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Abstract

Small changes in container shape or in con-
tact angle can give rise to large shifts of liquid
in a microgravity environment. These shifts can
be used as a basis for accurate determination of
contact angle. We describe container shapes, de-
signed for a forthcoming USML-2 experiment, in
the form of a circular cylinder with two diamet-
rically opposed “canonical proboscis” protrusions.
Computational studies indicate that these contain-
ers can be designed to have the desirable properties
that sufficient liquid will participate in the shift to
permit easy observation, but that the change will
be abrupt enough to allow precise contact angle
determination.

Introduction

When planning space-based operations, it is
important to be able to predict the locations and
configurations that fluids will assume in contain-
ers under low-gravity conditions. For example, one
could be in serious difficulty if one did not know in
advance where the fuel is to be found in a space-
craft’s partially filled fuel tank. Currently available
mathematical theory applies completely, however,
to only a few particular configurations, such as the
partially filled right circular cylindrical container
with the fluid simply covering the base. For such a
configuration, behavior in space is not dramatically
different from what is familiar from common experi-
ence in a terrestrial environment. For more general
containers, however, fluids in reduced gravity can
behave in striking, unexpected ways.

The classical theory, according to the Young-
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Laplace-Gauss formulation, characterizes fluid loca-
tions as equilibrium configurations for the surface-
plus-gravitational mechanical energy. Using this
point of view in a mathematical study, we have
shown that for a cylindrical container of general
cross-section in zero gravity the surface change aris-
ing from small changes in geometry or contact
angle can be discontinuous or “nearly discontinu-
ous”, leading to large shifts of the liquid mass. This
behavior can be exploited as a means for accurate
determination of contact angle.

The principal mathematical result underlying
the behavior is that for particular cylindrical sec-
tions a discontinuous kind of change can be realized
as the contact angle -y crosses a critical value <, in-
trinsic to the container. When « is larger than 7o
there exists an equilibrium configuration of liquid
that covers the base of the cylindrical container sim-
ply, while for contact angles smaller than v no such
equilibrium configuration is possible. In the latter
case fluid moves to the walls and can rise arbitrarily
high along a part of the wall, uncovering a portion
of the base if the container is tall enough. By sim-
ple observation of bulk behavior of the fluid, one
can thereby determine whether the contact angle is
larger than or smaller than the critical value for the
container. A practical challenge in this connection
is to design cross-sections for which a large enough
portion of the fluid will rise up the walls for easy
observation as the critical value of contact angle is
crossed, without the containers being unrealistically
tall, and so that the change will be abrupt enough
to make the contact angle determination precise.

By using two or more containers corresponding
to appropriately chosen values of g, differing, say,
by the accuracy desired for a contact angle evalu-
ation, one can determine the value of the contact
angle to lie within a particular interval. In some
cases, geometries can be “combined” into a single
container for determining such an interval. For our
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Figure 1. Partly filled cylindrical container

with base €.

planned Interface Configuration Experiment (ICE)
on the second Unites States Microgravity Labora-~
tory flight (USML-2), in collaboration with Mark
Weislogel of NASA Lewis Research Center, we con-
join these two approaches.

Governing equations

Consider a cylindrical container of general
cross-section partly filled with liquid, as indicated in
Fig. 1. According to the classical theory, an equilib-
rium interface in the absence of gravity between the
liquid and gas (or between two immiscible liquids)
is determined by the equations

1
divTu=— i, 6))
R,
v-Tu=cosy onkx, 2)
h
where T
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see, e. g., Chap. 1 of Ref. 1. In these equations  is
the cross section (base) of the cylindrical container,
¥ is the boundary of £, v is the exterior unit normal
on ¥, and
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where |Q] and |X| denote respectively the area
and length of Q and 3; u(z,y) denotes the height
(single-valued) of the interface S above a reference
plane parallel to the base, and v is the contact
angle between the interface and the container wall,
determined by the material properties. The volume
V of liquid in contact with the base is assumed
to be sufficient to cover the base entirely, and, for
the mathematical results, the cylinder is assumed
implicitly to be arbitrarily tall so that questions of
behavior at a top do not arise. We restrict discussion
here to the case of a wetting liquid 0 < v < 7/2
(the complementary non-wetting case can be easily
transformed into this one). For v = w/2, the
solution surface is a horizontal plane for any cross-
section.

Wedge container

For a cylindrical container whose section
contains a protruding corner with opening angle 2¢,
as in Fig. 2, the critical value of contact angle is
Yo =% —a For T >+ > (and for fluid vol-
ume sufficient to cover the base) the height u can
be given in closed form as the portion of the lower
hemisphere with center at O meeting the walls with
the prescribed contact angle y. Thus the height is
bounded uniformly in v throughout this range. For
0 < v < 79, however, the fluid will necessarily move
to the corner and rise arbitrarily high at the vertex,
uncovering the base regardless of fluid volume. The
behavior for the wedge domain is thus discontinu-
ous at v = . Background details and historical
discussion of this behavior are given in Refs. 1, 2,
3, and references cited there. Procedures for deter-
mining contact angle based on the phenomenon can
give very good accuracy for larger values of 7y (closer
to 7/2) but may be subject to experimental inac-
curacy when « is closer to zero, as the “singular”

Figure 2. Wedge container section.



part of the section over which the fluid accumulates
when the critical angle 7o is crossed then becomes
very small and may be difficult to observe.

Canonical proboscis container

As a way to overcome the experimental dif-
ficulty, “canonical proboscis” sections were intro-
duced in Ref. 4. These domains consist of a circular
arc attached symmetrically to a (symmetric) pair of
curves described by

z+C = \/Ro® — 3% + Rosino
I V/Ro? — 32 cosp — ysinyo 4
Ro +ycosyo + v/ Ro® — 92 sinyo’

and meeting at a point P on the z-axis, see Fig. 3.
Here Ry, as well as the particular points of attach-
ment, may be chosen arbitrarily. The (continuum
of) circular arcs I'g, of which three are depicted by
the dashed curves in Fig. 3, are all horizontal trans-
lates of one such arc, of radius Ry and with center
on the z-axis, and the curves (4) have the prop-
erty that they meet all the arcs I'o in the constant
angle 7. If the radius p of the circular boundary
arc can be chosen in such a way that Ry is the
value of R, from (3) for the value ¥ = 7o, then the
arcs I'p become extremals for a “subsidiary” varia-
tional problem® (see also Ref. 1, Chap. 6 and Ref.
2) determined by the functional

@ =T - |Z%| cosy + ||/ Ry (5)

defined over piecewise smooth arcs I', where X* and
Q* are the portions cut off from ¥ and £ by the
arcs,, In the case of the section of Fig. 3, &* and
Q* lie to the right of the indicated arcs. It can be
shown®! that every extremal for @ is a subarc of
a semicircle of radius Ry, with center on the side

Figure 3. Proboscis container section showing
three members of the continuum of extremal arcs.

of T exterior to Q*, and that it meets ¥ in angles
> 7o on the side of I within 2, and > 7 — 9 on
the other side of I’ (and thus in angle yp within Q*
whenever the intersection point is a smooth point of
%). It is remarkable that whenever (3) holds, ® =0
for every Q* that is cut off in the proboscis by one
of the arcs T'y; see Ref. 4 and the references cited
there.

In Ref. 4, a value for p was obtained empirically
from (3) in a range of configurations, and it was con-
jectured that the angle 4o on which the construction
is based would be critical for the geometry. That
is, a solution of (1), (2), (3) should exist in  if and
only if v > 9. Additionally, the fluid height should
rise unboundedly as 7 decreases to 7, precisely in
the region swept out by the arcs I'g (the entire pro-
boscis region to the right of the leftmost arc I'y
shown in Fig. 8). For these conjectures, which form
the basis of our proposed procedure and for which
the mathematical underpinnings were proved only
partially in Ref. 4, complete mathematical proofs
have been carried out. Specifically, it has been es-
tablished that 2 unique value of p can be obtained
for any specified proboscis length and that the con-
jectured behavior of the fluid rise is the only one
possible.

In Ref 7 numerical solutions of (1), (2), (3)
are depicted for some canonical proboscis contain-
ers. Although the fluid rise in the corner is not
discontinuous as occurs for a planar wedge, it can
be “nearly discontinuous” in that the rise height in
the proboscis is relatively modest until y decreases
to values close to 7o, and then becomes very rapid
at 7= 7. Furthermore, since the proboscis can
be made relatively as large a portion of the sec-
tion as desired, the shift can be easily observed for
a broad range of 9. Through proper choice of the
domain parameters for the cases considered, an ef-
fective balance can be obtained between conflicting
requirements of a sharp near discontinuity (for ac-
curate measurement) and a sizable volume of fluid
rise (for ease of observation).

Double proboscis container

For the USML-2 experiment, double proboscis
containers will be used. These containers are similar
to the single proboscis one of Fig. 3, except that
there is a second proboscis diametrically opposite
to the first, in effect combining two containers into
one. The values of 9 in (4) generally differ for
the left and right proboscides, whose values of g
we denote by vz and g, respectively. Similarly,
we denote the values of Ry for the left and right
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proboscides by Rz and Rpg. In order for (3) to be
satisfied for both proboscides, there holds

Rpcosyg = Ry cosyr.

Specifying the desired points of attachment and
choosing p, the radius of the circular portion of
the section, so that (3) is satisfied then yields the
container section. (Such a p can be chosen for
the cases considered here, but a proof that such a
choice is possible for any proboscis lengths has not
yet been carried out for the double proboscis case.)
The critical value for the container is the larger of
~r and yg. For the containers considered here, we
shall take yr > 71, so that the critical contact angle
vo for the container is equal to vz.

The upper half of the sections for the experi-
ment, superimposed on one another, are shown in
Fig. 4. The sections have been scaled so that the
circular portions all have radius unity. The meeting
points of the vertices with the z-axis are, respec-
tively, a distance 1.5 and 1.6 from the circle center.
For the sections depicted in Fig. 4 the values of 7y,
and yr are respectively 20° and 26° for the upper-
most section, 30° and 34° for the middle section,
and 38° and 44° for the lowest section.

For these containers the explicit behavior has
not yet been determined mathematically in complete
detail, as it has for the single proboscis containers.
However, numerical computations discussed below
and the known behavior of the single proboscis
solution surfaces suggest that the behavior will be
as follows: For contact angles v > 7y, as <y decreases
to -y the fluid will rise higher in the right than in the
left proboscis, with the rise becoming unbounded
in the right proboscis at <9. For contact angles
between 7z and vz the fluid will rise arbitrarily
high in the right proboscis, but the height in the left
will still be bounded. For smaller contact angles the
fluid will rise up both proboscides arbitrarily high.
By observing the liquid shift, one can then bracket
the contact angle relative to the values of 7 and
~r. For a practical situation in which the container
is of finite height with a lid on the top, the fluid will
rise to the lid along one or both of the proboscides
in the manner described above (providing the fluid
volume is adequate).

The selected values of vz, and g for the three
containers are based on the value of approximately
32° measured in a terrestrial environment for the
contact angle between the experiment fluid and
the acrylic plastic material of the container. The
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Figure 4. Three superimposed double proboscis
container sections. From uppermost to lowest, the
pair of values of g for the left and right proboscides
of each section are 20°/26°, 30°/34°, and 38°/44°.

spread of values of contact angle covered by the
three containers is intended to allow observation of
possible effects of contact angle hysteresis, which is
not included in the classical theory.

Numerical results

Egs. (1), (2), (3) were solved numerically for
the three double proboscis container sections de-
picted in Fig. 4, for a range of contact angles 7,
to obtain details of the anticipated fluid behavior.
The adaptive-grid finite-element software package
PLTMG® was used for computing the numerical solu-
tion. As input to the package, which accepts linear
or circular-arc boundary segments, the proboscis
portions of the boundary were approximated by
piecewise-linear segments. The circular-arc portions
could be represented as such.

To speed the computation, only the upper half
domains shown in Fig. 4 were input to PLTMG, with
reflective symmetry boundary condition v- Vu =0
in place of (2) along the symmetry line. Solutions
were normalized by taking u = 0 at the center of
the unit circle portion of the domain boundary.

The numerically calculated solution surface
u(z,y) for (the upper half of) the 30°/34° do-
main is shown in Fig. 5 for four values of contact
angle, 60°, 50°, 40°, and 35°. (The critical value
for the domain is 9 = 34°.) The three-dimensional
views of the surface are color-shaded by PLTMG to
indicate contour levels, grayscale versions of which
are shown in the figure. The viewpoint for each
surface is the same. Generally, the computations in-
dicate that as -y decreases toward the critical contact
angle, fluid moves toward and up the two proboscis
walls, with the local maximum heights, as calcu-
lated by the program, at the proboscis tips. The
heights at the right are higher than the correspond-
ing ones at the left. The surfaces for the 20°/26°
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and 36°/44° proboscis domains behave similarly.

The apparent jump discontinuity in the solu-
tion height at the reentrant corners occurs in the
computed solutions for contact angles smaller than
a certain value, depending on the domain. (For
the solutions depicted in Fig. 5 compare the sur-
face for 60° with the others.) Such discontinuous
behavior for solutions of (1), (2), (3) at reentrant
corners has been characterized mathematically for
certain domains in a recent study.® The effect of
this behavior on the numerical computations in
PLTMG was evidenced in the adaptive mesh re-
finement. Higher levels of refinement concentrated
nodes in the neighborhood of the reentrant corners.
Thus with the approximately 6000 nodes to which
we limited the computation, relatively fewer nodes
were distributed elsewhere in the domain than was
the case when the discontinuities were not present.
The estimate of the L? norm of the error given by
PLTMG was, nonetheless, the order of 10~2 or less
in all cases. Based on comparison of numerical solu-
tions for problems with the number of interior mesh
nodes varying from 2000 to 6000 and the number of
piecewise-linear segments approximating each pro-
boscis varying from 20 to 30, we estimate that the
errors in the values of the maximum heights and
volumes in Fig. 5 to be less than about 3%.

The heights at the proboscis tips are shown as
a function of v for the three domains by the solid
curves in the left of Fig. 6. The volume of the liquid
rising above the minimum point of the surface is
depicted on the right. The calculated data, which
are denoted by “+” for the right proboscis and
“0)” for the left, are connected by interpolating
linear segments. For each container, the leftmost
calculated point is for a value of -y that is 1/2 degree
greater than the critical value. At the critical values
v = (26°, 34°, and 44° respectively), denoted by
the arrows, the right tip heights and the volumes
would become infinite. Four of the calculated points
for the 30°/34° domain are the ones corresponding
to the surfaces shown in Fig. 5.

For comparison, the dashed curves in the left
of Fig. 6 show the rise height at the boundary for a
circular domain with no protrusions, for which the
solution is the lower spherical cap

u(z,y) = (1 — /1 — (22 + y?) cos? ')') secy,

which has its minimum at the origin and maximum
(secy — tan+y) at the boundary.

One sees that the rise heights in the containers
are modest until v gets close to the critical value.
Fig. 6 indicates that by using a container of height 5,
say, one could distinguish between the critical value
~o for the container (fluid in right proboscis rises
to the lid) and a contact angle value one degree
greater (fluid rise height < 5). By using taller
containers one might determine critical values with
even greater precision.

ICE experiment

In addition to the three double proboscis con-
tainers depicted in Fig. 4, the USML-2 ICE exper-
iment has also a wedge container. This container
is constructed to allow the interior wedge angle 2c
(see Fig. 2) to be varied, so as to permit observation
of the wedge phenomenon for both the advancing
and receding cases. It is anticipated that the exper-
iment will indicate to what extent mathematically
predicted behavior can be observed in practice, and
also that it will shed light on effects not included in
the classical theory, such as those associated with
contact-line resistance forces.

Acknowledements

‘We wish to thank Mark Weislogel for numer-
ous discussions and Randolph Bank for his per-
sonal guidance in use of the PLTMG software pack-
age. This work was supported in part by the Na-
tional Aeronautics and Space Administration under
Grants NAG3-1143 and NCC3-329, by the National
Science Foundation under Grant DMS91-06968, and
by the Mathematical Sciences Subprogram of the
Office of Energy Research, U. S. Department of En-
ergy, under Contract Number DE-ACO03-76SF00098.

References

1R. Finn, Equilibrium Capillary Surfaces,
Springer-Verlag, New York, 1986. Russian transla-
tion (with Appendix by H.C. Wente) Mir Publishers,
1988.

2p. Concus and R. Finn, Dichotomous behavior
of capillary surfaces in zero gravity, Microgravity
Sci. Technol. 3 (1990), pp. 87-92; Errata, 3 (1991),
p- 230.

3P. Concus and R. Finn, Capillary surfaces in
microgravity, in Low-Gravity Fluid Dynamics and
Transport Phenomena, J. N. Koster and R. L. Sani,
eds., Progress in Astronautics and Aeronautics, Vol.



20/26 Container

20 40 60
Gamma

30/34 Container

Height

Height

Figure 6. Rise heights at right (+) and left (O) proboscis tips and total volume of rise vs. contact

20/26 Container

2.
215}
5
S 1
0.5
O s N :
20 T 40 60 80
Gamma
30/34 Container
2-
215}
5
S 1
0.5}
O : 2
20 T 40 60 80
Gamma
38/44 Container
2.
e1.5}
5
S 1y
0.5}
0
20

40T
Gamma

angle for the three container sections. v = 26°, 34°, and 44°, respectively, as denoted by the arrows.




130, AIAA, Washington, DC, 1990, pp. 183-206.

4B. Fischer and R. Finn, Non-existence theo-
rems and measurement of capillary contact angle,
Zeit. Anal. Anwend. 12 (1993), pp. 405-423.

5R. Finn, A subsidiary variational problem and
existence criteria for capillary surfaces, J. reine
angew. Math. 353 (1984), pp. 196-214.

6R. Finn and T. Leise, On the canonical pro-
boscis, Zeit. Anal. Anwend. 13 (1994), pp. 443-462.

7P. Concus, R. Finn, and F. Zabihi, On canon-
ical cylinder sections for accurate determination of

contact angle in microgravity, in “Fluid Mechan-
ics Phenomena in Microgravity”, AMD Vol. 154,
Amer. Soc. Mech. Engineers, D. A. Siginer and M.
M. Weislogel, eds., New York, 1992, pp. 125-131.

SR. E. Bank, PLTMG: A Software Pack-
age for Solving Elliptic Partial Differential Equa-
tions, SIAM, Philadelphia, 1994; software avail-
able via Netlib (WWW: http://wuw.netlib.org,
E-mail: netlib@research.att.com).

9K. Lancaster and D. Siegel, Radial limits of
capillary surfaces, to appear.



