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ABSTRACT

The gyro-Landau fluid (GLF) model equations for torpidal geometry [R.E. Waltz,
R.R. Dominguez, and G.W. Hammétt, Phys. Fluids B 4, (1992) 3138] have been recently applied
to the study ion temperature gradient (ITG) mode turbulence using the 3D nonlinear ballooning
mode representation (BMR) outlined in [R.E. Waltz, G.D. Kerbel, and J. Milovich, Phys. Plasmas
1, 2229 (1994)]. The present paper extends this work by treating some unresolved issues
concerning ITG turbulence with adiabatic electrons. Although eddies are highly elongated in the
radial direction long time radial correlation lengths are short and comparable to poloidal lengths.
Although transport at vanishing shear is not particularly large, transport at reverse global shear, is
significantly less. Electrostatic transport at moderate shear is not much effected by inclusion of
local shear and average favorable curvature. Transport is suppressed when critical EXB rotational
shear is comparable to the maximum linear growth rate with only a weak dependence on
magnetic shear. Self consistent turbulent transport of toroidal momentum can result in a transport
bifurcation at suffciently large r/(Rq). However the main thrust of the new formulation in the
paper deals with advances in the development of finite beta GLF models with trapped electron

and BMR numerical methods for treating the fast parallel field motion of the untrapped electrons.
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. INTRODUCTION

This paper describes some recent advances in the simulation gyro-Landau (GLF) model
equations for toroidal geometry as formulated by Waltz, Dominguez, and Hammett! and applied
to the study of ion temperature gradient mode (ITG) turbulence using a 3D nonlinear ballooning
mode representation (BMR) outlined in a very recent paper by Waltz, Kerbel, and Milovich.2
The present paper is intended to be read in close conjunction with the latter reference which dealt
exclusively with the ITG turbulence assuming adiabatic (near Boltzmann) electrons in the
electrostatic limit. Reference 2 should be consulted for numerous references to earlier and
contemporary work on the simulation of ITG turbulence. The key results were that the toroidal
turbulence is highly ballooning and the toroidal transport levels are more than twenty-fold larger
than slab levels. The scaling of diffusion with shear §, safety factor g and temperature gradient
is found to be similar to the scaling of the linear mixing length model at least near threshold at
moderate to strong shear (1 < § < 2). The mixing length diffusion is simply the product of
growth rate for the maximally unstable ballooning mode and the square linear mode width [Dpp
= Vax A%C where A, = 1/(ky § Orms) with ky the poloidal wave number of maximal growth
and its poloidal extent ©.s]. Diffusion increases with g and decreases with § but remains finite
to vanishing shear (0 < § < 1). No evidence of subcritical turbulence was found. Variations in
the relative gyroradius (ps/a) showed no long wave condensation or deviations from gyro-Bohm
scaling. The simulations in this mixing length regime were characterized in Ref 2. by a diffusion
scaling x=0.5 (q/§)2 (cspz / R)(R/ Ly - R / LT__ crit)‘ There appears also to be a very
strong temperature gradient regime in which the turbulence condenses to longer wave numbers
and diffusion is weakly dependent on the driving gradient in contrast to the linear mixing length
rule. A subsequent study by Dorland, Beer, Kotschenreuther, et al.3 using many more simulations
and a more careful accounting of the variations of the critical gradient ratio R/lT_ crir With g
and § as well as noting the (Ti /Te) dependence, showed that the weak shear regime and the

strong temperature regime could be better described by a more general formula
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X o< [q/(2+§)][csp§/R](Ti/Te) R/lT —R/Ly ;) - A key result of Ref. 2 and other
recent work4> has been that nonlinearly generated and linearly stable n=0 “radial modes” provide
stabilizing small scale ExB sheared rotations which can reduce the transport ten-fold in
comparison to neglecting them. In addition the equilibrium scale ExB sheared rotation causes the

transport to vanish if the Doppler shear rate exceeds the maximum linear driving rate (including

the parallel shear drive).

We return to electrostatic ITG turbulence with adiabatic electrons to treat several remaining
issues not thoroughly discussed in Ref. 2: How to interpret the long wave structures apparent in
instantaneous potential contour plots; the behavior of turbulence with reverse shear, Shafranov
shift (or local shear), and magnetic well; scaling of the critical Doppler rotation shear for
vanishing transport in the weak magnetic shear limit. And finally we treat self-consistent
rotational shear stabilization and the transport of toroidal momentum leading to a momentum

transport bifurcation.

The main thrust of the new formulation in the paper however deals with advances in the
development of GLF models and nonlinear BMR numerical methods for relaxing the adiabatic
electron assumption and treating the electron physics at finite beta. This includes trapped and
untrapped electron fluid models with collisional exchange and inclusion of electromagnetic terms
allowing a treatment of turbulence approaching the ideal MHD beta limit. While we believe the
models and numerical methods are well in hand, at present we can only test the models linearly.
To do this we have made extensive use of Kotschenreuther's gyrokinetic stability (GKS)

ballooning mode stability code.b

The outline of the paper is as follows: Section II deals with the complete formulation of the
electromagnetic models with trapped electrons including the nonlinear equations of motion, the
ExB and magnetic flutter transport equations, a review of the methods for the nonlinear BMR,

and a description of the special implicit numerical methods required to handle the fast motion of




the passing electrons. Section III treats the remaining issues of ITG turbulence with adiabatic
electrons. Finally Section IV numerically illustrates the fidelity of the new GLF electromagnetic
trapped-untrapped electron models with respect to the GKS code and discusses the special

physics of n=0 radial modes with non-adiabatic electron physics.







il. FORMULATIONS

A. Finite beta GLF models with electron physics

For purely passing particle with no consideration of the mirror force, generalization of the
electrostatic toroidal GLF model! to finite beta is straightforward. We need only include the

parallel magnetic vector potential in the parallel momentum equations

dN; /dt=-i.[(L,~m,) 05+ 1, 85, [ +iwy, 0 —i ki U}

ey
+ie, 0,7 (P +P,)/2
dU: [dt=—i ks M;' (2P, +e,0%,) o
_Ms_l (ﬁe/z)[esaA:k/gt—.lw *(Aik + 778 A’;k )]
+iewp [(T,+T,)/2-Ut-iouU; ]
dP;, /dt=—iw. (1,0, + 1,03, )+iX,0,00,
-ik II[ ruUi "io'sMi—lmZ;I Tﬁk ] &)
+iesopt]! [ X, Py +G/ DTy +/ T —io (VT + I T )]
dP’, /dt=—i@.[(1,~ 1,) 5 +27.0y | +iX, 0 Pss,
~iky [T, U, i M T, ] @
wiesopt]! [ X P, +T5, +(1/ 2T, -0 (i Ty +viT, )]
and add the “magnetic flutter” nonlinearity to the EXB nonlinearity:
iky=iky + (Be/2) 2k (kx1ky2 — kx2ky1) Ax 2 (5)
df, / dt = afk /ot + Zk](kxlkkax2kvl) bufi2 (6)




The cross field wave numbers are normed to the gyrorlength pg = ¢4/ and the parallel wave

numbers and gradients to a, a typical minor radius of the plasma. The units for velocity and time

are cg and a/cg. The fields are normed to relative in gyrolength pg/a; e.g. ¢y = (e/Te) Pp/(Ps/a);

= mj/mg; Ts— I = Tg/Te; and eg is the charge sign of

Ay = (e/Te) A (c/o)(Be/2)/(Psfa). My

species s; 1g = a/LSn; MNs = a/ LST; Be = neTe/(B2/8T). Quasi-neutrality and Ampere's law are

given by
s (ngno) esN§. = X (ng/no) 215 (9, — O3, 7
s (ngng) es U, = k] Ak ®

where Ni, U, Pi are the gyrocenter density, parallel velocity, and pressure perturbations

with Ty = Pg — Ni. [ ] are higher moments closed by assuming a perturbed Maxwellian and the

Maxwellian deviations are represented by the closer fit coefficients )('ll =2 xil‘ = («/5 )2 / N7 for
parallel motion and p = (0.80-0.57 ict), vllll = vi = (1 -10y), vl_lL = v"l = 0 for curvature
motion (with o = ky/lkjl, 6; = ®p/lopl). ®p is the curvature drift frequency and ®* is the

drift frequency for electrons at unit density gradient length. The adiabatic compression indices are

FH =3, 1"_]_= 1, X]|= 2,X_L=3/2

01 = To O ©)
bk =[ Tp-bTo-TI & (10)
¢3k = (1/2) [(2 —4b + b2)F0 -— (Sb 2b2) I"l + b2 Fz] q)k an

with 1ok = (@1 + Pox)/2 and §p3p = (G + P3x)/2 represent the Bessel function gyroradius
cut-offsand b= 7 1 Mg (k J_ps)z.




The ExB and magnetic flutter plasma and energy flows are respectively given by
* -
TS =ngcs(pya)? ( Zx Ny (-ikydy) ) (12)
* -
Qg =Pos s (P22 (372) { X P (-ikyd,) ) (13)

where Pis = (1/3) Pﬁk + (2/3) Pj_k' ( ) represents a time average. Ampere's law forces

electrons to flow with ions in magnetic flutter particle flow
Ty =nocs (pya)2 (Be/2) ( T Uy (~kyAp) ) (14)
M- M 2/a) XM (=3T,, / 2.
QR =(3/2) Tos Ty + 19 cs(ps2/a) XM (=0T, / Ox) (15)

where in units of cs(psz/a)

M = Be/2) V2 (2/)/ Mg

x { Ttk (Ber2) ko Ay {Ag-kiTe/ls B2 kyl} ) (16)

This essentially corresponds to magnetic flutter heat flow with the Hammett-Perkins parallel
collisionless diffusivity foIP = (2/Vm) vk~ in physical units. The first term represents
Rechester-Rosenbluth field line diffusion and the second term is the Kadomtsev-Pogutse back
reaction term which prevents significant magnetic heat flow as the field line becomes isothermal
{Ag — ki Tg/[Mg (Bel2) ky]} — O. It is unclear whether k=1 (which we interpret to be acting on
Ty) really should be II~C||I‘1 which is difficult to interpret. In any case we believe magnetic flutter

flows will be very small. There is a turbulent energy exchange from electrons to ions given by

A =ppcga (pg/a)2 { Z,(ON;/91) ¢, ) 17




We model the trapping of electrons by dividing velocity space into a trapped region (v} <

Ve v) and untrapped regions (Vev < lvyl < v) and assuming vj; = 0 in trapped region which has
no response to Ej. V& = {(/R) [1 + cos(8)]/[1 + (/R)cos(8)]}1/2 is the local trapped fraction
with 0 the poloidal angle. The electron fluid is broken into trapped and untrapped fluids. The
trapped electron fluid equations are closed to fit the trapped electron response function or energy

integral in electrostatic limit

N/(Vep)=1- f trapdE Frmax [ — @+ (1 + e B - 3/2))/(0 - wl*) E/2 +i Vesf/E¥2)  (18)

where Frax = (2/7)EV2 exp(-E), Vefr = {V/[€(0)]2} (1 - v¢), and an integration is made
over trapped portion of velocity space vy < v v. For the trapped electron fluid the closure

gives

dN} /dt=—iw.1,ved, +i(3/4)w, Ve, —iw,(3/4)PL

(19)
—(detrap—retrap)_

dP, /dt=—iw, (1,+ 1, Weo, +iwy (5/4)Ved, —iw,[(5/4)+ 5 |(PL ~N}) -
~(detrap — retrap)_ @

where N€ = Nt + NU are the trapped and untrapped electron density, and {p = 0.7 + 0.8 i. PL is

the trapped perpendicular pressure and the trapped parallel pressure is neglected. Since we have
preserved the proportionality Pt = (2/3 )<E> between pressure and energy, the energy transport is
still given by adding the trapped pressure to the untrapped pressures. The trapped electrons carry

no current so Ut = 0. The collisional detrapping model” is

(detrap—retrap)_ =v/[\[§(0)]2 [(1 - \/E)(Fm, N'+F_P' )—\/EFM N“] (1)

(detrap - retrap) =v/ [«/E (0)]2 [(1—«/2 )(Fp,, N'+F P )-\/E Foe Nu] (22)




where v is the electron-ion collision frequency in units of cg/a. The energy bin fractions giving
the same first and second moments as a Maxwellian are ty = 4.08, t. = 0.918, f;, = 0.184.f; =
0.816 with Fnn = [(tn/tc)¥'2 ~ (tc/th)3/2V/[th — tc], Fap = 3/2)[(1/)3/2 - (1/1c)32)/[th ~ tc], Faf =
(/)32 + (fc/tc)2, Fpn = (2/3) [(tn/te) 2 - /)21ty — te], Fyp = [(17y)12 -
(1/t)12)/[th — tc], and Fpr = (2/3) [(fy/tn)12 + (fc/tc)!/?]. Detailed balance and particle
conservation are satisfied by the collision model and the trapped electron response becomes

adiabatic (for passing electrons adiabatic) for n large.

For the untrapped electron fluid, we integrate over the untrapped portion of velocity space

v>v|> Vev

dN}y /dt=-iw.1, (1-VE) @, + iw, [1-(3/4)Ve]d, =i ki U}
~iw, 7, (P +PY, )/2 +(detrap-retrap),

dUﬁ/dt=— i];n M;l (T:P;:k - ¢k)
-M; (B./2)[-0A or-iw. (1+77) A,

~iop [ (G+1,)/20g-ion vy ]

dPy, /dt=—iw. (1, + 1, ) 9, +iX, 0,0,

1/2 |I

. -1 u u u . fl~u | ~u

dP, /dt=—ia. (1,+n,)[ 1-(3/2We] ¢, + iX 0, X, ~(15/8)Ve |0,
_iky [I“_LUE—iasMg’”z)x'l'[(l—\/—E)P:,’k—NE]]

p -1 u u u . 1ru 1u




The adiabatic untrapped electron response is obtained for k;; — o= by the lel term forcing (1 —

Ve) P —>N} and ohm's law forcing Py, —¢, so that N} —(1-+/e)¢, . However the
(1- +e) Pﬁ‘k term required to get the adiabatic limit is difficult to handle numerically.
Thus we replace (1 - V&) P}, — N} with P}, —N! in the P equation and insert (1 — V)
factors in front of the ¢, and Ay terms in Ohm's law UE equation. Thus apart from the electric
and magnetic potential terms reflecting a reduced portion of velocity space, the fluid closure is
the same as the purely passing electron model closure given above. Unfortunately this closure has
the feature that the non adiabatic or Landau resonance portion of the electron response at small A

= (Ct)/k”vfh) falls off incorrectly as A! instead of A3 required by the subtracted Z functions

response for untrapped electrons:

Np/(1-Ve )9, ={1+[z((,1)-Z(A/«/E)/(l-dE)]}-ﬂﬂsz 2(1+e) e @7

in the electrostatic limit without curvature. Thus the Landau resonance of the untrapped electrons
is over weighted. There appears to be no way to avoid this without going to higher moments in

the closure.

It is straightforward to show that combining the purely passing ion fluid with the trapped
and untrapped fluids, that the one fluid incompressible ideal MHD high-n ballooning mode
equations are obtained in the k| — 0 limit provided the compression terms proportional to i®p ¢

and i ky I‘E are explicitly dropped. However under the assumption that the pressure perturbations

are close to isotropic, compression will not change the critical MHD beta.

B. Nonlinear ballooning mode representation

Reference 2 gives a complete formulation and discussion of the nonlinear ballooning mode

representation (BMR) and numerical methods. Here for convenience and completeness we note

10




that the BMR is a cross field Fourier transform of the field line following “twisted eddy” basis®
(k;,k;,z') where kx = k;+§(z'/Rq)k; with shear § = ding/dlnr, the ballooning mode angle 6
= -k} / (§k;,) ky = k;, = (ng/r) refers to the toroidal mode number n. z’ = Rq0 is the distance
along the field is related to the extended poloidal angle 6 and iky = /02" = (1/Rq) d/00. Thus
(é,n, 0) or (k;( ,k;,,z’) are interchangeable labels for the perturbed fields. The finite-n fields F are
made periodic in the physical poloidal angle by including p labeled “image modes” in phase with
p=0 “primary” modes F® +27p(0)=exp(—ip27mq) FP (6-27p) The n=0 (k’y = 0 but finite K/ )
“radial” modes are naturally 27 periodic. For a sheared magnetic field we must also replace k;,
with k- i (§/Rq) (kykx / k_ZL) b I'yy(b)/T(b). In this notation the curvature drifts become @p =
(2a/R)0*[c08(B) — Xmy + [§6-36 - asin(6)|sin(8)] for the §- @ shifted circle equilibrium. Here
Xmw represents the possibility of a magnetic well or average favorable curvature. Treatment of
real geometry along the field line in magnetic angle coordinates is in fact quite straightforward

for the nonlinear BMR; this is formulated in Waltz and Boozer? for stellarator geometry but

applies equally well to general tokamak geometry.

C. Special numerical methods for simulation of electron models

There are two critical numerical difficulties in treating untrapped (or passing) electrons. The
equations are stiff in time in the sense that the speed of the waves which we want to follow are

much slower that the electron transit along the field line (i.e. there is a very large coefficient in the

12

equations Me— ). In the ballooning mode representation we represent the distance along the field

line by the extended poloidal angle 6 (z = Rq 0). The equations are also stiff in space in the sense
that the fluid electron dynamics (or Landau resonance point) is confined to a very narrow region

near the singular surface where ky = (i/Rq) 9/00 is small. This corresponds to a long slow

interchange like component to the ballooning modes in 6-space.

11




To handle the time stiffness we use a small storage implicit “response matrix” method
developed by Kotschenreuther® for a gyrokinetic ballooning mode gyrokinetic code. Rather than
advance some 300 or more components of energy-pitch angle space per species we advance 4
moments. Only terms involving ky and the inductive term [-0A/0t — i®+(1 + 1®) Ay] need be
handled implicitly. The drift terms as well as the collisional and nonlinear terms are slow enough
to be done explicitly. Unlike Ref. 6 which is done exclusively in 8-space, the time advance for the
fluid moments is done in k| or 6-transform space whereas only the quasi-neutrality/Ampere's law
and the compensating response matrix calculation to update the potentials is done in 0-space.
The moments are first updated with zero potentials, then the advanced potentials are calculated
with quasi-neutrality/Ampere's law and the response matrix compensating for use of moments
advanced with zero potentials, then the moments are finally updated with the advanced

potentials.

The space stiffness is best understood in terms of the Nyquist relation for grids: the grid
spacing is Aky = T/(Rq Omax). If we resolve the electron Landau layer inside Kjjreg = ®/Vihe, We
are forced to have large Omax. If we use a reasonably small Oy ax (2 few 1t's) the fluid electron
layer represented by the kj = 0 grid point is “over weighted” in the sense that it assigns “fluid”
limit electron dynamics kj <<Kkj.¢ to too large a portion kj-space and the overall untrapped
electron response is far from adiabatic [i.e. N4y is not near (1 — Ve )ok]. To avoid this we use
“sine-cosine” transforms with zero boundary conditions at 8max for “sin-fields” ¢y, NUy PUy and
zero gradient boundary conditions for the “cos-field” Uk (rather than cyclic boundary conditions
imposed by standard Fourier transforms). This forces the kj; = O component to be zero. The end
result is that the ballooning mode growth rates are independent of Omax at much lower values of

Omax than obtained with cyclic boundary conditions. Independence of boundary condition is the

final test of validity and we are able to work sensibly down to Oyax = 37 when +/(0) is large

enough to have a significant trapped electron response. However at very small /€(0) where the

passing electrons dominate, Omax beyond 107 may be required.

12




The response function technique® is a relatively low storage method in which the

field storage (and computational time) scale as k x j where j is the number of 0 grids and

k is the number of (kx.ky) modes plus the storage of the response matrix scaling as k x
(2j)2. The latter storage however is not insignificant. We believe that a completely
general implicit Kyrlov method!0 which requires only field storage will untimately prove

to be the most practical.

D. Rotational shear stabilization and rotational momentum transport

Profile effects or gradual inhomogeneities are generally pg/a small and ignorable. The
exceptions are when the plasma is spun up to have large equilibrium potentials with e®/Te >> 1
or when sharp gradients of in the radial electric field build up near the plasma edge as it balances

the diamagnetic rotation. In either case the sheared flow cE! /B rate can be comparable to the

mode growth rate ¥ (kx/ky). Homogeneity is broken. This can be accounted for within the BMR

by including a linear coupling between the k) modes

Oy |3k — O\ [+ Yg K, O K, (28)

where Y is the total Doppler shear rate. In general it is given by
?’E=[r (Vg /r)/or-V,/ (RQ/g)]/ (cs/2) (29)

where VE is the equilibrium EXB velocity and V), the parallel velocity. in effect x = X is replace
by —id/Jdk’ . When evaluated in x-space this represents a linear variation in flow velocity across
the “simulation box” but when evaluated in kx-space one must be careful to use a harmonic
derivative.2 Shear in the parallel velocity drives a Kelvin-Helmholtz like instability. A term

—iypk;, ¢, must be added to the right hand side of the parallel ion motion (Uk) equation where

13




Tp = V(,/(cs/a). For purely toroidal rotation typical of tokamak cores Yg = (r/q)
[0(V/R)/Ar)/(cg/a) which is not quite the same as the shear in the EXB velocity 8(rV¢/qR)/8r =

cE} /B. Furthermore Yp = 0(V¢/dr)/(cs/a) so Yp = (Ra/) /E.

Rotational shear stabilizes the turbulence and not only reduces heat and particle transport
but also the transport of rotational momentum. The toroidal ion momentum balance equation

discounting the momentum source is

MO, /3t +011,, /3 x=0

We define the toroidal viscosity Nx by Ilpx = M ng Nox (-dV$/9x). (The electron momentum

can be neglected.) The projection of the parallel Iy and perpendicular I1 | x stress tensors into
the toroidal direction gives Ipx =~ ITjix + (Be/B)Ix with (B@/B¢) = 1/Rq. For ILpx, I,
and IT  in units of ngTo (ps/a)z, the toroidal viscosity T¢x in diffusion units csp;2 /a, and the
toroidal rotational shear Yp = (—0V$/9x) in units of cg/a we can write Mpx =M¢x P- In terms

of the normalized field fluctuations

Iy =<2k(‘iky Py )* Uk>

ES

I, =<Zk(_ky ky ¢k) [¢k +(T;/T )Py ]>

where the first term is ExB and the second is diamagnetic flow. [It should be noted that the
relative sign between Vg and Yp must be tested to insure pure toroidal motion and sign between

the Iljx and IT x terms, i.e. the sign of (Bg/B¢), can be checked to insure pure cross field

viscosity is positive in the large (Be/B¢) limit.]




IIl. TOROIDAL ITG TURBULENCE WITH ADIABATIC ELECTRONS

Unless otherwise stated, the numerical illustrations here and below have standard case
parameters g=2, $=1, a/Lp=1, a/L1=3, a/R=1/3, T-1= Ty/Te =1. Similarly the local shear,
magnetic well, beta, and collision frequency are nil (01=0, xw=0, Be=0, v=0) and where relevant
for trapped electrons r/R=1/6. The (k;,k;) grid spanning 0 < k’y < 1 has a 10 x 40 quadrant with
40 k’y = 0 radial modes for a total of 850 complex ballooning mode amplitudes. émax=7r
implies k;max =§7. This corresponds to a cross field box with Ax"=Ay’(4/5)=80 p- Along the
field line, 64 grids span —2T < @ < 27 with sufficient image modes? (having 6> or H<— ) to
make the net amplitudes and diffusion 2% periodic. For the adiabatic electrons model treated in
this section N i = (¢k —<¢>k) where the average potential along the field line (¢)k is O for finite-
n (finite k;) ballooning modes bﬁt is not zero for the n=0 radial modes. From Ref. 2 the standard
case diffusion has a flux surface average X; = 1.9 csps2 /a (with 8:1 out/in asymmetry) which
/no) (0=0)=6.5 pya.

The peak diffusion and turbulence level is at k;, = 0.2 down shifted from the location of peak

n

about 3 times Dpp; ( p~“/ Do) Psfa (with 2:1 out/in asymmetry); and (

growth at k;, =0.3

A. Longradial wavelength structure and short correlation lengths

There are several ways to represent the nonlinear turbulent state. For example Ref. 2 shows
an instantaneous color contour plot of the density fluctuations projected into real space as annulus
at fixed toroidal (¢ = 0) angle spanning -1t < © < 7t in Fig. 5; and a contour and slice summation

n(k,,k,)/ n,

plot of the time average (k;,k;) density spectrum < > at ¢=0, =0 in Fig. 6.
ms '

However there appears at first to be a curious inconsistency between the instantaneous real space

plot and the time average k-space spectrum. The Ref. 2 Fig. 5 contour plot clearly shows eddies

which are highly elongated in the radial direction being as much as 40 ps in radial half width but

only about 5 ps in poloidal halfwidth. Afull radial width of 80 pgcould be in some cases a
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sizable fraction of a typical tokamak radius. (In this illustration the annulus is Ax = 160 ps wide
since it was done with a 10 k'y x 80 k} quadrant grid and hence twice as wide as the standard
2
> ms 48 a
120 \T° 125 \P
Gaussian exp {— (k;,—kyO) / (2/ 5ky):| -[k; / (2/ &(x)] then the correlation function in
real space {n(x’,y )n(0,0) >/ <n(0,0 )n(0,0)> will be ¢ o s[(n'/Z)(y’/yO)]
2 2
exp Hy'/ (21/ 28y ] - [x/ (21/ 2 6x)} } with 8x = 1/8kx, By = 1/3ky, and y0 = (T/2)/kyp, [Note

for a Gaussian Ox is related to the rms &x and the “half width at half max” by 0x = OXrms =

case). In contrast the if we represent the time average spectral function <ln(k; k) / ng

Xhwhm/1.177]. From Fig 6. of Ref 2. J8kx = Bky = 0.1 (using the 70% point of

|

and yO = 8 ps. These characteristics are consistent with experimental observations!1 of time

n(k,.K;)/ g

> ), and kyo = 0.2, from which we can infer Xpwhm = 14 Ps, Yhwhm = 14 Ps,
ms

average correlation functions. The real space time average radial correlation function I(x,0) is
shown in Figure 1(a), the poloidal or vertical correlation function I(0,y) in Figure 1(b) with
averages over time of 300 and 600a/cs. ( The 14 pg half width at half max suggested by Gaussian
spectral functions are shown by I-bars.) [We define the correlation functions with time averages
< > by I(x,y)=<n(x,y)n0,0)> /[< n(x,y)n(x,y) >< n(0,0)n(0,0) >]"*]. The radial
correlation functions are in fact rather slow to form on the time scale of the simulations and a
long radial correlation component takes some time to die out. The experimental correlation
functions are taken over much longer times than shown here. It is clear however that time average
correlation lengths are longer than than eddy widths in the poloidal direction and considerably
shorter than eddy widths in the radial direction. The elongated eddies are intermittent and
essentially short lived. Thus we can not infer from experimental short radial correlation lengths

that long wave structure do not exist , at least over short times.
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Fig. 1.Radial (a) and poliodal (b) correlation functions at various time averaging
intervals.
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B. Transport a reverse global shear, with local shear, and average favorable curvature

Previous work2-3 has explored the behavior with q, positive global shear §, with

temperature gradients, and also in Tj/Te ratio.> Here we fill out some of this parametric
dependence on reverse global shear (5§ < 0), local shear (@), and average favorable curvature or
magnetic well (Xmw). Shear reversal causes the geodesic curvature (sin@ term) to work against
rather than with the normal curvature (cos® term). Thus it is not surprising that the driving rates
and the resulting transport decrease. Figure 2 show a full range of normal and reverse shear. For
example § = —0.5 to 1.0 has almost four-fold less transport than §= 0.5 to 1.0 and transport is

not particularly large at vanishing shear.

Reverse

6 IShear
0 A
S

Fig. 2. Diffusion at both positive and negative shear.

At moderate global shear ( §=1) the local shear acts to decrease the effective shear (s0-
osinB) near 6=0 where the modes live; thus we expect that driving rates to increase. Just as in the
case of the s—0. model for ideal MHD where the critical beta (critical &) boundary is split to a

lower first stable boundary and a higher second stable boundary, small a drives but high o does




not. Also as in ideal MHD at large o (approaching the second stable boundary), the maximally
unstable 6 does not occur at 6 =0. Figure 3(a) shows the maximum growth rate and Fig. 3(b) the
heat diffusion versus 0. Even well into the second ideal MHD regime at 0t = 3 (At §=1, Olfirst
=0.5, Olsecond =2.), there is no marked change in the ITG diffusion levels bearing in mind that this

is an electrostatic (B = 0) simulation and thus somewhat artificial.

0.2

vl[c /a]

I
U
\l
v

c—
S
—
O
@ “—
o
[ M-
1

Fig. 3. Maximum growth rate (a) and diffusion (b) versus Shafranov shift c.
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Going to vanishing shear at finite beta makes little sense in the usual §-—o model without
average favorable curvature. In this case the critical beta for the ideal modes is zero at zero beta
whereas in fact at low shear (say § < 0.2) there is no local beta limit when the average favorable
curvature or magnetic well is included. Here we ask what average favorable curvature does
electrostatically. One may expect.that since this subtracts directly from the curvature at 6=0, the
toroidal ITG modes driven by the curvature would have a larger driving rate. In fact small
curvature (LT/R) drives whereas very large curvature forces the ion response to adiabatic; thus
the toroidal ITG instability (for Ly/R > 1) becomes stable at a critically large LT/R. For example
at a typical value for magnetic well xmw = 0.5, although the low ky modes have less drive or
are more stable and the high ky modes are significantly more unstable, Ymax is almost unchanged
(0.087 compared to 0.082) at a/L T = 3 and the heat diffusion is virtually unchanged. At a/LT =
2.2 closer to the threshold of 1.8, Ymax is actually larger (0.037 compared to 0.027) and the
transport is also larger (1.3 compared to 0.93). We can conclude again at least near threshold (at
moderator to strong shear) diffusion scales like the linear mixing length formula. Further although
magnetic well has an extremely important effect on low shear in finite beta, it has a small or even

slightly unfavorable effect at moderate shear an low beta.

C. Critical rotational shear stabilization at weak magnetic shear

We showed in Ref. 2 (see discussion of Fig. 7) that Doppler shear rates comparable to the
maximum linear growth rate including the destabilization effect of parallel shear drive (Yg = -
Ymax) is sufficient to cause the transport to vanish. We found this to be true at moderate shear
(5§=1) and even at vanishing shear (§=0). This appears to be at odds with the “convection rule”
YE = TS Ymax- The convection rule derives from the fact that linearly ExB rotational shear cause
ballooning modes to rotate in their ballooning angle 6 at the rate Yg/§, thus one might expect to
see stability if the mode rotates faster from 6=0, where it is most unstable, to 6= T, where it is

stable, faster than it can grow. While this may be reasonable for moderate magnetic shear, the
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convection rule at weak shear would imply that even infinitesimal Doppler shear rates would be
able to cause vanishing transport. However the convection rule is unlikely to hold at vanishing
shear for two reasons. The first is that at weak shear, say §= 0.1, 6= T is not stable. For example
in the standard case at §=1, Ypax = 0.083 at f=0and 8=T is completely stable. However at §=
0.1, Ymax = 0.12 at 6=0and Ymax = 0.10 at 6=T. In the last case, although the mode is centered
about 6 = 7, its peak amplitude is at 6 = -0.1  and 6 = 0.1 + 27, i.e. it lives in two the bad
curvature regions. In fact there is little variation of growth rate with 6 at § =0.1. The second
reason that the convection rule may fail at even moderate shear is that the ballooning mode may
be broken up by the turbulence before it has a chance to convect a significant distance in 6.
Figure 4 shows an example of the convection rule partially or approximately holding at moderate
to strong § but breaking down for weak shear (§ < 0.5 for a/LT = 3). It also breaks down at
stronger driving or at least in the saturated temperature gradient regime (all § at a/LT = 4). We

have not found a case in which Yg less than about half Yax causes the transport to vanish.

] 1
10 ky x40k open N=
30 ky x30k closed

N
T

max

YEI Y

>

Fig. 4. Critical Doppler shear rate versus shear s.
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D. Turbulent rotational momentum transport and transport bifurcation

The core of a tokamak normally achieves significant ExB or Doppler rotational shear to
effect the stability and transport only when it spun up by beams which are tangentially directed.
Because mégnetic pumping in the poloidal direction prevents significant poloidal rotation, the
rotation is almost purely toroidal. In this case the parallel shear which drives the ITG mode (see
Fig. 7 of Ref 2.) is directly related to the Doppler shear rate by Yp = (Rq/r)Yg where (Rg/r) =
B¢/B@. Thus if (r/Rq) is too low, the Doppler shear stabilization can not keep up with the parallel
shear destabilization. As the rotational shear rate increases both the turbulent heat diffusion and
the turbulent viscosity transporting the toroidal momentum and determining the rotation and
rotational shear will decrease monotomically. However at some sufficently high (r/Rq) Doppler
shear stabilization wins out over parallel shear drive. A transport bifurcation can result.
Figure 5(a) shows a low (/Rq) case Yp = 12¥g without bifurcation and Fig. 5(b) shows a higher
(/Rq) case with Yp = 9 Yg with a momentum transport bifurcation at Yg = 0.06. In the latter case,
the toroidal momentum flow Il¢x required to sustain high rotations decreases with increased
rotation; thus the plasma quickly spins to a higher rotational state at the same flow. The higher
rotational state has a smaller heat diffusion and therefore can support a larger temperature
gradient and hence improved confinement at the same momentum and heat (power) flow. This
could be origin of the H- to VH-mode transition in DIII-D.12 It should be noted that this
momentum transport bifurcation is likely the opposite extreme of the L~ to H-mode bifurcation at
the extreme edge. There EXB rotation is nearly in balance with diamagnetic rotation and there is
little 'change in the local plasma rotation; the bifurcation is within the heat transport system. A
higher temperature gradient hence diamagnetic and therefore EXB rotation can have lower heat
diffusion than a lower gradient state at the same heat flow.13 Clearly a mixture of heat and

momentum transport bifurcation’s are possible.




0.00 0.04 0.08 0.12

Ye/(cfa)

Fig. 5. Low r/(Rq) (a) high r/(Rq) (b) momentum bifurcation onset.
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IV. LINEAR TESTS OF FINITE BETA TRAPPED ELECTRON GLF MODELS

Our finite beta trapped electron GLF code has not yet been run to the nonlinear stage but we
believe it gives a satisfactory representation of the linear mode stability in comparison to
Kotschereuther's gyrokinetic stability (GKS) code.6 Figure 6 shows that it reasonably well
reproduces the onset of the ideal ballooning mode limit near Be = 0.0055. Figure 7 shows the
spectrum of growth rates in the collisionless limit at zero beta and at a beta value approaching the
beta limit. It is apparent from the adiabatic electron points shown that the trapped electron physics
has a significant destabilization effect on the ITG mode. At lower values of temperature gradient,
the ITG ion branch can become stable and the normally subdominant electron trapped electron
drift mode will remain unstable. Figure 8 shows the behavior of the collisional detrapping model
in the electrostatic limit. Both the GLF and the GKS models should approach the adiabatic
electron model (shown at right) at extreme collisionality where the trapped electrons are
detrapped. The figure also shows favorable comparison of the simple GLF model with a 6-
moment ion and 3-moment trapped electron GLF model having a pitch angle scaterring operator

developed by Beer.14

06 F GKS — k=02 .-
- GLF ---- L

\deal MHD—> /| 4

’

0.4

Y(cg/a)

0.2

0.0 | ! X I
0.00 0.004 0.008

Be

Fig. 6. Trapped electron model growth rate spectrum versus ..
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Adiabatic Electrons

L

ky Ps

Fig. 7. Trapped electron model growth rate spectrum o = 0 (a) Be = 0.004, (b) with
Be-crit at 0.0055.
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Fig. 8. Trapped electron model growth‘ rate spectrum versus collision frequency v at ky,
= 0.3.

One of the most important effects of including the electron physics is that the radial mode
physics can be treated dynamically rather than with a model. The saturation level of the n=0
radial modes appears to control the saturation level of the transport producing finite-n ballooning
modes. Previous work2—> assumed that since the electron motion along the field line is so rapid,

the electrons will behave adiabatically and short out any deviations from the average potential

N = (¢k —(d))k). In effect this assumes that the electron response Rf =N} /¢k is close to O

for radial modes which seems appropriate for k) close to zero. [Actually

R} E(;z X / n, ) / (e¢,/T.) but this is the same as Ny / ¢, since there is no significant
polarization.] The surprisingly, using the actual electron dynamics shows that Ri =— (Ti /Te)Rik

[from quasi-neutrality] tends to be closer to —1 at least in the case of purely passing electrons.

This means the ions tend to behave adiabatically (Riczl). Recall that radial modes are
automatically 27 periodic and require no images to make them physically periodic. (¢)k is not

zero and ¢ does not tend to zero at large 0. For the case of trapped electrons, only the larger ky
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have Ri near —1 but in no case is Ri close to 0. Since the nonlinear driving of radial modes is

proportional to I/(Ri +k§) they will be less strongly driven with finite Ric( than in the case of

the adiabatic electron model. On the other hand they appear to be much less damped with Vi =

-0.025 ki for purely passing electrons or at least somewhat less damped with Yk = ~0.1kx in the

trapped electron case compared to Yk = —0.2kx for adiabatic case [see Ref. 2 Fig. 2(d)].




V.  CONCLUSIONS

Beyond the conclusions stated in Ref. 2 and reviewed in Section I, the present paper has
arrived at additional conclusions: Although eddies are highly elongated in the radial direction
long time radial correlation lengths are short and comparable to poloidal lengths. Although
transport at vanishing shear is not particularly large, transport at reverse global shear is
significantly less. Electrostatic transport at moderate shear is not much effected by inclusion of
local shear and average favorable curvature. Transport is suppressed when critical EXB rotational
shear is comparable to the maximum linear growth rate with only a weak dependence on
magnetic shear. Self consistent turbulent transport of toroidal momentum can result in a transport
bifurcation at large enough r/(Rq). We believe the new formulation in the paper for treating finite
beta GLF models with collisionally detrapped trapped electrons and BMR numerical methods for
treating the fast parallel field motion of the untrapped electrons are in satisfactory linear
agreement with gyrokinetic stability codes and will allow a general and more physical simulations

up to the ideal beta limit.
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