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EXECUTIVE SUMMARY

The main objective of synchronized signal timing is to keep traffic moving along arterial in
platoons throughout the signal system by proper setting of left turn phase sequence at signals
along the arterials/networks. The synchronization of traffic signals located along the
urban/suburban arterials in metropolitan areas is perhaps one of the most cost-effective
methods for improving traffic flow along these streets. MAXBAND Version 2.1 (formerly
known as MAXBAND-86), a progression-based optimization model, is used for generating
signal timing plan for urban networks. This model formulates the problem as a mixed integer
linear program and uses Land and Powell branch and bound search to arrive at the optimal
solution. The computation time of MAXBAND Version 2.1 tends to be excessive for realistic
multiarterial network problems due to the exhaustive nature of the branch and bound search
technique. Furthermore, the Land and Powell branch and bound code is known to be
numerically unstable, which results in suboptimal solutions for network problems with a range
on the cycle time variable. This report presents the development of a new version of
MAXBAND called MAXBAND Version 3.1. This new version has a fast heuristic algorithm
and a fast optimal algorithm for generating signal timing plan for arterials and networks.
MAXBAND 3.1 can generate optimal/near-optimal solutions in fraction of the time needed to
compute the optimal solution by Version 2.1. The heuristic algorithm in the new model is
based on restricted search using branch and bound technique. The algorithm for generating the
optimal solution is faster and more efficient than version 2.1 algorithm. Furthermore, the new
version is numerically stable. The efficiency of the of the new model is demonstrated by
numerical results for a set of test problems.




1. INTRODUCTION

Efficient transportation is very important to a nation’s economic health. Nearly all economic
activity uses transportation directly or indirectly. The economic productivity of a nation is
boosted by improving the efficiency of transportation systems. The synchronization of traffic
signals, located along the urban/suburban arterials in metropolitan areas, is perhaps one of the
most cost effective method for improving traffic flow along these areas. The main objective of
synchronized signal timing is to keep traffic moving along an arterial in platoons throughout
the signal system by proper synchronization of green signais along the arterials/networks.

Over time, traffic engineering research has resulted in a number of techniques for setting
traffic signals along arterials and networks. These models can be classified into two major
categories: on-line models and off-line models. The on-line (also referred to as traffic
adaptive) models compute signal settings in real-time and are used for controlling traffic
dynamically. Optimization Policies for Adaptive Control (OPAC) is an example of this type of
model (Gartner, 1983). This model generates signal setting for single intersection.

Off-line signal optimization models were developed in the late 1960s and early 1970s, and are
used for computing signal settings for recurrent traffic flow conditions. The existing models
for off-line determination of signal settings on single/multiarterial networks fall into one of
two major categories. One set of models is based on the criteria of minimizing system delays
and stops, while the other maximizes the progression bandwidth along the arterials. Delay
minimization models lead to signal settings that minimize the number of stops and delays
experienced by vehicles at intersections. Bandwidth maximization models lead to signal
settings that maximize the proportion of traffic flowing unimpeded through the signals.
TRANSYT (Robertson, 1968) and SIGOP (Lieberman et al., 1983) are models that determine
signal settings that minimize delay. These models combine macroscopic simulation and
nonlinear optimization based gradient searches to determine the optimal signal settings.
MAXBAND (Messer et al. 1987, Chang er al. 1988), is a model that maximizes bandwidth
for multiarterials. The underlying optimization model in MAXBAND is a Mixed Integer
Linear Programming (MILP) model (Little, 1966). Cohen er al. (1983,1986) and Liu (1988)
have experimented with combining MAXBAND and TRANSYT models and have obtained
signal settings that minimize delay and maximize progression bandwidth.

TRANSYT is perhaps the most widely used model for setting signal timings in the practice of
traffic engineering. TRANSYT minimizes delay-based disutility functions from which green
bands cannot always be found. Furthermore, the TRANSYT model does not optimize left turn
phase sequences. MAXBAND model maximizes green bands, optimizes left turn phase
sequences, and computes the best cycle time from a range of cycle time for given green split.
Studies have shown [Rogness (1981), Cohen er al. (1983)] that left turn phase sequence
optimization can substantially improve performance of signal timing plans. But, experience
with MAXBAND has shown that hours of computer time may be required to optimize a
medium-sized network problem even on a mainframe computer. The computational
inefficiencies make the current version of MAXBAND impractical for use by traffic
engineering community.

This technical report documents recent enhancements to the MAXBAND model made for the
purposes of improving its numerical stability and execution time when running on IBM
compatible microcomputers. These enhancements include: i) development of a fast heuristic
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algorithm that is capable of generating optimal/near optimal solution for the MILP in fraction
of time required by the old MAXBAND, ii) a new optimal algorithm, and iii) replacement of
the old linear programming problem solver with a numerically stable linear programming
problem solver.

The MAXBAND model with these enhancements is referred to as MAXBAND Version 3.1
by the Federal Highway Administration (FHWA) who sponsored this research. The speed up
in execution time should make MAXBAND usage attractive for real-time applications, off-line
usage in a microcomputer system, and for iterative use of MAXBAND with delay-
minimization problems or simulation procedures.

This report is organized as follows. In the next section, the history and evolution of
bandwidth maximization model and the limitations of the existing solution approaches are
discussed briefly. Section 3 discusses the fast heuristic algorithm and the optimal algorithm
developed for the MILP. This is followed by a discussion on the LP solver and computer
implementation of MAXBAND Version 3.1 in Section 4. An overview of the new version is
provide in Section 5. Section 6, reports the results for a number of network and arterial test
problems. Finally, conclusions and directions for future work are discussed in Section 7.




2. MAXBAND

The original mixed integer linear programming formulation for bandwidth maximization for
signal setting along single arterial was by Little (1966). This formulation was extended to
triangular networks by Little, Kelson, and Gartner (1981). MAXBAND Version 2.1 (formerly
known as MAXBAND-86), developed by Messer er al. (1987), extended the formulation to
account for general grid networks and left turn phase sequences. Gartner ez al. (1991) report
the extension of the arterial MILP formulation to include multi-band capability. Chaudhary

et al. (1993) report the development of bandwidth optimization formulation that include
circular phasing of signals, the new model is called PASSER IV.

The complete MILP formulation for multiarterial networks contains mix of integer and
continuous variables. The optimal solution approach to solve the MILP is to use the branch
and bound algorithm. MAXBAND Version 2.1 uses the branch and bound code by Land and
Powell (1973) to solve the underlying MILP model. This code is numerically unstable for
bandwidth maximization problems where the optimal cycle time is to be selected from a range
of cycle times. Numerical instability resuits in runs ending prematurely with either suboptimal
or no solutions at all. Also, the execution time for network problems were excessive due to
the exhaustive nature of the branch and bound search in the optimization code. Some
modifications were made to stabilize the numerical computations, see Solanki, Rathi, and
Cohen (1993). Multi-step heuristic algorithms (Two-step heuristic and Three-step heuristic)

~ were developed by Chaudhary, Pinnoi and Messer (1991) to generate optimal/near optimal
solutions. The execution times for network problems were not consistently better than
simultaneous optimization for all network problem instances and continued to be excessive.
The issue of numerical instability remained unresolved, since they were using the Land and
Powell code to solve the MILP sub-problems within the heuristic algorithms.







3. HEURISTIC AND OPTIMAL APPROACH

The mixed integer linear programming formulations for multiarterial networks consists of
blocks of constraints dealing with individual arterials and some additional constraints that
impose restrictions on loops of multiple arterials. The derivation of the constraints and
detailed MILP formulation are provided in Messer ez al. (1987) and hence will not be
discussed in this report. Only the integer variables of the MILP formulation are discussed.
The difficulty in solving realistic network problems arises due to the large number of integer
variables in the MILP formulation.

The branch and bound procedure is an implicit enumerative search method for finding the
optimal integer solution from a set of feasible integer solutions. This procedure does not deal
directly with the integer problem. Rather, it considers a continuous problem, (Linear
Program, LP, which is simpler to solve), defined by relaxing the integer restrictions on the
variables. Thus the solution space of the integer problem is only a subset of the continuous
space. If the optimal continuous solution is all integer, then it is also optimum for the integer
problem. Otherwise, the branch and bound algorithm partitions the continuous solution space
into subspaces, which are also continuous (this is called the branching operation). Each of the
created subproblems can now be solved as a continuous problem. When the solution of a
subproblem is integer, the subproblem is not branched, otherwise further branching is
necessary, The optimal objective value for each linearized subproblem created by branching
sets an upper bound (assuming the objective is to be maximized) on the objective value
associated with any of its integer feasible values (this is called the bounding operation). The
optimum integer solution is the integer solution of the subproblem having the largest upper
bound (maximization problem). Nemhauser and Wolsey (1988) provide a more detailed
description of the branch and bound procedure. The complexity of the branch and bound
technique depends on the large number of branches that may be created and on the computer
storage required for the storing subproblems to be scanned later. The worst case complexity
of the branch and bound algorithm is the same as complete enumeration of every integer
solution in the feasible space.

The set of integer variables in the bandwidth maximization MILP formulation can be divided
into three sets:

Intra-loop variables ( m; ): are a set of general integer variables. This variable denotes the
number of cycles required to go from signal i to signal i+ and back, on arterial j. The m;’s
should assume integer values due to the fact that the progression bandwidth in a specified
direction for arterial j should pass through the green interval of signal cycles at signal i and
i+1. Little (1966) provides the analytical justification for the integral nature of this set of
variables.

Inter-loop variables ( n; ): are a set of general integer variables. This variable denotes the
number of cycles required for traversing arterials in the loop. The inter-loop variables are the
reflection of the network closure constraints which are required in a closed network consisting
of intersecting arterials and running on a common cycle length. These variables state that the
sum of the offsets around any closed loop in the network must be an integral multiple of the
common cycle length. Messer er al. (1987) provide the analytical justification for the integer
nature of this set of variables.




Left-turn-phase sequence variables ( 6,-j ): are a set of binary variables. These variables are
used to define the left turn phase sequence pattern on intersection i of arterial j.

3.1 RESTRICTED BRANCH AND BOUND ALGORITHM

The heuristic procedure discussed in this report is a restricted search procedure for suitable
values of the integer variables. The only known heuristics for the MILP are the two-step and
three-step heuristic by Chaudhary et al. (1991,1993). The first step of the two-step heuristic
relaxes the 6;;’s to be continuous variables and searches for optimal m,;’s and n;’s. Six of the
best solutions, obtained during the search, are saved. (Note: These six best solutions found
are not necessarily the best six solutions to the partial problem. They are the best six solutions
to the partial problem which were identified as a part of the branch and bound search.) For
each of these six solutions, the integer values of the m;;’s and n,’s are fixed in the second step,
which searches for optimal integer values of the Bij’s. Similarly, the three-step heuristic
solves the integer values of the n,’s, m,’s and 0;;'s in three steps, where the integer values
obtained in one step are fixed in the next step. As expected, the two-step heuristic produces
better solutions but consumes significantly more time compared with the three-step heuristic.
In both heuristic methods, at each step an exhaustive branch and bound search is required to
obtain optimal integer values. It was observed that, for some problem instances, the time
required by the multi-step method could be more than the time required for the simultaneous
optimization of all integer variables. This was because the six best solutions found during the
execution of the first step are all kept and used in the subsequent steps, regardless of their
relative merit and the exhaustive nature of branch and bound technique.

The key observation of a good heuristic design is to identify suitable problems that can be
solved quickly and repetitively to generate improving solutions over iterations. The heuristic
developed for MAXBAND Version 3.1 is a restricted branch and bound algorithm. The
branch and bound search is restricted to portions of solution space which is likely to contain
good solutions. Figure 1 gives an overview of the new heuristic. There are two key elements
that characterize the algorithm described here:

1.  a greedy heuristic to generate a good lower bound to be used at the root node of the
branch and bound tree (Greedy Heuristic I), and
2. atree search approach that combines branching and bounding techniques.

Efficient implementation of these key elements allow us to solve large problem instances of
the MILP in reasonable time and memory allocations. Let P be the original MILP problem to
be maximized. Let V(P) be the optimal objective function value of P. Let P’ be the LP
relaxation of P, obtained by relaxing the integer variables m;’s, n;’s, and §;;’s. Then, V(P’) is
the optimal objective value of P’. The fact that V(P) _ V(P’) is a consequence of the linearity
of the problem. If the optimal value of the solutions vector corresponding to the variables
my’s, n;’s, and 6,-j’s are integer in P’, then the solution is optimal to the original problem P.
The greedy heuristic, that generates a lower bound to be used in the tree search procedure,
shall be discussed first. This report then continues to discuss the restricted branch and bound
algorithm.

Greedy heuristic I is based on the concept of local search in the space of integer variables.
Heuristic algorithms based on local searches have been found to be very effective in a large
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Restricted Branch and Bound Algorithm

Lower Bound Implicit
Generator - Enumeration
Greedy
Heuristic I
Restricted Restricted  Greedy
D‘;;thflfirst Range On  Heuristic II
Search Variables  at Tree-node

Figure 1: Overview of Heuristic Algorithm

variety of integer programming problems. The key to this algorithm is to restrict the integer
variable ranges to those values which are likely to yield good solutions. The local search is
performed by fixing the values of some of the integer variables. The objective of the
restricted problem is evaluated by solving the resuiting restricted linear program.

3.1.1 Algorithm I: Greedy Heuristic I

Input: P’, the set of imteger variables

Step 1: Initialize the current incumbent, Z° = -0,

Step 2: Perform steps 3 through 9 two times. Go to step 10.

Step 3: Order the set of integer variables as follows I = {n; , ..., n;, my; , ...., mgy }

Step 4: Solve LP problem P’.

Step 5: If the set / is empty then go to step 8; otherwise, pick the next variable from the
ordered set 7 (say variable x;; ) and delete it from set I

Step 6: Set the upper and lower bounds of the variable x;; as follows:
b 1w =", =Int(x;+0.5), i.e. set the upper and lower bounds of the integer variable to the
integer value nearest the LP solution.




Step 7: Solve the restricted LP. If the current LP is infeasible then reset the variable last set
to the other end of the LP optimal solution (obtained in step 6) and re-solve. Go to step 5.

Step 8: The algorithm reaches this step once all the integer variables have been set to the LP
solution upper or lower bound. If the objective is greater than the current incumbent, save the
current solution as the incumbent. Reset the bounds of all the integer variables.

Step 9: Reverse the order of the integer variables and put it in set 7, i.e. this time the variable
mgy, is the first variable and variable n; is the last variable. Go through steps 4 through 8.

Step 10: Fix the m;;’s and n;’s at their best values and use branch and bound code to
integerize the §;;'s. ‘

The solution obtained at the end of step 10 of greedy heuristic I serves as a lower bound (best
incumbent) in the branch and bound procedure. Such a bound restricts the growth of the tree
and hence helps in faster resolution of the optimal solution. The restricted tree search
algorithm, (also called restricted branch and bound), developed for bandwidth optimization
can then be described as follows: In the tree-search procedure, the range over which the
integer variables, m,.j’s and n;’s, can vary, are restricted. Integer variable m,-j’s are allowed
only two values and integer variable n,’s are allowed three values. The three values of n;’s are
selected such that the incumbent value is the middle value. The two values of m,’s are
selected such that the incumbent value is the upper bound of this variable. For ease of
exposition let an integer variable be denoted x;;. Let the set F, be the set of the integer
variables fixed at the lower bound during the branch and bound procedure i.e. F; = {x; / b,ow
< x5 < by, }. Let F,, be the set of integer variables fixed at the middle value i.e. F,,

{x; / b,,,w+1 Sx; < b,ow+1 } and F, be the set of integer variables fixed at the upper
bound ie. F, = {x /by . Then, let § be a family of ordered triple of node
sets <F;, F » F, > and let é’ referred to as an incumbent, be the incidence vector of
some integer feasnble solutlon

To describe the restricted branch and bound algorithm the following terminologies are used.
Let a tree-node, associated with the ordered set <F;, F, , F, >, be the problem P(F,F, F,).
This is a problem of finding a signal timing plan whose solution vector satisfies the
inequalities (3.1a), (3.1b), and (3.1c) given below:

biw < X < b,,,, for all integer variables in the set F; (3.1a)
bit1< X; < by,,,+1 for all integer variables in the set F, (3.1b)
b, = x; = bup for all integer variables in the set F, (3.1¢)

Then, P’(F,F,, F,) is the linear relaxation of P(F,F, ,F,J obtained by relaxing the integer
variable not in the set F, F,,, and F,. The tree-nodes are recorded by the ordered triple
corresponding to it. A tree-node is considered fathomed if one or more of the following
conditions are satisfied:

i. the optimal LP objective i.e. V(P'(F,,F,,,F,)), at this node is less than the current
incumbent,

ii. the depth of this tree-node is equal to the maximum depth (mdepth) specified,

iii. the LP, P’(F,F,,F,, is infeasible, or

iv. the optimal LP results in an integer feasible solution.
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If the optimal solution of the current LP relaxation is fractional and the current depth (number
of integer variables fixed) is less than maximum depth, the algorithm selects a branching
variable x;; and branches, thus providing up to three new tree-nodes (< F,U {xy} F, F,>,
<F, ,F,,U{x},F.>,<F F, FU{x;}>). The root-node of the search-tree is the tree-
node < Z g, @' > During the algorlthm the tree-nodes of the search-tree that are in S are
called active tree-nodes. The restricted branch and bound algorithm can then be described as
follows:

3.1.2 Algorithm II: Restricted Branch and Bound
Input: Z°, the LP problem P’, the set of integer variables I.

Step 1: (Initialization) Set § = { <&, &, > }. Limit the ranges of the m;’s and n;’s.
Select the maximum depth (mdepth) of the tree to be half of the number of integer variables
in the problem. Number the integer variables such that the first consecutive number, (starting
with number 1), are given to the m,-j’s, the next consecutive numbers are given to n;’s and
finally number the 6,-j’s.

Step 2: (Select a tree-node for evaluation). If § = <J then stop - the current incumbent is a
local optima. Otherwise choose an ordered set <F;, F,,, F,> from S and set § = S\<F,,
F,,F>.

Step 3: (Greedy heuristic IT). Fix the all integer variables that are not fixed yet, (i.e. the set
of integer variables {x; /x; € I\(F;U F,U F ")} ), to an integer value nearest to the LP
solution, i.e. set b" —b" p=Int(x;+0.5). Solve the new LP. If the optimal objective is
greater than Z*, save the solutnon and reset the variables fixed in this step.

Step 4: (Evaluation of tree-node). Solve the linear program, P’(F,,F,, F,), with the additional
restriction. Let Z’ be its optimal solution. If Z° _ Z', go to step 2.

Step 5: (Check for new incumbent) If Z’ is integer feasible, and the optimal objective value
is greater than Z", then set Z* to Z”. Go to step 2.

Step 6: (Create new set of tree-nodes) If the depth of the tree is greater than the maximum
depth specified for the problem instance then go to step 2. Otherwise, select a fractional
integer variable x;; to branch on. Such a variable will be in \(F,U F,,U F, ) SetS =S U
<F,V {x;}.F, ,F,> U <F,,F, u{x}F>u<F,,F P U ;>
and go to step 2,

Once an ordered triple is removed from § it is never again generated in Step 6, so the
algorithm terminates in a finite number of steps. When the algorithm stops, Z" is a local
optima. The performance of Algorithm II depends significantly on certain implementation
details. In particular, the following issues are key to the algorithm’s performance:

(a) Whether or not early tree-nodes can be fathomed depends on the starting Z". If this value
is close to the optimum, the search-tree will consist of few tree-nodes. Therefore it is
necessary to generate good feasible solutions early in the procedure. This objective is
achieved by the Greedy Heuristic I and Greedy Heuristic II.




(b) Steps 3 and 4 must be executed many times before a good solution is obtained. A large
portion of the final execution time of the algorithm is devoted to solving the LPs.
Therefore, it is important to use the LP-optimizer as efficiently as possible. The LP-
optimizer of MINOS is very fast and numerically very stable since it uses the state-of-art
techniques of numerical analysis and linear programming for updating basis and
performing basis inversions.

(c) The efficiency of the algorithm with respect to run time and memory usage depends on
two things: the way the ordered triple is chosen in Step 2, and the way the tree-nodes are
created. The tree-nodes were processed in a depth-first fashion (LIFO). The integer
variables are ordered as follows: (m;’s, n,’s, and 6,-]-’5). Through experimentation, it was
found that this particular order led to incumbents that are close to optimal early on in the
search tree. The depth of the search-tree was also restricted to half the number of integer
variables, m,-j’s and n,’s. This restricted the number of tree-nodes generated and, hence,
restricted the growth of the search tree. Further restriction on the range of integer
variables also limited the number of tree-nodes generated. As will be seen in the
numerical resuits both types of restriction helped in faster resolution of the optimal
solution. The experimentation with 6 variables revealed that these naturaily turn out to be
integer or can be rendered integer by a minimal amount of branching in the branch and
bound search. Thus the § values are searched using the exact optimization technique.

3.2 OPTIMAL ALGORITHM

The algorithmic steps for the optimal approach, in MAXBAND Version 3.1, is the same as
that of the heuristic approach (discussed earlier). In the optimal algorithm, during the tree-
search procedure the integer variables and the depth of the search tree are not restricted.
Figure 2 gives an overview of the optimal method in MAXBAND Version 3.1.

Branch and Bound Algorithm
|
|
Lower Bound Implicit
Generator Enumeration
Greedy  Exhaustive Greedy
HeuristicI Depth-first Heuristic I
Search at Tree-node

Figure 2: Overview of Optimal Algorithm
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- MAXBAND Version 3.1 allows the user to select either the optimal approach or the heuristic
approach for solving a network problem. This option can be exercised by setting the proper
flag in the input data (discussed in the section on ’Getting Started’). The arterial problems are
always solved optimally. This is because arterial problems could be solved very fast (in few
seconds).
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4. OVERVIEW OF MAXBAND VERSION 3.1

Figure 3 provides an overview of the structure of the revised MAXBAND Version 3.1. The
new structure is not significantly different from the structure of MAXBAND Version 2.1. The
routines in the box shown by dashed lines are the new modules. In MAXBAND Version 2.1
this box contained the MATGEN and the MPCODE modules. The branch and bound
procedure (by Land and Powell) used in MAXBAND Version 2.1, is called MPCODE. The
matrix generator routine used to generate the MILP model for MPCODE is called MATGEN.
In this research, MATGEN and MPCODE routines were replaced by a model generator
routine call MPSGEN and a MILP solver routine called MODMINOS respectively. The
MODMINOS module is comprised of subroutines from MINOS 5.4 (1993) modified for use
in MAXBAND Version 3.1. Details of the MINOS code will be provided in section 5.0. To
the MINOS code, heuristic algorithms and new branching and bounding strategies were added
for faster resolution of the optimal bandwidth. The MODMINOS module is capable of solving
both arterial and network problems.

In MAXBAND Version 3.1, the arterial problems are always solved optimally. The network
problems can be solved either heuristically or optimally. The MPSGEN routine generates the
MILP model in the MPS format, (format discussed in Appendix A), required by MINOS. The
OUTPUT module was also modified to accept the signal timing plans in the form provided by
MINOS. Subroutines that would print the MINOS run statistics (e.g. number of solutions
obtained, number of iterations, etc.) were added to the OUTPUT module.
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§. THE LP SOLVER

Linear program solver routines from MINOS 5.4 (1993) were used to solve the LPs in
Algorithms I and II. MINOS is a FORTRAN-based computer system designed to solve large-
scale linear and nonlinear optimization problems. It has a collection of high-performance
mathematical subroutines which can be called from application programs. From this package
the subroutines required for solving linear programming problems were used. The main
reasons for choosing MINOS over other LP solvers were the cost and the availability of
source code. The availability of source code allowed customization and therefore helped to
speed up the executable.

MPCODE, the MILP solver in MAXBAND Version 2.1, is a straightforward implementation
of the revised simplex algorithm presented in any elementary Linear Programming textbook.
Advances in numerical analysis techniques and operations research techniques have led to
improved revised simplex routines for updating basis, inverting basis, choosing entering and
leaving columns, etc. These advances have led to faster and numerically stable algorithms for
solving linear programming problems. MINOS implementation takes advantage of the recent
advances in numerical analysis and linear programming techniques, e.g. using scaling as a
simple cure for ill conditioned matrices. MINOS performs scaling of rows, right hand side
vectors, and columns by choosing appropriate scale factors to make its rows and columns
roughly the same length, in some appropriate norm during the solution process; whereas, in
MPCODE the scaling of a problem instance had to be performed by the user externally. In
MINOS, the constraints and variables are scaled by an iterative procedure that attempts to
make the matrix coefficients as close as possible to 1. This improves the solution
performance. Some of the other techniques adopted by MINOS to improve stability and
efficiency are discussed in the following paragraphs.

Data (both input and output) is stored within a work array that is partitioned by a set of
pointers to starting locations of individual arrays needed by the procedure, each with an
appropriate number of bytes that depends on whether the array is integer, single, or double
precision floating-point. This makes implementation largely independent of data structures and
it is then relatively easy to unplug one set of data structure and substitute another.

An elementary way to solve a nonsingular square system of linear equations that arise in our
case, within the cycle of primal simplex algorithm, is to use Guassian elimination. LU
factorization is a reformulation, in matrix terms, of Gaussian Elimination. During LU
factorization the near zero pivot elements lead to uncontrollable growth in the elements and
fill-in of L and U. This in turn results in large numerical errors and large computational
times. The solution is to choose pivot elements suitably so as to prevent such element growth
and fill-in growth. MINOS implementation is based on the Markowitz pivoting strategy that
balances considerations of stability and sparsity. The basis updating strategy used by MINOS
is the Bartels-Golub basis updating strategy in which updating is carried out with a pivot
strategy that balances considerations of stability and sparsity. The basis inverse is maintained
implicitly in product form. For complete details of the Markowitz pivoting strategy, Bartels-
Golub basis updating strategy, and implementation details see Reid (1976, 1982). MINOS has
also implemented various selection strategies for actually making the choice of entering and
exiting variables. These strategies lead to faster resolution of the optimal solution, degeneracy
resolution and also doesn’t lead to numerical instability.
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Certain disk files are accessed by MINOS subroutines as follows:

Input files
SPEC file (input file)
MPS file (created during run time )
INTEGER VARIABLE SPECIFICATION files ( created during run time )

Output files
OUTPUT file

The SPEC file sets various run time parameters that describe the nature of the problem being
solved. This file is an input file and is required along with the network data file and the
executable for MAXBAND. The file consists of a sequence of card images, each of which
contains a keyword and certain associated values. The first keyword is BEGIN and the last
keyword is END. The SPEC file format, the parameters, default values and a sample SPEC
file are given in APPENDIX A.

The MPS file is required for all problems to specify names for the variables and constants,
and to define the constraints themselves. This file is generated by MAXBAND Version 3.1. A
very fixed format must be used for the MPS file; this means that each item of data must
appear in a specific column. The MPS file, called ‘MINOS.MPS’, is created by MPSGEN
routines of MAXBAND Version 3.1. The MPS file format and a sample MPS file are given
in APPENDIX B.

The files ‘MNMINOS.MPS’ and ‘DLMINOS.MPS’, are used to specify which variables in
the linear program described by the specifications file and the MPS data file are either integer
values or are integer multiples of given increments. These two files use a format similar to
that found in an MPS file. These files are also created by the MPSGEN routines. The
INTEGER VARIABLE SPECIFICATION file format and a sample file are given in
APPENDIX C. '

Warnings and errors encountered during the solution of problems are printed in the OUTPUT
file. The solution to the problem is also printed in the OUTPUT file in the format specified
by MAXBAND Version 2.1. The following information could be written by the MINOS
routines to the OUTPUT file during the solution of each problem:

A listing of warnings/errors encountered in the MPS file (if any).

Extra storage requirements ( if any).

Abnormal exit conditions (if any).

Various run statistics: number of feasible integer solutions found, number of tree-
nodes created, etc.

hON -
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6. NUMERICAL RESULTS

A number of network and single arterial problems were solved using the new model. The test
data sets were supplied by FHWA. Tables 1 through 4 report the solution quality and the
computation times for these problems. Tables 1 and 2 show the results of the arterial test
problems. Tables 3 and 4 correspond to the network problem runs. The columns of Tables 3
and 4 can be described as follows. Column 1 specifies the names of data set, as provided by
FHWA. Column 2 contains the problem size showing the number of arterials and total
number of intersections. Column 3 contains the optimal objective value. Column 4 contains
the objective function value at the end of the LP based heuristic (greedy heuristic I); the
numbers in parentheses show how close this value is to the optimal value. Column 5 contains
the time in seconds for greedy heuristic I. Column 6 contains the objective at :h2 end of the
restricted branch and bound procedure; the number in parentheses shows how close this value
is to the optimal objective value. The numbers in column 7 show the time taken in seconds
for the entire algorithm. The computation times are reported for an 80486/66 MHz personal
computer. As is observed from the Tables 3 and 4, the heuristic performs very well in
generating optimal/near-optimal solutions in a short amount of time. The utility of the
heuristic increases as the size of the problem grows and an exact search requires excessive
computation time. All of the arterial problems were solved using the optimal approach.




Table 1: Arterial Problem Without Left-Turn Phase Sequence Variables

PROBLEM SIZE Opt. Obj. . Time (Sec.). | =~ MAXBAND -
b .24 Version 2.1 Time -
et
e
Hawth (1,13) 0.2305 12.14 106
N33rd (1,9) 0.1292 7.47 19
Nicholas (1,12) 0.5454 11.53 56
Univ (1,10 0.2166 4.89 19
Fredrica (1,12) 0.6726 15.32 79
Mstreet (1,8) 0.6993 2.52 4

** CPU times on a 486/33 MHz personal computer.

Table 2: Arterial Problem With Left-Turn Phase Sequence Variables

" PROBLEM SIZE ‘Opt. Obj. | Time (Sec.) | MAXBAND
i : cooob o ] Version 2.1 Time
. Bt
Hawth.ph (1,13) 0.5796 15.38 889
N33rd.ph 1,9 0.4735 16.53 44
Nicholas.ph (1,12) 0.6254 16.92 257
Univ.ph (1,10) 0.5000 7.36 23
Fredrica.ph (1,12) 0.7106 33.83 209
Felipe.ph (1,12) 0.6000 3.74 21

** CPU times on a 486/33 MHz personal computer.
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7. CONCLUSIONS AND FUTURE WORK

This report describes the development of a new version of MAXBAND called MAXBAND
Version 3.1. The new version has a fast heuristic algorithm and an new optimal algorithm.
The two algorithms are faster than the existing approach for bandwidth maximization
problem. Furthermore, the new version has removed the numerical instabilities that existed in
the previous version. The reduction in computation times for difficult network problems are
substantial, and should make MAXBAND usage attractive for real-time applications, off-line
usage in a microcomputer system, and for repetitive solutions of the bandwidth maximization
problem in conjunction with the delay minimization problem or simulation procedure. All of
the arterial problems were solved optimally since they only required a few seconds to solve.

Further work can be done to enhance the MILP formulation to include circular phasing and
multiband capability. Work can also be done in building a combined model based on
bandwidth maximization, delay minimization, and simulation.
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APPENDIX A

SPECS FILE

Each line in the SPECS file contains a sequence of items in free format (they may appear
anywhere in columns 1 to 72). The items are separated by spaces or equal signs (‘ ° or ‘=").
Those selected from each line are:

1. The first word (the keyword). Only the first 3 characters are significant.

2. The second word (if any). Sometimes this is the keyword’s associated name value, an
8 character name. More often it qualifies the keyword, and its first 4 characters are
significant.

3. The first number (if any). This may be an integer value or a real value, specified by

up to 8 characters in Fortran’s I, F, E or D format.

The following example SPECS file shows all valid keywords and their default values relevant
for MAXBAND Version 3.1. A more extensive list is provided in the MINQOS 5.4 [1993]
manual. Keywords are grouped according to the function they perform. Blank lines and
comment lines may be used for readability. A comment begins with an asterisk (‘*’) and
includes subsequent characters on the same line. Some of the default values depend on ¢, the
relative precision of the machine being used. The values given here correspond to double-
precision arithmetic on IBM 360 and 370 systems anc their successors (e =2.22x10°'6).
Similar values would apply to any machine having about 15 decimal digits of precision.

BEGIN * check list of SPECS file parameters and their default values

*

* Keywords for the MPS file

*

MAXIMIZE * opposite of MINIMIZE
ROWS 100 * (or less)

COLUMNS 300 * or 3*rows (or less)
ELEMENTS 1500 * or 5*columns (or less)
MPS file ? * depends on installation
Al TOLERANCE 1.0E-10 *

LOWER BOUND 0.0 *




UPPER BOUND 1.0E+20 * Plus infinity*

* Keywords for the simplex method

*

FACTORIZATION FREQUENCY 50 * refactorize the basis matrix
SCALE YES * linear constraints and
variables

*

* Convergence and Stability tolerances
*

FEASIBILITY TOLERANCE 1.0E-6 * for satisfying bounds

*

* Keywords for Mixed Integer Program

*

CYCLE LIMIT 1 * limits number of B&B
problems

WORKSPACE (USER) 0 * allocated for B&B routine

WORKSPACE (TOTAL) ? * depends on installation

*

END * of SPECS file checklist
SPECS FILE DEFINITIONS

The following is an list of recognized SPECS file keyword definitions. A use of each keyword
is given, along with a definition of the quantities involved and comments on usage. In some
cases the value associated with a keyword is denoted by a letter such as &, and allowable
values for k are subsequently defined.

AlJ TOLERANCE (¢): During the input of the MPS file, matrix coefficients a; will be
ignored if ]a,-jl < ¢, i.e. the coefficient is set to zero.

COLUMNS (n): This must specify an over-estimate of the number of columns in the
constraint matrix (excluding slack variables). If n proves to be too small, MINOS wili
continue reading the MPS file to determine the true value of n, and an appropriate warning
message will be issued in the OUTPUT file.

CYCLE LIMIT ()): The number of branch and bound subproblems solved is controlled by
the CYCLE LIMIT parameter found in the SPECS file. For this reason, / should be set to be
more than the maximum number of subproblems to be solved.




ELEMENTS (e): This must specify an over-estimate of the number of nonzero elements
(coefficients a;;) in the constraint matrix. COEFFICIENTS is a valid alternative keyword. If e
proves to be small, MINOS continues in the manner described under COLUMNS.

FACTORIZATION FREQUENCY (k): At most & basis changes will occur between
factorizations of the basis matrix. In LP, the basis factors are usually updated every iteration.
The default & is reasonable for typical problems. Higher values of £ (say, up to k=100) may
be more efficient on problems that are extremely sparse and well scaled.

FEASIBILITY TOLERANCE (f): A feasible solution is one in which all variables satisfy
their upper and lower bounds to within the absolute tolerance, ¢ (this includes slack variables).
The linear constraints are also satisfied to within z. MINOS attempts to find a feasible point
before optimizing the objective function. If the sum of infeasibilities cannot be reduced to
zero, the problem is declared INFEASIBLE. Let SINF be the corresponding sum of
infeasibilities. If SINF is quite small, it may be appropriate to raise ¢ by a factor of 10 or 100.
Otherwise, some error in the data should be suspected. If SCALE is used, feasibility is
defined in terms of the scaled problem (since it is then more likely to be meaningful).

LOWER BOUND (J): Before the BOUNDS section of the MPS file is read, all structural
variables are given the default lower bound /. (Individual variables may subsequently have
their lower bound altered by a BOUND set in the MPS file). LOWER BOUND = 1.0E-5
(say) is a useful method for bounding all variables to remove singularities at zero. If all or
most variables are to be FREE, use LOWER BOUND = -1.0E+20 to specify ‘minus
infinity’.

MAXIMIZE: This specifies the required direction of optimization.

MPS FILE (f): This is the file number for the MPS file. The default value is the system file
reader (f=5). INPUT FILE is a valid alternative keyword.

ROWS (m): This must specify an over-estimate of the number of rows in the constraint
matrix. If m proves to be too small, MINOS continues in the manner described under
COLUMNS.

SCALE: The constraints and variables are scaled by an iterative procedure that attempts to
make the matrix coefficients as close to 1 as possible (see Fourer [1982]). This will
sometimes improve the performance of the solution procedures.

UPPER BOUND (u): Before the BOUNDS section of the MPS file is read, all structural
variables are given the default upper bound u. (Individual variables may subsequently have
their upper bound altered by the BOUNDS section in the MPS file.)

WORKSPACE (USER) (maxw): You will need to reserve a portion of the MINOS
workspace for use by the integer programming routines. The variable maxw is the number of
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spaces in the workspace array that will be allocated to the arrays needed for integer
programming. A good rule of thumb for selecting maxw is to set it to at least 6n+2m+4I,
where n is the number of variables, m is the number of constraints, and / is the CYCLE
LIMIT.

WORKSPACE (TOTAL) (maxz): Default maxz=NWCORE. These keywords define the
limits of the region of storage that MINOS may use for solving the current problem. The
main work array is declared in the main program (MODMINOS), along with its length, by
statements of the form

DOUBLE PRECISION Z(200000).
DATA NWCORE/200000/

where the actual length of Z must be specified at the compilation time. The values specified
by the WORKSPACE keywords are stored in

COMMON /M2MAPZ/ MAXW, MAXZ
and workspace may be shared according to the following rules:
1. Z(1) through Z(MAXW) is available for branch and bound routines.

2. Z(MAXW+1) through Z(MAXZ) is available to the LP solver in MINOS, and is not to
be altered by MAXBAND 93.

3. Z(MAXZ+1) through (ZWCORE) is unused.

The WORKSPACE parameters are most useful on machines with a virtual (paged) store.
Some systems will allow NWCORE to be set to a very large number (say 500000) with no
overhead in saving the resulting object code. In general it is far better to have too much
storage than not enough.

AN EXAMPLE:

Begin Example * sample spec file

Maximize
Rows 1000
Columns 1000
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Elements
Cycle Limit
MPS file
Feasibility Tolerance
Workspace (User) 90000
Workspace (total)

End Example

20000
100000
10
1.0E-5

200000




APPENDIX B

MPS FILE

MPS format is the industry standard. Files of this kind are recognized by all commercial
mathematical programming systems. In contrast to the relatively free format allowed in the
SPECS file, a very fixed format must be used for the MPS file. Various ‘header lines’ divide
the MPS file into several sections as follows:

NAME
ROWS

CdLUMNS

RHS

RA.NGES (optional)
BO.UNDS (optional)
EN.DATA

Each header line must begin in column 1. The intervening lines (indicated by ‘.’ above) all
have the following data format:

Columns 2-3 5-12 15-22 25-36 40-47 50-61
Contents Key  Name0 Namel Valuel Name2 Value2

The NAME section: This section contains the word NAME in columns 1-4, and a name for
the problem in columns 15-22. The name may be from 1 to 8 characters of any kind, or it
may be blank. The name is used to label the solution output. The NAME line is normally the
first line in the MPS file, but it may be preceded or followed by comment lines.

eg. NAME MAXBAND 93

The ROWS Section: The constraints are referred to as rows. The ROWS section contains one
line each for each constraint (i.e. for each row). Key defines what type the constraint is, and
Name0 gives the constraint an 8-character name. The various row-types are as follows:
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Key  Row-type

T\

Z - Qm

Objective

Row-types E, G, and L are easily understood. Row-type N stands for ‘non binding’, also
known as ‘free’. It is used to define the objective row, and also to prevent a constraint from
actually being a constraint. '

eg. ROWS
N MAXBAND
E LC001

The COLUMNS Section: For each variable x; the COLUMNS section defines a name for X;
and lists the nonzero entries g;; in the corresponding column of the constraint matrix. The
nonzeros for the first column must be grouped together before those for the second column,
and so on. If a column has several nonzeros, it does not matter in which order they appear (as
long as they appear before the next column). In general, key is blank (except for comments),
NameQ is the column name, and Namel, Valuel give a row name and value for some
coefficient in that column. If there is another row name and value for the same column, they
may appear as Name2, Value2 on the same line, or they may appear in the next line.

eg.
COLUMNS
X01 MAXBAND
X01 LCO001
X02 MAXBAND
X02 LC001

The RHS Section: This section specifies the elements of the right hand side of the
constraints. Only the nonzero coefficients need to be specified. They may appear in any
order. The format is exactly the same as the COLUMNS section, with Name0 giving a name
to the right-hand side.

eg. RHS

RHSO1 LCOO1 7.5

The RANGES Section: Ranges are used for constraints of the form




where both 7 and u are finite. The range of the constraint is r=u-/. Either / or u is specified
in the RHS sections (as b, say), and r is defined in the RANGES section. The resulting / and
u depend on the row-type of the constraint and the sign of r as follows:

Row-type Sign of r  Lower limit, | Upper limit, u
E + b b+|r]
E - b-|r| b
G + or - b b+ |r|
L + or - b-|r| b

The format is exactly the same as in the COLUMNS section, with Name0 giving a name to
the range set.

The BOUNDS Section (Optional): The default bounds on all variables x; (excluding slacks)
are 0 < x; < oo. If necessary, the default values 0 and o can be changed in the SPECS file
to /< x;< u by the LOWER and UPPER keywords respectively. In this section Key gives the
type of bound required, Name0 is the name of the bound set, and Namel and Valuel are the
column name and bound value. (Name2 and Value2 are ignored). Let / and u be the default
bounds just mentioned, and let x and b be the column and value specified. The

various bound-types allowed are as follows:

Key Bound-type Resulting bounds
LO Lower bound bsx<u

0} Upper bound Isx<b

FX Fixed variable b<sx<bd

FR Free variable -0 X< ®

MI Minus infinity -0 XS U

PL Plus infinity I<x< o




COLUMNS

COLUMNI1
COLUMNI
COLUMNI1
COLUMNI1
COLUMN2
COLUMN2
COLUMN?2
COLUMN?2
COLUMN3

DEMANDS
DEMANDS
DEMANDS

ENDATA

EXAMPLE
COST
ROW1
ROW2
ROW3

COST
ROW1
ROW2
ROW3
COST
ROW1
ROW2
ROW3
ROW1

ROW1
ROW2
ROW3

ROWS

-7.0
-1.0
5.0
2.0
2.0
2.0
1.0
-2.0
16.0

4.0

20.0
-7.0
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APPENDIX C
INTEGER VARIABLE SPECIFICATION FILE

MNMINOS.MPS and DLMINOS.MPS use a format similar to that found in an MPS file;
there is a header line, an end-of-data line, and the lines in between must have the following
data format:

Columns 5-12 25-36
Contents Variable name Increment value

In other words, the variable name is placed left justified in columns 5-12 of the line, and the
increment value is placed in columns 25-36. The increment value used in MAXBAND
Version 3.1 is 1.

AN EXAMPLE:
INTEGERS
COLUMNI1 1.0
COLUMN2 1.0
ENDATA
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APPENDIX D

GETTING STARTED

Installing the MAXBAND Version 3.1 System

Use the DOS ‘copy’ command to transfer all the files from the diskette. Unzip all the files in
‘MAXBND31.ZIP’ using the command ‘PKUNZIP MAXBND31".

The following files will be created in the current directory:

-  all the source modules of the system

- a’makefile’, that can be used for compiling and linking the FORTRAN source code using
Lahey FORTRAN extended memory version 5.10.

- MAXBAND.EXE, the executable code

- ’MINOS.SPC’ file which is needed to run the system

- all the data files mentioned in the tables of the result.

Running MAXBAND Version 3.1 System

Type ‘MAXBAND’ at the DOS prompt. This will start the MAXBAND Version 3.1 system
running. The default option on all the data sets is the heuristic method (except arterial
problems). In order to exercise the optimal solution method of MAXBAND Version 3.1 the
input data file will have to be altered. A flag should be reset in the input file. In the data line
‘MPCODE’, columns 51-55 is used for this purpose. A ‘1’ in one of these columns will
indicate that the optimal solution technique is to be used to solve the problem, otherwise the
heuristic approach is used to solve that problem.

Output Results

The results of the run, i.e. the best signal timing plan, is printed on the output file specified at
the beginning of this run by the user.
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Software Availability and Technical Support

The new release, MAXBAND Version 3.1, software is available from MCTrans and Pc-trans.
For any technical questions, comments, and suggestions please contact the main author at the
address given below either via letter, phone or e-mail.

IVHS Research Group

Center for Transportation Analysis, ORNL
P.O. Box 2006, MS 6206

Oak Ridge, TN 37831

PH: (615) 574 1402

FAX: (615) 574 0202

e-mail: puv@ornl.gov
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