

SEP 15 1997 ENGINEERING DATA

Page 1 of 1

1. EDT 621893

2. To: (Receiving Organization) Packaging Engineering		3. From: (Originating Organization) Packaging Engineering		4. Related EDT No.: NA							
5. Proj./Prog./Dept./Div.: 03E00		6. Design Authority/ Design Agent/Cog. Engr.: J. C. McCoy		7. Purchase Order No.: NA							
8. Originator Remarks: For approval.				9. Equip./Component No.: NA							
11. Receiver Remarks: 11A. Design Baseline Document? <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No				10. System/Bldg./Facility: NA							
ENGINEERING DATA TRANSMITTAL											
15. DATA TRANSMITTED											
(A) Item No.	(B) Document/Drawing No.	(C) Sheet No.	(D) Rev. No.	(E) Title or Description of Data Transmitted	(F) Approval Designator	(G) Reason for Transmittal	(H) Originator Disposition	(I) Receiver Disposition			
1	HNF-SD-TP-SEP-065		0	Safety Evaluation for Packaging (Onsite) for Cesium Chloride Capsules with Type W Overpacks	SQD unm	41 unm	41 unm	41 unm			
16. KEY											
Approval Designator (F)		Reason for Transmittal (G)			Disposition (H) & (I)						
E, S, Q, D or N/A (see WHC-CM-3-5, Sec.12.7)		1. Approval 2. Release 3. Information			4. Review 5. Post-Review 6. Dist. (Receipt Acknow. Required)						
					1. Approved 2. Approved w/comment 3. Disapproved w/comment						
					4. Reviewed no/comment 5. Reviewed w/comment 6. Receipt acknowledged						
17. SIGNATURE/DISTRIBUTION (See Approval Designator for required signatures)											
(G) Reason	(H) Disp.	(J) Name	(K) Signature	(L) Date	(M) MSIN	(G) Reason	(H) Disp.	(J) Name	(K) Signature	(L) Date	(M) MSIN
1	/	Design Authority: MM Pereira	<i>MM Pereira</i>	7/11/97	S6-51	1	/	RL Clawson	<i>RL Clawson</i>	9/11/97	H1-14
1	/	Design Agent: WW Smyth	<i>WW Smyth</i>	7/11/97	H1-15	1	/	PC Ferrell	<i>PC Ferrell</i>	9/11/97	H1-15
1	/	Cog. Eng.: WW Smyth	<i>WW Smyth</i>	7/11/97	H1-15	1	/	JC McCoy	<i>JC McCoy</i>	9/11/97	H1-15
1	/	Cog. Mgr.: JG Field	<i>JG Field</i>	7/11/97	H1-15						
1	/	QA: CR Hoover	<i>CR Hoover</i>	7/11/97	H1-15						
1	/	Safety: DM McNALLY	<i>DM McNALLY</i>	9/11/97							
		Env.									
18.		19.		20.		21. DOE APPROVAL (if required)					
JC McCoy Signature of EDT Originator		Date 9/11/97		JG Field Signature of Receiving Organization Date		Ctrl. No. <input checked="" type="checkbox"/> Approved <input type="checkbox"/> Approved w/comments <input type="checkbox"/> Disapproved w/comments					

Safety Evaluation for Packaging (Onsite) for Cesium Chloride Capsules with Type W Overpacks

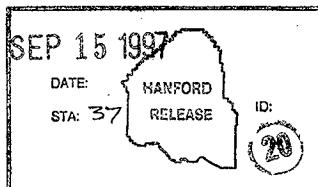
J. C. McCoy

Waste Management Federal Services, Inc., Northwest Operations,
Richland, WA 99352

U.S. Department of Energy Contract DE-AC06-96RL13200

EDT/ECN: EDT 621893 UC: 513
 Org Code: 03E00 Charge Code: KW64B
 B&R Code: EW7002010 Total Pages: 130 *plus 130*

Key Words: BUSS Cask, Type W Overpack, onetime onsite shipment


Abstract: This Safety Evaluation for Packaging (SEP) documents the evaluation of a new basket design and overpacked cesium chloride capsule payload for the Beneficial Uses Shipping System (BUSS) Cask in accordance with the onsite transportation requirements of the *Hazardous Material Packaging and Shipping* manual, WHC-CM-2-14. This design supports the onetime onsite shipment of 16 cesium chloride capsules with Type W overpacks from the 324 Building to the 224T Building at the Waste Encapsulation and Storage Facility (WESF). The SEP is valid for a onetime onsite shipment or until August 1, 1998, whichever occurs first.

TRADEMARK DISCLAIMER. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.

Printed in the United States of America. To obtain copies of this document, contact: Document Control Services, P.O. Box 950, Mailstop H6-08, Richland WA 99352, Phone (509) 372-2420; Fax (509) 376-4989.

Jamie Bishay 9/15/97
 Release Approval Date

Release Stamp

Approved for Public Release

CONTENTS

PART A: PACKAGE DESCRIPTION AND OPERATIONS

1.0	INTRODUCTION	A1-1
1.1	REVIEW AND UPDATE CYCLES	A1-1
2.0	PACKAGING SYSTEM	A2-1
3.0	PACKAGE CONTENTS	A3-1
4.0	TRANSPORT SYSTEM	A4-1
5.0	ACCEPTANCE FOR USE	A5-1
5.1	BUSS CASK	A5-1
5.2	BASKET	A5-1
5.3	TYPE W OVERPACKS	A5-1
6.0	OPERATING REQUIREMENTS	A6-1
7.0	QUALITY ASSURANCE	A7-1
7.1	GENERAL	A7-1
7.2	GENERAL REQUIREMENTS	A7-1
7.3	ORGANIZATION	A7-1
7.4	QA ACTIVITIES	A7-1
7.4.1	Design Control	A7-1
7.4.2	Procurement and Fabrication Control	A7-2
7.4.3	Control of Operation/Processes	A7-2
7.4.4	Control of Inspection and Testing	A7-2
7.4.5	Control of Operations and Maintenance	A7-2
7.4.6	Test Control	A7-2
7.4.7	Control of Measuring and Test Equipment	A7-2
7.4.8	Control of Nonconforming Items	A7-3
7.4.9	Corrective Action	A7-3
7.4.10	QA Records and Document Control	A7-3
7.4.11	Independent Assessments	A7-3
8.0	MAINTENANCE	A8-1
9.0	REFERENCES	A9-1
10.0	APPENDIX: DRAWINGS	A10-1

PART B: PACKAGE EVALUATION

1.0	INTRODUCTION	B1-1
1.1	EVALUATION SUMMARY AND CONCLUSIONS	B1-1
1.1.1	Contents	B1-1
1.1.2	Radiological Risk	B1-1
1.1.3	Containment	B1-1

CONTENTS (cont)

1.1.4 Shielding	B1-1
1.1.5 Structural	B1-2
1.1.6 Thermal	B1-2
1.1.7 Gas Generation	B1-2
1.2 REFERENCES	B1-2
 2.0 CONTENTS EVALUATION	B2-1
2.1 REFERENCE	B2-1
 3.0 RADIOLOGICAL RISK EVALUATION	B3-1
3.1 REFERENCES	B3-2
 4.0 CONTAINMENT EVALUATION	B4-1
4.1 REFERENCES	B4-1
 5.0 SHIELDING EVALUATION	B5-1
5.1 INTRODUCTION	B5-1
5.2 DIRECT RADIATION SOURCE SPECIFICATION	B5-1
5.2.1 Gamma Source	B5-1
5.2.2 Beta Source	B5-1
5.2.3 Neutron Source	B5-1
5.3 SUMMARY OF SHIELDING PROPERTIES OF MATERIALS	B5-1
5.4 NORMAL CONDITIONS OF TRANSPORT	B5-2
5.4.1 Conditions to be Evaluated	B5-2
5.4.2 Acceptance Criteria	B5-2
5.4.3 Shielding Model	B5-2
5.4.4 Shielding Calculations	B5-2
5.5 ACCIDENT CONDITIONS	B5-7
5.5.1 Conditions to be Evaluated	B5-7
5.5.2 Acceptance Criteria	B5-7
5.5.3 Shielding Model	B5-7
5.6 SHIELDING EVALUATION AND CONCLUSIONS	B5-7
5.7 EVALUATION OF THE THERMAL DEPOSITION FRACTIONS FOR THE CASK	B5-7
5.8 REFERENCES	B5-9
5.9 APPENDICES	B5-10
5.9.1 MCNP Input File for Shielding Model	B5-10
5.9.2 MCNP Input File for Energy Deposition Model	B5-18
5.9.3 Checklist for Peer Review	B5-24
 6.0 CRITICALITY EVALUATION	B6-1
 7.0 STRUCTURAL EVALUATION	B7-1
7.1 INTRODUCTION	B7-1
7.2 WEIGHT OF BASKET AND CONTENTS	B7-1
7.3 REFERENCES	B7-2
 8.0 THERMAL EVALUATION	B8-1
8.1 INTRODUCTION	B8-1
8.2 THERMAL SOURCE SPECIFICATION	B8-1
8.3 THERMAL PROPERTIES OF MATERIALS	B8-2
8.3.1 T304 Stainless Steel Properties	B8-2

CONTENTS (cont)

8.3.2 Helium Properties	B8-3
8.3.3 Properties of Cesium Chloride	B8-3
8.3.4 Properties of Air and the Convection Rate at the Cask Surface	B8-4
8.4 INITIAL CONDITIONS	B8-5
8.4.1 Normal Conditions of Transportation	B8-5
8.4.2 Hypothetical Accident Conditions	B8-5
8.5 THERMAL ANALYSES	B8-6
8.5.1 Model of the Original Configuration	B8-6
8.5.2 Modeling 16 Overpacked Capsules	B8-7
8.6 CONCLUSIONS	B8-10
8.7 REFERENCES	B8-15
8.8 APPENDICES	B8-16
8.8.1 Convection and Radiation Calculations	B8-16
8.8.2 BUSS Cask Heat Transfer Calculations	B8-19
8.8.3 Capsule Arrangement in Cask	B8-28
8.8.4 Finite Element Analysis of SARP Configuration	B8-29
8.8.5 Finite Element Analysis of 16 Overpacked Capsules in an Open Basket .	B8-37
8.8.6 Peer Review Checklist	B8-59
9.0 PRESSURE AND GAS GENERATION	B9-1
9.1 REFERENCE	B9-1
10.0 TIEDOWN EVALUATION	B10-1
10.1 REFERENCE	B10-1

LIST OF FIGURES

A6-1. Relative Position of Cesium Chloride Capsules in Basket	A6-2
B5-1: Simplified Radial Sketch of BUSS Cask	B5-5
B5-2. Simplified Axial Sketch of BUSS Cask	B5-6
B8-1. Preliminary Models.	B8-8
B8-2. B16a Plots	B8-11

LIST OF TABLES

A3-1. Capsule Activity and Thermal Data	A3-1
B5-1. ANSI/ANS (1991) Photon Fluence to Dose Conversion Factors	B5-3
B5-2. BUSS Cask Radial Geometry and Material Composition	B5-3
B5-3. BUSS Axial Geometry and Material Composition	B5-4
B5-4. Dose Rates for the BUSS Cask	B5-6
B5-5. Dose Rates for the BUSS Cask	B5-7
B5-6. Summary of Energy Deposition in the BUSS Cask	B5-9
B8-1. SARP Results and Allowable Temperatures	B8-2
B8-2. Stainless Steel Thermal Conductivity	B8-3
B8-3. Helium Conductivity, K	B8-3
B8-4. Heat Distribution within the BUSS Cask	B8-4
B8-5. Thermal Properties of Air	B8-5
B8-6. Results of the SARP Model; Temp, °F	B8-7
B8-7. Temperature Results, °F	B8-8
B8-8. Maximum Temperatures in Base Case and Variations	B8-9

LIST OF TERMS

ANSI	American National Standards Institute
BUSS	Beneficial Uses Shipping System
Ci	curie
CoC	Certificate of Compliance
DOE	U.S. Department of Energy
ft	feet
HAC	hypothetical accident conditions
HRCQ	highway route controlled quantity
in.	inch
kg	kilogram
lb	pound
MCNP	Monte Carlo N-Particle
NCT	normal conditions of transport
QA	quality assurance
QC	quality control
SARP	Safety Analysis Report for Packaging
SEP	Safety Evaluation for Packaging
W	Watt
WESF	Waste Encapsulation and Storage Facility
WMNW	Waste Management Federal Services, Inc., Northwest Operations

This page intentionally left blank.

**SAFETY EVALUATION FOR PACKAGING (ONSITE) FOR
CESIUM CHLORIDE CAPSULES WITH TYPE W OVERPACKS**

PART A: PACKAGE DESCRIPTION AND OPERATIONS

1.0 INTRODUCTION

This Safety Evaluation for Packaging (SEP) documents the evaluation of a new basket design and overpacked cesium chloride capsule payload for the Beneficial Uses Shipping System (BUSS) Cask in accordance with the onsite transportation requirements of WHC-CM-2-14, *Hazardous Material Packaging and Shipping*. This design will support the onetime onsite shipment of 16 cesium chloride capsules with Type W overpacks from building 324, in the Hanford 300 Area, to building 224T, the Waste Encapsulation and Storage Facility (WESF), in the Hanford 200 East Area.

1.1 REVIEW AND UPDATE CYCLES

This SEP is valid for a onetime shipment or until August 1, 1998, whichever occurs first. An update or upgrade to this document is required beyond that date.

This page intentionally left blank.

2.0 PACKAGING SYSTEM

This SEP supports the onetime onsite shipment of 16 cesium chloride capsules in Type W overpacks. As the Type W overpacked capsules will not fit into the original BUSS Cask basket, a new basket design will be used for this shipment.

The BUSS Cask is certified by the U.S. Department of Energy (DOE) to transport up to 16 doubly encapsulated, special form, cesium chloride capsules. The BUSS Cask Safety Analysis Report for Packaging (SARP) (SNL 1994) and Certificate of Compliance (CoC) (DOE 1996) allow shipment of up to 850,000 Ci of ^{137}Cs , with a thermal load of 4,000 W. The BUSS payload weight (including basket) is limited to 907 kg (2,000 lb). The fully loaded cask will weigh no more than 15,310 kg (33,700 lb). Although overpacked capsules and new basket design meet the BUSS Cask SARP parameters, the SARP will not be amended for this payload.

The 16 capsules to be shipped, as described in Part A, Section 3.0, have compromised containment boundaries due to swelling or broken welds and as such do not meet special form criteria. Therefore, these capsules will be repackaged in Type W overpacks. The Type W overpack, as detailed in drawing H-3-307504 (Part A, Section 10.0), will be tested to the requirements of 49 CFR 173 for special form class 7 (radioactive) material and American National Standards Institute (ANSI) N43.6, *Sealed Radioactive Sources, Classification* (ANSI 1989). The overpacked capsules will not be certified as special form materials; however, they do meet all other conditions required by the BUSS SARP, as shown in Part B of this SEP. With the Type W overpacks, each capsule will weigh no more than 13.31 kg (29.35 lb), for a total of 213 kg (469.6 lb). The activity and thermal limits for the payload are described in Part A, Section 3.0, and are within the limits allowed for the BUSS Cask..

The new 16 capsule basket (drawing H-2-828979 [Part A, Section 10.0]) will be used to transport the overpacked capsules in the BUSS Cask in place of the original basket. The new basket weighs approximately 90.7 kg (200 lb.)

The total weight of the payload and basket, estimated to be approximately 304 kg (670 lb), is well within the limits of the BUSS Cask SARP (SNL 1994).

This page intentionally left blank.

3.0 PACKAGE CONTENTS

Table A3-1 lists the capsules that will be transported:

Table A3-1. Capsule Activity and Thermal Data.

Capsule Serial Number		Activity (¹³⁷ Cs)		Estimated Power (W)
Outer Capsule	Inner Capsule	TBq	Ci	
C-105	C-283	1,843	49,816	234.14
C-1093	C-1245	1,652	44,639	209.8
C-287	C-237	1,539	41,590	199.58
C-913	C-1035	1,554	42,010	197.45
C-1600	C-1631	1,517	40,998	192.69
C-1368	C-1544	1,530	41,362	194.4
C-1562	C-1585	1,514	40,922	192.33
C-849	C-784	1,478	39,939	187.71
C-930	C-914	1,477	39,929	187.67
C-1504	C-1560	1,443	38,993	183.27
C-1592	C-1636	1,411	38,130	183.01
C-1507	C-1622	1,430	38,653	181.67
C-1553	C-1581	1,413	38,179	179.44
C-1196	C-1263	1,387	37,498	176.24
C-811	C-992	1,380	37,297	175.3
C-1503	C-1596	1,301	35,150	173.64
Total		23,869	645,105	3,048
Average		1,492	40,319	190.52
Standard deviation				14.70
Maximum		1,843	49,816	234.14
SARP limit, per capsule		2,590	70,000	250

¹Activity limit of 2,590 TBq (70,000 Ci) is based on shielding.

²Estimated activity is given as TBq (Ci) of ¹³⁷Cs.

³This shipment is highway route controlled quantity (HRCQ), 49 CFR 173.

⁴Capsule data is from the WESF Encapsulation Data Base System

49 CFR 173, 1997, "Shippers--General Requirements for Shipments and Packagings," *Code of Federal Regulations*, as amended.

This page intentionally left blank.

4.0 TRANSPORT SYSTEM

The BUSS Cask, handling fixtures, and its dedicated transport trailer shall be used. These are detailed in the BUSS Cask SARP (SNL 1994). All SARP procedures, radiation, and contamination limits shall be adhered to. As this shipment does not comply with all SARP and CoC requirements for offsite shipment, the public access roads shall be barricaded during transportation.

This page intentionally left blank.

5.0 ACCEPTANCE FOR USE

5.1 BUSS CASK

Prior to use, all maintenance requirements shall be documented in accordance with the requirements of the SARP (SNL 1994) as shown in Part A, Section 6.0.

5.2 BASKET

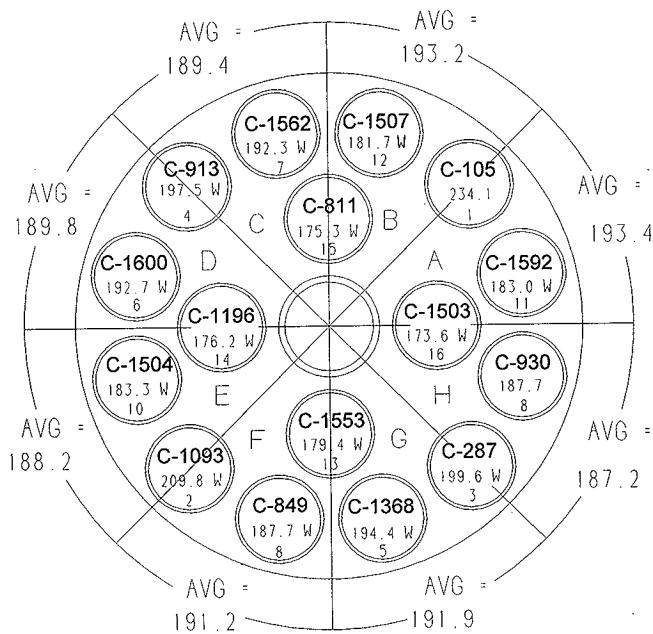
The basket will be inspected as part of the fabrication process to ensure conformance with drawing H-2-828979 (Part A, Section 7.0). Prior to each use, the basket will be inspected in accordance with WESF procedures.

5.3 TYPE W OVERPACKS

Prior to transportation of the Type W overpacked capsules to WESF, the overpack design shall have passed the special form testing requirements of 49 CFR 173 and ANSI N43.6.

The Type W overpacks shall be inspected as part of the fabrication process for conformance with drawing H-3-307504 (Part A, Section 10.0). After installation, the overpacks shall be inspected in accordance with WESF procedures.

This page intentionally left blank.


6.0 OPERATING REQUIREMENTS

The using facilities (WESF and building 324) will write detailed operating procedures in order to use the BUSS Cask and the transport system. The requirements listed below shall be incorporated into the operating procedures in order to maintain compliance with this SEP.

1. New seals will be installed on the BUSS Cask prior to shipment (SNL 1994).
2. The BUSS Cask shall satisfy the requirements of Chapter 7, "Operating Procedures," and Chapter 8, "Acceptance Tests and Maintenance Program," of the SARP (SNL 1994).
3. Prior to shipment, the Type W overpacked capsules shall have been demonstrated to meet the requirements for special form materials (49 CFR 173, ANSI N43.6). The capsules will not be certified as special form material.
4. The shipper shall ensure that the transit and wait period between loading and unloading the BUSS Cask will not exceed 30 days.
5. Overpacked capsules shall be marked externally so they are identifiable. Records shall be maintained cross referencing the Type W overpack serial number to the capsule it contains.
6. Prior to shipment, the 16 capsules will be cleaned and tested for external contamination to confirm that no capsule is leaking.
7. The overpacked capsules shall be placed in the basket in the relative positions shown in Figure A6-1. This arrangement ensures that the temperature of any capsule remains below 462 °C (864 °F).

Note that the power, position number, and outer capsule serial number are shown in Figure A6-1 for each capsule. Refer to Table A3-1 to cross-reference inner and outer capsule serial numbers.

Figure A6-1. Relative Position of Cesium Chloride Capsules in Basket.

7.0 QUALITY ASSURANCE

7.1 GENERAL

This section describes the quality assurance (QA) requirements for the onetime onsite transportation of 16 cesium chloride capsules overpacked in Type W overpacks in the BUSS Cask.

7.2 GENERAL REQUIREMENTS

The BUSS Cask has been demonstrated to contain a nearly identical payload in accordance with the requirements of 10 CFR 71 and documented in the SARP (SNL 1994). Therefore, no transportation hazard index (THI) or quality level (QL) (WHC-CM-2-14) is assigned to the BUSS Cask. As the BUSS Cask is a packaging that is certified (DOE 1996), the SARP (SNL 1994) will be the guiding document for all QA activities that pertain directly to the cask. The new basket and Type W overpack QA requirements are described below.

7.3 ORGANIZATION

The organizational structure and the assignment of responsibility shall be such that quality is achieved and maintained by those who have been assigned responsibility for performing work. Quality achievement is to be verified by persons or organizations not directly responsible for performing the work.

Packaging Engineering of Waste Management Federal Services, Inc., Northwest Operations (WMNW), WESF, and building 324 personnel are responsible for the quality of the work performed by their respective organizations and for performing the following activities.

- Follow current requirements of this SEP; the requirements of the BUSS Cask SARP (SNL 1994); WHC-CM-4-2, *Quality Assurance Manual*; and WHC-CM-2-14.
- Provide instructions for implementing QA requirements.

The responsible facility Quality Assurance manager is responsible for establishing and administering the Fluor Daniel Hanford, Inc. QA program as stated in WHC-CM-4-2.

7.4 QA ACTIVITIES

7.4.1 Design Control

All engineering change notices (ECNs) to the basket or Type W overpack design shall be approved by WESF and Packaging Engineering of WMNW as part of the process to verify the SEP is valid for the new configuration.

7.4.2 Procurement and Fabrication Control

Procurement and fabrication of the basket and Type W overpacks shall be in accordance with drawings H-2-828979 and H-3-307504, respectively. Requirements of WHC-CM-4-2 shall be followed as required by QA personnel performing the acceptance inspections after fabrication and the packaging Quality Assurance engineer.

7.4.3 Control of Operation/Processes

Processes affecting the quality of package items or services shall be controlled by instructions, procedures, drawings, checklists, or other appropriate means. These means shall ensure that process parameters are controlled within defined limits and that specified environmental conditions are maintained. Methods for defining how process controls will be applied are defined in WHC-CM-4-2.

7.4.4 Control of Inspection and Testing

Fabrication and acceptance inspections shall be performed to the following guidelines.

7.4.4.1 Inspection Personnel. Inspection for acceptance of items fabricated onsite shall be performed by qualified quality control (QC) personnel. Inspection for acceptance of items fabricated offsite shall be performed by qualified QC personnel from Procurement Quality Assurance.

7.4.4.2 In-Process Inspection. Fabrication and acceptance inspections shall be performed by qualified QC personnel.

7.4.5 Control of Operations and Maintenance

Loading/unloading procedures shall be written by the user with appropriate reference to this SEP, the BUSS Cask SARP (SNL 1994) and WESF documentation to ensure adequate loading and operation of packaging. The loading/unloading procedure identifies actions required by loading personnel to safely and properly handle the BUSS Cask, its components, and the overpacked cesium chloride capsules. The loading/unloading procedures shall also identify which steps, as defined in this SEP (Part A, Section 6.0), are important to transportation safety.

The BUSS Cask maintenance shall be documented as required by the SARP. As this is a onetime shipment, no maintenance of the basket is anticipated.

7.4.6 Test Control

Leakage rate testing shall be done as required by the BUSS Cask SARP. Special form testing of the Type W overpacks shall be documented separately. Any other testing required incident to fabrication shall be documented as required by WHC-CM-4-2.

7.4.7 Control of Measuring and Test Equipment

The requirements for measuring and test equipment contained in WHC-CM-4-2 shall apply to operations and maintenance activities, as described in Part A, Sections 6.0 and 8.0.

7.4.8 Control of Nonconforming Items

Identification, documentation, evaluation, and disposition of nonconforming items and activities shall be accomplished per WHC-CM-4-2.

Items procured or fabricated for the packaging or used in the packaging shall be QC inspected as required by the BUSS Cask SARP. Other items shall be QC inspected prior to use for compliance with the purchase order, specification, and/or fabrication drawing. The cognizant engineer, with QA concurrence, shall define the acceptance criteria.

7.4.9 Corrective Action

Nonconformance or conditions adverse to quality are evaluated as described in Part A, Section 7.4.8, and the need for corrective action is determined in accordance with WHC-CM-4-2.

7.4.10 QA Records and Document Control

Records that furnish documentary evidence of quality shall be specified, prepared, and maintained per WHC-CM-4-2 and WHC-CM-3-5, *Document Control and Records Management Manual*. Controlled documents include (but are not limited to) the following: drawings, specifications, purchase orders, plans, procedures to inspect and test, reports, quality verification reports, nonconformance reports, corrective action reports, the SEP, and operational and maintenance procedures.

7.4.11 Independent Assessments

The Hanford independent assessment process is addressed in, and shall comply with, WHC-CM-4-2.

This page intentionally left blank.

8.0 MAINTENANCE

All maintenance required by the BUSS Cask SARP (SNL 1994) shall be completed prior to transporting the capsules (Part A, Section 6.0).

No maintenance is anticipated for the basket to support this onetime use. If future uses are anticipated, the basket should be stored in a manner that precludes degradation of the basket structure.

Maintenance of the Type W overpacks and capsules, except as required prior to transportation, is the responsibility of WESF and is beyond the scope of this document.

This page intentionally left blank.

9.0 REFERENCES

10 CFR 71, 1992, "Packaging and Transportation of Radioactive Materials," *Code of Federal Regulations*, as amended.

49 CFR 173, 1997, "Shippers—General Requirements for Shipments and Packagings," *Code of Federal Regulations*, as amended.

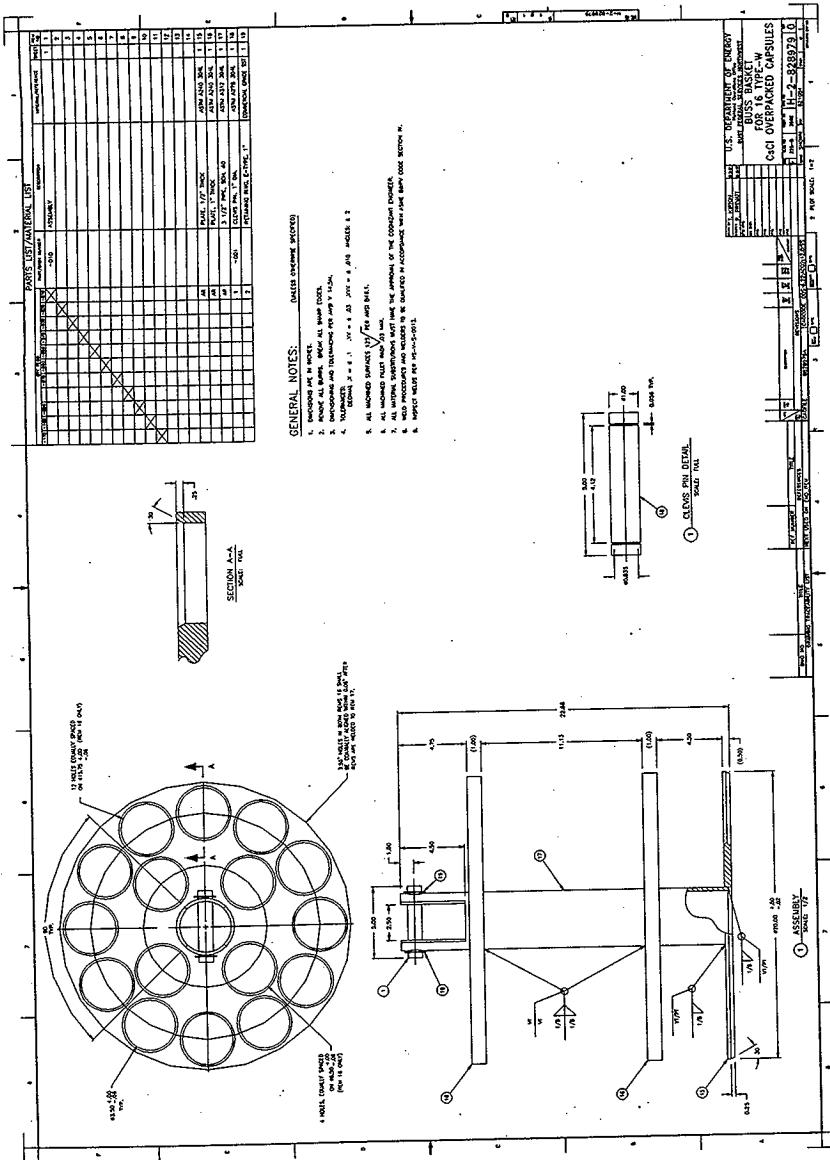
ANSI, 1989, *Sealed Radioactive Sources, Classification*, N43.6-1977 (formerly ANSI N542-1977), revised 1989, American National Standards Institute, New York, New York.

DOE, 1996, *U.S. Department of Energy Certificate of Compliance for Radioactive Materials Packages*, USA/9511/B(U) (DOE), Rev. 3, U.S. Department of Energy, Germantown, Maryland, August 27, 1996.

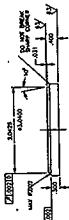
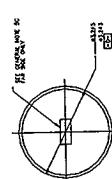
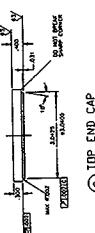
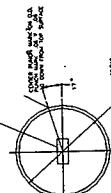
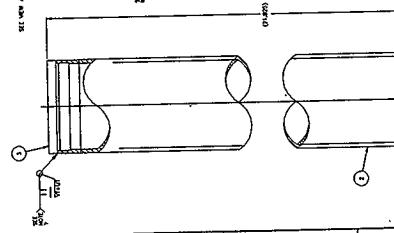
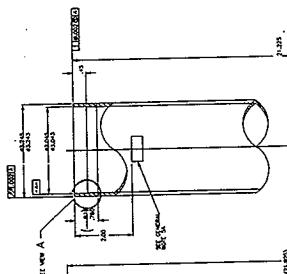
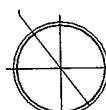
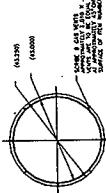
FDH-MD-001, *Adoption of WHC Documents*, Fluor Daniel Hanford, Inc., Richland, Washington

SNL, 1994, *Beneficial Uses Shipping System (BUSS) Cask Safety Analysis Report for Packaging (SARP)*, Volumes I and II, SAND83-0698 (TCC-0430), Rev. 5, Sandia National Laboratories, Albuquerque, New Mexico.

WHC-CM-2-14, *Hazardous Material Packaging and Shipping*, Westinghouse Hanford Company, Richland, Washington.


WHC-CM-3-5, *Document Control and Records Management Manual*, Westinghouse Hanford Company, Richland, Washington.

WHC-CM-4-2, *Quality Assurance Manual*, Westinghouse Hanford Company, Richland, Washington.









This page intentionally left blank.

10.0 APPENDIX: DRAWINGS

Drawings H-3-307504, Cs Capsule Type W Overpack, and H-2-828979, BUSS Basket for 16 Type W CsCl Overpacked Capsules, are attached for reference only. At the writing of this SEP, several outstanding ECNs were not posted to these drawings.

POINT / POINT LOCATION, LGA	POINT / POINT NUMBER	POINT / POINT DESCRIPTION	POINT / POINT NUMBER	POINT / POINT DESCRIPTION	POINT / POINT NUMBER	
CHURCH HILLTON	-010	CHURCH HILLTON	1 -011	CHURCH HILLTON, BURGESS & 325 ON 3175 MIL	1 -1	ST. STEPHEN
CHURCH HILLTON	-011	CHURCH HILLTON, BURGESS & 325 ON 3175 MIL	1 -012	ST. STEPHEN	1 -2	ST. STEPHEN
CHURCH HILLTON	-020	100 DO ORA & 325 ON 3175 MIL	1 -021	ST. STEPHEN	1 -3	ST. STEPHEN
CHURCH HILLTON	-021	100 DO ORA & 325 ON 3175 MIL	1 -022	ST. STEPHEN	1 -4	ST. STEPHEN
CHURCH HILLTON	-022	100 DO ORA & 325 ON 3175 MIL	1 -023	ST. STEPHEN	1 -5	ST. STEPHEN

GENERAL NOTES

CHECK PRINT

KUT İŞİMLERİ İLE İŞLETME

2. WEEPER TUBE

1 OVERPACK WELDMENT

1000

This page left intentionally blank.

PART B: PACKAGE EVALUATION**1.0 INTRODUCTION**

This Safety Evaluation for Packaging (SEP) documents the evaluation of a new basket design and Type W overpacked cesium chloride capsules for transport in the Beneficial Uses Shipping System (BUSS) Cask in accordance with the onsite transportation requirements of WHC-CM-2-14, *Hazardous Material Packaging and Shipping*. This design will support the onetime onsite shipment of 16 overpacked cesium chloride capsules from building 324, in the Hanford 300 Area, to building 224T, the Waste Encapsulation and Storage Facility (WESF), in the Hanford 200 East Area.

1.1 EVALUATION SUMMARY AND CONCLUSIONS

The BUSS Cask with a new basket is safe for the onsite shipment of 16 overpacked cesium chloride capsules, as described in Part A, Section 3.0 of this SEP, in accordance with the requirements of WHC-CM-2-14.

1.1.1 Contents

The contents shown in Part A, Section 3.0, were evaluated and found to be acceptable for transport using the basket shown in drawing H-2-828979 (Part A, Section 10.0) and the Type W overpacks shown in drawing H-3-307504 (Part A, Section 10.0).

1.1.2 Radiological Risk

A complete radiological risk analysis is not required since the SEP demonstrates that the contents will be contained during both normal conditions of transport (NCT) and hypothetical accident conditions (HAC) as defined by 10 CFR 71. The BUSS Safety Analysis Report for Packaging (SARP) demonstrates compliance with 10 CFR 71 and 49 CFR 173. Therefore, Part B, Section 3.0 of this SEP only demonstrates that the probability of a serious accident during transportation is sufficiently low to be considered incredible.

1.1.3 Containment

Containment is maintained by the payload throughout all NCT and HAC events. The containment evaluation is presented in Part B, Section 4.0.

1.1.4 Shielding

The shielding evaluation demonstrates that the 16 overpacked capsules can be transported in a manner consistent with as low as reasonably achievable (ALARA) practices. The shielding evaluation is presented in Part B, Section 5.0.

Subcriticality is not addressed since no fissile material is being transported.

1.1.5 Structural

The structural adequacy of the cask, basket, and contents is demonstrated in Part B, Section 7.0, of this SEP.

1.1.6 Thermal

The thermal analysis presented in Part B, Section 8.0, of this SEP demonstrates that the overpacked capsules meet the thermal requirements for the BUSS Cask as defined in the SARP (SNL 1994).

1.1.7 Gas Generation

Gas generation is not addressed since no gas can be generated within the capsules or the cask. Additionally, as shown in Part B, Section 10.0, the pressure due to temperature increases is less than that analyzed in the HAC portion of the SARP (SNL 1994).

1.2 REFERENCES

10 CFR 71, 1992, "Packaging and Transportation of Radioactive Materials," *Code of Federal Regulations*, as amended.

49 CFR 173, 1997, "Shippers--General Requirements for Shipments and Packagings," *Code of Federal Regulations*, as amended.

SNL, 1994, *Beneficial Uses Shipping System (BUSS) Cask Safety Analysis Report for Packaging (SARP)*, Volumes I and II, SAND83-0698 (TCC-0430), Rev. 5, Sandia National Laboratories, Albuquerque, New Mexico.

WHC-CM-2-14, *Hazardous Material Packaging and Shipping*, Westinghouse Hanford Company, Richland, Washington.

2.0 CONTENTS EVALUATION

The radioactive contents considered for this evaluation are listed in Part A, Section 3.0. These contents are well within the activity limits approved for transportation in the BUSS Cask SARP (SNL 1994).

2.1 REFERENCE

SNL, 1994, *Beneficial Uses Shipping System (BUSS) Cask Safety Analysis Report for Packaging (SARP)*, Volumes I and II, SAND83-0698 (TCC-0430), Rev. 5, Sandia National Laboratories, Albuquerque, New Mexico.

This page intentionally left blank.

3.0 RADIOLOGICAL RISK EVALUATION

The containment boundary for the cesium chloride capsules which will be shipped in the BUSS Cask will be provided by the encapsulation of the capsules in Type W overpacks as discussed in Part B, Section 4.0. However, as an additional demonstration of safety, a discussion is presented in this section which addresses the radiological risks associated with the shipment of the BUSS Cask containing singly-encapsulated cesium chloride capsules.

Onsite transportation safety requirements are outlined in WHC-CM-2-14 and Mercado (1994). The acceptability of risks associated with onsite shipments can be determined by a radiological risk evaluation which evaluates the probability and consequences of release. The potential consequences of a postulated release of the BUSS Cask contents, which may contain up to 31,450 Tbq (850,000 Ci) of ^{137}Cs , would clearly be unacceptable in any scenario. The potential consequences, therefore place the BUSS Cask shipments in the highest hazard category as outlined in Mercado (1994). The highest hazard category results in the most restrictive annual release frequency acceptance criterion of 10^7 . As long as a risk evaluation demonstrates that the packaging will prevent release of the contents for any accident that occurs with a release frequency of greater than 10^7 per year, a detailed risk analysis is not performed. The radiological risk evaluation presented in this section demonstrates that the shipments meet the required criterion.

The BUSS Cask is a certified Type B packaging which is approved for the shipment of highway route controlled quantity (HRCQ) nonfissile radioactive material. The BUSS Cask provides shielding and confinement (as defined in the BUSS Cask SARP [SNL 1994]), as well as impact, puncture, and thermal protection for doubly-encapsulated special form contents during NCT and HAC as defined in 10 CFR 71. Compliance with these requirements is documented in the BUSS Cask SARP (SNL 1994).

The SARP demonstrates that the cask body, lid, and impact limiters are virtually unaffected by being subjected to the NCT and HAC events specified in 10 CFR 71.71 and 10 CFR 71.73. Those conditions include a 30 ft drop onto a hard unyielding surface, a puncture test, and immersion in an 800 °C fire for 30 minutes. The BUSS Cask SARP relies on the special form encapsulated materials to provide containment. However, because the BUSS Cask structural members withstand HAC, protection of the payload is also being provided by the BUSS Cask body, lid, and impact limiters.

In a radiological risk evaluation the total conditional probability of failure of the packaging is multiplied by the frequency of accidents per year to arrive at an annual accident release frequency. If the annual accident release frequency is below the required criteria, which in this case is a frequency of 10^7 accident releases per year, the shipment meets onsite transportation safety requirements (Mercado 1994).

The Hanford Site truck accident rate for all trucks including vans and light-weight pick-up trucks is equal to 2.0×10^7 accidents per mile (Green et al. 1996). The BUSS Cask will be used for one shipment of 25 miles which, when multiplied by the accident rate and reduction factor, gives a frequency of 5.0×10^6 accidents per year. The accident frequency of 5.0×10^6 is very conservative in that it does not take credit for the reduction factors which apply to accident rates for onsite transport. Such reduction factors are normally applied in detailed risk analyses.

The conditional release probabilities are based on the performance of the packaging and are taken from a study performed by Sandia National Laboratory (SNL) on the response of large casks to severe accidents (Dennis et al. 1976). The BUSS Cask is 12 in. thick and the probability of a release given a puncture event is approximately equal to zero. The cask will withstand a 30 minute

800 °C fire; therefore the probability of a fire failure on the Hanford Site, where emergency responders have a 15 minute response time and are trained in the handling of radioactive material, is also approximately zero. In addition, based on the analysis presented in the BUSS Cask SARP, the BUSS Cask would not fail from the crush force of the trailer (16,000 lb) should a rollover accident occur. Therefore, the probability of failure from the crush force would also be approximately equal to zero.

The only conditional release probability that will affect the annual accident release frequency is related to impact. The BUSS Cask SARP demonstrates that the cask will survive a 30 ft drop onto a hard unyielding surface. If the very conservative assumption is made that the cask fails a 30 mph velocity change onto concrete, given that the system has a gross vehicle weight of 35 tons, the corresponding total conditional release probability is 0.00612 (Dennis et al. 1976). When multiplied by the annual accident frequency of 5.0×10^{-6} , the resulting annual probability of release from failure by impact is 3.0×10^{-8} which is below the required 10^{-7} . In fact, 3 shipments can be made in one year and still meet the accident criterion of less than 10^{-7} . Therefore, the BUSS Cask meets onsite transportation safety requirements and shipments of singly-encapsulated cesium chloride capsules in the BUSS Cask present no unacceptable risks to the worker or the public.

3.1 REFERENCES

10 CFR 71, 1992, "Packaging and Transportation of Radioactive Materials," *Code of Federal Regulations*, as amended.

49 CFR 173, 1997, "Shippers--General Requirements for Shipments and Packagings," *Code of Federal Regulations*, as amended.

Dennis, A. W., J. T. Foley, W. F. Hartman, and D. W. Larson, 1978, *Severities of Transportation Accidents Involving Large Packages*, SAND77-0001, Sandia National Laboratories, Albuquerque, New Mexico.

Green, J. R., B. D. Flanagan, and H. W. Harris, 1996, *Hanford Site Truck Accident Rate, 1990-1995*, WHC-SD-TP-RPT-021, Rev. 0, Westinghouse Hanford Company, Richland, Washington.

H&R, 1995, *Recommended Onsite Transportation Risk Management Methodology*, H&R522-1, H&R Technical Associates, Inc., Oak Ridge, Tennessee.

Mercado, J. E., 1994, *Report on Equivalent Safety for Transportation and Packaging of Radioactive Materials*, WHC-SD-TP-RPT-001, Rev. 0, Westinghouse Hanford Company, Richland, Washington.

SNL, 1994, *Beneficial Uses Shipping System (BUSS) Cask Safety Analysis Report for Packaging (SARP)*, Volumes I and II, SAND83-0698 (TCC-0430), Rev. 5, Sandia National Laboratories, Albuquerque, New Mexico.

WHC-CM-2-14, *Hazardous Material Packaging and Shipping*, Flur Daniel Hanford, Inc., Richland, Washington.

4.0 CONTAINMENT EVALUATION

The containment boundary for this shipment is the Type W overpack. Prior to shipment, additional testing will be conducted to demonstrate that capsules in the Type W overpacks meet the special form requirements of 49 CFR 173 and American National Standards Institute (ANSI) N43.6, *Sealed Radioactive Sources, Classification* (ANSI 1989). The Type W overpacked capsules will not be certified as special form material.

The assembled Type W overpacks and capsules will be tested after assembly and must have demonstrate a leakage rate of less than or equal to 10^8 atm-cc/sec for acceptance.

The cask seal is designed to be leak-tight to 10^4 atm-cc/sec to retain the helium atmosphere during normal transportation. After an accident, the SARP (SNL 1994) demonstrates that there will be no permanent deformation of the cask seal and the cask will contain the capsules, but no leak-tightness was demonstrated since helium does not have to be retained after an accident. As the overpacked capsules shall be leakage rate tested when assembled with the Type W overpacks and the overpack design shall be tested to the special form criteria of 49 CFR 173 and ANSI N43.6, no leakage rate criteria is required for the BUSS Cask seal.

4.1 REFERENCES

49 CFR 173, 1997, "Shippers--General Requirements for Shipments and Packagings," *Code of Federal Regulations*, as amended.

ANSI, 1989, *Sealed Radioactive Sources, Classification*, N43.6-1977 (formerly ANSI N542-1977), revised 1989, American National Standards Institute, New York, New York.

SNL, 1994, *Beneficial Uses Shipping System (BUSS) Cask Safety Analysis Report for Packaging (SARP)*, Volumes I and II, SAND83-0698 (TCC-0430), Rev. 5, Sandia National Laboratories, Albuquerque, New Mexico.

This page intentionally left blank.

5.0 SHIELDING EVALUATION

5.1 INTRODUCTION

This shielding evaluation supports the shipment of overpacked cesium chloride capsules in the BUSS Cask. Although the BUSS Cask has already been approved for use for this application, this analysis was required due to the new basket design that will be used for this shipment.

This section also includes an evaluation of the fraction of heat deposited in various regions of the cask to support the thermal analysis for the cask.

5.2 DIRECT RADIATION SOURCE SPECIFICATION

5.2.1 Gamma Source

The BUSS SARP (SNL 1994) activity limit is 70 kCi of ^{137}Cs per capsule, or a total of 1,120 kCi when 16 capsules are loaded in the cask. The main radiological hazard associated with the capsules involves the 0.662 MeV photon emitted during the decay of ^{137m}Ba . ^{137m}Ba is produced during 94.6% of the decays of ^{137}Cs . A 0.662 MeV photon is emitted during 90% of the decays of ^{137m}Ba . This results in a photon emission rate of 3.53×10^{16} photons/s for 1,120 kCi of ^{137}Cs , as shown below.

$$\text{Photon Emission Rate} = 1,120,000 \text{ (Ci)} \times 3.7 \text{ E10 (decays/s/Ci of } ^{137}\text{Cs}) \times 0.946 \text{ (} ^{137m}\text{Ba atoms/decay of } ^{137}\text{Cs}) \times 0.9 \text{ (photons/decay of } ^{137m}\text{Ba)}$$

$$\text{Photon Emission Rate} = 3.53 \times 10^{16} \text{ photons/s (0.662 MeV)}$$

5.2.2 Beta Source

The beta source leads to an insignificant dose rate outside of the cask because of the shielding provided by the cask. This shielding is described in Part B, Section 5.4.3.

5.2.3 Neutron Source

The WESF capsules contain no neutron emitters. Therefore, the neutron dose rates are not reported.

5.3 SUMMARY OF SHIELDING PROPERTIES OF MATERIALS

The shielding attenuation properties for the bulk materials used in this analysis were obtained from the Monte Carlo N-Particle (MCNP) computer code data library (Breismeyer 1993, Carter 1995). A description of the configuration and densities of the shielding materials used in the calculational models is given in Part B, Section 5.4.3.

5.4 NORMAL CONDITIONS OF TRANSPORT

5.4.1 Conditions to be Evaluated

Dose rates will be evaluated at the cask surface and 2 m from the cask. The dose rate at 2 m is conservatively assumed to be the driver position and conservatively used for the dose rate at 2 m from the vehicle surface.

5.4.2 Acceptance Criteria

The BUSS Cask is normally shipped using the exclusive use criteria of 49 CFR 173; therefore, the same criteria shall be applied to this evaluation. The exclusive use criteria is a maximum of 10 mSv/h (1000 mrem/h) on any surface of the cask, 2 mSv/h (200 mrem/h) at the vehicle surface, 0.1 mSv/h (10 mrem/h) at 2 m from the vehicle surface, and 0.02 mSv/h (2 mrem/h) in any normally occupied space for non-radiological workers.

5.4.3 Shielding Model

The MCNP computer code (Breismeyer 1993, Carter 1995) was used for the gamma-ray dose rate calculations. MCNP is a three-dimensional monte carlo computer code and uses Evaluated Nuclear Data Files (ENDF/B) for cross sections (BNL 1991). The ENDF/B system is maintained by the National Nuclear Data Center at Brookhaven National Laboratory under contract from the U.S. Department of Energy (DOE). The quality assurance (QA) documentation of MCNP for use at the Hanford Site is given in Carter (1996). Fluence-to-dose conversion factors were conservatively based on an anterior-to-posterior irradiation pattern (ANSI/ANS 1991) and are listed in Table B5-1.

The gamma source term (see Part B, Section 5.2.1) was assumed to be homogeneously distributed throughout the volume of the 16 capsules. The capsules were modeled as cesium chloride with a density of 2.6 g/cc. Note that no credit was taken for the 10.2 cm (4 in.) fins on the side of the cask. Tables B5-2 and B5-3 summarize the radial and axial geometry and material composition, respectively. Figures B5-1 and B5-2 are simplified radial and axial models, respectively.

5.4.4 Shielding Calculations

Table B5-4 summarizes the gamma dose rate estimates from MCNP for various distances from the BUSS Cask.

Table B5-1. ANSI/ANS (1991) Photon Fluence to Dose Conversion Factors.

Energy (MeV)	Flux to dose rate (mrem/h)/(photon/cm ² /s)	Energy (MeV)	Flux to dose rate (mrem/h)/(photon/cm ² /s)
1.00 E-02	2.232 E-05	5.00 E-01	9.144 E-04
1.50 E-02	5.625 E-05	6.00 E-01	1.076 E-03
2.00 E-02	8.568 E-05	8.00 E-01	1.379 E-03
3.00 E-02	1.184 E-04	1.00 E+00	1.656 E-03
4.00 E-02	1.314 E-04	1.50 E+00	2.246 E-03
5.00 E-02	1.382 E-04	2.00 E+00	2.758 E-03
6.00 E-02	1.440 E-04	3.00 E+00	3.672 E-03
8.00 E-02	1.624 E-04	4.00 E+00	4.500 E-03
1.00 E-01	1.919 E-04	5.00 E+00	5.292 E-03
1.50 E-01	2.797 E-04	6.00 E+00	6.012 E-03
2.00 E-01	3.708 E-04	8.00 E+00	7.488 E-03
3.00 E-01	5.616 E-04	1.00 E+01	8.892 E-03
4.00 E-01	7.416 E-04	1.20 E+01	1.040 E-02

ANS = American Nuclear Society.

ANSI = American National Standards Institute.

ANSI/ANS, 1991, *Neutron and Gamma-ray Fluence-to-dose Factors*, ANSI/ANS-6.1.1-1991,
American National Standards Institute/American Nuclear Society, New York, New York.

Table B5-2. BUSS Cask Radial Geometry and Material Composition.

Zone (material)	Outer radius (cm)	Material density (g/cc)
Source (cesium chloride)	2.512	2.6
Inner capsule (steel)	2.858	8.0
Gap (air)	2.990	1.22 E-3
Outer capsule (steel)	3.335	8.0
Gap (helium)	3.896	1.78 E-4
Type S overpack (steel)*	4.445	8.0
BUSS Cask inner radius	25.718	NA
BUSS Cask (steel)	58.738	8.0

BUSS = Beneficial Uses Shipping System.

*The Type S overpack was used for the shielding model. The configuration of this overpack is functionally equivalent to the Type W overpack for shielding.

Table B5-3. BUSS Axial Geometry and Material Composition.

Zone (material)	Thickness (cm)	Material density (g/cc)
BUSS Cask top (steel)	32.893	8.0
Overpack top (steel)	0.691	8.0
Gap (helium)	2.261	1.78 E-4
Outer capsule top (steel)	1.016	8.0
Gap (air)	0.319	1.22 E-3
Inner capsule top (steel)	1.016	8.0
Source (cesium chloride)	48.068	2.6
Inner capsule bottom (steel)	1.016	8.0
Gap (air)	0.319	1.22 E-3
Outer capsule bottom (steel)	1.016	8.0
Gap (helium)	2.261	1.78 E-4
Overpack bottom (steel)	0.691	8.0
BUSS Cask bottom (steel)	32.893	8.0

BUSS = Beneficial Uses Shipping System.

Figure B5-1. Simplified Radial Sketch of BUSS Cask.
(Note: all dimensions in inches)

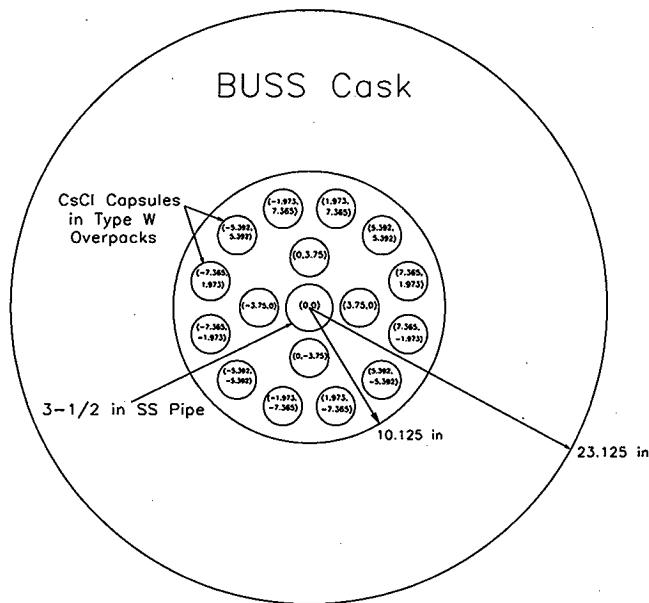


Figure B5-2. Simplified Axial Sketch of BUSS Cask.
(Note: all dimensions in inches)

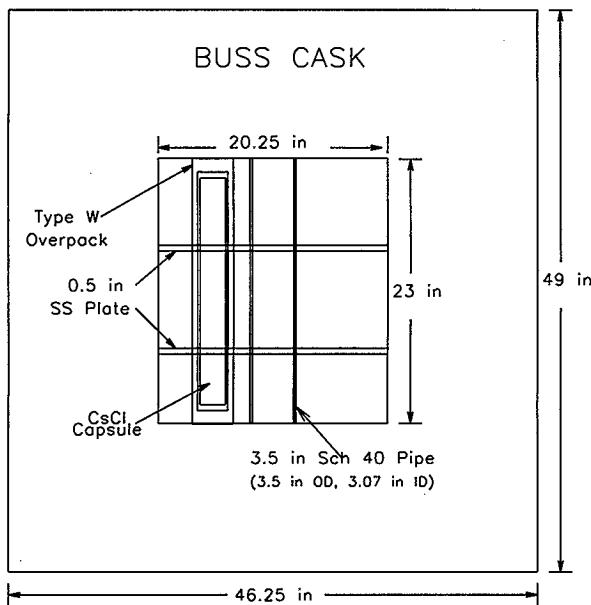


Table B5-4. Dose Rates for the BUSS Cask.

Detector location		Limit, mSv/h (mrem/h)	mSv/h (mrem/h)
Cask surface	Side	2 (200)	0.21 (21)
	Top	2 (200)	0.42 (42)
2 m from side of cask		0.1 (10)	0.0081 (0.81)
Driver position (assumed to be at 2 m)		0.02 (2)	0.0081 (0.81)

1 Sievert = 100 rem.

BUSS = Beneficial Uses Shipping System.

5.5 ACCIDENT CONDITIONS

5.5.1 Conditions to be Evaluated

Testing was performed on the BUSS Cask and it was found that there was no permanent deformation even after a 9 m (30 ft) drop test. Therefore, there is no credible scenario that could occur during onsite shipment of the BUSS Cask that would result in the loss of the cask lid or the loss of any shielding provided by the cask.

5.5.2 Acceptance Criteria

The external dose rate shall not exceed 10 mSv/h (1000 mrem/h) at 1 m from the surface under accident conditions, as directed by the onsite transportation safety program.

5.5.3 Shielding Model

No credible accident scenario was identified; therefore, no shielding model was developed.

5.6 SHIELDING EVALUATION AND CONCLUSIONS

Table B5-5 summarizes the results of the shielding analysis along with the dose rate limits. The calculated dose rates are all well within the dose rate limits assuming the worst-case cask inventory of 16 capsules with 70 kCi per capsule. Note that the dose rate at 2 m from the side of the cask was conservatively used for the dose rate at 2 m from the vehicle surface and the driver position.

Table B5-5. Dose Rates for the BUSS Cask.

Detector location		Limit, mSv/h (mrem/h)	mSv/h (mrem/h)
Cask surface	Side	2 (200)	0.21 (21)
	Top	2 (200)	0.42 (42)
2 m from side of cask		0.1 (10)	0.0081 (0.81)
Driver position (assumed to be at 2 m)		0.02 (2)	0.0081 (0.81)

1 Sievert = 100 rem.

BUSS = Beneficial Uses Shipping System.

5.7 EVALUATION OF THE THERMAL DEPOSITION FRACTIONS FOR THE CASK

The redesigned basket required a reevaluation of the fraction of the heat deposited in various regions of the cask/contents. The MCNP computer code was used to estimate the fraction of energy deposited in various regions in the cask that is associated with the gamma rays emitted by

the cesium chloride capsules. The energy associated with beta particles and internal conversion electrons during decay of ^{137}Cs and $^{137\text{m}}\text{Ba}$ must also be accounted for. These items are discussed below.

^{137}Cs decays to $^{137\text{m}}\text{Ba}$ 94.6% of the time by emission of a beta particle with a maximum energy of 0.5116 MeV and an average energy of 0.173 MeV (ICRP 1983). ^{137}Cs decays directly to ^{137}Ba (stable) the other 5.4% of the time by emission of a beta particle with a maximum energy of 1.1732 MeV and an average energy of 0.425 MeV (ICRP 1983). $^{137\text{m}}\text{Ba}$ decays to ^{137}Ba (stable) 90% of the time by emission of a 0.662 MeV gamma ray, and by internal conversion the other 10% of the time (ICRP 1983). Therefore, each decay of ^{137}Cs results in the production of 0.85 gamma rays with an energy of 0.662 MeV, the deposition of 0.187 MeV ($0.946 \times 0.173 \text{ MeV} + 0.054 \times 0.425 \text{ MeV}$) of energy from beta decay, and the deposition of 0.063 MeV of energy from internal conversion. It is assumed that all of the energy associate with beta decay and internal conversion electrons is absorbed in the cesium chloride capsule. The remaining energy from the 0.662 MeV gamma rays is distributed throughout the cask, although a small portion escapes the cask. The energy from the beta particles and internal conversion (0.25 MeV per ^{137}Cs decay) must be added to the energy deposited in the cesium chloride by the gamma rays to obtain the total amount of energy deposited in the cesium chloride.

Small modifications were made to the MCNP model developed for the shielding analysis to estimate the thermal deposition fractions for various regions of the cask. The MCNP tally 6 option was used to estimate the energy deposition (MeV/g) averaged over a cell. The mass of the cell (g), as calculated by MCNP, was then multiplied by the energy deposition for the cell to determine the total energy deposited in that cell. Table B5-6 summarizes the results along with the fraction of the total energy deposited in each of the cask regions. This table indicates that approximately 2.4% of the total energy is deposited outside of the BUSS Cask.

Note that in Table B5-6, the energy deposited in the cesium chloride from beta decay and internal conversion electrons was added to the energy deposited by the gamma rays as calculated by MCNP. This information will be used in the thermal analysis for the cask.

Table B5-6. Summary of Energy Deposition in the BUSS Cask.

Region	MCNP Cell No.	Mass (g)	Average energy deposition (MeV/g)	Energy deposition (MeV)	Percent deposited in region (%)
Cesium chloride source ^a	1	2.5 E+03	8.0 E+11	1.2 E+16	36.5
Inner capsule ^a	2	2.7 E+03	5.2 E+11	1.4 E+15	4.1
Outer capsule ^a	4	3.4 E+03	5.7 E+11	1.9 E+15	5.7
Overpack ^a	6	7.3 E+03	7.0 E+11	5.1 E+15	15.1
Center pipe	23	7.9 E+03	7.7 E+10	6.1 E+14	1.8
Top support plate	24, 25	1.1 E+04	7.1 E+10	7.9 E+14	2.3
Bottom support plate	26, 27	1.1 E+04	7.1 E+10	7.8 E+14	2.3
Cask top	34	2.6 E+06	5.3 E+08	1.4 E+15	4.1
Cask side	35	3.7 E+06	2.0 E+09	7.2 E+15	21.4
Cask bottom	36	2.6 E+06	5.3 E+08	1.4 E+15	4.1
Total				3.3 E+16	97.6

BUSS = Beneficial Uses Shipping System.

^aIncludes all 16 cesium chloride capsules.

5.8 REFERENCES

ANSI/ANS, 1991, *Neutron and Gamma-ray Fluence-to-dose Factors*, ANSI/ANS-6.1.1-1991, American National Standards Institute/American Nuclear Society, New York, New York.

Breismeister, J. F., Editor, 1993, *MCNP--A General Monte Carlo Code N-Particle Transport Code, Version 4a*, LA-12625, Los Alamos National Laboratory, Los Alamos, New Mexico.

Carter, L. L., 1995, *Certification of MCNP Version 4A for WHC Computer Platforms*, WHC-SD-MP-SWD-30001, Rev. 7, Westinghouse Hanford Company, Richland, Washington.

ICRP, 1987, *International Commission on Radiological Protection, Data for Use in Protection Against External Radiation*, Publication 57, International Commission on Radiological Protection, New York, New York.

ICRP, 1983, *Radionuclide Transformations Energy and Intensity of Emissions*, Publication 38, International Commission on Radiological Protection, New York, New York.

Nelson, J. V., 1996, *Estimation of Neutron Dose Rates from Nuclear Waste Packages*, (internal memo 8M730-JVN-96-007 to J. R. Green, March 8), Westinghouse Hanford Company, Richland, Washington.

SNL, 1994, *Beneficial Uses Shipping System (BUSS) Cask Safety Analysis Report for Packaging (SARP)*, Volumes I and II, SAND83-0698 (TCC-0430), Rev. 5, Sandia National Laboratories, Albuquerque, New Mexico.

5.9 APPENDICES

5.9.1 MCNP Input File for Shielding Model

Photon dose for BUSS Cask (16 CsCl Capsules)

c

c Define the Generic Capsule Cells as Universe 1

c mat# mat den surfaces

```
1 2 -2.6 -1 206 -205 u=1      $ CsCl - Source
2 3 -8.0 (-2 205 -204):(1 -2 206 -205):(-2 207 -206) u=1
   $ Inner Capsule - union of top/side/bottom
3 1 -0.00122 (-3 204 -203):(2 -3 207 -204):(-3 208 -207) u=1
   $ Air Gap around Inne & outer Capsule
4 3 -8.0 (-4 203 -202):(3 -4 208 -203):(-4 209 -208) u=1
   $ Outer Capsule - union of top/side/bottom
5 4 -0.000178 (-5 202 -201):(4 -5 209 -202):(-5 210 -209) u=1
   $ He Gap between Outer Capsule and Overpack
6 3 -8.0 (-6 201 -200):(5 -6 210 -201):(-6 211 -210) u=1
   $ Overpack - union of top/side/bottom
```

c

c Now Define the Cell to be filled with Universe 1 - the capsule

c

```
7 0 -7 213 -212 fill=1 trcl=1 $ Capsule 1
8 like 7 but trcl=2             $ Capsule 2
9 like 7 but trcl=3             $ Capsule 3
10 like 7 but trcl=4            $ Capsule 4
11 like 7 but trcl=5            $ Capsule 5
12 like 7 but trcl=6            $ Capsule 6
13 like 7 but trcl=7            $ Capsule 7
14 like 7 but trcl=8            $ Capsule 8
15 like 7 but trcl=9            $ Capsule 9
16 like 7 but trcl=10           $ Capsule 10
17 like 7 but trcl=11           $ Capsule 11
18 like 7 but trcl=12           $ Capsule 12
19 like 7 but trcl=13           $ Capsule 13
20 like 7 but trcl=14           $ Capsule 14
21 like 7 but trcl=15           $ Capsule 15
22 like 7 but trcl=16           $ Capsule 16
```

c

c Define a cell for the central pipe.

c

c Define a cell for the top support plate.

c

```
23 3 -8.0 8 -9 211 -200
c
24 3 -8.0 -252 -10 #7 #8 #10 #11 #12 #13
  #20 #21 #22 #23 -253 254
25 3 -8.0 252 -10 #8 #9 #10 #14 #15 #16
  #17 #18 #19 #23 -253 254
```

c

c Define a cell for the bottom support plate.

c

```
26 3 -8.0 -252 -10 #7 #8 #10 #11 #12 #13
```

```

#20 #21 #22 #23 -255 256
27 3 -8.0 252 -10 #8 #9 #10 #14 #15 #16
    #17 #18 #19 #23 -255 256

c
c Define a cell for air inside the cask source region.
c
28 1 -0.00122 -252 -10 #7 #8 #10 #11 #12 #13
    #20 #21 #22 #23 253 -200 $ Air around overpacks - Above top plate
29 1 -0.00122 252 -10 #8 #9 #10 #14 #15 #16
    #17 #18 #19 #23 253 -200 $ Air around overpacks - Above top plate
30 1 -0.00122 -252 -10 #7 #8 #10 #11 #12 #13
    #20 #21 #22 #23 255 -254
        $ Air around overpacks - Between top/bottom plates
31 1 -0.00122 252 -10 #8 #9 #10 #14 #15 #16
    #17 #18 #19 #23 255 -254
        $ Air around overpacks - Between top/bottom plates
32 1 -0.00122 -252 -10 #7 #8 #10 #11 #12 #13
    #20 #21 #22 #23 211 -256 $ Air around overpacks-Below bottom plate
33 1 -0.00122 252 -10 #8 #9 #10 #14 #15 #16
    #17 #18 #19 #23 211 -256 $ Air around overpacks-Below bottom plate

c
c Now define cells for the cask.
c
34 3 -8.0 -26 200 -235      $ Cask top
341 3 -8.0 -26 235 -234     $ Cask top
35 3 -8.0 -26 234 -233     $ Cask top
36 3 -8.0 -26 233 -232     $ Cask top
37 3 -8.0 -26 232 -231     $ Cask top
38 3 -8.0 -26 231 -230     $ Cask top
39 3 -8.0 -26 230 -229     $ Cask top
40 3 -8.0 -26 229 -228     $ Cask top
41 3 -8.0 -26 228 -227     $ Cask top
42 3 -8.0 -26 227 -226     $ Cask top
43 3 -8.0 -26 226 -225     $ Cask top
44 3 -8.0 -26 225 -224     $ Cask top
45 3 -8.0 -26 224 -223     $ Cask top
46 3 -8.0 -26 223 -222     $ Cask top
47 3 -8.0 -26 222 -221     $ Cask top
48 3 -8.0 -26 221 -220     $ Cask top
49 3 -8.0 -26 236 -211     $ Cask bottom
50 3 -8.0 -26 237 -236     $ Cask bottom
51 3 -8.0 -26 238 -237     $ Cask bottom
52 3 -8.0 -26 239 -238     $ Cask bottom
53 3 -8.0 -26 240 -239     $ Cask bottom
54 3 -8.0 -26 241 -240     $ Cask bottom
55 3 -8.0 -26 242 -241     $ Cask bottom
56 3 -8.0 -26 243 -242     $ Cask bottom
57 3 -8.0 -26 244 -243     $ Cask bottom
58 3 -8.0 -26 245 -244     $ Cask bottom
59 3 -8.0 -26 246 -245     $ Cask bottom
60 3 -8.0 -26 247 -246     $ Cask bottom
61 3 -8.0 -26 248 -247     $ Cask bottom
62 3 -8.0 -26 249 -248     $ Cask bottom
63 3 -8.0 -26 250 -249     $ Cask bottom

```

```

64 3 -8.0 -26 251 -250    $ Cask bottom
65 3 -8.0 10 -11 -200 211  $ Cask side
66 3 -8.0 11 -12 -200 211  $ Cask side
67 3 -8.0 12 -13 -200 211  $ Cask side
68 3 -8.0 13 -14 -200 211  $ Cask side
69 3 -8.0 14 -15 -200 211  $ Cask side
70 3 -8.0 15 -16 -200 211  $ Cask side
71 3 -8.0 16 -17 -200 211  $ Cask side
72 3 -8.0 17 -18 -200 211  $ Cask side
73 3 -8.0 18 -19 -200 211  $ Cask side
74 3 -8.0 19 -20 -200 211  $ Cask side
75 3 -8.0 20 -21 -200 211  $ Cask side
76 3 -8.0 21 -22 -200 211  $ Cask side
77 3 -8.0 22 -23 -200 211  $ Cask side
78 3 -8.0 23 -24 -200 211  $ Cask side
79 3 -8.0 24 -25 -200 211  $ Cask side
791 3 -8.0 25 -26 -200 211 $ Cask side

c
c Finally define cells for the air outside cask and the universe.
c
80 1 -0.00122 220 -257 -10    $ 1 cm Air above cask - tally cell
801 1 -0.00122 258 -259 -10   $ 1 m Air above cask - tally cell
802 1 -0.00122 260 -261 -10   $ 2 m Air above cask - tally cell
803 1 -0.00122 -1000 220 #80 #801 #802 $ Rest of Air outside cask - top
81 1 -0.00122 -1000 26 -27 255 -254 $ 1 cm Air side - tally cell
811 1 -0.00122 -1000 28 -29 255 -254 $ 1 m Air side - tally cell
812 1 -0.00122 -1000 30 -31 255 -254 $ 2 m Air side - tally cell
813 1 -0.00122 -1000 26 251 -220 #81 #811 #812 $ Rest of Air - side
82 1 -0.00122 -1000 -251      $ Air outside cask - bottom
83 0 1000                      $ Void - outside universe

c
c Radial surfaces for Capsule
c
1 cz 2.512 $ Capsule - source/outside radius
2 cz 2.858 $ Capsule - inner capsule - outer radius
3 cz 2.990 $ Capsule - outer capsule - inner radius
4 cz 3.335 $ Capsule - outer capsule - outer radius
5 cz 3.896 $ Capsule - overpack - inner radius
6 cz 4.445 $ Capsule - overpack - outer radius
7 cz 4.444 $ Outer radius for capsule universe to fill
8 cz 4.406 $ Inner radius center pipe - changed to prevent clash
9 cz 4.980 $ Outer radius center pipe - changed to prevent clash
c 8 cz 4.506 $ Inner radius for center pipe
c 9 cz 5.080 $ Outer radius for center pipe
c
c Radial surfaces for Cask
c
10 cz 25.7175 $ Inner radius of Cask
11 cz 27.7    $ Intermediate radius of Cask - biasing
12 cz 29.7    $ Intermediate radius of Cask - biasing
13 cz 31.7    $ Intermediate radius of Cask - biasing
14 cz 33.7    $ Intermediate radius of Cask - biasing
15 cz 35.7    $ Intermediate radius of Cask - biasing

```

16 cz 37.7 \$ Intermediate radius of Cask - biasing
 17 cz 39.7 \$ Intermediate radius of Cask - biasing
 18 cz 41.7 \$ Intermediate radius of Cask - biasing
 19 cz 43.7 \$ Intermediate radius of Cask - biasing
 20 cz 45.7 \$ Intermediate radius of Cask - biasing
 21 cz 47.7 \$ Intermediate radius of Cask - biasing
 22 cz 49.7 \$ Intermediate radius of Cask - biasing
 23 cz 51.7 \$ Intermediate radius of Cask - biasing
 24 cz 53.7 \$ Intermediate radius of Cask - biasing
 25 cz 55.7 \$ Intermediate radius of Cask - biasing
 26 cz 58.738 \$ Outer radius of Cask
 27 cz 59.738 \$ 1 cm from cask - tally cell
 28 cz 158.238 \$ 0.95 m from cask - tally cell
 29 cz 159.238 \$ 1.05 m from cask - tally cell
 30 cz 258.238 \$ 1.95 m from cask - tally cell
 31 cz 259.238 \$ 2.05 m from cask - tally cell

c

c Axial surfaces for Capsule

c

200 pz 29.337 \$ Top of Overpack
 201 pz 28.646 \$ Inside Bottom of Overpack Cap
 202 pz 26.385 \$ Top of outer capsule
 203 pz 25.369 \$ Inside Top of outer capsule
 204 pz 25.050 \$ Top of inner capsule
 205 pz 24.034 \$ Top of source
 206 pz -24.034 \$ Bottom of source
 207 pz -25.050 \$ Bottom of inner capsule
 208 pz -25.369 \$ Inside Bottom of outer capsule
 209 pz -26.385 \$ Bottom of outer capsule
 210 pz -28.646 \$ Inside Bottom of Overpack Bottom Plug
 211 pz -29.337 \$ Bottom of Overpack Plug
 212 pz 29.336 \$ Top plane for capsule universe to fill
 213 pz -29.336 \$ Bottom plane for capsule universe to fill

c

c Axial surfaces for Cask

c

220 pz 62.230 \$ Cask Top
 221 pz 60.230 \$ Cask Top
 222 pz 58.230 \$ Cask Top
 223 pz 56.230 \$ Cask Top
 224 pz 54.230 \$ Cask Top
 225 pz 52.230 \$ Cask Top
 226 pz 50.230 \$ Cask Top
 227 pz 48.230 \$ Cask Top
 228 pz 46.230 \$ Cask Top
 229 pz 44.230 \$ Cask Top
 230 pz 42.230 \$ Cask Top
 231 pz 40.230 \$ Cask Top
 232 pz 38.230 \$ Cask Top
 233 pz 36.230 \$ Cask Top
 234 pz 34.230 \$ Cask Top
 235 pz 32.230 \$ Cask Top
 236 pz -32.230 \$ Cask Bottom
 237 pz -34.230 \$ Cask Bottom

```

238 pz -36.230 $ Cask Bottom
239 pz -38.230 $ Cask Bottom
240 pz -40.230 $ Cask Bottom
241 pz -42.230 $ Cask Bottom
242 pz -44.230 $ Cask Bottom
243 pz -46.230 $ Cask Bottom
244 pz -48.230 $ Cask Bottom
245 pz -50.230 $ Cask Bottom
246 pz -52.230 $ Cask Bottom
247 pz -54.230 $ Cask Bottom
248 pz -56.230 $ Cask Bottom
249 pz -58.230 $ Cask Bottom
250 pz -60.230 $ Cask Bottom
251 pz -62.230 $ Cask Bottom
252 px 0.0 $ Misc plane
253 pz 15.27 $ Top of top support plate
254 pz 14.00 $ Bottom of top support plate
255 pz -14.00 $ Top of bottom support plate
256 pz -15.27 $ Bottom of bottom support plate
257 pz 63.23 $ Plane 1 cm above cask for tally
258 pz 157.23 $ Plane 0.95 m above cask for tally
259 pz 167.23 $ Plane 1.05 m above cask for tally
260 pz 257.23 $ Plane 1.95 m above cask for tally
261 pz 267.23 $ Plane 2.05 m above cask for tally
1000 so 1000. $ air universe

```

```

tr1 -9.525 0.000 0 $ Capsule 1 Position
tr2 0.000 9.525 0 $ Capsule 2 Position
tr3 9.525 0.000 0 $ Capsule 3 Position
tr4 0.000 -9.525 0 $ Capsule 4 Position
tr5 -18.707 5.011 0 $ Capsule 5 Position
tr6 -13.696 13.696 0 $ Capsule 6 Position
tr7 -5.011 18.707 0 $ Capsule 7 Position
tr8 5.011 18.707 0 $ Capsule 8 Position
tr9 13.696 13.696 0 $ Capsule 9 Position
tr10 18.707 5.011 0 $ Capsule 10 Position
tr11 18.707 -5.011 0 $ Capsule 11 Position
tr12 13.696 -13.696 0 $ Capsule 12 Position
tr13 5.011 -18.707 0 $ Capsule 13 Position
tr14 -5.011 -18.707 0 $ Capsule 14 Position
tr15 -13.696 -13.696 0 $ Capsule 15 Position
tr16 -18.707 -5.011 0 $ Capsule 16 Position
mode p $ photon

```

```

c ****
c SOURCE
c
c Srce Wgt = 1.12e6 Ci x 0.946 x 0.9 x 3.7e10 Bq/Ci= 3.528e16 phot/s
c (17 capsules Max Ci Cs137)(Branch Frct)(phot/decay)
c
c ****
sdef cel=d1 wgt=3.528E16 erg=0.662 pos fc1 d4
    rad= d2 ext= d3 aks=0 0 1
sc1 Source Cells
c

```

c Capsule Cell #
 c 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
 si1 1 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 sp1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 sc2 Source radius
 si2 0 2.512 \$ Source inner radius to outer radius = 0 to 2.512
 c sb2 -21 1 \$ Source bias, -21 means radial power law $p(x) = c|x|^a$
 c \$ a = 1
 sc3 Source axial distribution
 si3 24.034 \$ Distances of the ends of the cylinder from POS
 c sp3 -21 1 \$ Source axial bias prob, -21 again means $p(x) = c|x|^a$
 c \$ a = 1
 sc4 Source location
 sp4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 c x y z
 ds4 1 -9.525 0.000 0.000
 0.000 9.525 0.000
 9.525 0.000 0.000
 0.000 -9.525 0.000
 -18.707 5.011 0.000
 -13.696 13.696 0.000
 -5.011 18.707 0.000
 5.011 18.707 0.000
 13.696 13.696 0.000
 18.707 5.011 0.000
 18.707 -5.011 0.000
 13.696 -13.696 0.000
 5.011 -18.707 0.000
 -5.011 -18.707 0.000
 -13.696 -13.696 0.000
 -18.707 -5.011 0.000
 c
 c ansi/ans-6.1.1-1991 fluence-to-dose,photons(mrem/hr/(p/cm**2/s))
 c
 de0 log .01 .015 .02 .03 .04 .05
 .06 .08 .10 .15 .20 .30
 .40 .50 .60 .80 1.0 1.5
 2.0 3.0 4.0 5.0 6.0 8.0
 10. 12.
 df0 log 2.232e-5 5.652e-5 8.568e-5 1.184e-4 1.314e-4 1.382e-4
 1.440e-4 1.624e-4 1.919e-4 2.797e-4 3.708e-4 5.616e-4
 7.416e-4 9.144e-4 1.076e-3 1.379e-3 1.656e-3 2.246e-3
 2.758e-3 3.672e-3 4.500e-3 5.292e-3 6.012e-3 7.488e-3
 8.892e-3 1.040e-2
 e0 .01 .015 .02 .03 .04 .05
 .06 .08 .10 .15 .20 .30
 .40 .50 .60 .80 1.0 1.5
 2.0 3.0 4.0 5.0 6.0 8.0
 10. 12.
 c
 c Material Definitions
 c
 m1 7000.01p -0.765 \$ air - Nitrogen
 8000.01p -0.235 \$ air - Oxygen

```

m2 35000.01p 1 $ Source - Cl
 55000.01p 1 $ Source - Cs
m3 26000.01p -64.38 $ Steel
 24000.01p -19.08
 28000.01p -13.05
 25000.01p -1.80
 42000.01p -1.47
 6000.01p -0.22
m4 2000.01p 1 $ He
print
c
phys:p j 1 1 $ Brems off & Coherent Scattering Off
fc05 1 cm dose rate - side of cask
f05:p 0 59.7 0 0
pd05 0 73r 0.1 2r 1 3r 0 9r
fc15 1 m dose rate - side of cask
f15:p 0 158.7 0 0
pd15 0 73r 0.1 2r 1 3r 0 9r
fc25 2 m dose rate - side of cask
f25:p 0 258.7 0 0
pd25 0 73r 0.1 2r 1 3r 0 9r
fc35 1 cm dose rate - top center of cask
f35:p 0 0 63.23 0
pd35 0 42r 0.1 2r 1 2r 0 41r
fc45 1 m dose rate - top center of cask
f45:p 0 0 162.23 0
pd45 0 42r 0.1 2r 1 2r 0 41r
fc55 2 m dose rate - top center of cask
f55:p 0 0 262.23 0
pd55 0 42r 0.1 2r 1 2r 0 41r
fc65 1 cm dose rate - side - ring detector
f65:p 0 59.7 0
pd65 0 73r 0.1 2r 1 3r 0 9r
fc75 1 m dose rate - side - ring detector
f75:p 0 158.7 0
pd75 0 73r 0.1 2r 1 3r 0 9r
fc85 2 m dose rate - side - ring detector
f85:p 0 258.7 0
pd85 0 73r 0.1 2r 1 3r 0 9r
fc04 1 cm - side cell
f04:p 81
fc14 1 m - side cell
f14:p 811
fc24 2 m - side cell
f24:p 812
fc34 1 cm - top cell
f34:p 80
fc44 1 m - top cell
f44:p 801
fc54 2 m - top cell
f54:p 802
c fc2 1 cm dose rate - top surface over sources
c f2:p 257
c f2s -10

```

```

c sd2 2.0778e3 1e20
c fc12 1 m dose rate - top surface over sources
c f12;p 258
c fs12 -10
c sd12 2.0778e3 1e20
c fc22 2 m dose rate - top surface over sources
c f22;p 259
c fs22 -10
c sd22 2.0778e3 1e20
c
c Cell Importances
c
c Cell 1 2 3 4 5 6 7 8 9 10
imp:p 1 1 1 2 2 4 4 4 4 4
c
c Cell 11 12 13 14 15 16 17 18 19 20
        4 4 4 4 4 4 4 4 4 4
c
c Cell 21 22 23 24 25 26 27 28 29 30
        4 4 4 4 4 4 4 4 4 4
c
c Cell 31 32 33 34 341 35 36 37 38 39 40
        4 4 4 8 25 75 225 675 2000 6000 18000
c
c Cell 41 42 43 44 45 46 47 48 49 50
        5.4E4 1.6E5 4.8E5 1.4E6 4.2E6 1.3E7 3.9E7 1.2E8 8 8
c
c Cell 51 52 53 54 55 56 57 58 59 60
        8 8 8 8 8 8 8 8 8 8
c      75 225 675 2000 6000 18000 5.4E4 1.6E5 4.8E5 1.4E6
c
c Cell 61 62 63 64 65 66 67 68 69 70
        8 8 8 16 50 150 450 1800 6000
c
c Cell 71 72 73 74 75 76 77 78 79 791
        18000 55000 1.7e5 5e5 1.5e6 4.5e6 1.3e7 4e7 1.2e8 3.6e8
c
c Cell 80 801 802 803 81 811 812 813 82 83
        1.2E8 1.2E8 1.2e8 1.2e8 3.6E8 3.6e8 3.6e8 3.6e8 8 0
c
c Cell Volumes
c
c
c Cell 24      25      26      27
vol 23j 6.89051e2 6.89051e2 6.89051e2 6.89051e2
c
c Cell 28      29      30      31
        7.63165e3 7.63165e3 1.51917e4 1.51917e4
c
c Cell 32      33
        7.63165e3 7.63165e3 58j
nps 100000 $history

```

5.9.2 MCNP Input File for Energy Deposition Model

Thermal Deposition Model for BUSS Cask (16 CsCl Capsules)

```

c
c Define the Generic Capsule Cells as Universe 1
c mat# mat den  surfaces
1 2 -2.6 -1 206 -205  u=1      $ CsCl - Source
2 3 -8.0 (-2 205 -204):(1 -2 206 -205):(-2 207 -206)  u=1
      $ Inner Capsule - union of top/side/bottom
3 1 -0.00122 (-3 204 -203):(2 -3 207 -204):(-3 208 -207)  u=1
      $ Air Gap around Inner & outer Capsule
4 3 -8.0 (-4 203 -202):(3 -4 208 -203):(-4 209 -208)  u=1
      $ Outer Capsule - union of top/side/bottom
5 4 -0.000178 (-5 202 -201):(4 -5 209 -202):(-5 210 -209)  u=1
      $ He Gap between Outer Capsule and Overpack
6 3 -8.0 (-6 201 -200):(5 -6 210 -201):(-6 211 -210)  u=1
      $ Overpack - union of top/side/bottom

c
c Now Define the Cell to be filled with Universe 1 - the capsule
c
7 0 -7 213 -212  fill=1 trcl=1  $ Capsule 1
8 like 7 but trcl=2  $ Capsule 2
9 like 7 but trcl=3  $ Capsule 3
10 like 7 but trcl=4  $ Capsule 4
11 like 7 but trcl=5  $ Capsule 5
12 like 7 but trcl=6  $ Capsule 6
13 like 7 but trcl=7  $ Capsule 7
14 like 7 but trcl=8  $ Capsule 8
15 like 7 but trcl=9  $ Capsule 9
16 like 7 but trcl=10  $ Capsule 10
17 like 7 but trcl=11  $ Capsule 11
18 like 7 but trcl=12  $ Capsule 12
19 like 7 but trcl=13  $ Capsule 13
20 like 7 but trcl=14  $ Capsule 14
21 like 7 but trcl=15  $ Capsule 15
22 like 7 but trcl=16  $ Capsule 16

c
c Define a cell for the central pipe.
c
23 3 -8.0 8 -9 211 -200
c
c Define a cell for the top support plate.
c
24 3 -8.0 -222 -10 #7 #8 #10 #11 #12 #13
      #20 #21 #22 #23 -223 224
25 3 -8.0 222 -10 #8 #9 #10 #14 #15 #16
      #17 #18 #19 #23 -223 224
c.
c Define a cell for the bottom support plate.
c
26 3 -8.0 -222 -10 #7 #8 #10 #11 #12 #13
      #20 #21 #22 #23 -225 226
27 3 -8.0 222 -10 #8 #9 #10 #14 #15 #16
      #17 #18 #19 #23 -225 226

```

c
 c Define a cell for air inside the cask source region.
 c
 28 1 -0.00122 -222 -10 #7 #8 #10 #11 #12 #13
 #20 #21 #22 #23 223 -200 \$ Air around overpacks - Above top plate
 29 1 -0.00122 222 -10 #8 #9 #10 #14 #15 #16
 #17 #18 #19 #23 223 -200 \$ Air around overpacks - Above top plate
 30 1 -0.00122 -222 -10 #7 #8 #10 #11 #12 #13
 #20 #21 #22 #23 225 -224
 \$ Air around overpacks - Between top/bottom plates
 31 1 -0.00122 222 -10 #8 #9 #10 #14 #15 #16
 #17 #18 #19 #23 225 -224
 \$ Air around overpacks - Between top/bottom plates
 32 1 -0.00122 -222 -10 #7 #8 #10 #11 #12 #13
 #20 #21 #22 #23 211 -226 \$ Air around overpacks-Below bottom plate
 33 1 -0.00122 222 -10 #8 #9 #10 #14 #15 #16
 #17 #18 #19 #23 211 -226 \$ Air around overpacks-Below bottom plate

c
 c Now define cells for the cask.
 c
 34 3 -8.0 -11 200 -220 \$ Cask top
 35 3 -8.0 10 -11 -200 211 \$ Cask side
 36 3 -8.0 -11 221 -211 \$ Cask bottom
 c
 c Finally define cells for the air outside cask and the universe.
 c
 37 1 -0.00122 (-1000 220):(-1000 11 221 -220):(-1000 -221)
 \$ Air outside cask - union of top/side/bottom
 38 0 1000 \$ Void - outside universe

c
 c Radial surfaces for Capsule
 c
 1 cz 2.512 \$ Capsule - source/inside radius
 2 cz 2.858 \$ Capsule - inner capsule - outer radius
 3 cz 2.990 \$ Capsule - outer capsule - inner radius
 4 cz 3.335 \$ Capsule - outer capsule - outer radius
 5 cz 3.896 \$ Capsule - overpack - inner radius
 6 cz 4.445 \$ Capsule - overpack - outer radius
 7 cz 4.444 \$ Outer radius for capsule universe to fill
 8 cz 4.406 \$ Inner radius center pipe - changed to prevent clash
 9 cz 4.980 \$ Outer radius center pipe - changed to prevent clash
 c 8 cz 4.506 \$ Inner radius for center pipe
 c 9 cz 5.080 \$ Outer radius for center pipe
 c
 c Radial surfaces for Cask
 c
 10 cz 25.7175 \$ Inner radius of Cask
 11 cz 56.198 \$ Outer radius of Cask
 c
 c Axial surfaces for Capsule
 c
 200 pz 29.337 \$ Top of Overpack
 201 pz 28.646 \$ Inside Bottom of Overpack Cap

202 pz 26.385 \$ Top of outer capsule
 203 pz 25.369 \$ Inside Top of outer capsule
 204 pz 25.050 \$ Top of inner capsule
 205 pz 24.034 \$ Top of source
 206 pz -24.034 \$ Bottom of source
 207 pz -25.050 \$ Bottom of inner capsule
 208 pz -25.369 \$ Inside Bottom of outer capsule
 209 pz -26.385 \$ Bottom of outer capsule
 210 pz -28.646 \$ Inside Bottom of Overpack Bottom Plug
 211 pz -29.337 \$ Bottom of Overpack Plug
 212 pz 29.336 \$ Top plane for capsule universe to fill
 213 pz -29.336 \$ Bottom plane for capsule universe to fill

c

c Axial surfaces for Cask

c

220 pz 62.230 \$ Top of Cask
 221 pz -62.230 \$ Bottom of Cask
 222 px 0.0 \$ Misc plane
 223 pz 15.27 \$ Top of top support plate
 224 pz 14.00 \$ Bottom of top support plate
 225 pz -14.00 \$ Bottom of bottom support plate
 226 pz -15.27 \$ Top of bottom support plate
 1000 so 300. \$ air universe

tr1 -9.525 0.000 0 \$ Capsule 1 Position
 tr2 0.000 9.525 0 \$ Capsule 2 Position
 tr3 9.525 0.000 0 \$ Capsule 3 Position
 tr4 0.000 -9.525 0 \$ Capsule 4 Position
 tr5 -18.707 5.011 0 \$ Capsule 5 Position
 tr6 -13.696 13.696 0 \$ Capsule 6 Position
 tr7 -5.011 18.707 0 \$ Capsule 7 Position
 tr8 5.011 18.707 0 \$ Capsule 8 Position
 tr9 13.696 13.696 0 \$ Capsule 9 Position
 tr10 18.707 5.011 0 \$ Capsule 10 Position
 tr11 18.707 -5.011 0 \$ Capsule 11 Position
 tr12 13.696 -13.696 0 \$ Capsule 12 Position
 tr13 5.011 -18.707 0 \$ Capsule 13 Position
 tr14 -5.011 -18.707 0 \$ Capsule 14 Position
 tr15 -13.696 -13.696 0 \$ Capsule 15 Position
 tr16 -18.707 -5.011 0 \$ Capsule 16 Position

mode p \$ photon

c ****

c SOURCE

c

c Srce Wgt = 1.12e6 Ci x 0.946 x 0.9 x 3.7e10 Bq/Ci = 3.528e16 phot/s

c (17 capsules Max Ci Cs137)(Branch Frct)(phot/decay)

c

c ****

sdef cel=d1 wgt=3.528E16 erg=0.662 pos fc1 d4
rad=d2 ext=d3 axs=0 0 1

sc1 Source Cells

c

c Capsule Cell #

c 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

```

si1 1 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
sp1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
sc2 Source radius
si2 0 2.512 $ Source inner radius to outer radius = 0 to 2.512
c sb2 -21 1 $ Source bias, -21 means radial power law p(x)=c|x|^a
c $ a = 1
sc3 Source axial distribution
si3 24.034 $ Distances of the ends of the cylinder from POS
c sp3 -21 1 $ Source axial bias prob, -21 again means p(x)=c|x|^a
c $ a = 1
sc4 Source location
sp4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
c x y z
ds4 1 -9.525 0.000 0.000
     0.000 9.525 0.000
     9.525 0.000 0.000
     0.000 -9.525 0.000
     -18.707 5.011 0.000
     -13.696 13.696 0.000
     -5.011 18.707 0.000
     5.011 18.707 0.000
     13.696 13.696 0.000
     18.707 5.011 0.000
     18.707 -5.011 0.000
     13.696 -13.696 0.000
     5.011 -18.707 0.000
     -5.011 -18.707 0.000
     -13.696 -13.696 0.000
     -18.707 -5.011 0.000

c
c ansi/ansi-6.1.1-1991 fluence-to-dose,photons(mrem/hr/(p/cm**2/s))
c
c de0 log .01 .015 .02 .03 .04 .05
c     .06 .08 .10 .15 .20 .30
c     .40 .50 .60 .80 1.0 1.5
c     2.0 3.0 4.0 5.0 6.0 8.0
c     10. 12.
c df0 log 2.232e-5 5.652e-5 8.568e-5 1.184e-4 1.314e-4 1.382e-4
c     1.440e-4 1.624e-4 1.919e-4 2.797e-4 3.708e-4 5.616e-4
c     7.416e-4 9.144e-4 1.076e-3 1.379e-3 1.656e-3 2.246e-3
c     2.758e-3 3.672e-3 4.500e-3 5.292e-3 6.012e-3 7.488e-3
c     8.892e-3 1.040e-2
c
c Material Definitions
c
m1 7000.01p -0.765 $ air - Nitrogen
     8000.01p -0.235 $ air - Oxygen
m2 35000.01p 1 $ Source - Cl
     55000.01p 1 $ Source - Cs
m3 26000.01p -64.38 $ Steel
     24000.01p -19.08
     28000.01p -13.05
     25000.01p -1.80
     42000.01p -1.47

```

```

6000.01p -0.22
m4 2000.01p 1 $ He
print
c
phys:p j 0 1      $ Brems off & Coherent Scattering Off
e0 8.700e-02 1.090e-01 1.360e-01 1.700e-01 2.130e-01 2.660e-01
   3.330e-01 4.160e-01 5.200e-01 6.500e-01 6.620e-01
c f05:p 0 64.2 0 0.0 $ 2 cm from Cask surface - axial center
c fc05 2 cm from Cask surface - axial center
fc06 Energy depos avg over CsCl source
f06:p 1
fc16 Energy depos avg over inner capsule
f16:p 2
fc26 Energy depos avg over capsule air gap
f26:p 3
fc36 Energy depos avg over outer capsule
f36:p 4
fc46 Energy depos avg over He
f46:p 5
fc56 Energy depos avg over overpack
f56:p 6
fc66 Energy depos avg over center pipe
f66:p 23
fc76 Energy depos avg over top plate
f76:p (24 25)
fc86 Energy depos avg over bottom plate
f86:p (26 27)
fc96 Energy depos avg over air inside cask
f96:p (28 29 30 31 32 33)
fc106 Energy depos avg over cask top
f106:p 34
fc116 Energy depos avg over cask side
f116:p 35
fc126 Energy depos avg over cask bottom
f126:p 36
fc136 Energy depos avg over air outside cask
f136:p 37
imp:p
c
c Cell Importances
c
c Cell 1  2  3  4  5  6  7  8  9  10
   1  1  1  1  1  1  1  1  1  1
c
c Cell 11 12 13 14 15 16 17 18 19 20
   1  1  1  1  1  1  1  1  1  1
c
c Cell 21 22 23 24 25 26 27 28 29 30
   1  1  1  1  1  1  1  1  1  1
c
c Cell 31 32 33 34 35 36 37 38 39 40
   1  1  1  1  1  1  1  0
c
c Cell Volumes

```

c
c
c Cell 24 25 26 27
vol 23j 6.89051e2 6.89051e2 6.89051e2 6.89051e2
c
c Cell 28 29 30 31
7.63165e3 7.63165e3 1.51917e4 1.51917e4
c
c Cell 32 33
7.63165e3 7.63165e3 5j
nps 50000 \$history

5.9.3 Checklist for Peer Review

CHECKLIST FOR PEER REVIEW

Document Reviewed: Shielding and Energy Deposition Analysis for the BUSS
Cask SEP

Scope of Review: Entire shielding and energy deposition analysis -
Section 5.0

Yes	No	NA	
<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	Previous reviews complete and cover analysis, up to scope of this review, with no gaps.
<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	Problem completely defined.
<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	Accident scenarios developed in a clear and logical manner.
<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	Necessary assumptions explicitly stated and supported.
<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	Computer codes and data files documented.
<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	Data used in calculations explicitly stated in document.
<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	Data checked for consistency with original source information as applicable.
<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	Mathematical derivations checked including dimensional consistency of results.
<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	Models appropriate and used within range of validity or use outside range of established validity Justified.
<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	Hand calculations checked for errors. Spreadsheet results should be treated exactly the same as hand calculations.
<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	Software input correct and consistent with document reviewed.
<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	Software output consistent with input and with results reported in document reviewed.
<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	Limits/criteria/guidelines applied to analysis results are appropriate and referenced. Limits/criteria/guidelines checked against references.
<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	Safety margins consistent with good engineering practices.
<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	Conclusions consistent with analytical results and applicable limits.
<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	Results and conclusions address all points required in the problem statement.
<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	Format consistent with appropriate NRC Regulatory Guide or other standards
<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	Review calculations, comments, and/or notes are attached.
<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	Document approved.

RA Schwarz X a Schwarz
Reviewer (Printed Name and Signature)

3/12/97

Date

6.0 CRITICALITY EVALUATION

No fissile materials are being transported so no criticality analysis is required.

This page intentionally left blank.

7.0 STRUCTURAL EVALUATION

7.1 INTRODUCTION

The BUSS Cask is currently licensed (DOE 1996) to carry 16 special form cesium chloride capsules based on an analysis in the SARP (SNL 1994). The structural differences between this shipment and the SARP configuration (SNL 1994) are the slightly smaller combined weight of the overpacked capsules in the new basket. In the shipment covered by this SEP, the cask weight will be less than the weight of the SARP configuration, so the cask will experience lower forces during the various accident scenarios. The thermal analysis (Part B, Section 8.0) shows that temperatures and temperature differences in this shipment are lower than those of the SARP configuration, so thermal stresses are bounded by the SARP analysis. Since the structural loading is bounded by those considered in the SARP, no analysis of the cask is necessary for this SEP. The cask will maintain confinement during all normal and accident conditions of transportation.

The Type W overpacked capsules are tested to the requirements for special form certification. Since the cask limits the peak acceleration of the cask body to 105gs, which is an order of magnitude lower than that experienced by the overpack during its test, no structural analysis of the contents is required. The overpacked capsules will maintain containment during all normal and accident conditions of transportation.

7.2 WEIGHT OF BASKET AND CONTENTS

The BUSS Cask SARP (SNL 1994) evaluated the cask with a total package weight of 14,923 kg (32,900 lb). The estimated package weight for this shipment will be 576 kg (1,270 lb) less than this. The package weight for the shipment covered by this SEP will be 14,347 kg (31,630 lb).

The SARP estimated the basket to weigh 726 kg (1,600 lb) and the 16 capsules to weigh 136 kg (300 lb); combined, the basket and contents weigh 862 kg (1,900 lb) in the SARP analysis. The table below shows that the combined contents weight for this shipment is 287 kg (632 lb), or 576 kg (1,270 lb) less than the SARP used in its evaluation.

Components	Stainless steel (unit weight = 0.289 lb/in ³)	Weight (lb)
Basket		
Bottom plate	½ in., 20 in. diameter	45.4
Upper plates (2)	1 in., 20 in. diameter	181.6
Deduction for holes in upper plates	32 holes, 3.5 in. diameter 2 holes, 4 in. diameter	89.0 3.6 -92.6
Support pipe	3.5 in. schedule 40 pipe, area = 2.68 in ² , 22.88 in. long	17.2
Basket total		151.6
Overpacked Capsules (16)		480
Total Contents		632

7.3 REFERENCES

DOE, 1996, *U.S. Department of Energy Certificate of Compliance for Radioactive Materials Packages*, USA/9511/B(U) (DOE), Rev. 3, U.S. Department of Energy, Germantown, Maryland.

SNL, 1994, *Beneficial Uses Shipping System (BUSS) Cask Safety Analysis Report for Packaging (SARP)*, Volumes I and II, SAND83-0698 (TCC-0430), Rev. 5, Sandia National Laboratories, Albuquerque, New Mexico.

8.0 THERMAL EVALUATION

8.1 INTRODUCTION

The heat generation rate for the capsules in this shipment is significantly less than that assumed in the SARP (SNL 1994), but there are two significant configuration changes that cause the need for a thermal analysis. For this shipment, heat is conducted to the cask wall through helium rather than a solid stainless steel basket, and there is an additional gap in the heat path due to the new Type W overpack. A thermal analysis is needed to demonstrate that the temperatures within the capsules and the cask are acceptable. The ANSYS finite element program was used for this purpose; its input is attached as Part B, Section 8.8.5 and the results summarized in Part B, Section 8.5.1. It demonstrates that temperatures during normal and accident conditions are within their limits, and that the SARP thermal stress analysis bounds the stresses for this shipment.

The thermal analysis in Part B, Section 8.8.5 is based on the SARP analysis, and is not completely independent of it. The SARP's configuration was analyzed using ANSYS and checked to ensure that the answers were similar to the SARP's results, then the finite element model was modified to the configuration of this shipment. This procedure acts as a test of the modeling methods and data. It is necessary due to differences in the analysis programs and the SARP having omitted data.

After modeling the SARP configurations, four new configurations were modeled to determine the best basket design. The configuration selected was the simplest and least costly of the four and met the temperature requirements for normal and accident conditions of transportation.

After selecting the basket design, the analytical model was run with more conservative parameters and an updated basket design to determine the maximum temperatures. Case 1a of Table B8-8 presents these results: all temperatures are less than their limits, except the cesium chloride maximum temperature is at its arbitrary limit. Additional cases were run with modified parameters to test their effects, and these results are shown in Table B8-8.

8.2 THERMAL SOURCE SPECIFICATION

Table B8-1 gives the temperature limits and the calculated NCT temperatures used as limits for this SEP.

The temperature limits in this SEP are the limits used for the SARP. However, since the SARP did not limit the maximum cesium chloride temperature at the center of a capsule, this SEP uses the maximum calculated cesium chloride temperature (462 °C [864 °F]) as a limit. This temperature has been reviewed and accepted for shipments in the BUSS Cask based on serviceability limits; higher temperatures were acceptable for safety considerations, but the capsule could then not be used in a commercial facility.

Table B8-1. SARP Results and Allowable Temperatures.

Location	Calculated temperature, 16 capsules °C (°F)	Calculated temperature, 12 capsules °C (°F)	SARP allowable temperature °C (°F)
Cesium chloride	438 (820)	462 (864)	N/A ¹
Inner cladding	398 (748)	407 (765)	450 (842) ²
Outer cladding	371 (700)	369 (696)	800 (1472) ³
Basket	356 (673)	348 (658)	800 (1472)
Lid or port seals	202 (396)	202 (396)	450 (842) ⁴
Inner cask wall seal limit	202 (396)	202 (396)	800 (1472) 450 (842) ⁴
Outer cask wall	140 (284)	140 (284)	800 (1472) ⁵

DOT = U.S. Department of Transportation

SARP = Safety Analysis Report for Packaging.

¹Cesium chloride melts at 646 °C (1195 °F), and it undergoes a phase change between 350 - 470 °C (662 - 878 °F) (SNL 1984).

²The inner cladding temperature limit was based on testing for long-term geologic disposal. Below 450 °C (842 °F), there is no anticipated corrosion of the cladding material in contact with cesium chloride.

³The stainless steel temperature limits other than the inner cladding was based on reducing the potential for significant corrosion. The capsules were initially tested at a temperature of 800 °C (1472 °F) without loss of contents.

⁴Seal temperature limits are the maximum operating temperatures (SARP) provided by the manufacturer. (Helicoflex copper-lined inner seal with a section diameter of 0.58 cm. Helicoflex defines this temperature as the point the seal no longer resists pressure.) The SARP shows that the seal temperatures are less than the cask inner wall temperatures; this analysis did not model the seal areas since the inner wall temperature was less than the long-term seal limit in all cases.

⁵The outer wall temperature is significantly higher than the DOT limit of 85 °C (185 °F); a protective barrier is provided around the cask for personal protection.

SNL, 1984, *WESF ¹³⁷Cs Gamma Ray Sources*, SAND82-1492, Sandia National Laboratories, Albuquerque, New Mexico.

Helicoflex is a trademark of the Helicoflex Corporation.

8.3 THERMAL PROPERTIES OF MATERIALS

8.3.1 T304 Stainless Steel Properties

$$\begin{aligned} \text{Density} &= 7900 \text{ kg/m}^3 \text{ (White 1991)} \\ &= 493 \text{ lbf/ft}^3 \\ &= 0.285 \text{ lbf/in}^3 \end{aligned}$$

$$\text{Heat capacity } c_p = 477 \text{ J/kg} \cdot \text{°K} = 0.114 \text{ Btu/lb} \cdot \text{F} \text{ (White 1991)}$$

Thermal conductivity, K (ASME 1992) is given in Table B8-2.

Table B8-2. Stainless Steel Thermal Conductivity.

°F	70	100	150	200	250	300	350	400
K, BTU/h/ft/°F	8.6	8.7	9	9.3	9.6	9.8	10	10.4
K, BTU/h/in/°F	0.72	0.73	0.75	0.78	0.80	0.80	0.80	0.87
°F	450	500	550	600	650	700	750	800
K, BTU/h/ft/°F	11	10.9	11	11	11.6	12	12	12.2
K, BTU/h/in/°F	0.90	0.91	0.93	0.94	0.97	0.98	1.00	1.02

8.3.2 Helium Properties (White 1991)

Density = 0.1627 Kg/m³ at 300 °K = 5.88 lb • 10⁻⁶/in³ at 80 °F

Heat capacity = 5197 J/kg • °K = 1.24 Btu/hr/lb • °F

Conductivity and unit conversion is given in Table B8-3.

Table B8-3. Helium Conductivity, K.

T °K	300	350	400	450	500	550	600	700
K W/m-K	0.150	0.165	0.180	0.195	0.211	0.229	0.247	0.278
T °F	81	171	261	351	441	531	621	801
K, Btu/h/in/F	0.0072	0.0079	0.0087	0.0094	0.0102	0.0110	0.0119	0.0134

8.3.3 Properties of Cesium Chloride

The following properties were used in this analysis due to their use in the SARP (SNL 1994). The SARP stated that there was a wide range in conductivity values in the literature, and that the SARP used the minimum value, which will maximize the cesium chloride temperature.

Density = 0.0939 lbf/in³ (Sp.G. of 2.6)

Heat capacity, C_p = 8400 J/kg*K

Thermal conductivity = 0.45 W/m*K

8.3.3.1 Heat Generation. Part A, Section 3.0 shows that the average heat generation for all 16 overpacked capsules is 191 W per capsule. However, since the finite element model considered only a 45° segment of the cask due to symmetry, an average must be found for each octant. Part B, Section 8.8.3 shows with the most favorable capsule arrangement, the highest average in one octant is 193.4 W and this analysis uses 195 W for a margin. The capsule arrangement within the package must be controlled using the sketch shown in Part A, Section 6.0.

8.3.3.2 Heat Distribution. Heat generation is caused by absorption of radiation by the package's materials and occurs throughout the package, including the cesium chloride salt. The BUSS Cask SARP's shielding analysis (SNL 1994) calculated a thermal energy distribution that was used in the SARP thermal analysis, but this distribution is not valid for this package due to the third encapsulation layer (the Type W overpack) and the new basket design. The shielding analysis in Part B, Section 5.0 of this SEP calculated a heat distribution which is compared to the SARP results in Table B8-4. The SEP analysis found a heat deposition in the cesium chloride that is much less than was found in the SARP, and a higher deposition in the encapsulation. The higher percentage of thermal power in the encapsulation is explained by the increased thickness of encapsulation in this package compared to the SARP, but this is overstated because the SEP shielding analysis uses a Type S overpack (5 mm [0.21 in.] thick) rather than the Type W overpack (3 mm [0.13 in.]) actually being used. For conservatism, the SARP heat deposition to the cesium chloride, 50% of the thermal power, was used in this analysis. Since the heating of the encapsulation is linearly dependent on the thickness, and the overpack adds a third layer as thick as each of the two inner layers of steel, the total heat absorption in the encapsulation should be 1.5 times the SARP's value. The SARP used 13% distribution in the encapsulation, so this SEP uses 20%. The remainder of the capsule's thermal energy, 30%, is deposited in the BUSS Cask walls.

Table B8-4. Heat Distribution within the BUSS Cask.

Package component	SARP shielding analysis % power	SEP shielding analysis % power	SEP thermal analysis % power
Cesium chloride	50	37	50
Steel capsule (and overpack)	13	24	20
Basket	30		
Cask wall	7	21	30
Central support		2	
Other basket components		15	

SARP = Safety Analysis Report for Packaging.

SEP = Safety Evaluation for Packaging.

8.3.4 Properties of Air and the Convection Rate at the Cask Surface

The SARP used a convection film factor of 5 W/m²*K on the surface of the horizontal cylinder without stating the assumed temperature range it was valid for. This SEP uses a variable coefficient that is calculated in Part B, Section 8.8.2. At the surface temperature calculated by the SEP (141 °C), the film coefficient is 5.38. The lower temperature resulting from the higher

convection is balanced by the SEP's using an environmental temperature 8 °C (15 °F) higher than the SARP. The SARP multiplies the convection rate by 4.7 and the radiation heat transfer rate by 1.5 to account for the 10 cm (4 in.) deep fins on the cask surface. Both of these factors were formulated in the SARP, but the calculated numbers were not shown; they are calculated in Part B, Section 8.8.1.

Table B8-5. Thermal Properties of Air. (White 1991)

Temp °K	K W/m*K	Pr	$g\beta/V^2 = Gr/(D^3 \cdot \Delta T)$
200	1.81 E-02	0.740	8.57 E+08
250	2.23 E-02	0.724	3.02 E+08
300	2.61 E-02	0.712	1.33 E+08
350	2.97 E-02	0.706	6.60 E+07
400	3.31 E-02	0.703	3.63 E+07
450	3.63 E-02	0.700	2.16 E+07
500	3.95 E-02	0.699	1.36 E+07

density = 1.177 kg/m³ at 27 °C

$C_p = 1005 \text{ J/kg } ^\circ\text{C}$ at 27 °C

8.4 INITIAL CONDITIONS

8.4.1 Normal Conditions of Transportation

The SARP used the (NCT) specified by 10 CFR 71.71, including still air, ambient temperature of 38 °C (100 °F) and 200 g-cal/cm² (over 12 hours) insolation. This SEP uses the Hanford maximum of 46 °C (115 °F) ambient temperature and an insolation of 50 BTU/h/ft² (Irwin 1996). This insolation value is less than that used in the SARP:

$$1 \text{ BTU} = 251.98 \text{ g-cal}, \text{ so } 50 \text{ Btu/hr/ft}^2 = 151,200 \text{ g-cal/ft}^2 \text{ over 12 hours}$$

$$\text{and since } 1 \text{ ft}^2 = 929 \text{ cm}^2, \text{ the insolation is } \frac{151,200}{929} = 163 \text{ g-cal/12 hours}$$

8.4.2 Hypothetical Accident Conditions

The SARP analyzed the BUSS Cask with 12 or 16 cesium chloride capsules under HAC that included a 30 ft drop, puncture, and a 30 minute fire with a temperature of 800 °C, a surface emissivity of 0.8 and environmental emissivity of 0.9. Under these conditions, and using the temperature distribution resulting from the NCT model, the SARP reported no temperature rise in the capsules during the 30 minute fire. The maximum temperature rise in the capsules was 25 °C (45 °F) for the 12 capsule case and 14 °C (25 °F) for the 16 capsule case hours later. The SARP's temperature limit for the capsules is 800 °C (1472 °F), and the maximum initial temperature of a

capsule is 462 °C (864 °F) in this shipment. The SARP's temperature limit for accident conditions will not be approached in this shipment since it will experience about the same temperature rise as the SARP case, and no thermal analysis is necessary.

8.5 THERMAL ANALYSES

A finite element thermal analysis was done in three stages:

1. Model the SARP's shipping configuration to confirm some thermal properties and test the modeling method. Three key pieces of information were missing from the SARP, and had to be calculated in this analysis: the heat transfer film coefficient, the fin efficiency factor, and heat source length. The film coefficient and fin factors are calculated in Part B, Section 8.8.1. The length of the heat source within the capsule is needed to find the heat generation per unit area, and this was not provided in the SARP. The minimum length, and the highest two-dimensional heat generation, can be found from the following: The inside height is 48.0 cm (18.9 in.) and the cesium chloride underwent a 17% volume reduction (SNL 1984) after the capsule was filled. Since the diameter of the salt had to remain the same, the length of the salt column reduced by 17% to 39.8 cm (15.7 in.). Any subsequent volumetric change will lead to a lower heat generation density, so using this length will produce conservative results. The SARP configuration model found that the SARP results could be approximated with a two-dimensional model if the heat-generating length of the capsules was 16 in. The ANSYS input file is provided in Part B, Section 8.8.4 and the results are shown in Table B8-6.
2. Various basket designs were studied to find the simplest one that provided acceptable temperatures. Four configurations, one shown in Figure B8-1, with temperatures in Table B8-7. While the configurations with fins reduced the temperatures, the simplest basket (Case 1) resulted in acceptable temperatures and the least cost.
3. A final model was produced from the results of step 2 by raising the capsule's power level from 191 W to 195 W, lowering the stainless steel emissivity from 0.5 to a more conservative value of 0.3, and moving the capsule's position within the cask. These results are Case 1a in Table B8-8, and demonstrate that the normal condition temperatures of the cask and contents will remain at or below the temperatures calculated in the SARP. The effect of lowering the emissivity alone was about an 11 °C (20 °F) temperature rise in the cesium chloride.
4. Additional runs were made with changed parameters: increased power levels, more realistic heat distribution within the package, reduced fin effectiveness, and reduced conduction within the cask. The results of this study, shown in Table B8-8, show that the model is most sensitive to the capsule power.

8.5.1 Model of the Original Configuration

The ANSYS solid modeling processor was used to model a 45° segment of the basket and cask wall. This is a two-dimensional model using ANSYS PLANE55, 4-node elements for conduction areas, LINK31 2-node elements for radiation links between capsule layers, and SURF19 surface effect elements for convection and radiation to an atmosphere node outside of the cask. Internal gaps are assumed to be concentric, conservatively neglecting surface-to-surface contacts.

The model included one complete capsule and two half capsules of 250 W thermal power per capsule. The total power in the segment was divided by 41 cm (16 in.) to find the power per unit length, and divided by the cross-section area to find the heat generation per unit area. The resulting heat generation density is distributed through the various regions of the model using the SARP assumptions (50% in the cesium chloride and the remainder in the capsule layers, basket, and cask walls).

The cask fins convection rate was 5 W/m²°C (per SARP) multiplied by a fin convection factor of 4.7, as calculated in Part B, Section 8.8.1. The SARP's environmental temperature (100 °F) and the emissivity (0.5) were used. The input and output files are in Part B, Section 8.8.4, and the results are summarized below. There was close enough agreement between the ANSYS model and the SARP results to use the model as a starting point for the overpacked capsule analysis, and have confidence in the results.

Table B8-6. Results of the SARP Model; Temp, °F.

Location	SARP	tmax	tmin
Cesium chloride	820	834	680
Inner capsule	748	738	679
Outer capsule	699	684	598
Basket	673	659	536
Cask inner surface	396	403	401
Cask outer surface	284	285	285

8.5.2 Modeling 16 Overpacked Capsules

The model used for the first analysis was changed to account for the open basket and the overpack. The basket's horizontal plates are neglected and heat is conducted through the helium using the properties given above. The only feature of the basket in the model is the central support pipe, which was modeled as a solid element to account for the radiation from it to the cask wall. In reality, the 3 cm (1 in.) thick plates will conduct a significant amount of heat and lessen the temperature difference between the hottest and coldest capsules. All gaps were modeled as concentric, and no convection inside the cask was modeled, which adds to the conservatism.

The following results were obtained by running four basket configurations to select the best one. The contents are 16 overpacked capsules with a power level of 191 W, and are compared to the SARP 16-250 W capsule case. The conclusion is that in all cases, the cesium chloride temperatures are less than those reported in the SARP, so additional heat paths are not necessary and Case 1 is the best basket design.

Table B8-7. Temperature Results, °F.

Location	SARP file b0	Case 1 file: b16		Case 2 file: b16r		Case 3 file: b16t		Case 4 file: b16z	
		max	min	max	min	max	min	max	min
Cesium chloride	820	803	614	775	583	777	597	737	591
Inner capsule	748	731	614	701	582	705	597	670	591
Outer capsule	699	693	542	651	512	666	525	624	526
Overpack	----	674	480	632	452	646	459	-----	-----
Support pipe*	673	648	646	609	586	637	469	592	417
Cask inner surface	396	317	311	297	291	312	305	311	305
Cask outer surface	284	238	237	220	220	227	226	227	226

SARP = Safety Analysis Report for Packaging.

*Basket temperature for SARP.

Figure B8-1. Preliminary Models.

Case 1: Bottom plate, two upper plates with holes for the capsules, and a central support pipe.

Case 2: Central tube with four small fins, three horizontal plates.

Case 3: Four support tubes with fins, three horizontal plates.

Case 4: Sixteen vertical tubes, one horizontal plate.

The following results are variations of Case 1, the selected design. Case 1a is the analysis on which this evaluation rests. It differs from Case 1, above, by using a variable convection rate, higher capsule power, lower emissivity for the stainless steel, and a different heat generation distribution.

Case 1a: Base case. Fin factor (model parameter F_n) = 4.7 multiplies the convection rate; fin efficiency factor (parameter = F_{eff}) = 1.5; overpack thickness (thk3) = 0.13; Power (W) = 195; Capsules located as close to the cask walls as possible (Rad5 = 4.25, Rad6 = 7.88); conservative power distribution (50% power in cesium chloride, 20% power in capsule layers). Stainless steel emissivity = 0.3.

Case 1b: Reduced the heat deposition within the cesium chloride and increase the encapsulation heating to match this SEP's shielding analysis (37% power in cesium chloride, 24% in the capsule layers). This reduces the cesium chloride maximum temperature by 40 °C (72 °F), and is more realistic than Case 1a.

Case 1c: Cut the fin convection factor in half (F_n = 2.35) and use a fin efficiency factor of 1.0. This produced a cesium chloride temperature 19 °C (35 °F) higher than Case 1a and would result if the fin factors were grossly overstated. Their formulation was reviewed in the SARP; however, so using them in this analysis is not unconservative.

Case 1d: Increase capsule power (W) to 215 W, the average of the three highest power capsules. This produced cesium chloride temperatures 26 °C (47 °F) higher than Case 1a. It demonstrates the necessity of controlling the position of the capsules within the cask.

Case 1e: Replace the He conductivity in the cask with air conductivity, simulating SARP accident conditions, in which He is assumed to leak out. The cesium chloride temperature rises 18 °C (32 °F) over the base case.

Table B8-8. Maximum Temperatures in Base Case and Variations.

	Case 1a	Case 1b	Case 1c	Case 1d	Case 1e	Limit	SARP (max)
Cesium chloride	864	792	899	911	896	864	864
Inner cladding	790	738	825	829	822	842	765
Outer cladding	741	698	779	778	776	1472	700
Overpack	718	679	756	754	754	1472	
Support pipe	692	658	731	726	719	1472	673
Cask inner surface	338	332	418	356	338	842 (for seals)	396
Cask outer surface	253	254	337	264	253	284	284

These variations show that the model is behaving reasonably, and is not unduly sensitive to any one parameter. The model is most sensitive to the thermal power of the capsules and the heat deposition within the package. The power is well known, but the distribution is not well defined so a conservative heat deposition is used for this analysis. This conservatism, and the fact that the two-dimensional model neglects heat loss through the capsules ends and conduction through the two plates of the basket assure that the results are conservative. Even if improbable errors produced the results of Cases 1c, 1d, or 1e, no thermal limits of the SARP would be exceeded.

The primary check of a finite element model is to reduce the element size and rerun it to see if the temperatures at key locations converge. This was easily done since element size was a model parameter. In the final run, the element sizes were halved and the cesium chloride temperatures rose only 1 °C. Another check is to note that the equilibrium temperatures of the outer cask surface varies only when the power level is increased or the surface heat transfer parameters are changed. A third check is to verify that all of the input energy is accounted for. This was done by summing the energy input:

$$\text{Capsule heat generation} = \frac{195 \text{ W}}{16} \times 2 \text{ caps/segment} = 24.38 \text{ W}$$

$$24.38 \times 3.412 \frac{\text{Btu}/\text{h}}{\text{W}} = 83.2 \text{ Btu}/\text{h}$$

$$\text{Insolation} = \frac{50 \text{ Btu}/\text{h} \cdot \text{ft}^2}{144} = .347 \text{ Btu}/\text{h} \cdot \text{in}^2 \text{ on a 52 in. diam cylinder with } \epsilon = .3$$

$$.3 \times .347 \times 52 = 5.4 \text{ Btu}/\text{h} \text{ on the entire upper half cylinder, or } 2.1 \text{ on } 45^\circ \text{ segment}$$

$$83.2 + 2.1 = 85.3$$

and comparing this to the nodal "reaction" at the environment node. Over 98% of the input energy is accounted for.

As a last check, the base model (file B16a) was run with the number of elements inside of the cask walls doubled. A plot of the thermal energy error was checked for both runs: it showed that the energy error is fairly uniform for all of the various materials, with a local maximum error in the Helium, between the cask wall and the lower capsule. In doubling the number of elements, this maximum error dropped from 0.36 to 0.09, and the temperatures inside of the cask were raised by 1 °C. The size of the error is not significant, but the fact that it is uniform, with a local maximum in an area that is not thermally significant, and the small temperature change for a halving of the element size indicates that the model is working correctly.

ANSYS geometry plots are provided at the end of this chapter to aid in reviewing the results of the analysis.

8.6 CONCLUSIONS

Under normal conditions of transportation, the calculated cask walls and the cesium chloride temperatures are less than the SARP allowables. The inner cladding is about the same temperature as the SARP maximum, and the overpack wall is only 18 °F higher than the SARP-predicted outer cladding temperature. The temperature difference between the inner and outer walls is 338 - 253

= 85 °F, which is less than the SARP's 396 - 284 = 112 °F, so the thermal stresses will be bounded by the SARP's predictions and a new structural analysis is not required.

Under HAC, this shipment will behave similar to the SARP's conclusions since the cask and overpacks are unchanged. Part B, Section 8.3.2 of the SARP notes that, starting from the NCT, the 800 °C (1470 °F) fire temperature will cause 15 °C (25 °F) rise in the maximum cesium chloride temperature for the 16 capsule case, resulting in a temperature of 889 °F. Even if an accident causes a loss of helium in the cask, thermal analysis Case 1e shows that the maximum cesium chloride temperature will be 18 °F higher than the SARP's maximum NCT temperature.

Figure B8-2. B16a Plots. (4 sheets total)

B16a, plot 1

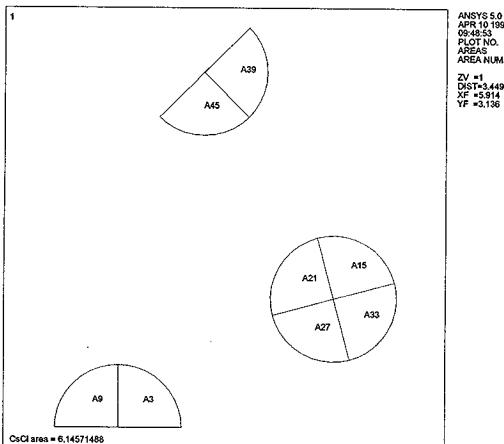
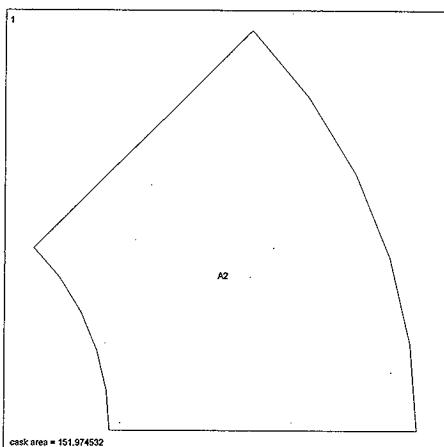



Figure B8-2. B16a Plots. (4 sheets total)

B16a, plot 2

B16a, plot 3

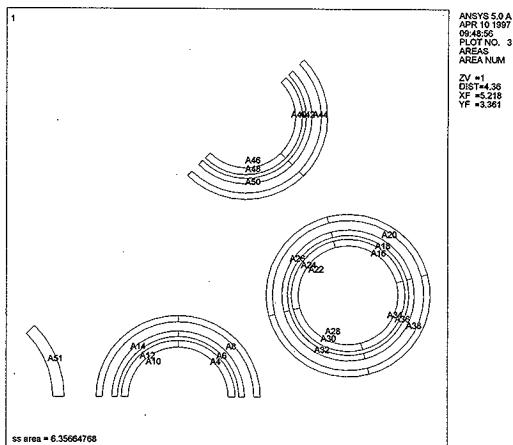
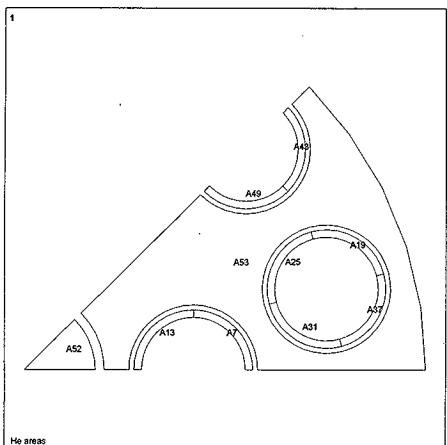



Figure B8-2. B16a Plots. (4 sheets total)

B16a, plot 4

B16a, plot5

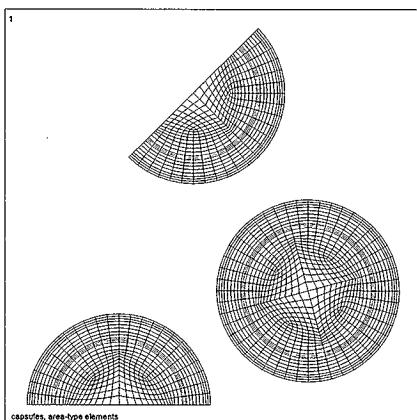
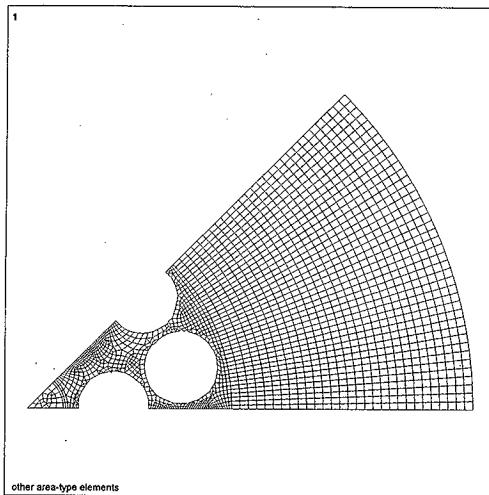
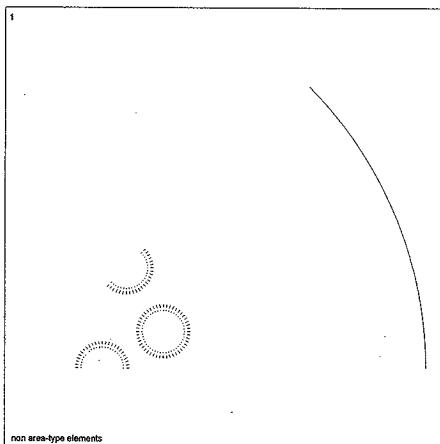




Figure B8-2. B16a Plots. (4 sheets total)

B16a, plot 6

B16a, plot 7

8.7 REFERENCES

10 CFR 71, 1994, "Packaging and Transportation of Radioactive Material," *Code of Federal Regulations*, as amended.

ANSYS, Version 5.2, copyright by SAS IP, 1995, as an unpublished work.

ASME, 1992, *Boiler and Pressure Vessel Code*, Section II, Part D, American Society of Mechanical Engineers, New York, New York.

Irwin J. J., 1996, *Thermal Analysis Methods for Safety Analysis Reports For Packaging*, WHC-SD-TP-RPT-005, Rev. 1, Westinghouse Hanford Company, Richland, Washington.

SNL, 1994, *Beneficial Uses Shipping System (BUSS) Cask Safety Analysis Report for Packaging (SARP)*, Volumes I and II, SAND83-0698 (TCC-0430), Rev. 5, Sandia National Laboratories, Albuquerque, New Mexico.

SNL, 1984, *WESF ¹³⁷Cs Gamma Ray Sources*, SAND82-1492, Sandia National Laboratories, Albuquerque, New Mexico.

White F. M., 1991, *Heat and Mass Transfer*, Addison-Wesley Publishing Company, New York, New York.

8.8 APPENDICES

8.8.1 Convection and Radiation Calculations

ENGINEERING SAFETY EVALUATION

Subject: BUSS Cask Heat Transfer Calculations Page 1 of 3
 Originator: J.S. Boethar Date: 03/21/97
 Checker: W.W. Smyth (W.L. Swift) Date: 03/21/97

I. Objectives:

It is desired to find equivalent heat transfer coefficients for the BUSS cask so that it may be modelled as a cylinder. The actual BUSS cask has 11 equally spaced fins. The approach used will be to find the ratio of heat transfer coefficients, h_1 for the finned case and h_2 for the unfinned case, which produce equal heat transfer rates. Also, a comparison of radiation heat transfer rates is made to determine an equivalent radiation heat transfer rate for the unfinned case.

II. References:

SNL, 1994, *Beneficial Uses Shipping System Cask (BUSS), Safety Analysis Report for Packaging (SARP)*, Rev. 5, Sandia National Laboratories, Albuquerque, New Mexico.

III. Results and Conclusions:

A multiplier of 4.72 should be used for the convective heat transfer coefficient when modelling the cask without fins.

The radiation heat transfer rate is 50% more efficient for the finned, case, therefore a multiplier of 1.5 should be used when modelling the cask without fins.

IV. Engineering Evaluation:

Use the SARP (SNL, 1994) methodology for all calculations:

Convection

With Fins

The convective heat transfer rate, q_c , is:

$$q_c = q_f + q_u$$

where, q_f = heat transfer rate from finned surfaces
 q_u = heat transfer rate from unfinned surfaces

The heat transfer rate from the finned surfaces is:

$$q_f = N \eta q_{max}$$

where, q_{max} = heat transfer rate assuming entire fin is at base temperature and is defined as:

$$q_{max} = 2\pi h_f (r_e^2 + r_o^2)(T_b - T_e)$$

where, r_e = equivalent fin radius = $r_e + t/2$, (27.375 in.)
 r_e = radius at fin edge, (27.125 in.)
 r_o = radius at fin base, (23.125 in.)
 t = fin thickness, (0.5 in.)
 T_b = Temperature at base of fin
 T_e = Temperature of the environment

ENGINEERING SAFETY EVALUATION

Subject_BUSS Cask Heat Transfer Calculations _____ Page 2 of 3
 Originator J. S. Boettger / 1/12 Date 03/21/97
 Checker Wm. W. Smyth / 1/12 Date 03/21/97

$$\text{Thus, } q_t = 2\pi N h_1 (r_o^2 - r_s^2)(T_b - T_s)$$

The heat transfer rate from the unfinned surfaces is:

$$q_o = h A_o (T_b - T_s), \text{ where } A_o = 2\pi r_o (H - Nt), \text{ and } H = 20.5 \text{ in.}$$

$$q_o = 2\pi h_1 (T_b - T_s) \{ Nt (r_o^2 - r_s^2) + r_o (H - Nt) \}$$

Without fins

The heat transfer rate without fins is:

$$q_w = 2\pi r_o H h_2 (T_b - T_s)$$

Equating q_w and q_o and solving for h_2 gives:

$$h_2 = h_1 \left\{ \frac{Nt (r_o^2 - r_s^2) + r_o (H - Nt)}{r_o H} \right\}$$

$$h_2 = 4.72 h_1$$

Thus, when modelling the BUSS Cask as a cylinder, a multiplication factor of 4.72 should be used with the heat transfer coefficient.

Radiation

Comparing radiation heat transfer rate with fins to heat transfer rate without fins.

With Fins

With fins, the heat transfer rate is given as:

$$q_R = q_{so} + q_{fin+fp}$$

q_{so} = heat transfer rate from enclosed portion of fin
 q_{fin+fp} = heat transfer rate from end of fin

$$q_{enc} = \frac{\sigma (T_b^4 - T_a^4)}{R_{1\text{in}}} + \frac{\sigma (T_b^4 - T_a^4)}{R_{2\text{in}}}$$

ENGINEERING SAFETY EVALUATION

Subject BUSS Cask Heat Transfer Calculations Page 3 of 3
 Originator J. S. Boettger Date 03/21/97
 Checker W. W. Smyth Date 03/21/97

$$R_{m-n} = \frac{(1-\epsilon_m)}{\epsilon_m A_m} + \frac{1}{A_m F_{m-n}} + \frac{(1-\epsilon_n)}{\epsilon_n A_n}$$

and

σ = Stefan-Boltzman constant = $1.190 \times 10^{11} \text{ Btu/h} \cdot \text{in}^2 \cdot ^\circ\text{R}^4$
 T_b = Fin temperature (assumed to be temperature at base of fin)
 T_∞ = Temperature of the environment
 ϵ_m = emissivity of surface m
 A_m = surface area of surface m
 F_{m-n} = shape factor from surface m to surface n

Surface 1 is the area between fins, and surface 2 is the surface area of the fin sides. Therefore,

$$\begin{aligned} A_1 &= N(2\pi r_i l) = 2400 \text{ in}_2, \text{ where } l = \text{distance between fins} = 1.5 \text{ in.} \\ A_2 &= 2N(\epsilon_i^2 - r_i^2) = 13900 \text{ in}_2 \end{aligned}$$

$$\begin{aligned} F_{1-m} &= 0.0894, \\ F_{2-m} &= 0.1294, \text{ as given in the BUSS SARP.} \end{aligned}$$

$$\epsilon_1 = \epsilon_2 = 0.5$$

$$\begin{aligned} R_{1-m} &= 0.0051 \text{ in}^2 \\ R_{2-m} &= 0.00063 \text{ in}^2 \end{aligned}$$

$$q_{\text{acc}} = 2.12 \times 10^8 (T_b^4 - T_\infty^4)$$

$$q_{\text{fin-fp}} = \sigma \epsilon A (T_b^4 - T_\infty^4), \text{ where}$$

$$\begin{aligned} A &= N(2\pi r_i l) = 937 \text{ in}^2 \\ \epsilon &= 0.5 \end{aligned}$$

$$q_{\text{fin-fp}} = 5.60 \times 10^8 (T_b^4 - T_\infty^4)$$

$$q_{\text{fp}} = 2.68 \times 10^8 (T_b^4 - T_\infty^4)$$

Without Fins

$$q_{\text{no-fin}} = \sigma \epsilon A (T_b^4 - T_\infty^4), \text{ where}$$

$$\begin{aligned} A &= 2\pi r_i H \approx 3000 \text{ in}^2 \\ \epsilon &= 0.5 \end{aligned}$$

$$q_{\text{no-fin}} = 1.79 \times 10^8 (T_b^4 - T_\infty^4)$$

The ratio $q_{\text{fp}}/q_{\text{no-fin}} = 1.5$

8.8.2 BUSS Cask Heat Transfer Calculations

ENGINEERING EVALUATION

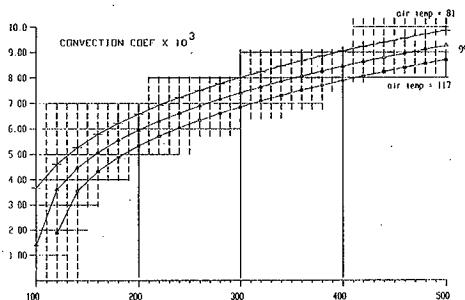
SUBJECT Convection and Radiation Calcs PAGE 1 of 9
 ORIGINATOR Wm. W. Smits DATE 4/10/97
 CHECKER J. S. Boettger DATE 6/1/97
11/197

I. Objective: Find the convection film coefficient for a horizontal cylinder in air, with the air temperature between 100 and 120 °F.

II. References:

White: *Heat and Mass Transfer*, 1991, Frank M. White
 ASME: 1992

III. Results and Conclusions:


The free convection rate for a 1.12 m (44") horizontal cylinder, in air, using the properties and methods from White, are given in the following table. For comparison, the SARP's value of $5 \text{ W/m}^2 \cdot \text{K}$ is equivalent to $6.1210^{-3} \text{ Btu/hr} \cdot \text{in}^2 \cdot {}^\circ\text{F}$ which requires a surface temperature of about 230 °F in 117 °F air.

surface temp T_s °F	air temp $T_a = 81$ °F)		air temp $T_a = 99$ °F)		air temp $T_a = 117$ °F)	
	ΔT	h	ΔT	h	ΔT	h
	°F	BTU/hr /in ² °F	°F	BTU/hr /in ² °F	°F	BTU/hr /in ² °F
100	19	3.674e-03	1	1.402e-03		
120	39	4.613e-03	21	3.610e-03	3	1.877e-03
140	59	5.263e-03	41	4.462e-03	23	3.545e-03
160	79	5.776e-03	61	5.062e-03	43	4.321e-03
180	99	6.208e-03	81	5.541e-03	63	4.878e-03
200	119	6.585e-03	101	5.945e-03	83	5.325e-03
220	139	6.921e-03	121	6.299e-03	103	5.705e-03
240	159	7.225e-03	141	6.615e-03	123	6.038e-03
260	179	7.505e-03	161	6.902e-03	143	6.336e-03
280	199	7.765e-03	181	7.166e-03	163	6.607e-03
300	219	8.008e-03	201	7.411e-03	183	6.856e-03
320	239	8.236e-03	221	7.640e-03	203	7.089e-03
340	259	8.452e-03	241	7.856e-03	223	7.305e-03

ENGINEERING EVALUATION

SUBJECT Convection and Radiation Calcs PAGE 2 of 9
 ORIGINATOR Wm. W. Smyth W/S DATE 4/10/97
 CHECKER J. S. Boettger 018 DATE 4/10/97
7/1/97

	air temp $T_{\infty} = 61^{\circ}\text{F}$		air temp $T_{\infty} = 99^{\circ}\text{F}$		air temp $T_{\infty} = 117^{\circ}\text{F}$	
surface temp	ΔT	h	ΔT	h	ΔT	h
$T_s^{\circ}\text{F}$	$^{\circ}\text{F}$	$\text{BTU}/\text{hr}\cdot\text{ft}^2\cdot^{\circ}\text{F}$	$^{\circ}\text{F}$	$\text{BTU}/\text{hr}\cdot\text{ft}^2\cdot^{\circ}\text{F}$	$^{\circ}\text{F}$	$\text{BTU}/\text{hr}\cdot\text{ft}^2\cdot^{\circ}\text{F}$
360	279	8.656e-03	261	8.060e-03	243	7.509e-03
380	299	8.851e-03	281	8.253e-03	263	7.702e-03
400	319	9.038e-03	301	8.438e-03	283	7.886e-03
420	339	9.217e-03	321	8.614e-03	303	8.061e-03
440	359	9.388e-03	341	8.783e-03	323	8.228e-03
460	379	9.554e-03	361	8.946e-03	343	8.389e-03
480	399	9.714e-03	381	9.103e-03	363	8.543e-03
500	419	9.868e-03	401	9.254e-03	383	8.692e-03

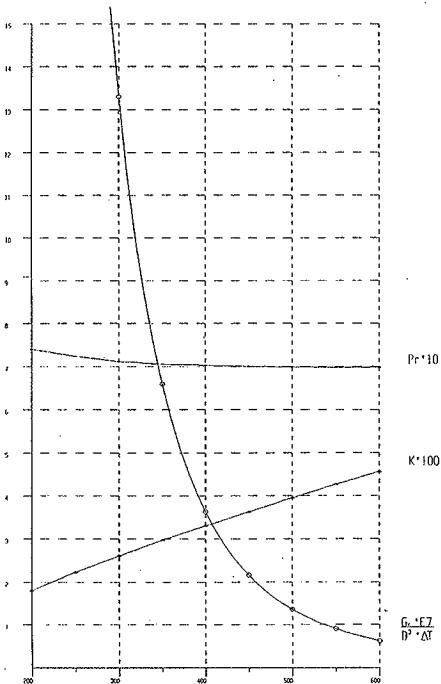
ENGINEERING EVALUATION

SUBJECT Convection and Radiation Calcs PAGE 3 of 9
 ORIGINATOR Wm. W. Smyth WWS DATE 4/10/97
 CHECKER J. S. Boettger JSD DATE 6/1/97
WWS 7/1/97

IV. Evaluation:

Calculate the free convection rate for a 1.12 m (44") horizontal cylinder, in air, using the properties and methods from White's text. In the following table, K and Pr are interpolated linearly and Gr is interpolated as a function of T^5 : White provides values every 50 °K. Curves follow this table to show the reasonability of the interpolations. The tables that follow use Pr, K, and Gr to calculate h.

air Temp		K W/m*K	Pr	$g\beta/v^2 =$ $Gr/(D^3 * \Delta T)$	$Gr/\Delta T$
°K	°F				
200	-99	1.81e-02	0.740	8.57e+08	1.20e+09
210	-81	1.89e-02	0.737	6.78e+08	9.53e+08
220	-63	1.98e-02	0.734	5.44e+08	7.64e+08
230	-45	2.06e-02	0.730	4.42e+08	6.21e+08
240	-27	2.15e-02	0.727	3.63e+08	5.10e+08
250	-9	2.23e-02	0.724	3.02e+08	4.24e+08
260	9	2.31e-02	0.722	2.52e+08	3.54e+08
270	27	2.38e-02	0.719	2.12e+08	2.97e+08
280	45	2.46e-02	0.717	1.80e+08	2.53e+08
290	63	2.53e-02	0.714	1.54e+08	2.16e+08
300	81	2.61e-02	0.712	1.33e+08	1.87e+08
310	99	2.68e-02	0.711	1.14e+08	1.60e+08
320	117	2.75e-02	0.710	9.86e+07	1.39e+08
330	135	2.83e-02	0.708	8.57e+07	1.20e+08
340	153	2.90e-02	0.707	7.50e+07	1.05e+08
350	171	2.97e-02	0.706	6.60e+07	9.27e+07
360	189	3.04e-02	0.705	5.80e+07	8.15e+07
370	207	3.11e-02	0.705	5.12e+07	7.19e+07


ENGINEERING EVALUATION

SUBJECT Convection and Radiation Calcs PAGE 4 of 9
 ORIGINATOR Wm. W. Smyth WPS DATE 4/10/97
 CHECKER J. S. Boettger WPS DATE 5/1/97 W-1

air Temp °K	K W/m*K	Pr	$g\beta/\nu^2 =$ $Gr/(D^3 \Delta T)$	Gr/ΔT
°F				
380	225	3.17e-02	0.704	4.54e+07
390	243	3.24e-02	0.704	4.08e+07
400	261	3.31e-02	0.703	3.63e+07
410	279	3.37e-02	0.702	3.25e+07
420	297	3.44e-02	0.702	2.92e+07
430	315	3.50e-02	0.701	2.63e+07
440	333	3.57e-02	0.701	2.38e+07
450	351	3.63e-02	0.700	2.16e+07
460	369	3.69e-02	0.700	1.96e+07
470	387	3.76e-02	0.700	1.78e+07
480	405	3.82e-02	0.699	1.62e+07
490	423	3.89e-02	0.699	1.48e+07
500	441	3.95e-02	0.699	1.36e+07
				1.91e+07

ENGINEERING EVALUATION

SUBJECT Convection and Radiation Calcs PAGE 5 of 9
ORIGINATOR Wm. W. Smyth WPS DATE 4/10/97
CHECKER J. S. Boettger AID DATE 4/10/97
7/1/97 wj

ENGINEERING EVALUATION

SUBJECT Convection and Radiation Calcs PAGE 6 of 9
 ORIGINATOR Wm. W. Smyth DATE 4/10/97
 CHECKER J. S. Boettger DATE 4/10/97
11/17/97

Using White's methodology (chapter 7) and material properties, find the convection coefficient at various air temperatures and temperature differences.

q is the heat transfer rate over A

A is the wall area

T_w = the wall temperature

T_e = the environment temperature.

k = conductivity of air, W/m-K

$$q = A \cdot h \cdot (T_w - T_e)$$

$$h = \frac{k \cdot N_u}{D}$$

$$\sqrt{N_u} = 6 + \frac{0.387 R_{\text{ad}}^{1/6}}{\left[1 + \left(\frac{559}{P_x} \right)^{8/27} \right]^{6/27}}$$

$$R_{\text{ad}} = G_{\text{ad}} \cdot P_x$$

N_u = Nusselt Number

R_{ad} = Rayleigh number for cylinder

The following tables were generated by a spreadsheet. The air temperature is taken from the data in the tables above, since they are convenient. The Grashoff number

air temp, T_w , (°F) = 81							
surface temp	ΔT °F	ΔT °C	G_{ad}	Ra	N_{ad}	h	h
100	19	10.6	1.97e+09	1.40e+09	128.90	3.00	0.0037
120	39	21.7	4.05e+09	2.88e+09	161.87	3.77	0.0046
140	59	32.8	6.12e+09	4.36e+09	184.66	4.30	0.0053
160	79	43.9	8.20e+09	5.81e+09	202.67	4.72	0.0058
180	99	55.0	1.03e+10	7.32e+09	217.83	5.08	0.0062

ENGINEERING EVALUATION

SUBJECT Convection and Radiation Calcs PAGE 7 of 9
 ORIGINATOR Wm. W. Smyth U.P.S. DATE 4/10/97
 CHECKER J. S. Boettger MR DATE 7/17/97

air temp, T_w (°F) = 81							
surface temp	ΔT	ΔT	G_{cd}	Ra	N_{ud}	h	h
T_w °F	°F	°C				W/m^2-°C	BTU/hr/in^2°F
200	119	66.1	1.24e+10	8.80e+09	231.04	5.38	0.0066
220	139	77.2	1.44e+10	1.03e+10	242.83	5.66	6.92e-03
240	159	88.3	1.65e+10	1.18e+10	253.52	5.91	7.23e-03
260	179	99.4	1.86e+10	1.32e+10	263.35	6.14	7.51e-03
280	199	110.6	2.07e+10	1.47e+10	272.46	6.35	7.77e-03
300	219	121.7	2.27e+10	1.62e+10	280.97	6.55	8.01e-03
320	239	132.8	2.48e+10	1.77e+10	288.98	6.73	8.24e-03
340	259	143.9	2.69e+10	1.91e+10	296.55	6.91	8.45e-03
360	279	155.0	2.90e+10	2.06e+10	303.73	7.08	8.66e-03
380	299	166.1	3.10e+10	2.21e+10	310.57	7.24	8.85e-03
400	319	177.2	3.31e+10	2.36e+10	317.12	7.39	9.04e-03
420	339	188.3	3.52e+10	2.51e+10	323.39	7.54	9.22e-03
440	359	199.4	3.73e+10	2.65e+10	329.42	7.68	9.39e-03
460	379	210.6	3.93e+10	2.80e+10	335.23	7.81	9.55e-03
480	399	221.7	4.14e+10	2.95e+10	340.83	7.94	9.71e-03
500	419	232.8	4.35e+10	3.10e+10	346.25	8.07	9.87e-03

air temp, T_w (°F) = 99							
surface temp	ΔT	ΔT	G_{cd}	Ra	N_{ud}	h	h
T_w °F	°F	°C				W/m^2°C	BTU/hr/in^2°F
100	1	0.6	8.91e+07	6.33e+07	49.21	1.15	1.40e-03
120	21	11.7	1.87e+09	1.33e+09	126.67	2.95	3.61e-03
140	41	22.8	3.65e+09	2.60e+09	156.55	3.65	4.46e-03
160	61	33.9	5.43e+09	3.86e+09	177.62	4.14	5.06e-03
180	81	45.0	7.22e+09	5.13e+09	194.42	4.53	5.54e-03
200	101	56.1	9.00e+09	6.40e+09	208.61	4.86	5.95e-03
220	121	67.2	1.08e+10	7.66e+09	221.01	5.15	6.30e-03

ENGINEERING EVALUATION

SUBJECT Convection and Radiation Calcs PAGE 8 of 9
 ORIGINATOR Wm. W. Smyth W/S DATE 4/10/97
 CHECKER J. S. Boettger J/S DATE 6/14/97
7/1997

air temp, T_w (°F) = 99							h	h
surface temp	ΔT	ΔT	G_{re}	Ra	N_{re}		W/m²°C	BTU/hr/in²°F
240	141	78.3	1.26e+10	8.93e+09	232.10	5.41	6.61e-03	
260	161	89.4	1.43e+10	1.02e+10	242.17	5.64	6.90e-03	
280	181	100.6	1.61e+10	1.15e+10	251.44	5.86	7.17e-03	
300	201	111.7	1.79e+10	1.27e+10	260.04	6.06	7.41e-03	
320	221	122.8	1.97e+10	1.40e+10	268.08	6.25	7.64e-03	
340	241	133.9	2.15e+10	1.53e+10	275.64	6.42	7.86e-03	
360	261	145.0	2.33e+10	1.65e+10	282.79	6.59	8.06e-03	
380	281	156.1	2.50e+10	1.78e+10	289.59	6.75	8.25e-03	
400	301	167.2	2.68e+10	1.91e+10	296.06	6.90	8.44e-03	
420	321	178.3	2.86e+10	2.03e+10	302.25	7.04	8.61e-03	
440	341	189.4	3.04e+10	2.16e+10	308.19	7.18	8.78e-03	
460	361	200.6	3.22e+10	2.29e+10	313.90	7.32	8.95e-03	
480	381	211.7	3.39e+10	2.41e+10	319.40	7.44	9.10e-03	
500	401	222.8	3.57e+10	2.54e+10	324.71	7.57	9.25e-03	

air temp (°F) = 117							h	h
surface temp	ΔT	ΔT	G_{re}	Rad	N_{re}		W/m²°C	BTU/hr/in²°F
120	3	1.7	2.31e+08	1.64e+08	65.85	1.53	1.877e-03	
140	41	22.8	3.16e+09	2.24e+09	149.33	3.48	4.256e-03	
160	61	33.9	4.70e+09	3.33e+09	169.41	3.95	4.828e-03	
180	81	45.0	6.23e+09	4.42e+09	185.41	4.32	5.284e-03	
200	101	56.1	7.77e+09	5.52e+09	198.93	4.64	5.669e-03	
220	121	67.2	9.31e+09	6.61e+09	210.74	4.91	6.006e-03	
240	141	78.3	1.09e+10	7.70e+09	221.31	5.16	6.307e-03	
260	161	89.4	1.24e+10	8.79e+09	230.90	5.38	6.581e-03	
280	181	100.6	1.39e+10	9.89e+09	239.73	5.59	6.832e-03	

HQJLQHHULQJ/#HYDOXDWRQ

SUBJECT Convection and Radiation Calcs PAGE 9 of 9
 ORIGINATOR Wm. W. Smyth DATE 4/10/97
 CHECKER J. S. Boettger DATE 6/24/97
7/1/97

air temp (°F) = 117	surface temp	ΔT	ΔT	Gr _n	Rad	Nud	h	h
T _s °F	°F	°C					W/m ² °C	BTU/hr/ln ² °F
300	201	111.7	1.55e+10	1.10e+10	247.92	5.78	7.066e-03	
320	221	122.8	1.70e+10	1.21e+10	255.58	5.96	7.284e-03	
340	241	133.9	1.85e+10	1.32e+10	262.78	6.12	7.489e-03	
360	261	145.0	2.01e+10	1.43e+10	269.59	6.28	7.683e-03	
380	281	156.1	2.16e+10	1.53e+10	276.06	6.43	7.868e-03	
400	301	167.2	2.32e+10	1.64e+10	282.23	6.58	8.044e-03	
420	321	178.3	2.47e+10	1.75e+10	288.13	6.71	8.212e-03	
440	341	189.4	2.62e+10	1.86e+10	293.78	6.85	8.373e-03	
460	361	200.6	2.78e+10	1.97e+10	299.22	6.97	8.528e-03	
480	381	211.7	2.93e+10	2.08e+10	304.46	7.10	8.677e-03	
500	401	222.8	3.09e+10	2.19e+10	309.52	7.21	8.821e-03	
520	421	233.9	3.24e+10	2.30e+10	314.40	7.33	8.961e-03	

Note that the SARP's convection coefficient of 5 W/m² K requires a surface temperature of about 230 °F when the air temperature is 117 °F and 210 in 100 °F air. This is approximately what is found for the analysis results, but a variable convection rate was used in the SEP analysis based on the results for 117°F air.

8.8.3 Capsule Arrangement in Cask

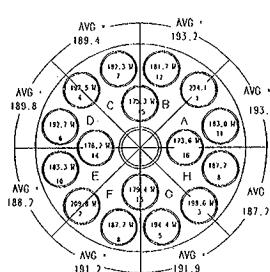
ENGINEERING SAFETY EVALUATION

Subject CAPSULE ARRANGEMENT FOR 16 CsCl CAPSULES IN BUSS Page 1 of 1
 Originator Wm. W. SMITH Date 4/11/67
 Checker J. S. Bechtger J. S. Bechtger Date 7/1/77

I. Objective: Determine the best capsule arrangement in the BUSS to minimize the average temperate in a 45° segment. This will be the temperature used in the thermal analysis, and the arrangement will be controlled in the operations section.

II. References:

III. Results and Conclusions: The maximum average is 193.4 W per segment. This will require administrative controls to assure this is not exceeded.


IV. Evaluation:

AVERAGE THERMAL POWER IN OCTANT A:

$$\frac{234.1-173.6}{2} + 183.0 = 193.4$$

AVERAGE THERMAL POWER IN OCTANT B:

$$\frac{234.1-175.3}{2} + 181.7 = 193.2$$

8.8.4 Finite Element Analysis of SARP Configuration

```
*
*-----*
| W E L C O M E T O T H E A N S Y S P R O G R A M |
|-----*
```

***** ANSYS COMMAND LINE ARGUMENTS *****
BATCH MODE REQUESTED

***** ANSYS DYNAMIC MEMORY ALLOCATION *****
WORK SPACE REQUESTED = 8388608 32.000 MB DEFAULT
MINIMUM WORK SPACE REQUIRED = 4718592 18.000 MB
MINIMUM WORK SPACE RECOMMENDED = 6702496 25.568 MB
WORK SPACE OBTAINED = 8388606 32.000 MB
BYTES PER WORD = 4

***** NOTICE ***** THIS IS THE ANSYS GENERAL PURPOSE
FINITE ELEMENT COMPUTER PROGRAM. NEITHER SWANSON ANALYSIS
SYSTEMS, INC. NOR THE DISTRIBUTOR SUPPLYING THIS PROGRAM
ASSUME ANY RESPONSIBILITY FOR THE VALIDITY, ACCURACY, OR
APPLICABILITY OF ANY RESULTS OBTAINED FROM THE ANSYS SYSTEM.
USERS MUST VERIFY THEIR OWN RESULTS.

ANSYS(R) COPYRIGHT© 1971,1978,1982,1983,1985,1987,1989,1992,1993
BY SWANSON ANALYSIS SYSTEMS, INC. AS AN UNPUBLISHED WORK.
PROPRIETARY DATA - UNAUTHORIZED USE, DISTRIBUTION, OR DUPLICATION
IS PROHIBITED. ALL RIGHTS RESERVED.

SWANSON ANALYSIS SYSTEMS, INC. IS ENDEAVORING TO MAKE THE
ANSYS PROGRAM AS COMPLETE, ACCURATE, AND EASY TO USE AS
POSSIBLE. SUGGESTIONS AND COMMENTS ARE WELCOMED. ANY
ERRORS ENCOUNTERED IN EITHER THE DOCUMENTATION OR THE
RESULTS SHOULD BE IMMEDIATELY BROUGHT TO OUR ATTENTION.

ENTER /SHOW,device TO SET THE GRAPHICS DISPLAY TO device(e.g. VGA,HALO,ETC.)
ENTER /MENU,ON TO START THE ANSYS MENU SYSTEM
ENTER HELP FOR GENERAL ANSYS HELP INFORMATION
 1 /file, b0
 2 /show, b0,grp
 3 /PREP7
 4 /com
 5 /com 16 capsules in solid basket - try to match SARP analysis
 6 /com
 7 /com adjust the capsule length and fin convection factor to match these:
 8 /com

```

9 /com    CsCl    inner    outer    basket    cask inner    cask outer
10 /com    max     capsule  capsule  max     temp     temp
11 /com    820 °F    778     699     673     396     284
12 /com    from SARP p 3-3, 16 capsules @ 250 W
13 /com
14 mp, dens, 1, .2854 * 18-8 stainless steel, lbf/cu
15 mp, dens, 2, .1627*.062428 * Helium @ 81°F
16 mp, dens, 3, .0939 * CsCl
17 mp, dens, 4, 1.177*.1627 * air @ 81°F
18 rad1 = 2.250/2 * outer radius, inner capsule
19 thk1 = (2.250 - 1.978)/2
20 rad2 = 2.625/2 * outer radius, outer capsule
21 /com thk2 = (2.625-2.353)/2 * per dwg
22 thk2 = (2.625-2.402)/2 * per SARP p 3-11
23 rad3 = 1.437 * basket radius
24 thk3 = 0
25 /com ****
26 /com 250 W per capsule.
27 /com capsule len 19 in, rad 1.978, volume 58.38 cu.in.
28 /com specific power W/58.38 * 3.412 Btu/hr/W = 13.4
29 /com but adjust length to match SARP results ( 16 found to work)
30 /com ****
31 pwr = 2*250*3.412/16 * Btu/hr-in of 2 CsCl capsules
32 pc = 0.50 * % power absorbed in CsCl per SARP
33 pop = 0.13 * % in capsule steel
34 pob = .3 * % in basket
35 pcsk = .07 * % in cask
36 hf = 5.0 *(W) convection film constant, horiz cyl in air (5 in SARP)
37 etemp = 100 * match SARP environmental temp
38 cv = hf*4.7*.1761/144 * 4.7 factor for fins from SARP
39 /com mat 1 = stainless steel
40 /com mat 2 = He
41 /com mat 3 = CsCl
42 /com mat 4 = air
43 /com mat 5 = dummy surface material
44 mp, c, 1, 460*2.39e-4
45 mp, c, 2, 5197*2.39e-4
46 mp, c, 3, 8400*2.39E-4
47 mp, c, 4, 1020*2.39E-4
48 mp, emis, 4, 0.5
49 mp, kxx,3, .45*.578/12
50 mp, emis, 1, 0.5
51 mp, dens,5,.001
52 mp,emis,5, 0.5
53 MPTEMP,1, 100, 200, 300, 400, 500, 600 * 18-8 stainless
54 MPTEMP,7, 700,800
55 MPDATA,ALPX,1,1, 8.63e-6, 9.08e-6, 9.46e-6, 9.80e-6, 10.10e-6, 10.38e-6
56 MPDATA,ALPX,1,7, 10.60e-6, 10.79e-6
57 mpdata, kxx,1,1, 0.73, 0.78, 0.82, 0.87, 0.91, 0.94
58 mpdata, kxx,1,7, 0.98, 1.02
59 mptemp,1, 81, 171, 261, 351, 441, 531
60 mptemp,7, 621, 801
61 mpdata, kxx, 2, 1, 0.00722, 0.00794, 0.00867, 0.00939, 0.0102, 0.0110
62 mpdata, kxx, 2, 7, 0.0119, 0.0134

```

```

63 mpdata, kxx, 4, 1, 0.00126, 0.00143, 0.00159, 0.00175, 0.0019, 0.0021
64 mpdata, kxx, 4, 7, 0.0022, 0.0025
65 MPLIST,ALL
66 csys, 1
67 /triad,off
68 k,1
69 k,2, 9.975,0
70 k, 3, 10.125,0 * inner cask wall
71 k, 4, 22.125,0 * outer cask wall
72 KGEN,2,2,4,,,45 * k 5,6,7
73 a,1,2,5 * basket
74 a, 2,3,6,5 * He, basket-cask
75 a,3,4,7,6 * A1, cask wall
76 CLOCAL,11,1,3.75,0,,0 * start first capsule
77 k, * center, k8
78 k,, radi-thk1 * k9
79 k,, rad1 * k10
80 k,, rad2-thk2 * k11
81 k,, rad2 * k12
82 k,, rad3 * k13
83 KGEN,2,9,13,,,90
84 a,8,9,14
85 a,9,10,15,14
86 a,10,11,16,15
87 a,11,12,17,16
88 a,12,13,18,17
89 AGEN,2,4,8,,,90
90 NUMmrq,ALL
91 NUMcmp,ALL
92 csys,1
93 CLOCAL,12,1,7.625,15,,0 * start capsule # 2
94 k, * center, k24
95 k,, radi-thk1 * k25
96 k,, rad1 * k26
97 k,, rad2-thk2 * k27
98 k,, rad2 * k28
99 k,, rad3 * k29
100 KGEN,2,24,29,,,90
101 A, 24, 25, 31
102 A,25,26,32,31
103 A, 26, 27, 33, 32
104 A, 27, 28, 34, 33
105 A, 28, 29, 35, 34
106 AGEN,4,14,18,,,90
107 nummrq,all
108 numcmp,all
109 csys,1
110 CLOCAL,13,1,7.625,45
111 k, * k 45
112 k,, rad1-thk1 * k46
113 k,, rad1 * k47
114 k,, rad2-thk2 * k48
115 k,, rad2 * k49
116 k,, rad3 * k50

```

```

117 KGEN,2,46,50,,,,-90
118 a,45,51,46
119 a,51,52,47,46
120 a,52,53,48,47
121 a,53,54,49,48
122 a,54,55,50,49
123 AGEN,2,34,38,,,,-90
124 nummg,all
125 numcmp,all
126 asel,u,area,,2,3
127 aovl,all
128 /pnum,mat,1
129 aplot
130 /pnum,mat,0
131 /pnum,area,1
132 aplot
133 et,1,plane55,1 * mesh the plane elements -
134 asel,s,area,,4,9,5 * CsCl
135 asel,a,area,,14,29,5
136 asel,a,area,,34,39,5
137 aatt,3,,1
138 ndiv = 12
139 eshape,2
140 ESIZE,,ndiv
141 amesh,all * CsCl
142 asel,s,area,,5,10,5 * SS
143 asel,a,area,,15,30,5
144 asel,a,area,,35,40,5
145 AATT,1,,1
146 ESIZE,,2
147 amesh,all
148 asel,s,area,,6,11,5 * air
149 asel,a,area,,16,31,5
150 asel,a,area,,36,41,5
151 AATT,4,,1
152 ESIZE,,3
153 amesh,all
154 asel,s,area,,7,12,5 * SS
155 asel,a,area,,17,32,5
156 asel,a,area,,37,42,5
157 AATT,1,,1
158 ESIZE,,2
159 amesh,all
160 asel,s,area,,8,13,5 * He
161 asel,a,area,,18,33,5
162 asel,a,area,,38,43,5
163 AATT,2,,1
164 ESIZE,,3
165 amesh,all
166 asel,s,area,,3 * cask
167 cdiv = 12
168 esize,,cdiv
169 aatt,1,,1
170 amesh,all

```

```

171  asel,s,area,,2 * cask-basket gap
172  esize,,2
173  aatt,,1
174  amesh,all
175  asel,s,area,,44 * mesh basket
176  aatt,,1
177  pi = 3.14159
178  s = rad5*pi/2/cdiv * match mesh at He gap
179  esize,s
180  eshap,0
181  amesh,all
182  /pnum,mat,1
183  eplot
184  csys,1
185  N,,40,22.5 * atmosphere radiation node
186  *GET,rmax,NODE,,num,MAX
187  ET,2,surf19,1, , ,1,1 * exterior surface, xtra node, no mid-side node
188  KEYOPT,2,8,2           * hf calc at avg temp
189  KEYOPT,2,9,1           * form factor from reals
190  r,3,1,,4                * form fact = 1, 2nd mat = 4, unit thick
191  csys,1
192  ksel,s,loc,x,22.125
193  LSLK,s,1
194  TYPE,2
195  MAT, 5
196  REAL, 3
197  lmesh,all
198  esel,s,type,,2
199  EMODIF,ALL,-3,rmax
200  esel, all
201  ksel,all
202  lset,all
203  asel,s,mat,,3
204  ASUM
205  *GET,Acap,AREA,0,area * total capsule area
206  asel,s,area,,44
207  asum
208  *GET,Abas,AREA,0,area * total basket steel area
209  asel,s,area,,3
210  asum
211  *GET,Acsk,AREA,0,area * total cask area
212  asel,s,area,,5,40,5
213  asel,s,area,,7,42,5
214  asum
215  *GET,Acpp,AREA,0,area * total ss area in capsule
216  asel,all
217  et,3,link31 * radiation links between elements of concentric cylinders
218  type, 3
219  mat, 1
220  csys,1
221  nsel,s,loc,x,9.975
222  nsel,a,loc,x,10.125 * radiation between basket and cask
223  ar1 = 10*pi/4/cdiv * radiating area of 1 element
224  R,1,ar1,1,-1, 11.89e-12

```

```

225  real,1
226  :GLink1
227  *GET,n1,NODE,,num,Min
228  *GET,y1,node,n1,LOC,y
229  n2 = node(9.975,y1,0)
230  e,n1,n2
231  nsel,u,node,,n1
232  nsel,u,node,,n2
233  *GET,n,NODE,,count
234  *IF,n,ne,0,:GLink1
235  ar4 = radi*pi/2/ndiv
236  R,4,ar4,1,-1, 11.89e-12          * area of unit height of cylindrical capsule
237  ar5 = rad2*pi/2/ndiv
238  R,5,ar5,1,-1, 11.89e-12
239  *use,rlink,11 * radiation links between capsule layers, using
240  *use,rlink,12 * the coordinate system as the parameter
241  *use,rlink,13
242  list, rlink
243  esel,all
244  nsel,all
245  *stat
246  rlist
247  csys,1
248  WSORT,x * reduce the problem size
249  fini
250  /SOLU
251  *stat
252  D,nmax,TEMP,100 * SARP environmental temp.
253  ANTYPE,STAT
254  TOFFST,460 * work in ^R
255  TUNIF,70
256  CNVTOL,HEAT
257  esel,s,mat,,3 * apply heat generation to CsCl
258  BFE,ALL,HGEN,,pc*pwr/acap
259  asel,s,area,,44
260  esla,s
261  BFE,ALL,HGEN,,pcb*pwr/abas * heat generation rate within basket
262  asel,s,area,,5,40,5
263  asel,s,area,,7,42,5
264  esla,s
265  BFE,ALL,HGEN,,pcp*pwr/acpp * heat generation rate within capsule steel
266  asel,s,area,,3
267  esla,s
268  BFE,ALL,HGEN,,pcp*pcsk/acsk * heat generation rate within cask
269  esel,s,mat,,5 * insolation on surface elements
270  insl = 400 * g-cal insolation per sq cm over 12 hr
271  insl = insl/252/12 * Btu/hr per sq cm
272  BFE,all,HGEN,,insl/.394/.394 * heat gen per cubic inch
273  csys,1
274  LSEL,s,LOC,X,22.125
275  SFL,all,CONV,cv,,etemp
276  nsel,all
277  esel,all
278  lsel,all

```

```

279  asel,all
280  kpsel,all
281  *stat
282  save
283  solve
284  fini
285  /post1
286  set,last
287  esel,s,mat,,3 * CsCl capsules
288  /title, CsCl capsule mat'l
289  nsle,s
290  plns,TEMP
291  nsort, temp,,0
292  *get, tmax, sort, 0, max
293  *get, tmin, sort, 0, min
294  /title, inner SS capsule
295  csys,11
296  nsel,s,loc,x,rad1-thk1-.01, rad1+.01
297  csys,12
298  NSEL,a,LOC,x,rad1-thk1-.01,rad1+.01
299  csys,13
300  NSEL,a,LOC,x,rad1-thk1-.01,rad1+.01
301  esln,s
302  esel,r,type,,1
303  esel,r,mat,,1
304  plns,TEMP
305  nsort, temp,,0
306  *get, tmax, sort, 0, max
307  *get, tmin, sort, 0, min
308
309
310  /title, outer SS capsule
311  csys,11
312  nsel,s,loc,x,rad2-thk2-.01, rad2+.01
313  csys,12
314  NSEL,a,LOC,x,rad2-thk2-.01,rad2+.01
315  csys,13
316  NSEL,a,LOC,x,rad2-thk2-.01,rad2+.01
317  esln,s
318  esel,r,type,,1
319  esel,r,mat,,1
320  plns,TEMP
321  nsort, temp,,0
322  *get, tmax, sort, 0, max
323  *get, tmin, sort, 0, min
324  /title, basket
325  asel,s,area,,44 * basket
326  esla,s
327  nsle,s
328  plns,TEMP
329  nsort, temp,,0
330  *get, tmax, sort, 0, max
331  *get, tmin, sort, 0, min
332  /title, inner cask wall

```

```
333 csys,1
334 nsel,s,loc,x,10.125
335 esln,s
336 esel,a,mat,,1
337 pins,TEMP
338 nsort, temp,,0
339 *get, tmax, sort, 0, max
340 *get, tmin, sort, 0, min
341 /title, outer cask wall
342 nsel,s,loc,x,22.125
343 esln,s
344 esel,a,mat,,1
345 pins,TEMP
346 nsort, temp,,0
347 *get, tmax, sort, 0, max
348 *get, tmin, sort, 0, min
349 fini
350 /exit
351
```

CURRENT JOBNAMES REDEFINED AS b0

/SHOW SWITCH PLOTS TO FILE B8.grp - RASTER MODE.

8.8.5 Finite Element Analysis of 16 Overpacked Capsules in an Open Basket

```
Running ANSYS 5.2 on workstation: sgi3 on: Thu Jul 10 09:04:04 PDT 1997
ANSYS 5.2 has been verified by ICF KH
Class 3 Error Reports are in the directory: /apps/ansys/class3_errors.
Executing /apps/ansys/sgi/ansys52/bin/ansys.e52
```

```
-----*-----*
| W E L C O M E   T O   T H E   A N S Y S   P R O G R A M |  
|-----*-----*
```

***** DISCLAIMER OF WARRANTY ***** ***** AND NOTICE OF COPYRIGHT *****

This ANSYS(R) software product (the Program), its Help System (Help System), and program documentation (Documentation) are furnished by ANSYS, Inc. under an ANSYS License Agreement that contains provisions concerning non-disclosure, copying, length and nature of use, warranties, disclaimers and remedies, and other provisions. The Program may be used or copied only in accordance with the terms of that License Agreement. Some of those terms are summarized here.

The Program should only be used by qualified persons. The determination as to who is qualified to use the Program is the obligation of the Licensee under the License Agreement.

NEITHER ANSYS, INC. NOR THE DISTRIBUTOR SUPPLYING THE PROGRAM (THE DISTRIBUTOR) GUARANTEES THE USEFULNESS OF THE RESULTS OF ANY ANALYSIS PERFORMED WITH THIS PROGRAM, ITS HELP SYSTEM, OR DOCUMENTATION. It is the responsibility of the Licensee or user to confirm the usefulness and accuracy of all the solutions.

The Help System and Documentation consist of the ANSYS User's Manual and various other manuals. The User's Manual consists ONLY of the following four volumes: Procedures, Commands, Elements, and Theory. The User's Manual is identified with the words "ANSYS User's Manual" at the bottom of each page.

EXCEPT AS PROVIDED IN THE LICENSE AGREEMENT, NEITHER ANSYS, INC. NOR THE DISTRIBUTOR SHALL BE LIABLE FOR THE NEGLIGENT PREPARATION OF THE PROGRAM, THE HELP SYSTEM, OR USER'S MANUAL; OR FOR ANY TECHNICAL, EDITORIAL, OR OTHER ERRORS OR OMISSIONS WHICH THE HELP SYSTEM OR USER'S MANUAL MIGHT CONTAIN. ANSYS, INC. SHALL NOT BE LIABLE FOR INCIDENTAL, CONSEQUENTIAL, COMPENSATORY OR EXEMPLARY DAMAGES RESULTING FROM ANY SUCH NEGLIGENT PREPARATION OR ERROR.

EXCEPT AS PROVIDED IN THE LICENSE AGREEMENT, ANSYS, INC. AND THE DISTRIBUTOR HEREBY DISCLAIM ANY EXPRESS OR IMPLIED WARRANTY, INCLUDING BUT NOT LIMITED TO, THE WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE WITH REGARD TO THE PROGRAM OR THE CONTENTS, INFORMATION, AND INSTRUCTIONS CONTAINED IN THE HELP SYSTEM OR USER'S MANUAL, WHETHER SAID WARRANTIES ARISE UNDER PROVISIONS OF ANY LAW OF THE UNITED STATES OF AMERICA OR ANY STATE THEREOF OR ANY OTHER COUNTRY, OR PURSUANT TO THE PROVISIONS OF THE UNITED NATIONS CONVENTION ON CONTRACTS FOR THE INTERNATIONAL SALE OF GOODS.

Examples, solutions, theories, results, methods, and references to other documents are provided in the Help System and User's Manual for guidance and explanation only. THEY ARE NOT GUARANTEED TO PROVIDE THE USER WITH THE MOST ACCURATE, USEFUL, OR CORRECT ANALYSIS FOR ANY PARTICULAR PROBLEM.

The Program, Help System, and Documentation are protected by United States copyright law. You may print pages from the Help System to a printer for your own personal use. You may not further copy or reproduce such pages in any form without the prior written permission of ANSYS, Inc.

ANSYS, Inc. is endeavoring to make the ANSYS program as complete, accurate, and easy to use as possible. Suggestions and comments are welcome. Please bring any errors in either the Documentation or the Program results to the attention of ANSYS, Inc. by contacting your Distributor.

Copyright 1971, 1978, 1982, 1983, 1985, 1987, 1989, 1992, 1993, 1994, 1995 by SAS IP as an unpublished work. Proprietary data--unauthorized use, distribution, or duplication, is prohibited. All rights reserved.

AFTER YOU HAVE READ AND UNDERSTOOD THE PREVIOUS DISCLAIMER,
PRESS <CR> OR <ENTER> TO CONTINUE

***** ANSYS COMMAND LINE ARGUMENTS *****

NONE

*** NOTE *** CP= 3.680 TIME= 09:04:14
There are no parameters and no abbreviations defined.

32207 VERSION=SGI IRIS4D REVISION= 5.2
FOR SUPPORT CALL K McMillian 373- PHONE JLR 206-353-8089 FAX FAX 509-373-6975
CURRENT JOBNAME=file 09:04:14 JUL 10, 1997 CP= 3.690

RUN SETUP PROCEDURE FROM FILE= /apps/ansys/sgi/ansys52/docu/start.ans

/INPUT FILE= /apps/ansys/sgi/ansys52/docu/start.ans LINE= 0

BEGIN:

```

1 /BATCH,list
2 /file, b16a
3 /show, b16, g
4 /TYPE,ALL,hdip
5 /PREP7
6 /com
7 /com  STATIC ANALYSIS
8 /com 16 capsules in overpacks, no basket
9 /com CsCl temp limit is 842 °F at ss interface
10 /com CsCl melt temp 1195 °F
11 /com phase change between 350 - 470 °C = 662 - 878 °F
12 /com test temperature 800 °C = 1472 °F
13 /com model 45° arc containing 1 complete + 2 half capsules
14 /com
15 mp, dens, 1, .2854 * 18-8 stainless steel, lbf/cu in
16 mp, dens, 2, .1627*.062428/1728 * Helium @ 81°F
17 mp, dens, 3, .0939 * CsCl
18 mp, dens, 4, 1.177*.1627/1728 * air @ 81°F
19 rad1 = 2.250/2 * outer radius, inner capsule
20 thk1 = (2.25 - 1.978)/2 * thickness of inner capsule
21 rad2 = 2.625/2 * outer radius, outer capsule
22 /com thk2 = (2.625-2.353)/2 * per dwg
23 thk2 = (2.625-2.402)/2 * per SARP p 3-11, thinner
24 rad3 = 1.625 * outer radius, type W overpack
25 thk3 = 0.125 * W overpack nominal thickness
26 /com thk3 = .11 * thinnest overpack
27 rad4 = 2.0 * 3.5 in pipe central support
28 thk4 = 0.226 * schd 40 central support thickness
29 rad5 = 4.25 * radius of inner row of capsules
30 rad6 = 7.88 * radius of outer row of capsules
31 /com rad5 = 4.0 * radius of inner row of capsules * parametric variation
32 /com rad6 = 7.63 * radius of outer row of capsules * parametric variation
33 ang1 = 15 * angular spacing in outer row
34 /com W = 205 * watts per capsule
35 W = 195 * watts per capsule
36 NC = 2 * capsules per model
37 pwr = NC*W*3.412/16 * Btu/hr-in of #NC capsules per inch length
38 /com power per cu in will be calculated using power/total CsCl area
39 pc = 0.50 * % in CsCl, increase slightly from SARP 0.48
40 pcp = 0.2 * % in capsule steel & overpack
41 /com try parametric variation:
42 /com pc = .37 * based on shielding calc
43 /com pcp = .24
44 pcsk = 1-pc-pcp * % in cask
45 fn = 4.7 * fin factor, multiplies cylinder convection film constant
46 /com fn = 2.35 * parametric variation
47 /com vfac = 1 * radiation view factor for external surface
48 vfac = 1.5 * per SARP, due to fins
49 /com **** use temperature table for convection film coefficient
50 /com hf = 5.0 * (W) convection film constant, horiz cyl in air (in SARP)
51 /com cv = hf*fn*.1761/144 * convection rate including fins
52 /com ***** see hf material property for air
53 etemp = 115 * max Hanford day avg = 94

```

```

54 /com ** if etemp changes, you must also change hf table for air
55 /com insl = 400 * g-cal insolation per sq cm over 12 hr
56 /com insl = insl*2.54*2.54/252/12 * Btu/hr per sq in
57 insl = 100 * BTU/hr per sq. ft - Hanford value for flat surface (use 100)
58 insl = 0.5*insl/144 * BTU/hr per sq in for cylinder
59 /com emss = 0.5 * stainless steel emissivity
60 emss = 0.3 * stainless steel emissivity
61 /com mat 1 = stainless steel
62 mp, c, 1, 460*2.39e-4
63 mp, emis, 1, emss
64 MPTEMP,1, 100, 200, 300, 400, 500, 600 * 18-8 stainless
65 MPTEMP,7, 700,800
66 MPDATA,ALPX,1,1, 8.63e-6, 9.08e-6, 9.46e-6, 9.80e-6, 10.10e-6, 10.38e-6
67 MPDATA,ALPX,1,7, 10.60e-6, 10.79e-6
68 mpdata, kxx,1,1, 0.73, 0.78, 0.82, 0.87, 0.91, 0.94
69 mpdata, kxx,1,7, 0.98, 1.02
70 /com mat 2 = He
71 mp, c, 2, 5197*2.39e-4
72 mptemp,1, 81, 171, 261, 351, 441, 531
73 mptemp,7, 621, 801
74 mpdata, kxx, 2, 1, 0.00722, 0.00794, 0.00867, 0.00939, 0.0102, 0.0110
75 mpdata, kxx, 2, 7, 0.0119, 0.0134
76 /com mat 3 = CsCl
77 mp, c, 3, 8400*2.39E-4
78 mp, kxx,3, .45*.578/12
79 /com mat 4 = air
80 mp, c, 4, 1020*2.39E-4
81 mp, emis, 4, emss
82 mptemp,1, 81, 171, 261, 351, 441, 531
83 mptemp,7, 621, 801
84 mpdata, kxx, 4, 1, 0.00126, 0.00143, 0.00159, 0.00175, 0.0019, 0.0021
85 mpdata, kxx, 4, 7, 0.0022, 0.0025
86 /com ***** convection film coef, 44" cyl in 99 °F air
87 /com mptgen,1, 20, 100, 20
88 /com mpdata,hf,4,1, fn*3.674E-03,fn*4.613E-03,fn*5.263E-03,fn*5.776E-03,fn*6.20
89 /com mpdata,hf,4,6, fn*6.585E-03,fn*6.921E-03,fn*7.225E-03,fn*7.505E-03,fn*7.76
90 /com mpdata,hf,4,11,fn*8.008E-03,fn*8.236E-03,fn*8.452E-03,fn*8.656E-03,fn*8.85
91 /com mpdata,hf,4,16,fn*9.038E-03,fn*9.217E-03,fn*9.388E-03,fn*9.554E-03,fn*9.71
92 /com ***** convection film coef, 44" cyl in 99 °F air
93 /com mptgen,1, 20, 100, 20
94 /com mpdata,hf,4,1, fn*1.402E-03,fn*3.610E-03,fn*4.462E-03,fn*5.062E-03,fn*5.54
95 /com mpdata,hf,4,6, fn*5.945E-03,fn*6.299E-03,fn*6.615E-03,fn*6.902E-03,fn*7.16
96 /com mpdata,hf,4,11,fn*7.411E-03,fn*7.640E-03,fn*7.856E-03,fn*8.060E-03,fn*8.25
97 /com mpdata,hf,4,16,fn*8.438E-03,fn*8.614E-03,fn*8.783E-03,fn*8.946E-03,fn*9.10
98 /com ***** convection film coef, 44" cyl in 117 °F air
99 mptgen,1, 20, 120, 20
100 mpdata,hf,4,1, fn*1.877E-03,fn*3.545E-03,fn*4.321E-03,fn*4.878E-03,fn*5.325E-03
101 mpdata,hf,4,6, fn*5.705E-03,fn*6.038E-03,fn*6.336E-03,fn*6.607E-03,fn*6.856E-03
102 mpdata,hf,4,11,fn*7.088E-03,fn*7.305E-03,fn*7.509E-03,fn*7.702E-03,fn*7.886E-03
103 mpdata,hf,4,16,fn*8.061E-03,fn*8.228E-03,fn*8.389E-03,fn*8.543E-03,fn*8.692E-03
104 MPLIST,ALL
105 csys, 1
106 /triad,off
107 k, 1

```

```

108 k, 2, 10.125,0 * inner cask wall
109 k, 3, 22.125,0 * outer cask wall
110 KGEN,2,2,3,,45 * k 4,5
111 a,1,2,4 * A1 He fill
112 a,2,3,5,4 * A2, cask wall
113 CLOCAL,11,1,rad5,,0 * start first capsule (half capsule)
114 k * center, k6
115 k,, rad1-thk1 * k7
116 k,, rad1 * k8
117 k,, rad2-thk2 * k9
118 k,, rad2 * k10
119 k,, rad3-thk3 * k11
120 k,, rad3
121 KGEN,2,7,12,,90
122 l, 6, 13 * make lesize work
123 A, 6, 7, 13
124 A, 7, 8, 14, 13
125 A, 8, 9, 15, 14
126 A, 9, 10, 16, 15
127 A, 10, 11, 17, 16
128 A, 11, 12, 18, 17
129 AGEN,2,3,8,,90
130 NUMMRG,KP
131 NUMCMP,KP
132 csys,1
133 CLOCAL,12,1,rad6,ang1,,0 * start capsule # 2 (full capsule)
134 k * center, k25
135 k,, rad1-thk1 * k26
136 k,, rad1 * k27
137 k,, rad2-thk2 * k28
138 k,, rad2 * k29
139 k,, rad3-thk3 * k30
140 k,, rad3 * k31
141 KGEN,2,26,31,,90
142 l, 25, 32 * make lesize work for meshing
143 A, 25, 26, 32
144 A, 26, 27, 33, 32
145 A, 27, 28, 34, 33
146 A, 28, 29, 35, 34
147 A, 29, 30, 36, 35
148 a, 30, 31, 37, 36
149 AGEN,4,15,20,,90
150 csys,1
151 CLOCAL,13,1,rad6,45,,0 * start capsule # 3 (half capsule)
152 k * center, k77
153 k,, rad1-thk1 * k78
154 k,, rad1 * k79
155 k,, rad2-thk2 * k80
156 k,, rad2 * k81
157 k,, rad3-thk3 * k82
158 k,, rad3 * k83
159 KGEN,2,78,83,,90
160 l, 77,84
161 a, 77,78,84

```

```

162 a, 78,79,85,84
163 a, 79,80,86,85
164 a, 80,81,87,86
165 a, 81,82,88,87
166 a, 82,83,89,88
167 agen,2,39,44,,, -90
168 NUMMRG,KP
169 NUMCMR,KP
170 csys,1           * build in central support to see if
171 k,,2           * it radiates some heat to the cask
172 k,,2-thk4       * inner wall
173 KGEN,2,69,70,,,45
174 a,70,69,71,72
175 asel,u,area,,2
176 boptr, keep, yes * keep areas
177 aovl,all
178 adel, 1      *
179 asel,all
180 et,1,plane55 * mesh the plane elements
181 asel,s,area,,3,45,6 * CsCl
182 aatt,3,,1
183 /com ndiv = 8 * max terr in He was .36
184 ndiv = 12 * max terr in He is .08 with + 2° increase over ndiv = 8
185 eshape,2
186 ESIZE,,ndiv
187 csys,11
188 ksel,s,loc,x,0 * find center points of all capsules
189 csys,12
190 ksel,a,loc,x,0 * so we can put the right "space" on lines
191 lslk,s
192 csys,13
193 ksel,a,loc,x,0
194 lslk,s
195 LESIZE,ALL,,,ndiv,.2 * this makes areas larger towards center of capsules
196 lsel,all           * and they grow larger towards outside of capsule
197 amesh,all          * CsCl
198 asel,s,area,,4,46,6 * inner capsule ss
199 AATT,1,,1
200 ESIZE,,2
201 amesh,all
202 asel,s,area,,5,47,6 * air gap
203 AATT,4,,1
204 ESIZE,,3
205 amesh,all
206 asel,s,area,,6,48,6 * outer capsule ss
207 AATT,1,,1
208 ESIZE,,2
209 amesh,all
210 asel,s,area,,7,49,6 * He filled gap
211 aatt,2,,1
212 ESIZE,,3
213 amesh,all
214 asel,s,area,,8,50,6 * overpack ss
215 AATT,1,,1

```

```

216 ESIZE,,3
217 amesh,all
218 pi = 3.14159
219 s = rad3*pi/2/ndiv * match mesh
220 asel,s,area,,2 * cask
221 esize,s*2
222 aatt,1, ,1
223 amesh,all
224 asel,s,area,,52 * inner helium fill space
225 idiv = 5
226 esize,,idiv
227 aatt,2,,1 * this is He in cask
228 /com aatt,4,,1 * lets say He leaks out
229 eshape, 0
230 amesh,52
231 asel,s,area,,51 * inner support pipe
232 aatt,1,,1
233 esize,,2
234 eshape, 2
235 amesh,51
236 asel,s,area,,53 * He-filled cask
237 aatt,2,,1
238 /com aatt,4,,1 * lets say He leaks out
239 eshape,0
240 esize, s/2 * this is a trial and error sort of thing
241 amesh,53
242 asel,all
243 csys,1
244 N,,40,15 * atmosphere radiation node
245 *GET,rmax,NODE,,num,MAX
246 ET,2,surf19,1, , ,0,1 * exterior surface, xtra node, mid-side node
247 KEYOPT,2,8,3 * hf calc at surface temp
248 KEYOPT,2,9,1 * form factor from reals
249 r,3,vfac,,4 * form fact = 1, 2nd mat = 4, unit thick
250 csys,1
251 nsel,s,loc,x,22.125
252 TYPE,2
253 MAT, 1
254 REAL, 3
255 esurf, rmax
256 esel, all
257 asel,s,mat,,3
258 ASUM
259 *GET,Acap,AREA,0,area * total capsule area
260 /title, CsCl area = %Acap%
261 /pnum, area, 1
262 /number, 2
263 ls1a,s
264 aplot * plot 1
265 asel,s,area,,2
266 asum
267 *GET,Acsk,AREA,0,area * total cask area
268 /title, cask area = %acsk%
269 ls1a,s

```

```

270 aplot * plot 2
271 asel,s,area,,4,50,2
272 asel,a,area,,51. * include support
273 asum
274 *GET,Acpp,AREA,0,area * total ss area in capsule
275 /title, ss area = %acpp%
276 lsla,s
277 aplot * plot 3
278 asel,s,mat,,2
279 lsla,s
280 /title, He areas
281 aplot * plot 4
282 asel,all
283 lsel,all
284 et,3,link31 * radiation links between elements of concentric cylinders
285 type, 3
286 mat, 1
287 ar4 = rad1*pi/2/ndiv
288 R,4,ar4,1,-1, 11.89e-12 * area of unit height of cylindrical capsule
289 ar5 = rad2*pi/2/ndiv
290 R,5,ar5,1,-1, 11.89e-12
291 *use,rlink,11
292 *use,rlink,12
293 *use,rlink, 13
294 *stat
295 rlist
296 et,4,link32 * computed radiation matrix uses link32's
297 csys,1
298 nsel,s,loc,x,10.125
299 nsel,a,loc,x,rad4
300 csys,11
301 nsel,a,loc,x,rad3
302 csys,12
303 nsel,a,loc,x,rad3
304 csys,13
305 nsel,a,loc,x,rad3
306 esel,s,type,,1
307 esel,r,mat,,1
308 esln,r
309 type,4
310 esurf
311 fini
312 /aux12
313 emis,emss
314 geom,1
315 vtype
316 mpprint,1
317 write
318 fini
319 /prep7
320 nsel,all
321 esel,s,type,,4
322 edel,all
323 esel,all

```

```

324 et,5,matrix50,1
325 type,5
326 se
327 csys,1
328 WSORT,x
329 esel,s,type,,1 * lets plot the "area" elements
330 /title, area-type elements
331 nsel,s
332 eplot
333 esel,s,type,,2
334 esel,a,type,,3
335 csys,1
336 nsel,s,loc,x,0,24
337 eplot
338 esel,all
339 nsel,all
340 save
341 fini
342 /SOLU
343 antype, stat
344 autots,on
345 nsubst, 3, 10, 3
346 kbc, 0
347 outres,all,1
348 D,nmax,TEMP,etemp
349 TOFFST,460
350 tref, 70 * structure starts at tref
351 CNVTOL,HEAT
352 esel,s,type,,2 * convection bc
353 nsel,s
354 SF,all,CONV,-4
355 nsel,all
356 esel,s,mat,,3
357 p1= pc*pwr/acap
358 BFE,ALL,HGEN,,p1 * heat generation rate within CsCl
359 asel,s,area,,4,50,2
360 asel,a, area,,51
361 esla,s
362 p2 = pc*pwr/acpp
363 BFE,ALL,HGEN,,p2 * heat generation rate within capsule steel
364 asel,s,area,,2
365 esla,s
366 p3 = pcsk*pwr/acsk
367 BFE,ALL,HGEN,,p3 * heat generation rate within cask steel
368 esel,s,type,,2 * insulation on surface elements
369 p4 = 52*insl*emss/(pi*22) * insulation on 1" len of cask
370 BFE,all,HGEN,,p4 * heat gen per cubic inch
371 esel,all
372 *stat
373 solve * static soln
374 save
375 fini
376 /post1
377 /number,0

```

```

378 /pnum,area,0
379 csys,1
380 set,last
381 PRRSOL,HEAT
382 esel,s,mat,,2
383 nsle,s
384 /title, He
385 plns,temp
386 ples,terr * plot thermal error
387 esel,s,mat,,1
388 esel,r,type,,1
389 nsle,s
390 /title, SS
391 plns,temp
392 ples,terr * plot thermal error
393 esel,s,type,,2
394 etable, hf, nmisc, 5 * convection film
395 etable, tavg, nmisc, 6 * surface temp
396 etable, tblk, nmisc, 7 * bulk temp
397 ETABLE,vol,SMIS,15      * area (unit thick)
398 ETABLE,hgt,SMIS,19      * heat gen rate
399 ETABLE,hc,SMIS,20      * convection heat flow rate over entire element
400 ETABLE,hr,SMIS,21      * radiation heat flow rate over entire element
401 pret
402 SSUM
403 /title, CsCl capsule mat'l
404 esel,s,mat,,3 * CsCl capsules
405 nsle,s
406 plns,TEMP
407 nsort, temp,,0
408 *get, tmax, sort, 0, max
409 *get, tmin, sort, 0, min
410
411 /title, inner SS capsule
412 csys,11
413 nsel,s,loc,x,rad1-thk1-.01, rad1+.01
414 csys,12
415 NSEL,a,LOC,x,rad1-thk1-.01,rad1+.01
416 csys,13
417 NSEL,a,LOC,x,rad1-thk1-.01,rad1+.01
418 esln,s
419 esel,r,type,,1
420 esel,r,mat,,1
421 plns,TEMP
422 nsort, temp,,0
423 *get, tmax, sort, 0, max
424 *get, tmin, sort, 0, min
425 /title, outer SS capsule
426 csys,11
427 nsel,s,loc,x,rad2-thk2-.01, rad2+.01
428 csys,12
429 NSEL,a,LOC,x,rad2-thk2-.01,rad2+.01
430 csys,13
431 NSEL,a,LOC,x,rad2-thk2-.01,rad2+.01

```

```

432 esln,s
433 esel,r,type,,1
434 esel,r,mat,,1
435 plns,TEMP
436 nsort, temp,,0
437 *get, tmax, sort, 0, max
438 *get, tmin, sort, 0, min
439 /title, SS overpack
440 csys,11
441 nsel,s,loc,x,rad3-thk3-.01, rad3+.01
442 csys,12
443 NSEL,,LOC,X,rad3-thk3-.01,rad3+.01
444 csys,13
445 NSEL,,LOC,X,rad3-thk3-.01,rad3+.01
446 esln,s
447 esel,r,type,,1
448 esel,r,mat,,1
449 plns,TEMP
450 nsort, temp,,0
451 *get, tmax, sort, 0, max
452 *get, tmin, sort, 0, min
453 /title, inner support pipe
454 csys,1
455 nsel,s,loc,x,0,rad4+.01
456 esln,s
457 esel,r,mat,,1
458 plns,TEMP
459 nsort, temp,,0
460 *get, tmax, sort, 0, max
461 *get, tmin, sort, 0, min
462 /title, inner cask wall
463 csys,1
464 nsel,s,loc,x,10.125
465 esln,s
466 esel,a,mat,,1
467 nsort, temp,,0
468 *get, tmax, sort, 0, max
469 *get, tmin, sort, 0, min
470 /title, outer cask wall
471 nsel,s,loc,x,22.125
472 esln,s
473 esel,a,mat,,1
474 nsort, temp,,0
475 *get, tmax, sort, 0, max
476 *get, tmin, sort, 0, min
477 /title, cask wall
478 asel,s, area,,2
479 esla,s
480 nsle,s
481 plns,temp
482 nsort, temp,,0
483 *get, tmax, sort, 0, max
484 *get, tmin, sort, 0, min
485 fini

```

```
486 /exit
487
488
```

```
... include input listing of macro RLINK ...
```

```
csys,arg1
nsel,s,loc,x,rad2-thk2 * nodes across capsule gaps
nsel,a,loc,x,rad1
real,4
:RLink1
*GET,n1,NODE,,num,Max
*GET,y1,node,n1,LOC,y
n2 = node(rad1,y1,0)
e,n1,n2
nsel,u,node,,n1
nsel,u,node,,n2
*GET,n,NODE,,count
*IF,n,ne,0,:RLink1
nsel,s,loc,x,rad3-thk3 * nodes across outer gap
nsel,a,loc,x,rad2
type, 3
mat, 1
real,5
:RLink2
*GET,n1,NODE,,num,Max
*GET,y1,node,n1,LOC,y
n2 = node(rad2,y1,0)
e,n1,n2
nsel,u,node,,n1
nsel,u,node,,n2
*GET,n,NODE,,count
*IF,n,ne,0,:RLink2
nsel,all
```

```
... END OF MACRO FILE RLINK ...
```

```
... OUTPUT OMITTED ...
```

```
***** ANSYS RESULTS INTERPRETATION (POST1) *****
```

```
*** NOTE ***
CP= 461.310 TIME= 09:21:55
An active coordinate system is not zero.
RSYS= 0 CSYS= 1.0SYS= 0.
```

```
NUMBER KEY SET TO 0 -1=NONE 0=BOTH 1=COLOR 2=NUMBER
```

AREA NUMBERING KEY = 0

ACTIVE COORDINATE SYSTEM SET TO 1 (CYLINDRICAL)

USE LAST SUBSTEP ON RESULT FILE FOR LOAD CASE 0

SET COMMAND GOT LOAD STEP= 1 SUBSTEP= 3 CUMULATIVE ITERATION= 12
 TIME/FREQUENCY= 1.0000
 TITLE= area-type elements

PRINT HEAT REACTION SOLUTIONS PER NODE

area-type elements

***** POST1 TOTAL REACTION SOLUTION LISTING *****

LOAD STEP= 1 SUBSTEP= 3
 TIME= 1.0000 LOAD CASE= 0

NODE	HEAT
4174	-84.224

TOTAL VALUES

VALUE -84.224

SELECT FOR ITEM=MAT COMPONENT=
 IN RANGE 2 TO 2 STEP 1

997 ELEMENTS (OF 4258 DEFINED) SELECTED BY ESEL COMMAND.

SELECT ALL NODES HAVING ANY ELEMENT IN ELEMENT SET.

1226 NODES (OF 4174 DEFINED) SELECTED FROM
 997 SELECTED ELEMENTS BY NSLE COMMAND.

TITLE=
 He

DISPLAY NODAL SOLUTION, ITEM=TEMP COMP=

CUMULATIVE DISPLAY NUMBER 7 WRITTEN TO FILE b16.g - RASTER MODE.
 DISPLAY TITLE=
 He

DISPLAY ELEMENT SOLUTION, ITEM=TERR COMP=

CUMULATIVE DISPLAY NUMBER 8 WRITTEN TO FILE b16.g - RASTER MODE.
 DISPLAY TITLE=
 He

SELECT FOR ITEM=MAT COMPONENT=
 IN RANGE 1 TO 1 STEP 1
 2109 ELEMENTS (OF 4258 DEFINED) SELECTED BY ESEL COMMAND.

RESELECT FOR ITEM=TYPE COMPONENT=
 IN RANGE 1 TO 1 STEP 1
 1871 ELEMENTS (OF 4258 DEFINED) SELECTED BY ESEL COMMAND.

SELECT ALL NODES HAVING ANY ELEMENT IN ELEMENT SET.

2258 NODES (OF 4174 DEFINED) SELECTED FROM
 1871 SELECTED ELEMENTS BY NSLE COMMAND.

TITLE=
 SS

DISPLAY NODAL SOLUTION, ITEM=TEMP COMP=

CUMULATIVE DISPLAY NUMBER 9 WRITTEN TO FILE b16.g - RASTER MODE.
 DISPLAY TITLE=
 SS

DISPLAY ELEMENT SOLUTION, ITEM=TERR COMP=

CUMULATIVE DISPLAY NUMBER 10 WRITTEN TO FILE b16.g - RASTER MODE.
 DISPLAY TITLE=
 SS

SELECT FOR ITEM=TYPE COMPONENT=
 IN RANGE 2 TO 2 STEP 1
 41 ELEMENTS (OF 4258 DEFINED) SELECTED BY ESEL COMMAND.

STORE HF FROM ITEM=NMIS COMP= 5 FOR ALL SELECTED ELEMENTS
 STORE TAVG FROM ITEM=NMIS COMP= 6 FOR ALL SELECTED ELEMENTS
 STORE TBLK FROM ITEM=NMIS COMP= 7 FOR ALL SELECTED ELEMENTS
 STORE VOL FROM ITEM=NMIS COMP= 15 FOR ALL SELECTED ELEMENTS
 STORE HGT FROM ITEM=SMIS COMP= 19 FOR ALL SELECTED ELEMENTS
 STORE HC FROM ITEM=SMIS COMP= 20 FOR ALL SELECTED ELEMENTS
 STORE HR FROM ITEM=SMIS COMP= 21 FOR ALL SELECTED ELEMENTS

PRINT ELEMENT TABLE ITEMS PER ELEMENT

SS

***** POST1 ELEMENT TABLE LISTING *****

STAT	CURRENT	CURRENT	CURRENT	CURRENT	CURRENT	CURRENT	CURRENT	CURRENT
ELEM	HF	TAVG	TBLK	VOL	HGT	HC	HR	
4021	0.29284E-01	252.93	115.00	0.42382	0.33216E-01	1.7119	0.33822	
4022	0.29284E-01	252.93	115.00	0.42382	0.33216E-01	1.7119	0.33822	
4023	0.29284E-01	252.93	115.00	0.42382	0.33216E-01	1.7119	0.33823	
4024	0.29285E-01	252.94	115.00	0.42382	0.33216E-01	1.7120	0.33824	
4025	0.29285E-01	252.94	115.00	0.42382	0.33216E-01	1.7121	0.33826	
4026	0.29285E-01	252.95	115.00	0.42382	0.33216E-01	1.7122	0.33828	
4027	0.29286E-01	252.96	115.00	0.42382	0.33216E-01	1.7123	0.33831	
4028	0.29287E-01	252.96	115.00	0.42382	0.33216E-01	1.7124	0.33833	
4029	0.29287E-01	252.97	115.00	0.42382	0.33216E-01	1.7126	0.33837	
4030	0.29288E-01	252.98	115.00	0.42382	0.33216E-01	1.7128	0.33840	
4031	0.29289E-01	253.00	115.00	0.42382	0.33216E-01	1.7130	0.33844	
4032	0.29290E-01	253.01	115.00	0.42382	0.33216E-01	1.7132	0.33848	
4033	0.29291E-01	253.02	115.00	0.42382	0.33216E-01	1.7134	0.33852	
4034	0.29291E-01	253.04	115.00	0.42382	0.33216E-01	1.7136	0.33857	
4035	0.29292E-01	253.05	115.00	0.42382	0.33216E-01	1.7139	0.33861	
4036	0.29294E-01	253.06	115.00	0.42382	0.33216E-01	1.7141	0.33866	
4037	0.29295E-01	253.08	115.00	0.42382	0.33216E-01	1.7144	0.33871	
4038	0.29296E-01	253.10	115.00	0.42382	0.33216E-01	1.7146	0.33876	
4039	0.29297E-01	253.11	115.00	0.42382	0.33216E-01	1.7149	0.33882	
4040	0.29298E-01	253.13	115.00	0.42382	0.33216E-01	1.7151	0.33887	
4041	0.29299E-01	253.14	115.00	0.42382	0.33216E-01	1.7154	0.33892	
4042	0.29300E-01	253.16	115.00	0.42382	0.33216E-01	1.7156	0.33897	
4043	0.29301E-01	253.17	115.00	0.42382	0.33216E-01	1.7159	0.33902	
4044	0.29302E-01	253.19	115.00	0.42382	0.33216E-01	1.7162	0.33907	
4045	0.29303E-01	253.20	115.00	0.42382	0.33216E-01	1.7164	0.33912	
4046	0.29304E-01	253.22	115.00	0.42382	0.33216E-01	1.7166	0.33917	
4047	0.29305E-01	253.23	115.00	0.42382	0.33216E-01	1.7169	0.33922	
4048	0.29306E-01	253.25	115.00	0.42382	0.33216E-01	1.7171	0.33926	
4049	0.29307E-01	253.26	115.00	0.42382	0.33216E-01	1.7173	0.33930	
4050	0.29308E-01	253.27	115.00	0.42382	0.33216E-01	1.7175	0.33934	
4051	0.29309E-01	253.28	115.00	0.42382	0.33216E-01	1.7177	0.33938	
4052	0.29309E-01	253.29	115.00	0.42382	0.33216E-01	1.7179	0.33941	
4053	0.29310E-01	253.30	115.00	0.42382	0.33216E-01	1.7180	0.33944	
4054	0.29311E-01	253.31	115.00	0.42382	0.33216E-01	1.7182	0.33947	
4055	0.29311E-01	253.32	115.00	0.42382	0.33216E-01	1.7183	0.33950	
4056	0.29312E-01	253.32	115.00	0.42382	0.33216E-01	1.7184	0.33952	
4057	0.29312E-01	253.33	115.00	0.42382	0.33216E-01	1.7185	0.33954	
4058	0.29312E-01	253.33	115.00	0.42382	0.33216E-01	1.7185	0.33955	
4059	0.29313E-01	253.34	115.00	0.42382	0.33216E-01	1.7186	0.33956	
4060	0.29313E-01	253.34	115.00	0.42382	0.33216E-01	1.7186	0.33957	
4061	0.29313E-01	253.34	115.00	0.42382	0.33216E-01	1.7187	0.33957	

***** POST1 ELEMENT TABLE LISTING *****

STAT	CURRENT	CURRENT	CURRENT	CURRENT	CURRENT	CURRENT	CURRENT	CURRENT
ELEM	HF	TAVG	TBLK	VOL	HGT	HC	HR	

MINIMUM VALUES

ELEM	4021	4021	4021	4021	4021	4021	4021
VALUE	0.29284E-01	252.93	115.00	0.42382	0.33216E-01	1.7119	0.33822

MAXIMUM VALUES

ELEM	4061	4061	4021	4061	4061	4061	4061
VALUE	0.29313E-01	253.34	115.00	0.42382	0.33216E-01	1.7187	0.33957

SUM ALL THE ACTIVE ENTRIES IN THE ELEMENT TABLE

TABLE LABEL TOTAL

HF	1.20125
TAVG	10378.7
TBLK	4715.00
VOL	17.3767
HGT	1.36184
HC	70.3284
HR	13.8952

TITLE=

CsCl capsule mat'l

SELECT FOR ITEM=MAT COMPONENT=
IN RANGE 3 TO 3 STEP 1

864 ELEMENTS (OF 4258 DEFINED) SELECTED BY ESEL COMMAND.

SELECT ALL NODES HAVING ANY ELEMENT IN ELEMENT SET.

939 NODES (OF 4174 DEFINED) SELECTED FROM
864 SELECTED ELEMENTS BY NSLE COMMAND.

DISPLAY NODAL SOLUTION, ITEM=TEMP COMP=

CUMULATIVE DISPLAY NUMBER 11 WRITTEN TO FILE b16.g - RASTER MODE.

DISPLAY TITLE=
CsCl capsule mat'l

SORT ON ITEM=TEMP COMPONENT= ORDER= 0 KABS= 0 NMAX= 4174

SORT COMPLETED FOR 939 VALUES.

*GET tmax FROM SORT ITEM=MAX VALUE= 863.833883

*GET tmin FROM SORT ITEM=MIN VALUE= 667.540466

TITLE=
inner SS capsule

ACTIVE COORDINATE SYSTEM SET TO 11 (CYLINDRICAL)

SELECT FOR ITEM=LOC COMPONENT=X BETWEEN 0.97900 AND 1.1350

KABS= 0. TOLERANCE= 0.000000E+00

75 NODES (OF 4174 DEFINED) SELECTED BY NSEL COMMAND.

ACTIVE COORDINATE SYSTEM SET TO 12 (CYLINDRICAL)

ALSO SELECT FOR ITEM=LOC COMPONENT=X BETWEEN 0.97900 AND 1.1350
KABS= 0. TOLERANCE= 0.000000E+00

219 NODES (OF 4174 DEFINED) SELECTED BY NSEL COMMAND.

ACTIVE COORDINATE SYSTEM SET TO 13 (CYLINDRICAL)

ALSO SELECT FOR ITEM=LOC COMPONENT=X BETWEEN 0.97900 AND 1.1350
KABS= 0. TOLERANCE= 0.000000E+00

294 NODES (OF 4174 DEFINED) SELECTED BY NSEL COMMAND.

SELECT ALL ELEMENTS HAVING ANY NODE IN NODAL SET.

482 ELEMENTS (OF 4258 DEFINED) SELECTED FROM
294 SELECTED NODES BY ESLN COMMAND.

RESELECT FOR ITEM=TYPE COMPONENT=
IN RANGE 1 TO 1 STEP 1

384 ELEMENTS (OF 4258 DEFINED) SELECTED BY ESEL COMMAND.

RESELECT FOR ITEM=MAT COMPONENT=
IN RANGE 1 TO 1 STEP 1

192 ELEMENTS (OF 4258 DEFINED) SELECTED BY ESEL COMMAND.

DISPLAY NODAL SOLUTION, ITEM=TEMP COMP=

CUMULATIVE DISPLAY NUMBER 12 WRITTEN TO FILE b16.g - RASTER MODE..
DISPLAY TITLE=
inner SS capsule

SORT ON ITEM=TEMP COMPONENT= ORDER= 0 KABS= 0 NMAX= 4174

SORT COMPLETED FOR 294 VALUES.

*GET tmax FROM SORT ITEM=MAX VALUE= 789.816666

*GET tmin FROM SORT ITEM=MIN VALUE= 666.839346

TITLE=
outer SS capsule

ACTIVE COORDINATE SYSTEM SET TO 11 (CYLINDRICAL)

SELECT FOR ITEM=LOC COMPONENT=X BETWEEN 1.1910 AND 1.3225

KABS= 0. TOLERANCE= 0.000000E+00

75 NODES (OF 4174 DEFINED) SELECTED BY NSEL COMMAND.

ACTIVE COORDINATE SYSTEM SET TO 12 (CYLINDRICAL)

ALSO SELECT FOR ITEM=LOC COMPONENT=X BETWEEN 1.1910 AND 1.3225
KABS= 0. TOLERANCE= 0.000000E+00

219 NODES (OF 4174 DEFINED) SELECTED BY NSEL COMMAND.

ACTIVE COORDINATE SYSTEM SET TO 13 (CYLINDRICAL)

ALSO SELECT FOR ITEM=LOC COMPONENT=X BETWEEN 1.1910 AND 1.3225
KABS= 0. TOLERANCE= 0.000000E+00

294 NODES (OF 4174 DEFINED) SELECTED BY NSEL COMMAND.

SELECT ALL ELEMENTS HAVING ANY NODE IN NODAL SET.

580 ELEMENTS (OF 4258 DEFINED) SELECTED FROM
294 SELECTED NODES BY ESLN COMMAND.

RESELECT FOR ITEM=TYPE COMPONENT=
IN RANGE 1 TO 1 STEP 1

384 ELEMENTS (OF 4258 DEFINED) SELECTED BY ESEL COMMAND.

RESELECT FOR ITEM=MAT COMPONENT=
IN RANGE 1 TO 1 STEP 1

192 ELEMENTS (OF 4258 DEFINED) SELECTED BY ESEL COMMAND.

DISPLAY NODAL SOLUTION, ITEM=TEMP COMP=

CUMULATIVE DISPLAY NUMBER 13 WRITTEN TO FILE b16.9 - RASTER MODE.

DISPLAY TITLE=

outer SS capsule

SORT ON ITEM=TEMP COMPONENT= ORDER= 0 KABS= 0 NMAX= 4174

SORT COMPLETED FOR 294 VALUES.

*GET tmax FROM SORT ITEM=MAX VALUE= 741.476202

*GET tmin FROM SORT ITEM=MIN VALUE= 578.804906

TITLE=

SS overpack

ACTIVE COORDINATE SYSTEM SET TO 11 (CYLINDRICAL)

SELECT FOR ITEM=LOC COMPONENT=X BETWEEN 1.4900 AND 1.6350

KABS= 0. TOLERANCE= 0.000000E+00

100 NODES (OF 4174 DEFINED) SELECTED BY NSEL COMMAND.

ACTIVE COORDINATE SYSTEM SET TO 12 (CYLINDRICAL)

ALSO SELECT FOR ITEM=LOC COMPONENT=X BETWEEN 1.4900 AND 1.6350
KABS= 0. TOLERANCE= 0.000000E+00

292 NODES (OF 4174 DEFINED) SELECTED BY NSEL COMMAND.

ACTIVE COORDINATE SYSTEM SET TO 13 (CYLINDRICAL)

ALSO SELECT FOR ITEM=LOC COMPONENT=X BETWEEN 1.4900 AND 1.6350
KABS= 0. TOLERANCE= 0.000000E+00

392 NODES (OF 4174 DEFINED) SELECTED BY NSEL COMMAND.

SELECT ALL ELEMENTS HAVING ANY NODE IN NODAL SET.

584 ELEMENTS (OF 4258 DEFINED) SELECTED FROM
392 SELECTED NODES BY ESLN COMMAND.

RESELECT FOR ITEM=TYPE COMPONENT=
IN RANGE 1 TO 1 STEP 1

486 ELEMENTS (OF 4258 DEFINED) SELECTED BY ESEL COMMAND.

RESELECT FOR ITEM=MAT COMPONENT=
IN RANGE 1 TO 1 STEP 1

288 ELEMENTS (OF 4258 DEFINED) SELECTED BY ESEL COMMAND.

DISPLAY NODAL SOLUTION, ITEM=TEMP COMP=

CUMULATIVE DISPLAY NUMBER 14 WRITTEN TO FILE b16.g - RASTER MODE.
DISPLAY TITLE=
SS overpack

SORT ON ITEM=TEMP COMPONENT= ORDER= 0 KABS= 0 NMAX= 4174

SORT COMPLETED FOR 392 VALUES.

*GET tmax FROM SORT ITEM=MAX VALUE= 718.487115

*GET tmin FROM SORT ITEM=MIN VALUE= 504.814929

TITLE=
inner support pipe

ACTIVE COORDINATE SYSTEM SET TO 1 (CYLINDRICAL)

SELECT FOR ITEM=LOC COMPONENT=X BETWEEN 0.00000E+00 AND 2.0100

KABS= 0. TOLERANCE= 0.000000E+00

33 NODES (OF 4174 DEFINED) SELECTED BY NSEL COMMAND.

SELECT ALL ELEMENTS HAVING ANY NODE IN NODAL SET.

29 ELEMENTS (OF 4258 DEFINED) SELECTED FROM

33 SELECTED NODES BY ESLN COMMAND.

RESELECT FOR ITEM=MAT COMPONENT=

IN RANGE 1 TO 1 STEP 1

10 ELEMENTS (OF 4258 DEFINED) SELECTED BY ESEL COMMAND.

DISPLAY NODAL SOLUTION, ITEM=TEMP COMP=

CUMULATIVE DISPLAY NUMBER 15 WRITTEN TO FILE b16.s - RASTER MODE.

DISPLAY TITLE=

inner support pipe

SORT ON ITEM=TEMP COMPONENT= ORDER= 0 KABS= 0 NMAX= 4174

SORT COMPLETED FOR 33 VALUES.

*GET tmax FROM SORT ITEM=MAX VALUE= 692.054103

*GET tmin FROM SORT ITEM=MIN VALUE= 689.331748

TITLE=

inner cask wall

ACTIVE COORDINATE SYSTEM SET TO 1 (CYLINDRICAL)

SELECT FOR ITEM=LOC COMPONENT=X BETWEEN 10.125 AND 10.125
KABS= 0. TOLERANCE= 0.506250E-01

42 NODES (OF 4174 DEFINED) SELECTED BY NSEL COMMAND.

SELECT ALL ELEMENTS HAVING ANY NODE IN NODAL SET.

82 ELEMENTS (OF 4258 DEFINED) SELECTED FROM

42 SELECTED NODES BY ESLN COMMAND.

ALSO SELECT FOR ITEM=MAT COMPONENT=

IN RANGE 1 TO 1 STEP 1

2150 ELEMENTS (OF 4258 DEFINED) SELECTED BY ESEL COMMAND.

SORT ON ITEM=TEMP COMPONENT= ORDER= 0 KABS= 0 NMAX= 4174

SORT COMPLETED FOR 42 VALUES.

*GET tmax FROM SORT ITEM=MAX VALUE= 337.804347

*GET tmin FROM SORT ITEM=MIN VALUE= 330.914929

TITLE=
outer cask wall

SELECT FOR ITEM=LOC COMPONENT=X BETWEEN 22.125 AND 22.125
KABS= 0. TOLERANCE= 0.110625

42 NODES (OF 4174 DEFINED) SELECTED BY NSEL COMMAND.

SELECT ALL ELEMENTS HAVING ANY NODE IN NODAL SET.

82 ELEMENTS (OF 4258 DEFINED) SELECTED FROM
42 SELECTED NODES BY ESLN COMMAND.

ALSO SELECT FOR ITEM=MAT COMPONENT=
IN RANGE 1 TO 1 STEP 1

2109 ELEMENTS (OF 4258 DEFINED) SELECTED BY ESEL COMMAND.

SORT ON ITEM=TEMP COMPONENT= ORDER= 0 KABS= 0 NMAX= 4174

SORT COMPLETED FOR 42 VALUES.

*GET tmax FROM SORT ITEM=MAX VALUE= 253.340705

*GET tmin FROM SORT ITEM=MIN VALUE= 252.929050

TITLE=
cask wall

SELECT FOR ITEM=AREA COMPONENT=
IN RANGE 2 TO 2 STEP 1

1 AREAS (OF 52 DEFINED) SELECTED BY ASEL COMMAND.

SELECT ELEMENTS CREATED FROM SELECTED AREAS.

1189 ELEMENTS (OF 4258 DEFINED) SELECTED FROM
1 SELECTED AREAS BY ESLA COMMAND.

SELECT ALL NODES HAVING ANY ELEMENT IN ELEMENT SET.

1260 NODES (OF 4174 DEFINED) SELECTED FROM
1189 SELECTED ELEMENTS BY NSLE COMMAND.

DISPLAY NODAL SOLUTION, ITEM=TEMP COMP=

CUMULATIVE DISPLAY NUMBER 16 WRITTEN TO FILE b16.g - RASTER MODE.
DISPLAY TITLE=
cask wall

SORT ON ITEM=TEMP COMPONENT= ORDER= 0 KABS= 0 NMAX= 4174

SORT COMPLETED FOR 1260 VALUES.

*GET tmax FROM SORT ITEM=MAX VALUE= 337.804347

*GET tmin FROM SORT ITEM=MIN VALUE= 252.929050

EXIT THE ANSYS POST1 DATABASE PROCESSOR

***** ROUTINE COMPLETED ***** CP = 510.710

PURGE ALL SOLUTION AND POST DATA

SAVE ALL MODEL DATA

ALL CURRENT ANSYS DATA WRITTEN TO FILE NAME= b16a.db

FOR POSSIBLE RESUME FROM THIS POINT

NUMBER OF WARNING MESSAGES ENCOUNTERED= 4

NUMBER OF ERROR MESSAGES ENCOUNTERED= 0

ANSYS RUN COMPLETED

REV. 5.2 SGI IRIS4D

CP TIME	(sec) =	514.590	TIME =	09:23:55
ELAPSED TIME	(sec) =	1191.000	DATE =	07/10/97

487.2u 27.4s 19:50 43% 0±0k 903±17801i± 286pf±0w

Ran ANSYS 5.2 on workstation: sgi3 on: Thu Jul 10 09:23:55 PDT 1997

ANSYS 5.2 has been verified by ICF KH

Class 3 Error Reports are in the directory: /apps/ansys/cclass3 errors.

8.8.6 Peer Review Checklist

CHECKLIST FOR PEER REVIEW

Document Reviewed: Thermal Analysis for the BUSS Cask SEP, HNF-SD-TP-SEP-065

Scope of Review: Entire thermal analysis - Chapter B 8

Yes No NA

Previous reviews complete and cover analysis, up to scope of this review, with no gaps.
 Problem completely defined.
 Accident scenarios developed in a clear and logical manner.
 Necessary assumptions explicitly stated and supported.
 Computer codes and data files documented.
 Data used in calculations explicitly stated in document.
 Data checked for consistency with original source information as applicable.
 Mathematical derivations checked including dimensional consistency of results.
 Models appropriate and used within range of validity or use outside range of established validity justified.
 Hand calculations checked for errors. Spreadsheet results should be treated exactly the same as hand calculations.
 Software input correct and consistent with document reviewed.
 Software output consistent with input and with results reported in document reviewed.
 Limits/criteria/guidelines applied to analysis results are appropriate and referenced. Limits/criteria/guidelines checked against references.
 Safety margins consistent with good engineering practices.
 Conclusions consistent with analytical results and applicable limits.
 Results and conclusions address all points required in the problem statement.
 Format consistent with appropriate NRC Regulatory Guide or other standards
 Review calculations, comments, and/or notes are attached.
 Document approved.

 A handwritten signature in black ink, appearing to read "Mark E. Collins, Jr." followed by a date.

Reviewer (Printed Name and Signature)

Date

This page intentionally left blank.

9.0 PRESSURE AND GAS GENERATION

As no liquid is shipped in the package, so the only source of pressure will be due to the increase in temperature. Even if the temperature were to rise to a uniform 800 °C (the maximum fire temperature), the pressure would be:

$$\frac{P_2}{P_1} = \frac{T_2}{T_1}$$

assume $T_1 = 20^\circ\text{C}$ and $P_1 = 1 \text{ atm}$

$$\text{then } P_2 = \frac{273+800}{273+20} = 3.66 \text{ atm absolute}$$

$$P_2 = (3.66-1)14.7 = 39 \text{ psig}$$

As demonstrated in the BUSS Cask SARP (SNL 1994), this is below the maximum allowed pressure of 50 psig and no further analyses is required.

9.1 REFERENCE

SNL, 1994, *Beneficial Uses Shipping System (BUSS) Cask Safety Analysis Report for Packaging (SARP)*, Volumes I and II, SAND83-0698 (TCC-0430), Rev. 5, Sandia National Laboratories, Albuquerque, New Mexico.

This page intentionally left blank.

10.0 TIEDOWN EVALUATION

The package will be transported in its normal highway configuration as shown in the BUSS Cask SARP (SNL 1994). As a part of this, the cask is secured to a skid which is permanently attached to the trailer. The skid attachment is inspected annually as a part of routine maintenance.

10.1 REFERENCE

SNL, 1994, *Beneficial Uses Shipping System (BUSS) Cask Safety Analysis Report for Packaging (SARP)*, Volumes I and II, SAND83-0698 (TCC-0430), Rev. 5, Sandia National Laboratories, Albuquerque, New Mexico.

DISTRIBUTION SHEET

To Distribution	From Packaging Engineering			Page 1 of 1 Date 09/10/97	
Project Title/Work Order Safety Evaluation for Packaging (Onsite) for Cesium Chloride Capsules with Type W Overpacks (HNF-SD-TP-SEP-065)			EDT No. 621893 ECN No. NA		
Name	MSIN	Text With All Attach.	Text Only	Attach./ Appendix Only	EDT/ECN Only
J. G. Field	H1-15	X			
C. R. Hoover	H1-15	X			
D. W. McNally	G1-15	X			
M. M. Pereira (2 copies)	S6-51	X			
HNF-SD-TP-SEP-065 File	H1-15	X			
Central Files (1 copy + original)	A3-88	X			