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Recent improvements in computer hardware and software for the acquisition,
storage and anaiysis of series of spectra and images allow for a chtige in strategy
for quantitative microanalysis. For example, in the area of X-ray microanalysis,
whereas compositional analysis and elemental distributions have been traditionally
performed using point microanalysis and simple intensity mapping from a ROI,
respectively, the two tasks are now routinely performed simultaneously through X-
ray spectrum-imaging, where full spectra are acquired from pixels in a two-
dimensional array of points on the specimen. Commercially available software now
allows for the acquisition and storage of such spectrum-images, perhaps comprising
as much as 100 MBytes of data or more.l A variety of post-acquisition processing
tools are provided by the developer to allow the extraction of both X-ray intensity
maps, with or without rudimentary background subtraction, or full spectra from
pixels of interest. In order to maximize the extraction of information from these
large data sets, a number of linear and nonlinear methods are currently being
explored that identify statistically significant variations among the series of spectra
without a priori assumptions about the content of the data set.2Among these
methods, linear multivariate statistical analysis (MSA) has a number of significant
advantages, including its comprehensiveness, since all spectral variations distinct
from the Poisson noise level are identified, and its broad applicability to a variety of
rnicroanalytical techniques.3’4MSA also preserves the integrity of the raw data,
since the results of the analysis are not contingent upon input from the analyst ~y ~w~~ ,*>
there is a one-to-one correspondence between the raw data and the MSA results. ~

J#J/89 $%3An application of MSA to a low-voltage EDS spectrum image is shown in Figur
A preliminary analysis has been performed on this semiconductor chip specimen,
where images were acquired using only a portion (1.2 -2.2 keV) of the X-ray Q$!!!J$
spectrum? Data acquisition was performed with a Philips XL30/FEG SEM
equipped with an Oxford super-ATW detector and XP3 pulse processor, and an
EMiSPEC Vision integrated acquisition system. The XL30 was operated at 4 kV
with a 30 pm final aperture. EDS spectra were acquired with a 35° takeoff angle at
-1500 input counts per second and -20% dead time. The 200 x 150 pixel spectrum
image was acquired with 20 nm per pixel, 10 eV per channel, and a 250 ms dwell.
MSA was performed on a 200 channel selection (O.12 – 2.11 keV) of the spectrum
image that includes all relevant characteristic X-ray peaks. A normalized eigenvalue
plot of the first 50 MSA components is shown in Fig. la. The linear variation of the
higher order (210) eigenvalues on the semilog plot is consistent with the variations
of these spectral components arising solely from Poisson statistics. The first nine
eigenvalues have an information value that is distinct from the Poission noise limit.
Fig. 1 shows MSA component spectra (b-d) and images (e-g) corresponding to the
first three eigenvalues. Bright (dark) features in the component images correspond
to strongly positive (negative) characteristic peaks in the corresponding spectra. For
example, the brightest areas in Fig. 1f come from the Si02 dielectric (corresponding
to the strong O-K peak at -0.5 keV), the darkest areas come from the Si substrate
and the W plugs (with negative spectral features between -1.6 and -2.0 keV), and
an’intermediate grey level is displayed by the Al lines (weakly positive peak at -1.5
keV). There is excellent discrimination between the Si substrate and the W plugs in
Fxg. lg, despite the unresolved W-M and Si-K X-rays (separated by -35 eV),
which give rise to the first-derivitive-type feature in Fig. ld. Also evident in Fig. ld
is the higher continuum X-ray intensity excited in the high-Z W plugs.s
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2. CAVITATION

Cavitation is the formationof vaporbubblesin a liquid whose local pressure fhlls below the vaporkdion point for the
ambient temperature of the liquid. It is complementary to the idea of boiling, in which the local temperature rises above the
vaporization point for the ambient pressure of the liquid. Cavitation is a problem for several reasons. As with boiling, it is
turbulent and disrupts attempts to control flows. Also, when the vapor bubbles recondense to Iiqui@ the bubbles collapse
violently, creating damaging shock waves in the liquid.

The cavitation bubble starts its growth from a nucleation site. The bubble forms when the nucleation site in a flowing liquid
passes into a local region of low pressure. Seldom are fluids pure single-phase liquids. The nucleation site might be a
microscopic particle of contamination or a microscopic bubble of the fluid vapor. The fluid usually contains many nucleation
sites with a wide distribution of sizes.

If cavitation simply started whenever the minimum pressure, p, in a liquid flow dropped below the vapor pressure, W, of tRe
flowing liquid, then the prediction of the inception of cavitation would be straightfonvard. However, many physical effects”
cause the actual inception point to be far from that predicted by this criterion. One of the most troublesome is the effect of
surface tension at a nucleation site. Since the liquid can withstand tensions below the vapor pressure, this has to be taken into
account. A microbubble of radius, RN, and surface tensiou S, containing only vapor, is in equilibrium if the liquid pressure is
p =pV– 2S/RN.The liquid pressure must fall below this critical point for cavitation to start. Unfortunately, the liquid contains
a great many nucleation sites having a great many radii. These wuy with the physical situation and with the quality of the
fluid.l Therefore, the onset of cavitation and its precursors must be observed directly.

Air can cause cavitation. Dissolved air will contribute to the partial pressure of the cavitation bubble. As the bubble moves to
a region of higher pressure, the vaporized liquid recondenses and leaves an air bubble remaining. Air is slow to redissolve.l
Thus, one of the things that can go wrong with a cavitation experiment in a test loop is that the air bubbles from the first pass
are not redissolved in the loop. Therefore, the return leg of the test loop must be long enough and at high enough pressure for
the air bubbles to become reabsorbed. Otherwise, the number of nucleation sites will grow rapidly as the experiment runs.

There are several other phenomena that affect bubble formation.2 The first is residence time. The cavitation bubble takes a
finite time to form. Residence time depends on pump size, flow rate, and tempemture; if the cavitation nucleus is in the
region of low pressure for less than the residence time, the bubble will not form. Turbulence causes localized low pressure,
significantly below the mean pressure of the flow, and is often the site of incipient cavitation. This effect is dependent on the
Reynolds number, but is a sepamte effect from the dependency of the pressure coefficient on the Reynolds number. Surface
roughness also creates localized low-pressure perturbations. Localized low pressure is a departure Ilom the simpli&ing
assumption that the pressure is uniform (at average value) through a cross section of the stream.

Practically everything that can be said about the properties of the cavitation bubble is based on the Rayleigh-Plesset equation
(Equation 1).3 The generalized differential equation gives the instantaneous bubble radius, R(t), in response to the driving
pressure fm tlom the bubble, pm(t). The equation is based on a few simpli@ing assumptions that turn out to be quite
reasonable in practice.

The simplifying assumptions include the following. A single spherical bubble is in an infinite liquid domain whose remote
temperature, T., is constant in time. There is no uniform heating of the liquid due to radiation or internal heating. Liquid
density, ~, is assumed constant. Dynamic viscosity, PL, is assumed constant and uniform. The bubble contents are
homogeneous, and the temperature, TB(t), and pressure, ~(t), inside the bubble are independent of location. It is also
assumed that the bubble contains a contaminant gas with a partial pressure, pGO,(given a reference bubble radius &, and
temperature, TJ. Finally, it is assumed that there is negligible mass transfer between the liquid and the contaminant gas.
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The equation is best understood by considering its terms. The driving (first) term depends on the pressure in the liquid far
from the bubble, pJt). The remote vapor pressure of the liqui~ p.T(co), depends only on the liquid and the remote
temperature. The liquid density is a property of the liquid. The second term is the thermal term. If thermal effects are to be
neglected, then TB(t) = T., and PV(TB)-PV(T.) = O. when this term k non-zero, it can greatly affect the growth rate of the
bubble. The third term accounts for the effect of the contaminant gas. The fifth term depends on the kinematic viscosity of
the liqui~ v~. The sixth term depends on the surface tension of the liquid, S.

A consequence of the Rayleigh-Plesset equation is bubble instability. If the bubble is greater than a critical radius, any small
perturbation in pressure will cause it to grow without bound. The critical radius is approximately 4W3(pV-pJ. As the
pressure, pm,drops, the critical radius drops, which means that more nuclei in a given distribution of nucleation site Aii me
induced to cavitate. This is why there is a rapid increase in the number of visible bubbles in a cavitating flow as the pressure
drops!

In the most simplified case, the solution of the Rayleigh-Plesset equation predicts an oscillating response, in which the
contracting part of the bubble oscillation represents a catastrophic collapse. In reality the oscillation does not occur. As the
bubble approaches zero radius, it becomes unstable to non-spherical perturbations; it shatters into a cloud of even smakr
bubbles during the first collapse. This generates powerfid shock waves that produce the AE signature.5 The cloud will then
expand and collapse, and this will also produce powerfid shock waves.6

The collapse of a bubble near a hard surface produces first a microjet directed toward the hard surface and then the collapsing
bubble cloud. Due to its higlL local pressure, the microjet emits noise and causes damage. The collapsing remnant bubble
cloud causes even more noise and damage than the microjet, although the mechanism by which it does so is not understood.’

The natural frequency at which an isolated bubble oscillates in a quiescent liquid can also be determined from the RayIeigh-
Plesset equation? For typical liquids in typical pump environments, the natural frequency is predicted to be between 10 kHz
and 1 MHz. Acoustic pressure varies as the second derivative of bubble volumes

Kumar and Bremen have determined the second-order nonlinear effects for an isolated bubble.g The bubble radius will
oscillate at integral harmonics of the excitation if the excitation is a remote pressure oscillating at a single harmonic
frequency. Because the response varies inversely with the order of the hamnonic, only the first 50 harmonics contribute to the
response. For weak excitation, this model tracks fairly well with a direct numerical solution of the equation presented by
Kumar. More accurate solutions appear in the literature, but Kumar’s is easily extended to bubble clouds.

The AE signature of cavitation noise is broadband and has been subjected to various theoretical and experimental
investigations. It is noteworthy that practically all experimental results are reported as a power spectral density derived from a
Fourier analysis of the experimental data.10 There appears to be no report in the literature of the fine details in frequency
resolution that could be obtained from Bayesian analysis or the transient details that would emerge ffom wavelet analysis.

The conventional understanding of the character of the AE signature is as follows. The dominant frequency of the signature is
related to the natural frequency of the typical cavitation bubble. This is in turn related to the size of the nucleation site, but
there are many nucleation sites throughout a distribution of sizes. There is a critical frequency, t such that ft~c = 1, where
tT& 0.915R&/(pm - pJ] ‘~is the collapse time of the bubble whose most probable nucleation radius is Ro. At the critical
frequency, the power spectral density is highest. Well below the critical frequency, the power spectral density increases as ~.
Well above the critical frequency, the power spectral density decreases approximately as M?. Different researchers have
reported different results for the complex behavior near the critical frequency.

It is noteworthy that in a bubbly liquid medium for frequencies above 200 kHz, the attenuation of the pressure wave is about
5 dB/cm, as compared to 25 dB/cm at the average bubble natural frequency of 100 kHz. Thns, even if the higher fkquency
effects should occur less commonly, they may still be as easy to observe as the low frequency events that start out stronger.
Another way to inteqmet this effect is to note that although most of the energy is genemted near the average bubble natural
frequency, these bubbles act as absorbers. Energy from the collapse of bubbles far away from the average size is smaller, but
since it is not so strongly absorbed, it should be easier to detect.] 1



In a bubbly flow, there is a shock wave. Viscosity will affect the properties of the shock wave and lead to damping effects.
For reasonably low void fractions, the shock wave ringing effect occurs at about half the natural frequency of the isolated
bubble. In the time doma@ at a statiomuy observation point, the shock wave will be perceived as a rising and then damped
nonlinear oscillation. The shock wave contributes to the acoustic signature in cavitating flows.’2

As cavitation becomes severe, the cavitation bubbles cannot be assumed to act independently of each other-a cloud of
interacting bubbles forms.g This is a serious concern because the collapse of the bubble cloud causes considerably more
damage than the collapse of an isolated bubble. The natural frequency of the bubble cloud is a fraction of the individual
bubble. 13Hence, it is expected that the frequency of AE signatures should drop as cavitation becomes more severe.

Thus, cavitation often occurs as an oscillating, flowing bubble cloud. This will have a number of modes and a number of
natural fkquencies, all lower than the natural frequency of an isolated bubble. For a small void fractiorL all the cloud natural
frequencies will be in a narrow range just below the isolated bubble natural frequency. For a large void fiactiorL the cloud
mtural tlequencies will occupy a large range below the bubble natuml frequency. Since damping is strong near the isolated
bubble natural frequency and since the outside of the cloud shields the rest of the world from effects inside the cloud, the
dominant effect in a cloud in a damping medium is the response at the lowest cloud natural frequency. Thus, the response
will be seen as a large peak at the lowest cloud natoral frequency and a smaller peak at the bubble natural frequency, with the
strength and frequency of the cloud response decreasing with increasing void fraction.*4 This means that the AE signature
should exhibit a chirp whose frequency decreases with time.

Note that the foregoing paragraph only describes the linear effects of a bubble cloud in a flow, other effects, at higher
frequencies occur when nonlinear etTects are taken into account. Harmonic cascading is the effect of harmonics at relatively
low frequencies exciting the natural frequencies of smaller bubbles that leads to higher frequency effects. Whereas the
linearized analysis of bubble cloud dynamics showed the lowest cloud mtural frequency as the dominant effect, nonlinear
analysis says that the low-order harmonics of the lowest cloud natural frequency are also strongly present. This can stimulate
harmonic cascading if the fluid contains nucleation sites over a range of small sizes.g

The summary of the foregoing theory suggests that the AE signature shotid be most readily detectable in the 100-200 kHz
band. Fluid viscosity will cause the signature to be damped. Decreasing natural frequency of the bubble cloud with increasing
void-fkaction will cause the signature to chirp downward in frequency. As seen in Section 5, this is exactly what the authors
have observed experimentally.

3. ANTICIPATORY SYSTEMS

Of what use are these signatures? The objective of this research is to develop a system that will anticipate cavitation. The
anticipation is based on the recognition of precursor features in non-cavitating fluid. This strategy is similar to the appeal to
the “Doggie Existence Theorem” in mine detection.ls The argument being that if dogs can detect mines, then the problem is
solvable. A slight generalization of the “Doggie Existence Theorem” is a common justification for the development of
electronic systems that seek to emulate biological cognition. Assuming that biological percepts can be encoded, an electronic
system should be able to emulate the process by which a biological system extracts features from sensory cues to identify the
presence of a suspected effect.

Does the idea of computational emulation of a biological process actually provide a practical basis for a novel approach to
extracting meaning from noisy data? Recent research by Landauer and Bellman suggests that, in principle it does.16
Biological systems process signs and symbols to gain awareness of their environment and their processing skill improves
with experience. They commonly use the data inferred from these symbols to perform classification and grouping and they do
not do so by identiflirzg boundaries between classes. The way that biological systems perform classification suggests that
there exists a semiotic uni&ing principle of classification that is applicable to computational systems.17

Landauer and Belhuan define semiotics as “the study of the appearance (visual or otherwise), meaning, and use of symbols
and symbol systems.” From their examination of classification by biological systems, they conclude that it would require a
radical shift in how symbols are represented in computers to emulate the biological classification process in hardware.
However, they argue that semiotic theory should provide the theoretical basis for just such a radical shift. Landauer and
Bellman do not claim to have discovered the uni&ing semiotic principle of pattern-recognition but they suggest that it must
be inductive in character.18



Indeed, the development of a unified inductive-learning model is the key to artificial intelligence.1g>20Induction is defined as
a mode of reasoning that increases the information content of a given body of data. The application to pattern-recognition in
general is obvious. An inductive pattern recognize would learn the common characterizing attributes of all (possibly
infinitely many) members of a class from observation of a finite (preferably small) set of samples from the class and a finite
set of samples not from the class. The problem arises due to the fact that none of the commonly used “learning” paradigms
(neural nets, nearest neighbor algorithms, etc.) are actually capable of performing induction.

How then should this induction be performed? The leading thinkers in machine intelligence believe it should somehow
emulate the process used in biological systems. That process appears to be model-based. Rosen provides an explanation for
anticipatory behavior of biological systems in terms of interacting models.

Rosen shows that traditional reductionist modeling does not provide simple explanations for complex behavior. What seems
to be complex behavior in such models is in fact an artifact of extrapolating the model outside its effective range. Genuine
complex behavior must be described by anticipatory modeling. In Rosen’s own words: “In pwticukw, complex systems may
contain subsystems which act as predictive models of themselves and/or their environments, whose predictions regarding
fhtnre behaviors can be utilized for modulation of present change of state. Systems of this type act in a trnly anticipatory
fashio~ and possess many novel properties whose properties have never been explored.” In other words, genuine complexity
is characterized by anticipation.21

Rosen defines a formal AS (a mathematical formulation that exhibits anticipatory behavior) as having five attributes. An AS,
S2, must contain the model, M, of another system, S1. The AS, S2, must contain a set of observable quantities that can be
linked mathematically to SI and an orthogonal set that cannot. The predictions of the model, M, can cause an observable
change in S2.There must be some observable difference in the interaction between SI and Sz when the model is present and
when it is not. Finally, M must be predictive; based on present knowledge, M must change state faster than S1, such that M’s
changed state constitutes a prediction about S1.The point of this discussion is that intelligent behavior is model-based and in
the absence of models, there is no intelligent behavior. More to the point, these models must bear some resemblance to
physical reality if the behavior of the intelligent system is to have utility in the real world.22

What is the best way to obtain the models required for an AS? The simple answer is to observe reality to a finite extent and
then to generalize tlom the observations. To do so is inherently to add information to the data or to perform an induction. It
requires the generation of a likely principle based on incomplete information, and the principle may later be improved in the
light of increasing knowledge. Where several possible models might achieve a desired goal, the best choice is driven by the
relative economy of different models in reaching the goal.

4. BAYESIAN PARAMETER ESTIMATION

How might this be done in practice with noisy data? The most powerful method is Bayesian pamrneter estimation.23 Bayesian
drops irrelevant parameters without loss of precision in describing relevant pammeters. It fully exploits prior knowledge.
Most importan~ the computation of the most probable values of a parameter set incidentally includes the measure of the
probability. That is, the calculation produces an estimate of its own goodness. By comparing the goodness of alternative
models, the best available description of the underlying reality is obtained. This is the optimal method of obtaining a model
from experimental daa or of predicting the occurrence of fhture events given knowledge from the past, and of improving the
prediction of the fnture as knowledge of the past improves.24 Bayesian parameter estimation is a straightforward method of
induction.

Bayesian parameter estimation describes our best guess of the description of the signal as the weighted sum of several model
fimctions. Its amplitude, or linear pammeter, gives the relative contribution of each model function to the overall model. In
additio% within each model function, there maybe one or more nonlinear parameters. In this technique, the distinguishing
feature of a physical effect is the list of model fimctions and their parameters. This is a somewhat more general concept of the
“feature vector” of conventional pattern recognition

There are as many amplitude parameters as model fnnctions, but the nonlinear parameters in each model t%nction must be
searched for. All the nonlinear parameters are included in the argument of the probability fimctiow the amplitude parameters
are implicit in the number of model fnnctions in the model (the model’s dimensions). The time or sampling points is assumed



to consist of a sequence of regularly spaced integers tlom 1 to the length of the data set. If we wish to scale the sampling
points, simply include the scale factor as a (known) nonlinear parameter. Thus, the model for a single oscillator term might
be

{1, Cos((llt),Sin(@t)}or {1, COS(hiltK), sin(27ccotlc)} (2)

where K is a scaling factor that takes the integer samples represented by t to microseconds, for example, letting o represent
the frequency in MHz. In the first expression o is the frequency in radians. Consider a model of linear chirp:

{1, COS(%KDtK+ CtK?2), SiIl(z7tCDtK + IXK?2)}. (3)

Here, there are three explicit nonlinear parameters (a, K, and co) and three implicit amplitude parameters. one of the
nonlinear parameters is known, namely K, the time-scale parameter. The two unknown parameters area and o, leading to a
two-dimensional search or optimization problem in the O, et-plane. Generally, if there are m unknown nonlinear parameters,
the problem becomes a search in an m-dimensional space for the peak of the likelihood function. Should this prove too much
of a computational burden, individual nonlinear pammeters may be removed by integration in the usual manner-however,
this may prove more difficuIt than a high-dimensional search.

Log likelihood is the log of the Student-t distribution. This assumes an integration over all the linear model parameters. The
Student-t is computed from the projection of the data onto the orthogonalized model—which should be the same number as
the projection of the data onto the model and the inner product of the data vector with itself as St = [1 – (d.m/d.d)](~-n)’2,
where d.m is the projection of the data onto the model and d.d is the projection of the data onto itself

5. EXPERIMENTAL RESULTS

The observable measured in this experiment are the broadband AE signatures of a venturi chamber. Neill et al. found these
AE data contain features of incipient cavitation and may contain features of impending cavitation.’5 They used a system that
worked nominally through 1.25 MHz but the AE sensor response rolled off substantially above 80 kHz. Therefore, useful
information at the high frequency end was lost. They reported unmistakable features of incipient cavitation and concluded
that much richer information was being lost due to the limitations of the then-available hardware.

To search for fwtures of impending and incipient cavitation in AE da~ the experiment reported in this paper began where
the work of Neill et al. left off. The authors used a flow loop at Oak Ridge National Laboratory (ORNL) that is routinely used
for calibrating various flow devices. The source of AI? signatures was a ventmi chamber inserted into the flow loop. The
venturi chamber was designed specifically for this experiment and is similar to the one described by Neill et al.

The authors used a Vallen Systeme AMSY4-MC6 AE monitor (Wdlen ID number 40900) to collect the data. A complete set
of AE signatures at various flow rates was collected with broadband piezo-electric AE sensors (Vallen SE-1025-H, usable
frequency response from 10 kHz through greater than 400 kHz). Another complete set of AE signatures at various flow rates
was collected with narrowband piezo-electric AE sensors (Vallen SE-9125-M usable frequency response from 20 kHz
through 200 kHz). Sampling rate was 10 million samples per second. Dynamic range was approximately 80 dB. This paper
includes highlights horn the experimental data. A more exhaustive report of the data will be compiled in a report at ORNL to
be published at a fhture date.

A typical example of the time-domain signature of a cavitation event seen in the AE data is shown in Figure 1. This type of
signature occurs very frequently at high flow rates (thousands of instances per second at flow rates above 20 gallons per
minute (gPm)). This is a particularly clean instance from the unrefined raw data of the many cavitation events observed at 30
gpm and is used to derive a model of the cavitation event. The amplitude is normalized to 1 at the peak value of the signature.
The time-axis is in units of Usec.
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Figure 1.AE signatureat 30 gpm.

A linear-chirped damped sinusoid is easily fitted to these data. The model is {e-v

200

COS(OltK+ CZK2t2),e-v SiIl(dK + ClK2t2)}.

Assume K=l~lkiJt3ifi pammeter estimation computes that the most probable nonlinear parameter values are o = 0.0877091,
cx= -0.000923205, and y = 0.00553404. As shown in Figure 2, this provides a very good first order fit to the data. The
damped chirp model is used in the subsequent analyses in this paper. The utility of a more sophisticated model (nonlinear
chirps and other decay envelopes) to describe these data will be investigated in fbture research.

15U

Figure 2. Fitted damped chirp model and observed data

A typical frame of data captured at 30 gpm with the narrowband sensor is shown in Figure 3. From the audible crackling
from the venturi chamber, we know that severe cavitation was occurring. Figure 3 shows a little over 2000 psec of data with
maximum amplitude of approximately 20,000 wV.

0 500 1000 1500 2000

Figure 3. Several cavitation events at 30 gpm.

Likelihood is computed for each set of 240 data points in the signature data while the model (used as a matched filter) is
swept forward one sample at a time. The nonlinear parameters and then the linear parameters are calculated for the model and
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the goodness of the fit is determined by computing the log (likelihood) in dB. As shown in Figure 4, the signature of Figure 3
includes four events that are very likely damped chirp events. Similar data are shown in Figures 5 and 6 at a 20 gpm flow
rate.

Figure4. Likelihoodof dampedchirpeventsin the signaturein Figure 3.

DBBSP20~3,%,5)

4000 I I
2000 !

o .

-2000
b

-s000

-6000 t ‘. .1 1
0 1000 2000 3000 4000 5000 6000

Figure 5. Several cavitation events at 20 gpm
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Figure 6. Likelihood of damped chirp events in the signature in Figure 5.

At flow rates below 18 gpm, damped chirp features are very rare occurrences. As Figures 7 and 8 show, a typical data set
collected at 17 gpm is practically indistinguishable from the electronic noise of the experimental setup. mote: The noise floor
of the electronics is 1 WVrms. The vertical axis of Figures 3, 5,7, and 9 is raw sensor output in pV.]
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Figure 7. Typical data set at 17 gpm.



?

*

Likelihood[dB ]
175

150

125

100

75

50

25

0
0 2000 4000 6000 8000

Figure 8. Likelihood of damped chirp events in the signature in Figure 7.

Compare Figares 7 and 8 with Figures 9 and 10. Figure 9 is a typical time domain signature with the sensors mounted on the
venturi section but with zero flow through the flow loop. This is the AE signature of the noise fkom the environment plus the
experimental appamtus itself. As seen in Figure 10, if the log likelihood measure is below 750, it is very unlikely that a
damped chirp feature is present in the data.
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Fi8ure 9. Typicaldata set at zero flow.
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Fi8ure 10. Likelihood of damped chip events in the signatare in Figure 9.

Although damped chirps are rare at 17 gp~ they do occur occasionally. Figure 11 (time domain shown higher, likelihood
shown lower) shows the only event captured at 17 gpm with the broadband sensors that do not look just like noise. Two
bursts are apparent in the time domain data-a stronger burst near the beginning and a weaker one just after the strong one.
Both are only a little stronger than the background noise.

Figure 12 shows more details of the log likelihood plot from Figure 11. It is noteworthy that the weaker burst between times
700 and 900 is more likely to be a damped chirp than the stronger burst between times 200 and 400. If the “threshold of
cavitation” is between 17 and 18 gpm, it is possible that the very weak damped chirp (amplitude on the order of 10 pV) in the
17 gpm data is a precursor to the very strong damped chirp (amplitude on the order of 10 mV) signature in the data at 18 gpm
and above. This will be investigated in more detail in future research.



Figure 11. A possible damped chirp at 17 gpm.

Figure 12. Log likelihood of damped chiq at 17 gpm.

Comparing the 17 ~m data with the zero flow daa it appeam that a crude way to distinguish between the presence and
absence of damped chiqM is to use the log likelihood of 750 as a threshold. The damped chirp appears to be a cavitation
signature, although this remains to be confirmed by further investigation. Weak damped chirps (amplitudes of approximately
10 VV with this experimental setup) with a high log likelihood (greater than 750) appear to be a useful cavitation precursor.

In future work, a less crude (and more reliable) method of deciding whether or not the cavitation signature is present would
be a Rosen anticipation engine. The interacting models in the Rosen anticipation engine would be derived from experimental
data similar to these and the theory already described. Such a system would inductively learn the signature of cavitation with
the effectiveness of the learning improving overtime as the anticipation engine gains experience.

A bit of interpretation of the data yields some usefid guidance at this point. The dominant frequencies of the damped chirps
are in the digital frequency range of 0.08 <= o <= 0.1 radians. The sampling rate is 107samples per second, meaning that the
digital frequency ‘ofz corresponds to 5 MHz. Thus, the underlying dominant fkquency of the physical chirps is in the range
of 127-159 kHz. This is well within the flat response range of the broadband AE sensors. It is also in the resonance peak of
the narrowband sensors whose sensitivity in the resonant band tends to be 5-15 dB greater than the sensitivity of the
broadband sensors. This suggests that at flow mtes below 17 gpm, we should see occasional weak high-likelihood damped
chirps with the narrowband sensors. We did.

For example, consider the data set shown in Figure 13, observed at 14 gpm with the narrowband sensors. Note that the two
bursts most likely to be damped chirps are barely stronger than the noise and that the matched filter does not show a strong
response to the much stronger signal that is unlikely to be a damped chirp.



Figure 13. Likely damped chirps at 14 gpm in narrowband data.

Figure 14 shows more details of the log likelihood plot. It is noteworthy that three very weak damped chirps (amplitude
below 10 pV) in the 14 gpm data are very likely to be damped chirps. It is also noteworthy that the strong burst at the
beginning of the time domain signal is unlikely to be a damped chirp. Among other things, this illustrates that Bayesian
parameter estimation does not confuse strong undesired signals with the damped chirp. Similar results are seen at 13 gp~ but
the events are rarer and weaker than at higher flow rates.

Figure 14. Log likelihood of damped chixps at 14 gpm.

6. CONCLUSIONS AND FURTHER RESEARCH

The foregoing aualysis is very preliminary and needs to be validated both by fiuther analysis of the extensive data collected
during the initial phase of this research and by the collection of additional data. However, several preliminary conclusions
appear to be reasonable. First, that damped chirp AE signature seems to be a distinguishing feature of cavitation. Second,
above the “threshold of cavitation” strong damped chirps are common occurrences. Third, below the “threshold of cavitation”
weak damped chirps are rare (but not non-existent) occurrences, Fo@ the amplitude of the damped chirps drops abruptly at
the “threshold of cavitatio~” consistent with the concept that the inception of cavitation is a catastrophic bitircation. Fifth,
damped chirps are easy to detect and hard to confime with other signatures when Bayesian parameter estimation is used.
Six@ at flow rates well below the threshold of cavitatio~ occasional damped chirps are observed with weak amplitudes
(virtually indistinguishable from noise by the eye), but with high log likelihood measure.

These conclusions have utility in two aspects of cavitation detection. First, it appears that the sudden emergence of strong
damped chirps in response to a small increase in flow rate is a strong and reliable indicator of the inception of cavitation.
Secon~ weak damped chirps at low flow rates appear to be cavitation precursors. This suggests that the Bayesian-derived



damped chirp may be well suited to be a model in the anticipation engine in a formal Rosen AS. These data and their
Bayesian analysis illustrate the principle that Rosen’s formalism can be used on real-world data to anticipate catastrophic
occurrences.
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