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0ST)

Abstract. It is known that for SSOR and ILU preconditionings for solving systems of linear equations,

W. JOUBERT t AND E. KNILL t

orderings can have an enormous impact on robustness, convergence rate and parallelism. Unfortunately,
it has been observed that there is an inverse relation between the convergence rate and the parallelism of
typical orderings used in practice. This paper presents some numerical experiments with simple matrices to
illustrate this behavior as well as a new theoretical result which sheds some light on this phenomenon and

also gives an upper bound on the convergence rate of a number of preconditioners in popular use.

Key words. linear systems, iterative methods, preconditioning, incomplete factorizations, incomplete

Cholesky preconditioning, SSOR preconditioning, parallel computation

AMS subject classifications. 65F10, 65F15

1. Introduction. The solution of sparse linear systems of the form
Au=5>

is vital to many computational modeling and simulation processes of interest. Further-
more, it is recognized that parallel computers are necessary to solve very large problems of
importance, necessitating the use of effective parallel linear solver algorithms.

Well-known preconditioners such as incomplete Cholesky and ILU preconditioning which
lie at the heart of many linear solvers have been notoriously difficult to parallelize. ILU
preconditioning with standard natural or reverse Cuthill-McKee orderings are robust and
lead to rapid convergence of the iterative method in many cases, but they are difficult to
parallelize. On the other hand, orderings such as red-black or multicolor orderings, though
more parallelizable, in many cases lead to slower convergence. This inverse relation between
parallelism and convergence rate has been observed, for example, by [Duff/Meurant].

The purpose of this paper is to examine the validity of this claim in more detail by the
use of numerical experiments. We will also present a result for an important prototypical

* This work was supported in part by the Department of Energy through grant W-7405-ENG-36, with
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T Scientific Computing group, Los Alamos National Laboratory, Los Alamos, NM 87545. E-mail

wdj@lanl.gov



2 W. JOUBERT, E. KNILL

model problem showing that a number of preconditionings, including multicolor IC and

g ©E i.‘.;‘ S‘Sé:ﬁa which have high parallelism, can only improve upon the unpreconditioned case by

»

o

a ﬁoqstant factor for very large problem sizes. Such convergence behavior is qualitatively

worse than, say, MILU preconditioning with natural ordering, for which the improvement

L

. sps :
1": ober the unpreconditioned case grows as the problem size grows.

The arrangement of this paper is as follows. In Section 2 we give numerical experiments
to examine the relationship between convergence and parallelism of preconditioned iterative
methods with orderings. Then in Section 3 we give the new result on the asymptotic

performance of various preconditioners.

2. Numerical experiments with small matrices. In principle, it would be desir-
able to extend the study of [Duff/Meurant] to test all possible orderings of unknowns for
simple model problems. Unfortunately, the number of orderings of unknowns grows expo-

nentially with the number of unknowns for certain simple model problems of interest such as
those of [Duff/Meurant]; thus, such a calculation is not computationally feasible. Nonethe-

less, looking at the performance of preconditionings under various orderings for very small
cases, for which it is computationally feasible to examine all orderings, may give some clues
as to what factors are key in controlling the performance of these methods.

For these experiments we will consider matrices derived from the 2-D Laplace equation,
—Ugg — Uyy =0

on a rectangular domain, with homogeneous Dirichlet boundary conditions. The problem
is discretized with standard central finite differences with (n; + 1) x (n, + 1) grid points,
leading after elimination of the boundary unknowns to a matrix with five nonzero diagonals
(before reordering), with 4’s on the main diagonal and -1’s as the other nonzero entries of

the matrix.

For simplicity of analysis, we use the SSOR preconditioner,
Q =[w/(2-w)[(1/w)D + L)D™{(1/w)D + U],

with relaxation parameter w = 1 (symmetric Gauss-Seidel). Here, A = D + L + U is the
decomposition of A into main diagonal, strictly lower triangular and strictly upper triangular

matrices, and the preconditioned system to be solved is

Q 1Au=Q b
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The SSOR and SGS preconditioners have an identical structure to the no-fill incomplete
Cholesky ordering for this case, and the SSOR and M/IC methods involve similar conver-
gence and parallelism issues.

These experiments are performed on a Sun workstation with 64-bit IEEE floating point
arithmetic. For each preconditioner, the preconditioned matrix is formed as a dense ma-
trix, and the condition number is calculated from the extremal-eigenvalues as computed by
LAPACK routines. For a given choice of n, x n,, we compute all possible orderings of the

unknowns, and for each ordering, apply the ordering to A, precondition, and then compute
the resulting condition number.

The naive approach to enumerating all possible cases is to generate all [(nzn,)!] permu-
tations of the numbered grid points. However, many redundancies exist in such an approach,
in the sense that, as is known [Young], two different orderings can lead to an identical pre-
conditioner. Furthermore, other symmetries exist due to the nature of the model problem
(regular grid, constant coefficients).

To enumerate the possible orderings without redundancies of preconditioner, we use
the following approach. For any pair of grid points in the grid which are horizontally or
vertically adjacent, one might draw a small arrow from one point to the other to indicate the
relative priority of which point is ordered or updated before the other. This approach gives
rise to 2n=(ny=1)+ny(n=~1) different cases, since each arrow has a choice of two directions.
This enumeration has exponential order, considerably better than the factorial order of the
naive approach.

From these cases, it is necessary to eliminate each case that has a “cycle,” i.e., a path

through the grid that starts and ends at the same point. After this is done, it is easy to see

that an ordering can be associated with each case: for the given case, recursively a point

is found with all out-arrows and that point is numbered and eliminated. Furthermore, this

scheme covers all possible cases according to [Young]. Note that this scheme confirms that
the number of orderings producing distinct preconditioners is, at most, exponential in the
number of grid points.

Since the problem is regular and has constant coefficients, redundancies due to reflections
in z and y may be removed. If n, = ny, then redundancies from exchanging = and y may
also be removed.

The resulting set of orderings still has some redundancies which may be removed, associ-
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ated with the fact that if the ordering is reversed, the condition number of the preconditioned

matrix is unchanged.

These calculations are summarized in Table 1 for a set of small grids. The final column

of the table is generated empirically by counting the number of unique condition numbers

W. JOUBERT, E. KNILL

which are generated by the code.

Nz |ny| 1z -ny | (ngny)! |27y D+~ 4 ypdate pat|# update pat|# cond
# points| # perms # update pat no cycles | no cycles/refl
1] 1 1 1 1 1 1 1
1] 2 2 2 2 2 1 1
1] 3 3 6 4 4 3 2
1] 4 4 24 8 8 4 3
11 5 5 120 16 16 10 6
1] 6 6 720 32 32 16 10
1y 7 7 5040 64 64 36 19
1} 8 8 40320 128 128 64 36
1] 9 9 362880 256 256 136 69
1110 10 3628800 512 512 256 135
1111 11] 39916800 1024 1024 528 261
1(12 121 479001600 2048 2048 1024 527
1113 1316.227020e09 4096 4096 2080{ 1030
1{14 14]8.717829¢10 8192 8192 4096| 2053
1115 15|1.307674e12 16384 16384 8256 3992
1|16 16(2.092279¢13 32768 32768 16384| 7706
1117 17|3.556874e14 65536 65536 32896 —
1{18 18(6.402373e15 131072 131072 65536 —
1{19 19(1.216451e17 262144 262144 131328 —
1/20 20(2.432902e18 524288 524288 262144 —
2] 1 2 2 2 2 1 1
2| 2 4 24 16 14 3 3
2|l 3 6 720 128 98 28 17
2| 4 8 40320 1024 686 175 101
2] 5 10 3628800 8192 4802 1225 639
2| 6 12| 479001600 65536 33614 8428| 4308
2| 7 1418.717829¢e10 524288 235298 58996 —
2| 8 16]2.092279¢13 4194304 1647086 411943 —
3[ 1 3 6 4 4 3 2
3| 2 6 720 128 98 28 17
3 3 9 362880 4096 2398 345 168
3| 4 12| 479001600 131072 58670 14839 7409
3| 5 15]1.307674el12 4194304 1435414 360933 —
4| 1 4 24 8 8 4 3
4] 2 8 40320 1024 686 175 101
41 3 12| 479001600 131072 58670 14839 7409
41 4 1642.092279¢e12 16777216 5015972 627829 —
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Table 1. Number of distinct orderings for small problems.
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Figure 1. Path length vs. condition, grids 1x2, 1x3, 1x4.

2.40

2,20

2.00

4
2
o

Ind
N
o

g

1.60

1.40

1.20

2 3 4 s

Figure 2. Path length vs. condition, 1x5 grid.

] 7 8 9 10 1M
Number of Parallel Steps

12

13

14

1s

16

Figure 3. Path length vs. condition, 1x6 grid.

6 7 8 9 10 n
Number of Parallel Steps

12

13

14

1S

16



Condition of Preconditioned System

Condition of Preconditioned System

Condition of Preconditioned System

2.40

2.00

1.80

1.60

1.20

1.00

2.00

180

1.60

1.40

2.40

220

2.00

W. JOUBERT, E. KNILL

" ¥
F3 = o
e e S
2 3 4 S 6 7 8 =] 10 11 12 13 14 1S 16
Number of Parallel Steps
Figure 4. Path length vs. condition, 1x7 grid.
- E <+
2 3 4 S 6 7 8 o 10 11 12 13 14 1S 16
Number of Parallel Steps
Figure 5. Path length vs. condition, 1x8 grid.
e ——
=3 -3 . oy
_ k3 £33 =3 +
2 3 4 5 6 7 8 9 1 11 12 13 14 15 16

Number of Parallel Steps
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Figure 7. Path length vs. condition, 1x10 grid.
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Figure 9. Path length vs. condition, 1x12 grid.
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Figure 12. Path length vs. condition, 1x15 grid.
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Figures 1 through 20 give results of these numerical experiments for a variety of small
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matrices. For each case, the number of parallel steps (“wavefronts,” “independent sets” or
“colors”) induced by the ordering is given on the horizontal axis, and the condition number
of the preconditioned system is given on the vertical axis.

We may draw several conclusions from these experiments:

1. As would be expected, larger problem sizes lead to generally larger condition num-
bers as well as more orderings and potentially more parallel steps.

2. In every case, the worst performer in terms of condition number is the red-black
ordering (and equivalent orderings), which has higher condition number than any
other ordering.

3. In every case, the best performer is the natural lexicographical ordering (which in
this case is equivalent to reverse Cuthill McKee). In fact, this ordering is even
slightly better than orderings with more parallel steps, such as the spiral or snake
orderings.

4. The general trend of [Duff/Meurant] is confirmed, that, generally, the more parallel
orderings give larger condition numbers than the less parallel orderings, though

there is much variability around the general trendline.

5. It is possible to have slightly more than two parallel steps and have much better
performance than the red-black ordering. On the other hand, there are three-color
orderings which perform nearly as poorly as two-color orderings.

6. Some orderings with the largest number of parallel steps perform nearly as well
as the natural ordering. However, in some cases such orderings perform poorly.
Therefore, a large number of parallel steps is not necessarily a guarantee of very
fast convergence.

7. The “lower envelope” on data values for low numbers of parallel steps seems to form
a decreasing lower bound on the condition number as the number of parallel steps

increases. This suggests the result of Section 3.
The convergence behavior of these methods is often analyzed in terms of the remainder
matrix R = A — Q. Note that the model problem has constant main diagonal; thus, we

may scale A to have D = I without changing the performance of the methods. In this case,
Q@=(I+L)I+U), and thus R=-LU.

Though it is unclear whether a tight relationship holds between the size of R and the

condition of Q7' 4, it has been observed that the squared Frobenius norm ||R]||% and the
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condition & are related. In fact, Figure 21 gives a scatter plot relating these two values for

the case of the 3x3 grid, and the correlation is almost perfectly linear. In turn, large con-
tributions to ||R||% are made by “incompatible nodes” [Doi/Lichnewsky] or “non-naturally
ordered nodes” [Eijkhout], which gives some indication of how the orderings impact the

convergence rate.

3. Theoretical limitations on the performance of sparse preconditioners. The
empirical results of the previous section suggest that it may be possible to put a lower bound
on the condition number of the preconditioned system based on the number of parallel steps
implied by the ordering. The theorem presented in this section does just this. It is based on
the observation that if an ordering has a small number of parallel steps, this in fact puts a
limit on the sparsity of Q, i.e., the maximal number of nonzeros per row. By showing that
the condition number of a preconditioned system for which Q’s nonzeros per row is bounded
independent of problem size is bounded below, we are able to show the desired result, and
at the same time show a convergence rate for other preconditioners such as certain sparse
approximate inverse methods.

Let us begin with definitions. Let Amin(M) and Apmez(M) be the extremal eigenvalues
of any matrix M with real spectrum. Let the quantity £(M) = Amaz(M)/Amin(M) be the
spectral condition number of M.

The following result applies to d-dimensional regular Laplace equations such as those

described in the previous section.

Theorem. Let d, n > 1. Let A, be the square sparse matrix of dimension n defined by
efAp1e;=1for1<i<nandefdni€i41 = eip1An16i = —1/2for 1 < i< n—1, with all

other elements of A, 1 equal to zero. For fixed d let

d
1 i
Apa= '('l' Z[ j=11In] ®An,1 ®[®?=,-+1In].
=1

Let M, 4 be any symmetric matrix such that each row of My, 4 has no more than b entries,
for some b > 1. Then there exists a constant C > 0 independent of n such that foralln > 1,
k(Mp,aAn,q) = Cn?.

Proof: Since the eigenvalues of My gAn,q and A;/ ZMn,dA:,{ ? are the same, we may equiv-

alently consider n(A;{ jMn,dA,lﬁ). By constant scaling, it is enough to consider Mn,q

such that Amaz(A},{f,Mn,dA},{ 3) = 1. Thus it is sufficient to show that for such M, 4,
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Amin( 43 M a73) < [1/C1/r2.

First we will show that for such My 4, [| M, 4|| is bounded independent of n.

Let us examine the eigenvalue decomposition of A, 4. Let Vo, = {sin(wkf/(n+ 1)}
and Dy = [\/(n+1)/2)L. Let Vo1 = Vo1 D7L. Let Via = @&, V. Note Ap gV g =

Vn,dAn,d, where

d
An= 5 S (O] Ot OI@cisls]

i=1

and An,; = diag{(1 — cos(kn/(n +1)))/2}2.,. Also, Vi 4Vn,a = I. Thus,
ALV M aVoahy G = Vs A0, 4 A2, 4.

Note that An,q is a diagonal matrix whose entries are [1/2] - [1/(2d)] ELI cos(k;m/(n+1)),
for1<k;<nand1<i<d.
Let ¢ = (1/2)(4b)~2/¢. Note 0 < ¢ < 1. Let [®LI) = Fog+ Ghn,4, where Fp, 4 =

®?=1Fn,1 and
Foy = [ for 0} :
' 0 0
where I, is the identity matrix of size |en]. Note 0 < len] <en < |en| +1 < n, and the
rank of F, 4 is |cn|?. Then
GraVi.aMndVadGna = Gy oh L LV A oM s L3V i G (1)

Note also

—1/2 2 _ 2
Wna”Crall® = G T T D7 T )

2 2

< (1 = cos(enn/(n + 1)) s (1 — cos(em/2)) =G

is bounded independent of n, thus the 2-norm of the right hand side of (1) is bounded by

Ci, independent of n.

Now

Vn,de,,dV,:dMn,an,dGn,dV,f,d = Vna(lna — Fn,d)V,:dMn,an,d(Ind - Fn,d)V,f,d

= Mnd— [vn,an,dV,:d]Mn,d - Mn,d[Vn,an,dv;,d]
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+[Vn,aFrn,a Vi al M al Ve, a P aVin 4] (2)

Note that I7n,d has entries of magnitude bounded by (1/2/(n + 1))¢. From this it follows
that

lle3 U aFrdll < y/Len]4(2/(n + D) < (V20

for any i. Similarly, ||F,,,dl7n*,de,-|| < (v2¢)?. Since V,, 4 unitary, we have |]e;‘Vn,an,dV,;“,d|| <
(v2¢)¢, and furthermore ||Vn,an,dV,f’deil| < (V2¢)4.
Thus, from (2),

le} Ma,ae5] < (2(v20)* + (20)) | Mall + C1 < 3(V2)H||Mal| + Cy

for any 4, j. Thus there are symmetric matrices Mn,d and Mn,d of the same sparsity pattern

as M, 4 whose entries are bounded in magnitude by 1 such that
Mg = 3(vV20)4|| My al| M a + C1 M a.
But by Gershgorin’s theorem, || My, 4|| and || My, 4|| are each bounded by b. Thus
1M, all < 3(v/2¢)%bl| Myl + Crd.
This implies
[1Mn,all(1 ~ 3(v2¢)b) < C1b.
By definition of ¢, this implies
| M al| < 4C1b,

50 ||Mp,4|] is bounded.

Let v, = Vi, o[ @2, e1], the (normalized) eigenvector of Ap, g corresponding to the small-

est eigenvalue. Then

Amin(AL 2 My g AYS) < v A IM, gAY S0,

1 - cos(7/(n + 1))
2

_ 1—cos(n/(n+1))

9 U:;Mn,dvn <

[1M,4l-

By Taylor’s theorem,

1 —cos(m/(n + 1)) w2 < t
2 T 4n+1)2| = 8n+ 1)t
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Thus forn > 1,
1/2 1/2 L
mm(An aMnaAlD) < mlan dll < & 2||Mn,d||-

Since /\ma_.,,(A Mn dAl/ 2) =1 and since || My, 4| is bounded independent of 7, the result

is shown, with

_13(1 — cos(m/(4(40)*/%))).

Note that in fact the following bound holds, for ¢ = (1/2)(4b)~2/¢:

(2(\/_)‘1 + (2¢)4)b 1 — cos(enn/(n + 1))
1 —cos(w/(n + 1))

K’(Mn,dAn,d) >

_13(1 — cos(m/(4(46)%/¢)))n?.

Table 2 shows some representative values of the lower bound of the condition number using

this tighter bound. It is assumed here that the number of elements of A, 4, i.. nd, is 10°.
Note that the condition numbers for the unpreconditioned systems for d = 1, 2 and 3, given
by (1+cos(n/(n+1)))/(1—cos(n/(n+1))), are 4.0528¢ +17, 4.0531e + 08 and 4.0610e+ 05,
respectively, suggesting that the bound is weak.

Tables 3 through 5 give upper bounds for the condition number for the preconditioned
system using the optimal preconditioner for a given sparsity pattern. The values are based
on Chebyshev polynomial preconditioning of the original matrix. These figures are based
on the fact that the associated spectral radius for degree-k polynomial preconditioning
is given by 1/cosh((k + 1)log((v/x — 1)/(v/& + 1))), where & is the condition number of
the original matrix. Again, the difference between the lower and upper bounds is fairly
substantial, indicating that the bounds are weak, though the asymptotic behavior of the
bounds indicate that such preconditioning can only improve the condition number of the

system by a constant amount irrespective of the problem size.
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bound, d=1

bound, d = 2

bound, d =3

© 0~ O ULk W =IO

4.269030439932792e+14
1.430439665228187e+-13
1.925644271241498e+-12
4.619345477052554e+11
1.523435542232577e+11
6.148513730152788e+10
2.853345519941855¢e+10
1.466832767451235e+-10
8.1564236430678563e+-09
4.821776956584233e+-09
2.997389479188783e4-09
1.941852206587198e+-09
1.302438301834628e+09
8.997768525540059¢4-08
6.376457374211799¢+4-08
4.620233028072453e+-08
3.413660263764376e4-08
2.566144242327273e4-08
1.959004344586539e--08
1.516342154863592e+-08
1.188449579287516e-+-08
9.420675040977293e+-07
7.545084936784838e4-07
6.100226725721111e4-07
4.974999976031717e+-07
4.089877660773254e+07
3.387161736121851e4-07
2.824468496991656e+4-07
2.370304033552378e+07
2.001015406729655e+07

6.748544386655379e+-06
9.125899360897805¢--05
2.768998273522413e+05
1.181606700624436e+05
6.090618404239972¢+-04
3.540282128498064¢e+04
2.236437040612905e+-04
1.501735487411991e+4-04
1.056621528182532e+04
7.713852431773913e+03
5.802330105678729¢+-03
4.473628423024728e+03
3.521525491870981e+03
2.821515277786319e+03
2.295393593880919e-+-03
1.892352481355578e+-03
1.578406337283923e+03
1.330236426188525e+-03
1.131480641219106e+-03
9.704278090094737e+02
8.385455934108473e+02
7.295177085026331e+02
6.386004785643117¢-+-02
5.621843546788020e+02
4.974897717065060e+02
4.423527603434260e+-02
3.950715821205910e-+-02
3.542955218269618e--02
3.189432358839651e+-02
2.881421052333836e--02

1.667595146195060e+-04
3.615384676085781e+03
1.442617057436141e+03
7.470629594715116e+-02
4.472971144458266e+4-02
2.937963276729456e+-02
2.057759094330227e+-02
1.510904184372026e-+-02
1.150201295009818e--02
9.009815904167844e+-01
7.222877142738187e+01
5.902222420273417e+-01
4.901254221151281e4-01
4.126234588520582e+-01
3.515094870732632e+-01
3.025492079562255e+-01
2.627785885359187e+-01
2.300755825865897e+-01
2.028905490699708e+-01
1.800717759966682e+-01
1.607497414330090e+-01
1.442586326643019e4-01
1.300820699191690e+-01
1.178148956451273e+-01
1.071358361418229¢e+-01
9.778765199218023e+-00
8.956263044489959e+-00
8.229120156699228e-+-00
7.583473584101552e+-00
7.007829699144931e+-00

Table 2. Lower bound on condition number.
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b bound

1 | 4.05284735379920e+17
3 1 1.01321183844980e+17
5 | 4.50316372644356e+15
7

9

2.53302959612450e+15
1.62113894151968e+-15
11 | 1.12579093161089%e+15
13 | 8.27111704856980e+15
15 | 6.33257399031125e+15
17 | 5.00351525160395e+15
4.05284735379920e+15
21 | 3.34946062297455e+15
23 | 2.81447732902722¢+15
25 | 2.39813452887527e+15
27 | 2.06777926214245¢+15
29 | 1.80126549057742e+15
31 | 1.58314349757781e+15
33 | 1.40236932657412e+15
35 | 1.25087881290099%+15
37 | 1.12267239717429e+15
39 | 1.01321183844980e+15

41 | 9.19013005396645e+14

Table 3. Upper bound on condition number.

= b e e b e e el e bl b jed b el e el el e O
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©

b bound
1] 4.05310363247520e--08
5 | 1.01327592341674e--08
13 | 4.50344857177101e+07
25 | 2.53318985465594e+-07
41 | 1.62124153061923e+4-07
61 | 1.12586219459801e4-07
85 | 8.27164079201994e+-06
113 | 6.33297513785550e--06
145 | 5.00383234611387e+06
181 | 4.05310432678792e-+06
221 | 3.34967311412197e+06
265 | 2.81465598721645e+4-06
313 | 2.39828685651837e+4-06
365 | 2.06791069781018e+-06
421 | 1.80138007170369e+-06
481 | 1.58324428415013e+06
545 | 1.40245868091822e+-06
613 | 1.25095858666467e+-06
685 | 1.12274406310617e+06
761 | 1.01327658188175e4-06
841 | 9.19071791570317e+05

Table 4. Upper bound on condition number.
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b bound
1 | 4.06095042652602e+05

7 | 1.01524260664692e+05

25 | 4.51222640004881e+-04
63 | 2.53815651686360e+04
129 | 1.62444417103714e4-04
231 | 1.12810660056218e+-04
377 | 8.28830700103547e+03
575 | 6.34589130201644e+-03
833 | 5.01417749465436e+4-03
1159 | 4.06161044298305e+-03
1561 | 3.35681855421417e+-03
2047 | 2.82076652356833e+-03
2625 | 2.40359199612413e+-03
3303 | 2.07257678042185e+-03
4089 | 1.80553059688894e+-03
4991 | 1.58697286489927e--03
6017 | 1.40583756528113e+03
7175 | 1.25404442352200e+03
8473 | 1.12558189486907e+-03
9919 | 1.01590267229735e+03
11521 | 9.21515664198286e+4-02

Table 5. Upper bound on condition number.

QOO LWW L LWWWWWWWWWWLWwWwwow wa

The following result allows us to leverage the previous results for application to a larger

class of matrices of interest, in particular, matrices which are spectrally equivalent to those

of the previous theorem.

Theorem. Let d, n > 1. Let Ap 4 and My g be defined as in the previous theorem. Let

B4 be any symmetric positive definite matrix of dimension n¢ such that (B, LA,.4) is
bounded independent of n. Then there exists a constant C' > 0 independent of n such that
for all n > 1, k(Mp,aBn,a) > C'n?.

Proof: Note that for any symmetric nonsingular A, B and M,

v*Av v*Av ax v* By
————— <max m
v*M~ly — v v*Bv v v*M-ly

Amaz(MA) = max = Amaz (B~ A)Amaz (M B),

v*Av > mi v*Av . v*Bv
—————— > min min
v*M-ly =™ v v*Bv v vMly

/\min(MA) = ngn = Amin(B—lA)Amin(MB),

thus (M A) < £(B~*A)x(MB). Therefore, (Mp,aBn,q) 2 (C/&(B 4Axr,q4))n?, giving the
result. M

This result applies directly to discretized differential operators that are spectrally equiv-
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alent to the diffusion operator in d dimensions. Consider the boundary value problem

> e ule) = /@), se0=[0,1),

=1
u(z) = g(z), =€ 9.

Suppose this is discretized by central (2d+-1)-point finite differencing. Then setting ¢;(z) =1
gives rise to the matrix described in the first theorem. Furthermore, under appropriate
conditions on ¢;, the resulting matrix B, 4 satisfies the conditions of the previous theorem.
The result for such matrices is that any set of sparse preconditioners M, 4 satisfying the

given sparsity properties must necessarily give condition number growth order n?, whose

growth rate is no better than that for the unpreconditioned system.

We will now prove a sequence of results to apply the above theorems.

Corollary.(Sparse Approximate Inverses.) Let d, n > 1. Let B, 4 be defined as previously.
Let My,q be a matrix whose sparsity pattern £(Mp,q) satisfies S(M,, 4) = UL o Z (4L ), for
a fixed value of & > 0. Then there exists a constant C' > 0 independent of n such that for
all n > 1, k(Mp,gBpa) > C'n?.

Proof: Let by be the maximal number of nonzeros per row of My, 4. Note bgr < (2k+1)9.
The number b4,;. denotes the number of nodes in the graph corresponding to X(Ap, 4) that
can be traversed in no more than k steps. This satisfies the recurrence bar = ba—1,x +
2307 ba-1,:- In particular, by ; = 2k +1, by = 2k(E+ 1) +1, and bsx = 2k + 1+ 2k(k+
1)(2k+1)/3. m

Corollary. (Polynomial Preconditioning.) Let d, n > 1. Let B, 4 be defined as previously.
Let M, 4 be a polynomial of degree no greater than k in B4, for a fixed value of k£ > 0. Then
there exists a constant C' > 0 independent of n such that for all n > 1, &(Mp,4Bp q) > C'nl.

Proof: The number of nonzeros per row has bound equal to that for the previous corollary.
| |

Corollary. (Factorized Sparse Approximate Inverses.) Let d, n > 1. Let B, 4 be defined
as previously. Let L, 4 be a lower triangular matrix whose sparsity pattern is any subset
of ULoZ(AL ), for a fixed value of k& > 0. For any diagonal matrix Dpg let M4 =
Ln,an,dL;, 4- Then there exists a constant C' > 0 independent of 7 such that for all n > 1,
k(Mp,aBp 4) > C'n2.
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Proof: The number of nonzeros per row of My, 4 is bounded by [(2k+1)4]%. A tighter bound
is given by 2k+1 (d = 1) (sharp), (k*+k+1)? (d = 2), and (1+k+2k*+k(k—1)(2k—1)/3)?
(d=3). m

Corollary. (Fixed-Size Overlapping Subgrid Preconditioning.) Let d, n > 1. Let By 4 be
defined as previously. Let M, 4 be a sum of block diagonal matrices each of which is an
arbitrary symmetric matrix on a subgrid of the grid and zero elsewhere. The subgrids
may overlap. Let b bound the rank of any of these subgrid matrices, bounded independent
of n. Then there exists a constant C' > 0 independent of n such that for all n > 1,
h:(Mn,dBn,d) > C'n2.

Corollary.(Banded Preconditioning.) Let d, n > 1. Let B, 4 be defined as previously.
Let M, 4 be a banded matrix of bandwidth bounded by b, where b is bounded independent
of n. Then there exists a constant C' > 0 independent of n such that for all n > 1,
k(Mp aBn,a) > C'n?.

Corollary.(IC/MIC/SSOR.) Let d, n > 1. Let B, 4 be defined as previously. Suppose a
2-sided permutation is applied to By, 4, and M,, ¢ represents either IC(0), MIC(0) or SSOR
preconditioning for B, 4. Let £, be the number of “wavefronts,” or parallel steps required
to apply a forward or backward sweep of M, 4, where £, is bounded over n. Then there

exists a constant C’' > 0 independent of n such that for all n > 1, K(Mp 4Bn,a) 2 C'n2.

Proof: Let My 4= (I — L*)"D(I — L)~, for D diagonal and L strictly lower triangular.
Note £,, is the lowest integer for which Lt = 0. To bound the number of nonzeros per
row of My, 4, first note that (I — L)~ = Sl i and L has at most (2d)* nonzeros.
Thus, My, 4 has at most (2d)**~ nonzeros. A second bound may be obtained by noting that
applying (I — L*)™! to a vector can connect a point to neighbors within an enclosing cube
of size 2¢, + 1 points per edge; thus, the number of nonzeros per row of My g4 is bounded
by (2¢,, + 1)%4.

Note for red/black ordering (£, = 2), these tighter bounds hold: 5 (d = 1), 13 (d = 2),
and 25 (d=3). &

Corollary. (Multicolor IC/MIC/SSOR.) Let d, n > 1. Let B, 4 be defined as previously.
Suppose a 2-sided permutation is applied to By 4, and M, 4 represents either 1C(0), MIC(0)

or SSOR preconditioning for By, 4. Suppose the ordering represents a coloring of the graph
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into k independent sets. Then there exists a constant ¢! > 0 independent of n such that
for all n > 1, k(My 4By 4) > C'n?.

Proof: A graph colored with k colors requires k parallel steps to perform a forward or

backward sweep. W

Corollary.(M/IC(k).) Let d, n > 1. Let B,,,q be defined as previously. Suppose a 2-sided
permutation is applied to By,q, and My, 4 represents either IC(k) or MIC(k) preconditioning
for B, 4. Let £, be the number of “wavefronts,” or parallel steps required to apply a forward
or backward sweep of M, 4, where £, is bounded over n. Then there exists a constant C' > 0

independent of n such that for all n > 1, K(Mp,4Bnq4) > C'n.

Proof: A forward or backward sweep connects a point to neighbors as far away as £,,2. Thus

the number of nonzeros per row of My, 4 is bounded by (2£,2%+1)2%. A second bound on the

number of nonzeros per row, as counted by connections, is (Zf:o (2d)2i) 2 < (2d)26 (241
|

We have shown that for a number of well-known preconditioners, preconditioning can
only improve the iteration count by a constant factor independent of the grid size over the
unpreconditioned case. One can compare this, for example, with MIC preconditioning on
the 2-D Laplace equation matrix with natural ordering, for which the condition is of order
n, rather than order n?. This has to do with the fact that in the latter case, the matrix
M = Q~1, which is intended to approximate the dense matrix A7l is a dense matrix, due
to the fact that the number of parallel steps grows with the problem size, and thus is not
subject to the limitations imposed by the above results for sparse preconditioners.

These results address some questions raised in the paper [Greenbaum/Rodrigue] regard-
ing optimal preconditionings of a given sparsity pattern. In particular, it is shown that for
preconditioners with fixed sparsity pattern, the condition of the preconditioned system must
grow by order n?, regardless of what specific type of preconditioner is used.

For practical problems, one wants the iteration count for the model problem to grow as
n%, with @ > 0 as small as possible. These results show that certain entire approaches to
preconditioning cannot by themselves improve over a = 2—that is, the methods do not fail
to attain a < 2 due to some minor deficiency in how the coefficients are chosen, but it is
due to the intrinsic nature of the approach.

Of course, the constant multiplier in front of n2 may be quite small for these methods,
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and for small to intermediate problem regimes such methods may in fact be the most
effective. Such methods may also have robustness properties that make them more able
to converge than than other “faster” methods which cannot be made to work for larger
problems. Furthermore, it is unclear whether for all modeling and simulation problems of
interest there exist methods for which a < 2, e.g., for unstructured problems with complex
physics, for which the growth rate of n is measured in some appropriate way, e.g., based
on a uniform grid refinement scheme. Thus, the methods described here are by no means
obsolete.

One may ask similar questions for other orderings for SSOR and ILU preconditionings.

Let M, 5 = Qnd = LnaUs 4 for some sparse lower and upper triangular matrices Ly g
and Up,4, and assume that L, 4 and U,q have a bounded number of nonzeros per row
independent of the problem size, and let d > 2 be the dimension of the model problem.

Then there exists a defined by
a=sup{a’ : Jec: 6(Mpn4And) = cn“IVMn,d},

where M, 4 is defined as above. For d = 2 it is known that a < 1, though in general « is

not known, and it would be worthwhile to know what its value is.

4. Conclusions. This paper has examined the effect of preconditioner orderings for a
set of small test problems and has presented a new theoretical result on the limitations of
certain orderings. Further research may shed more light on how orderings impact conver-
gence and may suggest improved algorithmic approaches to solving large linear systems of

interest in parallel.
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