APPLICATIONS OF MULTIVARIATE STATISTICAL ANALYSIS (MSA) IN MICROANALYSIS

Ian M. Anderson

Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6376 USA andersonim@ornl.gov

Recent improvements in computer hardware and software for the acquisition, storage and analysis of series of spectra and images allow for a change in strategy for quantitative microanalysis. For example, in the area of X-ray microanalysis, whereas compositional analysis and elemental distributions have been traditionally performed using point microanalyses and simple intensity mapping from a ROI, respectively, the two tasks are now routinely performed simultaneously through Xray spectrum-imaging, where full spectra are acquired from pixels in a twodimensional array of points on the specimen. Commercially available software now allows for the acquisition and storage of such spectrum-images, perhaps comprising as much as 100 MBytes of data or more. A variety of post-acquisition processing tools are provided by the developer to allow the extraction of both X-ray intensity maps, with or without rudimentary background subtraction, or full spectra from pixels of interest. In order to maximize the extraction of information from these large data sets, a number of linear and nonlinear methods are currently being explored that identify statistically significant variations among the series of spectra without a priori assumptions about the content of the data set.² Among these methods, linear multivariate statistical analysis (MSA) has a number of significant advantages, including its comprehensiveness, since all spectral variations distinct from the Poisson noise level are identified, and its broad applicability to a variety of microanalytical techniques.^{3,4} MSA also preserves the integrity of the raw data, since the results of the analysis are not contingent upon input from the analyst and there is a one-to-one correspondence between the raw data and the MSA results.

An application of MSA to a low-voltage EDS spectrum image is shown in Figure MAR 0 3 1951 A preliminary analysis has been performed on this semiconductor chip specimen, where images were acquired using only a portion (1.2 - 2.2 keV) of the X-ray spectrum.3 Data acquisition was performed with a Philips XL30/FEG SEM equipped with an Oxford super-ATW detector and XP3 pulse processor, and an EMiSPEC Vision integrated acquisition system. The XL30 was operated at 4 kV with a 30 µm final aperture. EDS spectra were acquired with a 35° takeoff angle at ~1500 input counts per second and ~20% dead time. The 200×150 pixel spectrum image was acquired with 20 nm per pixel, 10 eV per channel, and a 250 ms dwell. MSA was performed on a 200 channel selection (0.12 - 2.11 keV) of the spectrum image that includes all relevant characteristic X-ray peaks. A normalized eigenvalue plot of the first 50 MSA components is shown in Fig. 1a. The linear variation of the higher order (≥ 10) eigenvalues on the semilog plot is consistent with the variations of these spectral components arising solely from Poisson statistics. The first nine eigenvalues have an information value that is distinct from the Poission noise limit. Fig. 1 shows MSA component spectra (b-d) and images (e-g) corresponding to the first three eigenvalues. Bright (dark) features in the component images correspond to strongly positive (negative) characteristic peaks in the corresponding spectra. For example, the brightest areas in Fig. 1f come from the SiO₂ dielectric (corresponding to the strong O-K peak at ~0.5 keV), the darkest areas come from the Si substrate and the W plugs (with negative spectral features between ~1.6 and ~2.0 keV), and an intermediate grey level is displayed by the Al lines (weakly positive peak at ~1.5 keV). There is excellent discrimination between the Si substrate and the W plugs in Fig. 1g, despite the unresolved W-M and Si-K X-rays (separated by ~35 eV), which give rise to the first-derivitive-type feature in Fig. 1d. Also evident in Fig. 1d is the higher continuum X-ray intensity excited in the high-Z W plugs.⁶

"The submitted manuscript has been authored by a contractor of the U. S. Government under contract No. DE-AC05-96OR22464. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes."

- 1. http://www.emispec.com
- 2. N. Bonnet, J. Microscopy 190(1998)2.
- 3. P. Trebbia and N. Bonnet, Ultramicroscopy 34(1990)165.
- 4. I.M. Anderson and J. Bentley, Proc. Microscopy & Microanalysis 1997, 931.
- 5. I.M. Anderson, Proc. 14th ICEM 1(1998)357.
- 6. Research at the Oak Ridge National Laboratory (ORNL) SHaRE User Facility was sponsored by the Division of Materials Sciences, U.S. Department of Energy, under contract DE-AC05-96OR22464 with Lockheed Martin Energy Research Corporation.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.