. Figure 9.1 shows this plot, which includes
data for LiV504, many f-electron HF materials, some elemental metals and other superconducting or
metallic oxide compounds [14]. It is seen that LiV,0Qy is situated in the middle of the f-electron HF
and intermediate-valent compound cluster.

From all these observations we conclude that the HF behaviors of LiV2Qy, are like those of f-electron
HF systems. However, we have found difficulties to self-consistently describe both x(T) and C¢(T) in
terms of the dilute-impurity § = 1/2 Kondo and S > 1 Cogblin-Schrieffer models. This suggests that
there might be a completely different mechanism responsible for these HF behaviors in LiV204 and
in the f-electron systems, or there might be some additional mechanism(s) that makes this d-electron
system more complex than conventional f-electron HF systems.

In conventional f-electron heavy fermion compounds, local f-electron orbitals and conduction elec-
tron states in non-f bands hybridize only weakly, resulting in a many-body scattering resonance of the
conduction electrons by the local moments near the Fermi energy Ef, a large density of quasiparticle

state D*(EF), and hence a large quasiparticle effective mass, electronic specific heat coefficient and
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magnetic spin susceptibility at low T. Screening of S = 1/2 local moments by surrounding conduction
electrons leads to a nonmagnetic ground state and a saturating spin susceptibility as T — 0. We tested

several models for x(T) which assume the presence of local magnetic moments in LiV.04 (S = 1/2
per V) interacting weakly with the conduction electrons. In these models, the itinerant and localized
electrons must both occupy ¢34 orbitals (or bands derived from these orbitals), rather than orbitals of
more distinct character. One can still imagine a scenario [192] in which the HF behaviors of LiV204
at low T arise in a way similar to that of the f-electron HF compounds, if the following conditions are
fulfilled: (i) the trigonal component of the CEF causes the A;4 orbital singlet to lie below the E orbital
doublet; (ii) one of the 1.5 d-electrons/V is localized in the ground A;4 orbital due to electron-electron
correlations; (iii) the remaining 0.5 d-electron/V occupies the E, doublet and is responsible for the
metallic character; and (iv) the band(s) formed from the E, orbitals hybridize only weakly with the
Ajg4 orbital on each V ion. This scenario involves a kind of orbital ordering; a more general discussion
of orbital ordering effects is given below.

In the rest of this chapter, two important concepts, geometrical frustration and orbital ordering
which may be important in relation to the similar “heavy-electron” compound (Yq.97S¢o.03)Mn» are
discussed.

The geometric frustration for antiferromagnetic ordering inherent in the V sublattice of LiV204
may be important to the mechanism for HF behaviors of this compound at low 7. Such frustration
inhibits long-range magnetic ordering and enhances quantum spin fluctuations and (short-range) dy-
namic spin ordering [10, 193, 194]. These effects have been verified to occur in the C15 fcc Laves phase
intermetallic compound (Yo.97Sco.03)Mng, in which the Y and Sc atoms are nonmagnetic and the Mn
atom substructure is identical with that of V in LiV204. In (Yo.975c0.03)Mn2 Shiga et al. discovered
quantum magnetic moment fluctuations with a large amplitude (prms = 1.3us/Mn at 8K) in their
polarized neutron scattering study [195]). They also observed a thermally-induced contribution, with
Hrms = 1.6pp/Mn at 330 K. Further, Ballou et al. [16] inferred from their inelastic neutron scattering
experiments the presence of “short-lived 4-site collective spin singlets”, thereby suggesting the possibil-
ity of a quantum spin-liquid ground state. A recent theoretical study by Canals and Lacroix [194] by
perturbative expansions and exact diagonalization of small clusters of 2 S = 1/2 frustrated pyrochlore
antiferromagnet [196] found a spin-liquid ground state and an AF spin correlation length of less than
one interatomic distance at T = 0.

(Yo.97Sco.03)Mn, has some similarities in properties to those of LiV,04. No magnetic long-range

ordering was observed above 1.4K [16, 195]. Similar to LiV3Qy, it shows a large electronic specific heat
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coefficient v(0) ~ 160-200 mJ/molK? [16, 189]. However, the T dependences of the susceptibility [197]
and v [189] are very different from those seen in LiV5O4 and in the heaviest f-electron heavy fermion
compounds. x°°5(T") does not show the Curie-Weiss-like behavior at high T, but rather increases with
increasing T [197]. ¥(T") is nearly independent of T up to ~ 6.5K [189]. Replacing a small amount of
Mn with Al, Shiga et al. [198] found spin-glass behavior in (Yg.95S¢c0.05)(Mni—zAlz)2 with z > 0.05.
The susceptibility for £ = 0.15 shows a Curie-Weiss-like behavior above ~ 50 K. The partial removal of
the geometric frustration upon substitution of Al for Mn leads to spin-glass ordering below ~ 50K (for
z = 0.1) [198]. This might be analogous to that in our sample 3 in which structural defects evidently
ameliorated the frustrated V-V interactions, leading to spin-glass ordering below ~ 0.8 K. Hence, it is
of great interest to carry out similar neutron scattering measurements on LiV204 to test for similarities
and differences in the spin excitation properties.

The magnetic properties of materials can be greatly influenced when the ground state has orbital

degeneracy in a high-symmetry structure. Such degenerate ground state orbitals can become energet-
ically unstable upon cooling. The crystal structure is then deformed to a lower-symmetry to achieve
a lower-energy, non-orbitally-degenerate ground state (Jahn-Teller theorem) [199]). Energetically some
occupied orbitals are split from the originally degenerate levels to have lower energy. This kind of orbital
ordering accompanied with a structural distortion is called the cooperative Jahn-Teller effect [199]. The
driving force for this effect is the competition between CEF and the lattice energies. Orbital ordering
may also be caused by spin exchange interactions in a magnetic system with orbital-degenerate ground
state [199, 200]. The orbital (and charge) degrees of freedom may couple with those of spins in such a
way that certain occupied orbitals become energetically favorable, and consequently the degeneracy is
lifted. As a result, the exchange interaction becomes spatially inhomogeneous [200, 201]. For example,
Pen et al. [200] showed that the degenerate ground states in the geometric frustrated, V triangular
lattice Heisenberg antiferromagnet LiVO, can be lifted by a certain static orbital ordering. However,
the presence of orbital degeneracy or near-degeneracy suggest that dynamical orbital-charge-spin cor-

relations may be important to the physical properties of LiV204. It is not yet known theoretically

whether such dynamical correlations can lead to a HF ground state and this scenario deserves further

study.

In conclusion, thus far we and collaborators have experimentally demonstrated heavy fermion be-
haviors of LiV204 characteristic of the heaviest mass f-electron HF systems from magnetization [11],
heat capacity [11, 14}, nuclear magnetic resonance {11, 19}, thermal expansion [14, 18], and muon spin

relaxation {11] measurements. Our higher-purity samples made this discovery of the HF behaviors in
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LiV20, possible. High-quality single crystals without structural defects or magnetic impurities are in
great demand. While the observed heavy fermion behaviors should be checked using such crystals, in-
elastic neutron scattering experiments are vital for profound understanding of the magnetic excitations
in this d-electron heavy fermion compound. This strongly correlated metal provides a challenge to
theorists to provide an applicable theory which may elucidate the nature of the observed heavy electron

mass in LiV2Qy, and the reason(s) that the properties of this compound are so radically different from

those of the isostructural superconductor LiTisOy.
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APPENDIX. RIETAN-973 INPUT FILE EXAMPLE

F*HHR*EEX (Beginning of the input file for LiV,04 sample 4A)***¥xk*
# Title (CHARACTER*80)
LiV204 sample 6 (3-3-q2)(sk4164) (LiV204, V203 impurity) Sample4A..ins’

NBEAM = 0! Neutron powder diffraction.
NBEAM = 1: Conventional X-ray powder diffraction (characteristic X rays).
NBEAM = 2! Synchrotron X-ray powder diffraction.

NMODE = 0: Rietveld analysis of powder diffraction data.

NMODE = 1! Calculation of powder diffraction intensities (plus simulation).

NPRINT = 0! Minimal output.
NPRINT = 1! Standard output.
NPRINT = 2! Detailed output.
NPRINT =0

If NBEAM = 1 then

TNAME = ’Cu’: Radiation ("Cr’, ’Fe’, ’Co’, ’Cu’, "Mo’, or ’Ag’).

R12 = 0.497: I(K-alpha2)/I(K-alphal).

CTHM = 0.8009: (cos(2*alpha))**2 for the monochromator (alpha: Bragg angle).

NTRAN = 0: Reflection (Bragg-Brentano) geometry.
NTRAN = 1! Transmission geometry.

end if
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If NBEAM > 0 then

2

# Real chemical species plus °/
’Li’ ’V’ ’O’/
end if

Information about phases {

# Phase No. 1: LiV204

PHNAME] = °LiV204’: Phase name (CHARACTER*25)

VNS1 = "I-227-2’:(Vol. No.)-(Space group No.)-(Setting No.) in Int. Tables.

LSPSYMI = 0: Information on the space group is read from the data base.

INDIV1 = 0! The overall isotropic thermal parameter (Q) is input.

INDIV1 = 1: Isotropic and/or anisotropic thermal parameters are input.

NPROR1 = 0! Preferred orientation is not corrected.
NPRORI1 = 1! Plate crystals (Sasa-Uda function).

NPRORI1 = 2! Needle-like crystals (Sasa-Uda function).
NPRORI1 = 3: March-Dollase function.

IH]l = 1:
IK1 = 0: — Preferred-orientation vector, hp, kp, lp.
IL1 = 0:

LSUM1 = 0! No summation when calculating the March-Dollase function.

LSUM1 = 1: Summation when calculating the March-Dollase function.

IHALl = 1:

IKAl = 1: — Anisotropic-broadening axis, ha, ka, la.
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ILAl=1:

# Phase No. 2: V203

PHNAME2 = ’V203’: Phase name (CHARACTER*25)

VNS2 = ’I-167-2":(Vol. No.)-(Space group No.)-(Setting No.) in Int. Tables.

LSPSYM2 = 0: Information on the space group is read from the data base.

INDIV2 = 0! The overall isotropic thermal parameter (Q) is input.

INDIV2 = 1: Isotropic and/or anisotropic thermal parameters are input.

NPROR2 = 0! Preferred orientation is not corrected.

NPROR2 = 1! Plate crystals (Sasa-Uda function).
NPROR2 = 2! Needle-like crystals (Sasa-Uda function).

NPROR2 = 3: March-Dollase function.

IH2 = 0:
IK2 = 0: —> Preferred-orientation vector, hp, kp, Ip.

IL2=1

LSUM2 = 0: No summation when calculating the March-Dollase function.

LSUM2 = 1! Summation when calculating the March-Dollase function.

IHA2 = 0:
IKA2 = 0: — Anisotropic-broadening axis, ha, ka, la.

ILA2 =1

} Information about phases

Labels, A(I)’s, and ID(I)’s {
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# Global parameters

# Peak-shift parameters, Z, Ds, and Ts

SHIFT 3.58927E—2 0.0 0.0 100

# Background parameters, bj (j = 0-11)

BKGD 3.80044 —3.61998 3.06328 —2.22331 0.990238 —2.09748E—1
0.0 0.0 0.0 0.0 0.0 0.0 111111000000

# Parameters for phase No. 1 (LiV204)

# Scale factor, s

SCALE1l 2.60639E-—5 1

# Gaussian profile parameters, U, V, W, and P

GAUSS1 2.86861E—3 —4.35888E-3 2.78049E—3 0.0 1110

# Lorentzian profile parameters, X, Xe, Y, and Ye

LORENTZ1 1.00194E—4 0.0 8.47082E—2 0.0 1010

# Asymmetry parameter, As

ASYM1 0.110906 1

# Unused parameters (dummy)

VACANT1 0.0 0.0 00

# Preferred-orientation parameters, r or (pl and p2)

PREF1 0.9 0.0 10

# Lattice parameters and overall isotropic thermal parameter, Q
CELQ1 8.24704 8.24704 8.24704 90.0 90.0 90.0 0.0 1000000
# Label/species, g, x, y, 2, B, and refinement identifiers (ID)
Li/Li 1.0 0.125 0.125 0.125 1.1 00000

V1/V 1.0 0.5 0.5 0.5 0.420345 00001

01/0 1.0 0.262044 0.262044 0.262044 0.48 01220

# Parameters for phase No. 2 (V203)

# The inputs of lattice parameters, fractional coordinates and betas are

# taken from W. Robinson, Acta Cryst. (1975). B31, 1153.
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SCALE2 8.55836E—7 1
# Gaussian profile parameters, U, V, W, and P

GAUSS2 2.86861E—3 —4.35888E—3 2.78049E-3 0.0 2220

# Lorentzian profile parameters, X, Xe, Y, and Ye

LORENTZ2 1.00194E—4 0.0 8.47082E-2 0.0 2020

# Asymmetry parameter, As

ASYM2 0.110906 2

# Unused parameters (dummy)

VACANT2 0.0 0.0 00

# Preferred-orientation parameters, r or (pl and p2)

PREF2 1.13267 0.0 10

# Lattice parameters and overall isotropic thermal parameter, Q
CELQ2 4.94066 4.94066 13.8957 90.0 90.0 120.0 0.0 1010000
# Label/species, g, x, y, 2, B, and refinement identifiers (ID)
V2/V 1.0 0.0 0.0 0.34634 5.67E—3 5.67TE—3 1.9E—4 2.835E-3 0.0

0.0 0000000000
02/0 1.0 0.3122 0.0 0.25 4.9E-3 7.6E—3 5.0E—4 3.8E—3 4.0E—4
} end of labels, A(I)’s, and ID(I)’s

Linear constraints for parameters with ID(I) = 2 {
A(0l,y)=A(01,%)

A(O1,z)=A(01,x)

A(GAUSS2,1)=A(GAUSS1,1)
A(GAUSS2,2)=A(GAUSS1,2)
A(GAUSS2,3)=A(GAUSS1,3)
A(LORENTZ2,1)=A(LORENTZ1,1)
A(LORENTZ2,3)=A(LORENTZ1,3)
A(ASYM2,1)=A(ASYM1,1)

}end of linear constrains

8.0E~4 0000000000



NEXC = 0! Use all the intensity data.
NEXC = 1: Skip some intensity data.

If NEXC = 1 then
Excluded 2-theta regions {
15.00 19.98

}
end if

If NMODE = 0 then
NRANGE = 0: Refine the background.
NRANGE = 1! Fix the background.

NPAT = 0! Do not create any file storing diffraction intensities.

NPAT = 1! Create a PostScript file for Rietveld-refinement patterns.

NPAT = 2! Create a Macplot/RietPlot file for Rietveld-refinement patterns.
NPAT = 3! Create a DMPLOT file for Rietveld-refinement patterns.

NPAT = 4! Create a SigmaPlot file for Rietveld-refinement patterns.

NPAT = 5! Create an Igor Pro file for Rietveld-refinement patterns.

NPAT =5

end if

If NMODE = 0 or NPAT > 0 then
PC = 9.0: Profile cut-off.
end if

If NMODE = 0 then
NLESQ = 0: Marquardt method (recommended in most cases).

NLESQ = 1! Gauss-Newton method.
NLESQ = 2! Conjugate-direction method.

NESD = 0: Standard deviations are estimated by the conventional method.
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NESD = 1! Standard deviations are estimated by Scott’s method.

end if

If NLESQ <=1 then

NAUTO = 0! Refine all the variable parameters simultaneously.

NAUTO = 1! Refine incrementally (specify variable parameters).

NAUTO = 2! Refine incrementally (automatic; recommended in most cases).
NAUTO = 3! In addition to NAUTO = 2, check convergence to the global min.
NAUTO =3

NCYCL = 20: Maximum number of cycles.
CONV = 0.0001: Small positive number used for convergence judgement.

NCONYV = 3: Number of cycles used for convergence judgement.

NC = 0: No nonlinear constraints are imposed.

NC = 1! Nonlinear constraints are imposed.

TK = 5000.0: Penalty parameter.
FINC = 20.0: Factor by which TK is multiplied when TK is increased.

MITER = 6: Maximum number of iterations.

STEP = 0.04: Coefficient to calculate the initial step interval.

ACC = 1.0E—6: Small positive number used for convergence judgement.

end if

If NLESQ <= 1 and NAUTO = 1 then

Parameters to be refined in each cycle plus ’/* {

BKGD,1 BKGD,2 BKGD,3 BKGD,4 BKGD,5 BKGD,6, BKGD,7 BKGD,8 /
CELLQ,1 /

}
end if
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If NLESQ = 2 then
MITER = 6: Maximum number of iterations.
STEP = 0.04: Coefficient to calculate the initial step interval.

ACC = 1.0E—6: Small positive number used for convergence judgement.

NC = 0: No nonlinear constraints are imposed.

NC = 1! Nonlinear constraints are imposed.

TK = 5000.0: Penalty parameter.
end if

If NC = 1 then

# Nonlinear constraints imposed on interatomic distances and bond angles
# For Series numbers of distances/angles, refer to outputs of ORFFE.
Nonlinear constraints {

# Ser.No. Expctd.val. Deviation

}
end if

NUPDT = 0: Variable parameters in the input file remain unchanged.
NUPDT = 1! Variable parameters are updated in the packing mode.

NUPDT = 2! Variable parameters are updated in the overwriting mode.

NFR = 0: No file is created which stores FOURIER data.
NFR = 1! File #21 is created which stores FOURIER data for phase #1.
NFR = 2! File #21 is created which stores FOURIER data for phase #2.

NDA = 0: No file is created which store ORFFE data.
NDA = 1! File #9 is created which store ORFFE data for phase #1.
NDA = 2! File #9 is created which store ORFFE data for phase #2.
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If NDA > 0 then

ORFFE instructions {
201 2 28 }
end if

If NMODE = 0 and NPAT = 1 then

X0 = 6.5: X coordinate of the origin.

Y0 = 7.0: Y coordinate of the origin.

FACFIG = 0.35: Magnification factor for graphic output (0.35 for ND).
INC = 0: Increase per scale division of the ordinate (0 for default).

end if

#**¥¥%%%(End of the input file)******x
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