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Abstract

Chebyshev polynomial approrimations are an effi-
cient and numerically stable way to calculate prop-
erties of the very large Hamiltonians important in
computational materials science. We describe kernel
polynomial methods (KPM) producing estimates for
densities-of-states (DOS) which are strictly positive
and simple convolutions of known broadening func-
tions, or kernels, with true DOS. The methods are
demonstrated for tight binding electronic structure cal-
culations of Si, ytelding rapid convergence of cohesive
and vacancy formation energies. KPM are also appli-
cable to dynamical spectral functions, statistical me-
chanics, and density matrices.

1 Introduction

In recent papers (Silver and Rdder 1994; Silver et
al. 1995), we proposed kernel polynomial methods
{KPM) for estimating properties of very large Hamil-
tonian matrices. The density of states (DOS) is ap-
proximated by an expansion in Chebyshev polynomi-
als, using moments calculated by Hamiltonian matrix-
on-vector multiplications (MVMs) according to the
Chebyshev recursion relation. The resulting DOS esti-
mate equals the true DOS convoluted with a broaden-
ing function, or kernel. The energy resolution is uni-
form in a definable sense and inversely proportional
to the number of moments. Applications of KPM to
computational materials science cited in (Silver et al.
1995) include the thermodynamics of Heisenberg an-
tiferromagnets, the many body DOS of the Holstein
t-J Model, the optical spectra of quantum dots, the
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dynamical magnetic susceptibility of disordered mag-
nets, etc. KPM are numerically stable, algorithmi-
cally simple, and can take advantage of the same opti-
mized MVM algorithms used Lanczos recursion meth-
ods (LRM). The cpu and memory required can scale
linearly in the number of states for sparse Hamiltoni-
ans provided finite energy resolution and statistical ac-
curacy are acceptable. KPM have been demonstrated
for Hamiltonian dimensions as large as 226 x 226,

This paper focuses on a single application of KPM
to the tight binding electronic structure of Si. We
demounstrate how rapid convergence and high precision
can be obtained for the cohesive energy and vacancy
formation energy. We conclude with some compar-
isons of KPM to other methods for calculating DOS
and spectra.

2 The Kernel Polynomial Method

Coﬁsider the calculation of the DOS of an N x N
Hamiltonian H, defined as

1 N
D(s):Tv—ZJ(s—&'n) , (1)

where €, are eigenenergies. Scale the Hamiltonian by
H = aX + b so that all the eigenvalues of X satisfy
—1 < z, < +1. The scaled DOS can be represented
by a polynomial expansion, '

1 N
D(z) = PORICEEN

n=1

= N_;_T—;; [/10 +2 Z llme(l')] . (2)

m=1

The Ty (2) are Chebyshev polynomials of the first kind
defined by To(z) = 1, Ti(z) = « and the recursion
relations,

Tmt1(2) = 22T (2) — Trn—1(2) . (3)




They are orthogonal satisfying

(2)T(2)dz = gam,,, {m,n>1} .

| (4)
This expansion may be reexpressed in terms of
trigonometric functions using = cos(¢) and Tpn(z) =
cos(mée), so that Eq. (2) is analogous to a Fourier ex-
pansion. The Chebyshev polynomial moments of the
DOS are

L=
-1 1—:82 ™

1

They may be generated using the Chebyshev recursion
relations and MVMs,

T (X)|i >= 2X Ty (X)]i > =Trn—2(X)li > , (6)

where | > are basis states. Then moments are con-
structed using

N
pom = Y R <ilTw(X)Tm(X)i > 1], (7)
i=1
and a similar relation for g2, -1, such that evaluating
M moments requires M/2 MVMs.

Practical calculations will yield only a finite number
of moments, but abrupt truncation of Eq. (2) would
result in unwanted Gibbs oscillations. KPM consider
instead smooth truncations of the form

M
1.
Dk(z) = ;\/—1——:——? {#ogo +2 };umyme(z)

» (8)
The g,, are Gibbs damping factors which depend im-
plicitly on M. The relation of this estimate to-the true
DOS is

1
Dx (=) = / K(z,2)D(zo)dzs ,  (9)
-1
where the kernel polynomial is

M
K(z,z,) = ﬁ [!Jo +2 Z ngm(z‘)Tm(xo)J

m=1
(10)
More generally, the kernel polynomial approzima-
tion to any function F(z) defined on z € [-1,+1]

may be defined as follows. Switch variables to ¢ =

arccos(z) such that F(¢) = F(z)sin{¢). Extend
the domain to ¢ € [0, 27] by invoking w-antiperiodic
boundary conditions, F(2r — ¢) = +F (¢). Define the
w-antiperiodic function

M
Ok (d) = 5}7; go + 2 Z gm cos(me)| . (11)
m=1

1
JTon E/_ T (z)D(z)dz . (5)
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Figure 1: Kernel Polynomials - Dashed curve

(None) is the kernel dg(¢) for no Gibbs damping,.
Solid curve (Optimal) is the kernel for the uniform
approximation by polynomials. The inset uses an ex-
panded vertical scale to display the leakage and damp-
ing of Gibbs oscillations at large |¢|. Calculations are
for 100 moments.

This should be regarded as a m-antiperiodic polyno-
mial approximation to a Dirac delta function. It is
normalized to [" Jx(¢)d$ = go so that we choose
go = 1. It is peaked at ¢ = 2wn where n is integer.
The width of the peak is proportional to M ~!. The
kernel polynomial approximation to F'(z) is then

27

Fr(d)= | Sx(¢—0.)F(d,)dd, .  (12)

0

The choice of Gibbs damping factor, g,,, determines
the quality of kernel polynomial approximations. For
applications to DOS and spectra we propose four rea-
sonable criteria, which result in the same Gibbs damp-
ing factor originally derived in the mathematical the-
ory of uniform approximation by polynomials (Jack-
son 1930; Meinardus 1967; Rivlin 1969). The first
criterion is that the kernel should be a polynomial of
degree M, if only M Chebyshev moments of the DOS
are available. The second criterion is that the kernel
estimates of DOS and spectra should be strictly posi-
tive as required by physics. These two criteria can be
met uniquely by the representation

M
§ :ayezmﬁ
v=0

2

S($) = o . )




where the a, are real. Upon comparison with Eq. (11)

. M-m
Im = Z aylyim - (14)

v=0
The third criterion is that the kernel should be nor-
malized so that the total number of states is preserved,
which is met by constraining go = 1. The fourth cri-
terion is that the energy resolution should be the best
achievable for M Chebyshev moments subject to these
other constraints. This corresponds to minimizing the

variance

n
A= | ¢k (d)dd ~ 290 — 291 . (15)
-7
Combining this with Eq.(14) is equivalent to maximiz-
ing

M-1 M
Q=91—2g= Z ayay41 — /\Za,,a,, ,  (16)
v=0 v=0
where A is a Lagrange multiplier to enforce the third
criterion on normalization, go = 1. The variational
condition §Q/da, = 0 yields

a; — 2 ag =0 ,
0<v<M~-2 ay42—-2Xay41+a,=0 ,
—2Xap +apy_1=0 . (17)

But these are just the recursion relations for Cheby-
shev polynomials of the second kind. Hence,
el g - Sne )
Zu:O UE (’\) A
(18)
with ¢5 = arccos()). The last line in Eq. (17) cor-
responds to Upry1{(A} = 0, which is equivalent to
¢x» = 314z- The maximum of @, Eq. (16), is ob-
tained for n = 1. This choice satisfies our criteria for
an optimal kernel.

Figure 1 exhibits kernel polynomials for no Gibbs
damping (labeled None) and for the optimal Gibbs
damping factor (labeled Optimal). Without Gibbs
damping, the kernel is not positive and has oscillations
extending to large |¢|. With optimal Gibbs damping,
the kernel is strictly positive, its width A¢ ox M1,
and Gibbs oscillations at large |$| are rapidly damped
(see the inset with a magnified vertical scale). This
rapid damping minimizes leakage of information from
one energy to another. Small leakage is especially im-
portant for many-body physics applications where the
scientific interest is often focused on a few low energy
states near to orders of magnitude more higher energy
states; see (Silver and Réder 1994) for an example us-
ing Heisenberg antiferromagnets.

3 Application to Tight-Binding Elec-
tronic Structure

The total-energy, tight-binding method is gaining
popularity for atomistic simulations in materials sci-
ence (Sankey and Allen 1986; Wang, Chan and Ho
1989). This semiempirical electronic structure ap-
proach is based on a one-electron Hamiltonian with
on-site energies and interatomic-distance-dependent
hopping integrals. The atom-centered basis set is cho-
sen to be appropriate for the valence orbitals of the
system under study. The band (electronic} energy
Ep, defined as the sum of the energies of all occu-
pied states up to the Fermi energy, is augmented by a
short-ranged pair potential. The computational bot-
tleneck in tight-binding calculations is the diagonal-
ization of H, requiring O(N3) work. There has been
much interest recently in approximations that improve
on this scaling without undue loss of accuracy. In this
section we test an O(/N?) implementation of KPM for
this problem.

Silicon is chosen as a working example, and we em-
ploy the tight-binding parameters of (Goodwin, Skin-
ner and Pettifor 1989). The basis set consists of an s
function and the 3 Cartesian p functions on each atom.
For the present calculations, only the electronic energy
is considered. To compute the DOS and cohesive en-
ergy of a system approximating bulk Si, a Hamiltonian
matrix is constructed for a block of 216 Si atoms ar-
ranged in the diamond structure. This block is placed
in a cubic box (supercell} with periodic boundary con-
ditions. [Only the k = 0 (T') point in the Brillouin zone
is needed, since the 216 atom supercell system is equiv-
alent to a nearly converged sample of k-points for the
primitive diamond-structure cell.] We also consider a
215-atom system, in which one atom has been removed
while the remaining atoms are held fixed. This allows
computation of the unrelaxed vacancy formation en-
ergy (Ev), defined as By = B4~ Z2E%'S, which has
been shown (Kress and Voter 1995) to provide a much
more stringent test of moment-based approximations
than the cohesive energy.

Let D(¢) be the DOS, C(e) = [°__ D(¢’)de’ be the
cumulative DOS, and E(g) = [°_ &'D{e')de’ be the
cumulative energy. For Si, the Fermi energy er is
defined by the condition that the number of occupied
states corresponds to two electrons per atom, C(ep) =
2Ngtom- The band energy is then defined as Ep =
E(er). The Hamiltonian matrices considered here are
sufficiently small that we may compare KPM results
to those of exact diagonalization by O(/N3) methods.

The cumulative DOS and cumulative energy may
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Figure 2: KPM for Si Supercell - The vertical lines
indicate eigenenergies of a 216 Atom Si supercell calcu-
lated by exact O(N?) diagonalization, with the height
proportional to the degeneracy (x 20). Also displayed
are results of the kernel polynomial method for the
density of states (solid), cumulative DOS (dashed),
and cumulative energy (long dash). The Fermi energy
EF is the energy at which the cumulative DOS equals
the number of electrons. For this example, Ep is po-
sitioned in a large gap in the DOS. The band energy
Ep is the cumulative energy at the Fermi energy.

be calculated from
Cl¢) = ”5 Ndé'
(9) /¢ (¢')dd
B(d) = / cos(¢) D(¢)de' | (19)
¢

using C(¢) = C(e) and Efe) = aE($) + b. Define
em(9) = <29 and s5,,(¢) = 28 Then expan-
sions for these quantities in exact Chebyshev moments

are

D(¢) = i;ﬂ +2 " pmem(d)
m=1

6@ =p(1-2) =2 3 tmom(@)

m=1
00

E(¢)=m (1 - %) = (Bm—1 + ftms1) sm() - (20)

m=1

E’(qﬁ) may be continued to 0 < ¢ < 2r using E (27 —
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Figure 3: Band Energies - The left side shows band
energies Ep as a functions of the number of Chebyshev
moments M (on a logarithmic scale) for the 216 and
215 atom Si cells. The right side uses a two orders
of magnitude expanded vertical scale to display the
asymptotic convergence of band energies at large M.
The band energies are scaled in the way they enter
the vacancy energy, Ev = E3'® — 22 F%!5 and EZ'S
1s shifted by the vacancy formation energy obtained
from exact diagonalization, 12.74 eV.

) = —E(9).

Practical calculations will yield only a finite number
of moments. We form the kernel polynomial approxi-
mations to Egs. (20) using Eq. (12), yielding

M
5(¢) =2 Z (;40 - #m) ImSm (¢) s

B M1 m=
E(¢) = Z ImSm(®) (261 — pm—1 — m+1) - (21)
m=1

Figure 2 shows the DOS, cumulative DOS and cu-
mulative energy for the 216 atom supercell obtained
from 200 Chebyshev moments using KPM. For com-
parison, the DOS obtained by O(N3) exact diagonal-
ization are displayed as vertical lines at the eigenener-
gies with a height equal to 20 times their degeneracy.
The KPM DOS equals the true DOS convolved with
the kernel polynomial. The Fermi energy e¢p is the
point where the cumulative DOS equals the number of
electrons. The band energy E'p is then the cumulative
energy evaluated at the Fermi energy, Eg = E(eF).




Vacancy Formation Energy
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Figure 4: Vacancy Formation Energy - Solid curve
is the vacancy formation energy Ev vs. the number of
Chebyshev moments M on a logarithmic scale. The
dashed curve indicates the exact diagonalization re-
sult. Ev has converged to within 0.1 eV at about 40
moments.

The left side of Figure 3 shows the band energies for
the 216 atom and 215 atom supercells as functions of
the number of moments M. The right side shows the
asymptotic convergence of these quantities at large M.
Plotted are the quantities which enter the calculation
of the vacancy energy, i.e. E3%43 and E'® — 12.74
where 12.74 eV is the vacancy energy obtained by ex-
act O(N3) diagonalization. Figure 4 shows the va-
cancy formation energy, Ev vs. M. The dashed line
is the exact result obtained by diagonalization of the
Hamiltonian, an O(N3) process. It is remarkable that
FEv has converged on the exact Eyv to within 0.1 eV
for M > 40, even though Ep does not asymptote to
the exact Fp until M > 150. Since Ey is formed from
the difference of large numbers, the relative accuracy is
& 2 0.0024%. Note also that the Chebyshev recur-
rence procedure requires only M/2 MVMs to yield M
moments. So Ey has converged after only 20 MVMs.

Details of these calculations may be found in (Sil-
ver et al. 1995). For example, Egs. (21) differ sub-
tly but significantly from cumulative distributions ob-
tained by integrating over the kernel polynomial ap-
proximation to the DOS, a difference which removes
systematic bias and significantly improves the rate of
convergence with M (Silver et al. 1995). This change
in the order of approximation can dramatically affect

the convergence rate of Ey with increasing M, be-
cause Ey is formed as a difference of large numbers.
The same paper compares the task performance of the
optimal Gibbs damping to that of many other Gibbs

‘damping factors proposed in the applied math and

physics literature. The other Gibbs damping factors
do not enforce positivity of DOS and montonicity of
cumulative DOS, so they yield multiple solutions for
the Fermi energy which slows convergence for this ap-
plication.

4 Conclusion

Taking into account the variety of KPM applica-
tions discussed in (Silver et al. 1995), we present some
comparisons of KPM with competing Lanczos recur-
sion methods (LRM) and maximum entropy methods
(MEM) for estimating DOS and spectra:

¢ Uniformity: KPM are ‘uniform’ in two respects.
They produce estimates for DOS and spectra
which are simple linear convolutions of a kernel
figure function with the true DOS or true spec-
trum, with resolution uniform in ¢ and inversely
proportional to the number of moments. They
also produce estimates corresponding to “uni-
form approximations by polynomials” for which
there exists a well-developed mathematical the-
ory (Jackson 1930; Meinardus 1967; Rivlin 1969)
including error bounds. LRM should be preferred
for determining exact eigenvalues of a few well-
separated or band edge states, but LRM converge
slowly for complete DOS or spectra. MEM yield
better resolution than KPM, because MEM fit all
the moment data. Moments of KPM estimates
are related to exact moments by Gibbs damping
factors. MEM may be preferred when there ex-
ists significant prior knowledge about the DOS or
spectrum such as default models and other kinds
of data. But the resolution of MEM is not uni-
form because MEM are non-linear.

e Positivity: An important argument commonly
advanced in favor of MEM is they enforce pos-
itivity of DOS and spectral estimates, and mono-
tonicity of cumulative DOS. With the introduc-
tion of the optimized kernel in Section 2, KPM
also enforce positivity and monotonicity. Mono-
tonicity is important in our electronic structure
example to eliminate instability caused by the
possible multiple solutions for the Fermi energy.




o Numerical Stability: The Chebyshev recurrence
relations used in the KPM are numerically sta-
ble to extremely large number of moments, with
negligible susceptibility to numerical roundoff er-
ror. They can be used to generate data for both
KPM and MEM. KPM estimates are a simple lin-
ear function of the moments. MEM estimates
are a non-linear function of the moments, and
finding them requires a convex optimization al-
gorithm which can be unstable. LRM algorithms
are notoriously unstable in the presence of numer-
ical roundoff error, with the Lanczos phenomenon
causing a loss of orthogonality. LRM can be cor-
rected only be reorthogonalization or by a com-
plex labeling scheme producing error bars.

e Algorithmic simplicity: KPM algorithms typi-
cally need only a small fraction of number of lines
of code of MEM or LRM algorithms.

e Scaling: For the electronic structure application
described in the previous section, the cpu required
scales like O(N2M), where N is the dimension
of the sparse Hamiltonian and M is the number
of moments. The memory required scales like N
for sparse Hamiltonians. However, Chebyshev re-
cursion algorithms with cpu scaling as O(N M)
can be generated in a variety of ways, which pro-
duce moments usable by both KPM and MEM.
For example, (Silver and Réder 1994) introduce a
stochastic KPM to produce estimates of DOS and
thermodynamic functions subject to statistical er-
ror. Other linear scaling KPM algorithms avoid
statistical errors for physical systems satisfying
extensivity, i.e. where the range of offi-diagonal
elements of density matrices is limited.

e Flexibility: KPM can be simply interpreted as
polynomial approximations to Dirac delta func-
tions, wherever they occur in physical problems.
For example, kernel polynomial approximations
to Fermi projection operators (defined as oper-
ators which project unoccupied states in a ran-
dom vector to zero) can be formed by integrat-
ing over kernel polynomials in the same sense
that step functions are integrals over delta func-
tions. As another example, replacing delta func-
tions by kernels in statistical mechanics calcula-
tions leads to rapidly converging modified Bessel
- Chebyshev moment expansions for thermody-
namic functions.

We conclude that KPM should become a useful com-
plement to LRM and MEM for computations involving
large sparse Hamiltonians.
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