

Radioactive Air Emissions Notice of Construction for 105-KW Filter Vessel Sparging Vent

Date Published
February 1998

**United States
Department of Energy**
P.O. Box 550
Richland, Washington 99352

Approved for Public Release

TRADEMARK DISCLAIMER

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.

This report has been reproduced from the best available copy.
Available in paper copy and microfiche.

Available to the U.S. Department of Energy
and its contractors from
U.S. Department of Energy
Office of Scientific and Technical Information (OSTI)
P.O. Box 62
Oak Ridge, TN 37831
(615) 576-8401

Available to the public from the U.S. Department of Commerce
National Technical Information Service (NTIS)
5285 Port Royal Road
Springfield, VA 22161
(703) 487-4650

Printed in the United States of America

DISCLM-5.CHP (8-95)

RELEASE AUTHORIZATION

Document Number: DOE/RL-98-02, Revision 0

Document Title: Radioactive Air Emissions
Notice of Construction
for 105-KW Filter Vessel
Sparging Vent

This document, reviewed in accordance with DOE Order 1430.1D, "Scientific and Technical Information Management," and DOE G 1430.1D-1, "Guide to the Management of Scientific and Technical Information," does not contain classified or sensitive unclassified information and is:

APPROVED FOR PUBLIC RELEASE

V. L. Birkland

V. L. Birkland

Lockheed Martin Services, Inc.
Document Control/Information Clearance

2/23/98

Reviewed for Applied Technology, Business Sensitive, Classified, Copyrighted, Export Controlled, Patent, Personal/Private, Proprietary, Protected CRADA, Trademark, Unclassified Controlled Nuclear Information.

Trademark Disclaimer. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. This report has been reproduced from the best available copy.

Printed in the United States of America.

Available to the U.S. Department of Energy and its contractors from the U.S. Department of Energy Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; Telephone: 423/576-8401.

Available to the public from the U.S. Department of Commerce National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161; Telephone: 703/487-4650.

CONTENTS

4	METRIC CONVERSION CHART	vi
5	1.0 INTRODUCTION	1-1
6	2.0 FACILITY LOCATION (Requirement 1)	2-1
7	3.0 RESPONSIBLE MANAGER (Requirement 2)	3-1
8	4.0 TYPE OF PROPOSED ACTION (Requirement 3)	4-1
9	5.0 STATE ENVIRONMENTAL POLICY ACT (Requirement 4)	5-1
10	6.0 PROCESS DESCRIPTION (Requirements 5 and 7)	6-1
11	6.1 EXISTING IWTS FILTER VESSEL EQUIPMENT AND PROCESS DESCRIPTION	6-6
12	6.2 PROPOSED IWTS FILTER VESSEL MODIFICATION AND PROCESS DESCRIPTION	6-6
13	6.3 CONSTRUCTION ACTIVITIES	6-7
14	7.0 ANNUAL POSSESSION QUANTITY AND PHYSICAL FORM (Requirements 10 and 11)	7-1
15	8.0 CONTROL SYSTEM (Requirement 6)	8-1
16	9.0 MONITORING SYSTEM (Requirement 9)	9-1
17	10.0 RELEASE RATES (Requirements 12 and 13)	10-1
18	10.1 PROJECTED EMISSIONS WITHOUT ABATEMENT CONTROLS IN PLACE (POTENTIAL TO EMIT)	10-1
19	10.2 PROJECTED ABATED EMISSIONS	10-2
20	11.0 OFFSITE IMPACT (Requirements 8, 14 and 15)	11-1
21	12.0 FACILITY LIFETIME (Requirement 17)	12-1
22	13.0 TECHNOLOGY STANDARDS (Requirement 18)	13-1
23	14.0 ACCIDENT SCENARIOS	14-1
24	15.0 REFERENCES	15-1

APPENDIX

49 A DISCUSSION OF BEST AVAILABLE RADIONUCLIDE CONTROL
50 TECHNOLOGY APP A-i

FIGURES

2-1. Location of the 100-K Area within the Hanford Site	2-2
2-2. Location of 105-KW and 105-KE Basins within the 100-K Area	2-3
6-1. Venting Arrangement for Air Sparge of Vessels	6-3
6-2. Venting Arrangement for Normal Operation of Filter Vessels	6-4
6-3. Venting Arrangement of Filter Vessels During IWTS Shutdown	6-5

TABLES

7-1.	Integrated Water Treatment System Source Term Throughput	7-2
10-1.	Projected Unabated Radioactive Air Emissions for Integrated Water Treatment System Filter Vessels (Potential to Emit)	10-1
10-2.	Projected Abated Radioactive Air Emissions for Integrated Water Treatment System Filter Vessels	10-3
11-1.	Total Effective Dose Equivalent to the Maximally Exposed Individual for the Unabated Emissions	11-2
11-2.	Total Effective Dose Equivalent to the Maximally Exposed Individual for the Abated Emissions	11-3

GLOSSARY

4	ALAR	as low as reasonable achievable
5	ALARACT	as low as reasonably achievable control technology
6		
7	BARCT	best available radionuclide control technology
8		
9	CFR	Code of Federal Regulations
10		
11	HEPA	high-efficiency particulate air
12	HNF	Hanford Nuclear Facility (document identifier)
13		
14	IWTS	integrated water treatment system
15		
16	MEI	maximally exposed individual
17	MCO	multi-canister overpack
18		
19	NOC	notice of construction
20		
21	PTE	potential to emit
22		
23	SEPA	(Washington) State Environmental Policy Act of 1971
24	SNF	spent nuclear fuel
25	SPR	single pass reactor
26		
27	TEDE	total effective dose equivalent
28		
29	WAC	Washington Administrative Code
30	WDOH	Washington State Department of Health
31		
32	Ci	curies
33		
34	mrem	milliroentgen equivalent man
35	MTU	metric tons of uranium
36		
37	rem	roentgen equivalent man
38		
39	μ Ci	microcuries
40	μ Ci/ml	microcuries per milliliter
41	μ Ci/L	microcuries per liter

1
2
3
4
5 METRIC CONVERSION CHART
6
78 The following conversion chart is provided to the reader as a tool to aid
9 in conversion.
1011 Into metric units
1213 Out of metric units
14

If you know	Multiply by	To get	If you know	Multiply by	To get
Length					
inches	25.40	millimeters	millimeters	0.0393	inches
inches	2.54	centimeters	centimeters	0.393	inches
feet	0.3048	meters	meters	3.2808	feet
yards	0.914	meters	meters	1.09	yards
miles	1.609	kilometers	kilometers	0.62	miles
Area					
square inches	6.4516	square centimeters	square centimeters	0.155	square inches
square feet	0.092	square meters	square meters	10.7639	square feet
square yards	0.836	square meters	square meters	1.20	square yards
square miles	2.59	square kilometers	square kilometers	0.39	square miles
square miles	259	hectares	hectares	0.00391	square miles
acres	0.404	hectares	hectares	2.471	acres
Mass (weight)					
ounces	28.35	grams	grams	0.0352	ounces
pounds	0.453	kilograms	kilograms	2.2046	pounds
short ton	0.907	metric ton	metric ton	1.10	short ton
Volume					
fluid ounces	29.57	milliliters	milliliters	0.03	fluid ounces
quarts	0.95	liters	liters	1.057	quarts
gallons	3.79	liters	liters	0.26	gallons
cubic feet	0.03	cubic meters	cubic meters	35.3147	cubic feet
cubic yards	0.76	cubic meters	cubic meters	1.308	cubic yards
Temperature					
Fahrenheit	subtract 32 then multiply by 5/9ths	Celsius	Celsius	multiply by 9/5ths, then add 32	Fahrenheit

39
40 Source: *Engineering Unit Conversions*, M. R. Lindeburg, PE., Second Ed., 1990,
41 Professional Publications, Inc., Belmont, California.

RADIOACTIVE AIR EMISSIONS
NOTICE OF CONSTRUCTION FOR
105-KW FILTER VESSEL SPARGING VENT

1.0 INTRODUCTION

This document serves as a notice of construction (NOC), pursuant to the requirements of Washington Administrative Code (WAC) 246-247-060, and as a request for approval to construct, pursuant to 40 Code of Federal Regulations (CFR) 61.07, for the Integrated Water Treatment System (IWTS) Filter Vessel Sparging Vent at 105-KW Basin.

15 Additionally, the following description, and references are provided as
16 the notices of startup, pursuant to 40 CFR 61.09(a)(1) and (2) in accordance
17 with Title 40 Code of Federal Regulations, Part 61, National Emission
18 Standards for Hazardous Air Pollutants.

20 The 105-K West Reactor and its associated spent nuclear fuel (SNF)
21 storage basin were constructed in the early 1950s and are located on the
22 Hanford Site in the 100-K Area about 1,400 feet from the Columbia River. The
23 105-KW Basin contains 964 Metric Tons of SNF stored under water in
24 approximately 3,800 closed canisters. This SNF has been stored for varying
25 periods of time ranging from 8 to 17 years. The 105-KW Basin is constructed
26 of concrete with an epoxy coating and contains approximately 1.3 million
27 gallons of water with an asphaltic membrane beneath the pool.

29 The IWTS, which has been described in the Radioactive Air Emissions NOC
30 for Fuel Removal for 105-KW Basin (DOE/RL-97-28 and page changes per
31 U.S. Department of Energy, Richland Operations Office letter 97-EAP-814) will
32 be used to remove radionuclides from the basin water during fuel removal
33 operations. The purpose of the modification described herein is to provide
34 operational flexibility for the IWTS at the 105-KW basin.

36 The proposed modification is scheduled to begin in calendar year 1998.

1 **2.0 FACILITY LOCATION (Requirement 1)**

2
3
4 The 105-KW Basin is located within the 105-KW Reactor structure in the
5 100-K Area of the Hanford Site. The 100-K Area is approximately 25 miles
6 northwest of the city of Richland, Washington. Figure 2-1 shows the location
7 of the 100-K Area within the Hanford Site and Figure 2-2 shows the location of
8 the 105-KW and 105-KE Basins.

9 The latitude and longitude for the 105-KW Basin is:

10 46 degrees 38' 50.72868" N 119 degrees 36' 13.50006" W

11
12 Address: U.S. Department of Energy, Richland Operations Office
13 Hanford Site
14 100-K Area, 105-KE and 105-KW Basins
15 Richland, Washington 99352.

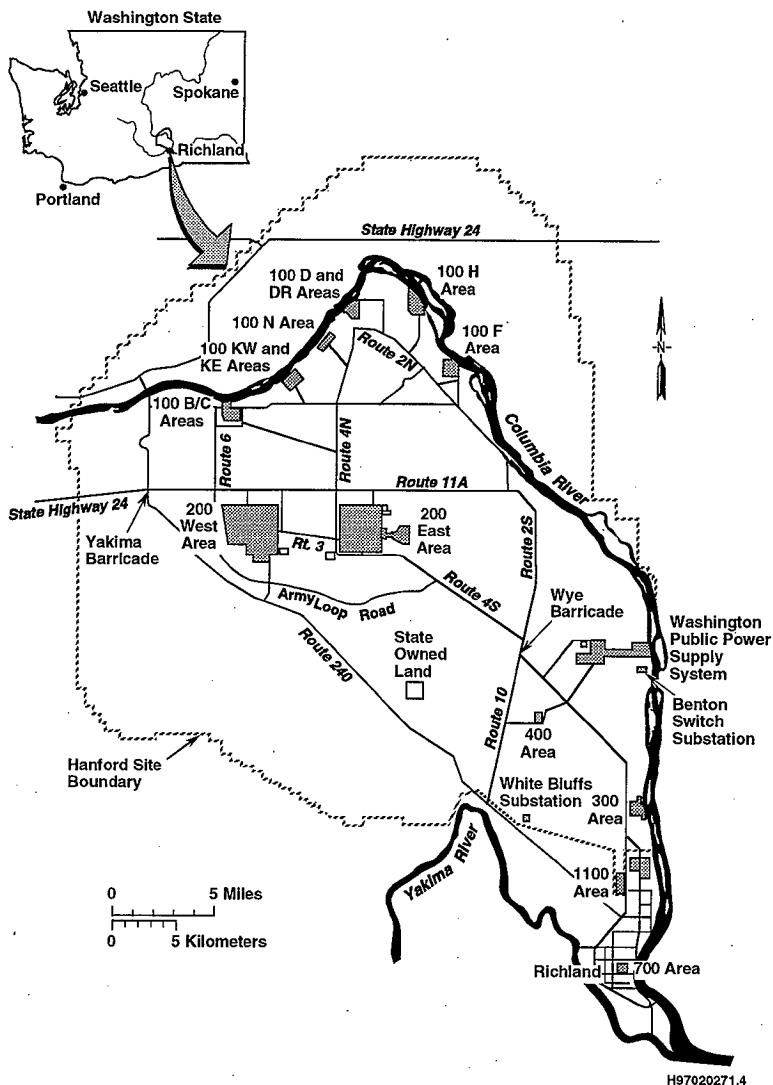


Figure 2-1. Location of the 100-K Area within the Hanford Site.

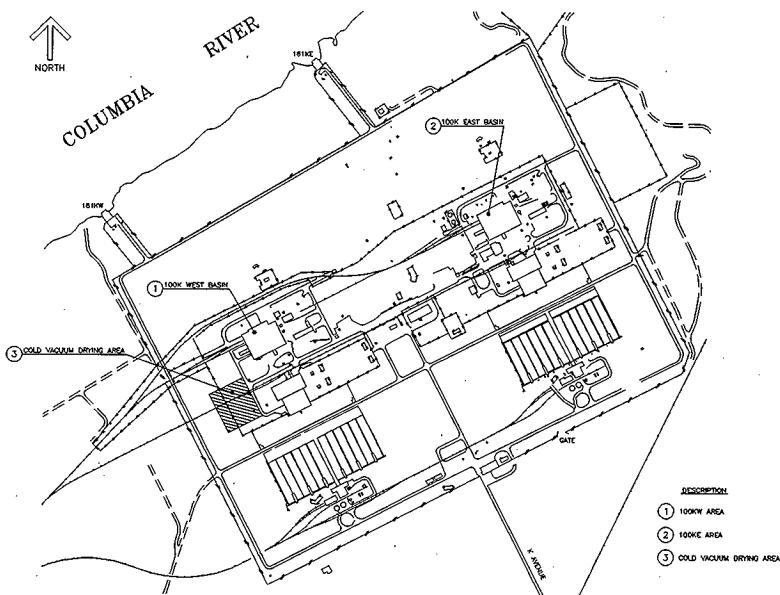


Figure 2-2. Location of 105-KW and 105-KE Basins within the 100-K Area.

3.0 RESPONSIBLE MANAGER (Requirement 2)

The responsible manager's name and address are as follows:

Ms. E. D. Sellers, Division Director
Spent Nuclear Fuel Project Division
U.S. Department of Energy
Richland Operations Office
Mail Stop S7-41
P.O. Box 550
Richland, WA. 99352
(509) 373-9860.

4.0 TYPE OF PROPOSED ACTION (Requirement 3)

The proposed action consists of the installation, operation, and maintenance of the integrated water treatment system filter vessel sparging equipment and associated vent.

This proposed action is considered a significant modification to the existing facility and operations at the 105-KW Basin in accordance with WAC 246-247-030 (16) and (25).

5.0 STATE ENVIRONMENTAL POLICY ACT (Requirement 4)

The proposed activity is categorically exempt from SEPA requirements per WAC 197-11-845(1).

6.0 PROCESS DESCRIPTION (Requirements 5 and 7)

BACKGROUND INFORMATION

The 105-KW Basin is a rectangular, reinforced concrete basin measuring 125 feet long by 66 feet wide by 21 feet deep with three main storage bays separated by concrete partitions open at each end, two loadout pits, viewing pits, and a discharge chute. Structures for transporting fuel are at the west end where the railroad tracks enter through a large rollup door providing access to the (south) loadout pit. A 32-ton bridge crane will be used for lifting multi-canister overpacks (MCOs) from the trailer into and out of the loadout pit. Metal grating is suspended over the entire basin, 21 feet above the basin floor (5 feet over the nominal water level) to provide a working surface from which operators maneuver the fuel canisters. Canisters are moved by using a hoist and monorail system that runs throughout the 105-KW Basin.

When the basin was refurbished for storage of N Reactor fuel, an epoxy coating was applied to the basin walls to minimize absorption of radionuclides into the concrete walls. Fuel storage operations at the 105-KW Basin have been continuous since 1980. The main storage bay floor is equipped with racks designed to house fuel canisters. The racks maintain the canisters upright in a fixed geometric array. The existing canisters consist of two cylinders approximately 9 inches in diameter by 26 inches tall, made of aluminum or stainless steel, and joined by trunnions to facilitate handling.

A canister can hold a maximum of 14 N Reactor fuel elements. Each canister was encapsulated (injected with a corrosion inhibitor then sealed) before storage. A gas trap was provided through the canister lid to allow the escape of gases and still isolate the contents from the basin water. Studies have shown that for some of the canisters, the seals are no longer effective and basin water has entered the canisters (DOE/RL-97-28).

The water level of the 105-KW Basin is maintained at approximately 16 feet deep to cool the fuel and to provide radiological shielding for personnel. To maintain low concentrations of radionuclides, the water is circulated through a closed-loop water treatment system, the IWTS, to remove radionuclides from the basin water.

A complete description of the 105-KW Basin can be found in the safety analysis report (WHC-SD-WM-SAR-062) and in technical safety requirements.

It is planned to remove fuel from the basin for storage in the Container Storage Building (CSB). The IWTS will support these fuel removal operations by minimizing levels of radionuclides in the basin water. Details of the fuel removal activities and the IWTS equipment have been described previously (DOE/RL-97-28 and 97-EAP-814).

1 **PROCESS MODIFICATION**

2
3 The proposed modification involves only a specific portion of the IWTS,
4 the filter vessels. The modification consists of a change in the mode of
5 operation and venting. The construction will result in the creation of a new
6 emission point for the 105-KW basin. Refer to Figures 6-1, 6-2 and 6-3 for a
7 configuration schematic of the venting arrangement of Filter vessels for
8 various modes of operation.

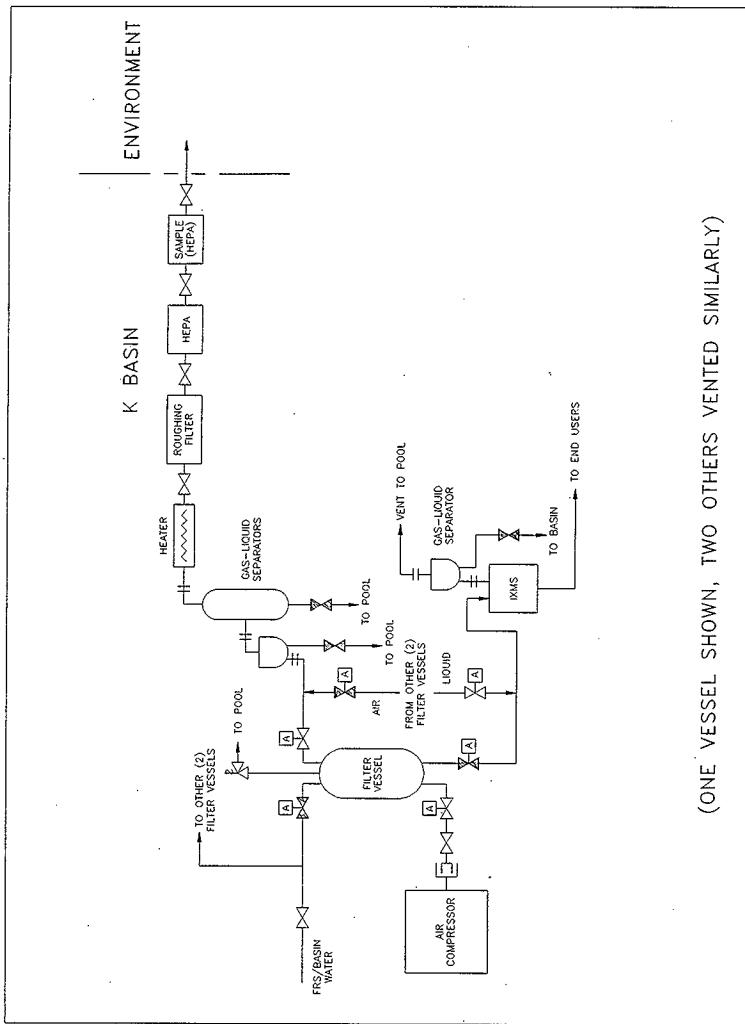


Figure 6-1. Venting Arrangement for Air Sparge of Vessels.

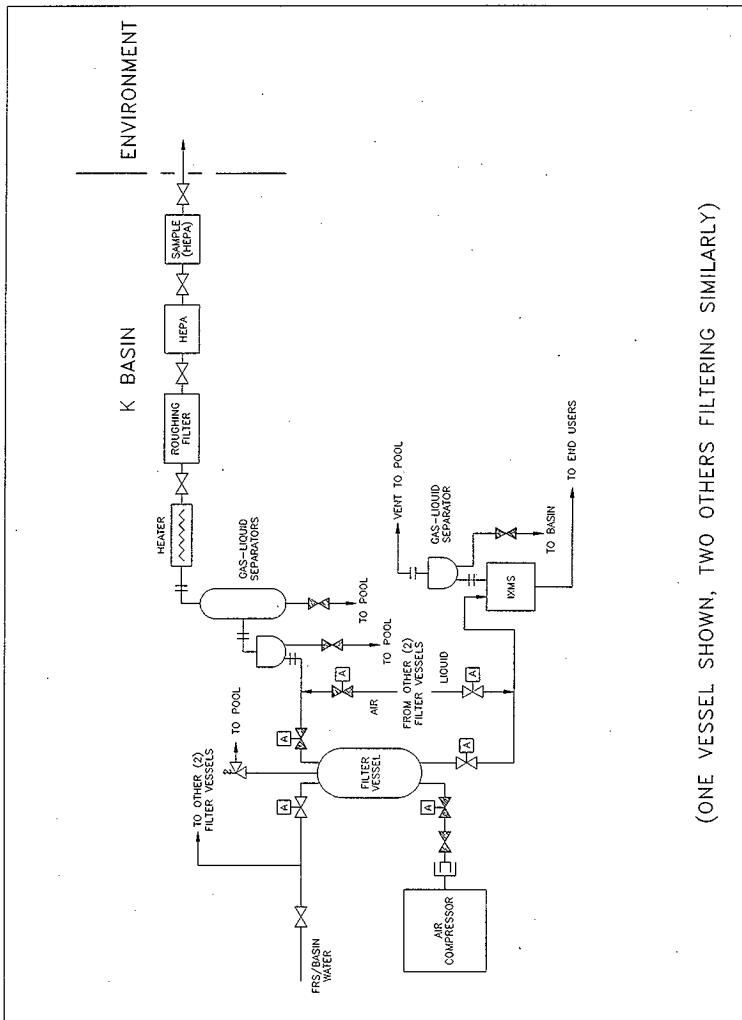


Figure 6-2. Venting Arrangement for Normal Operation of Filter Vessels

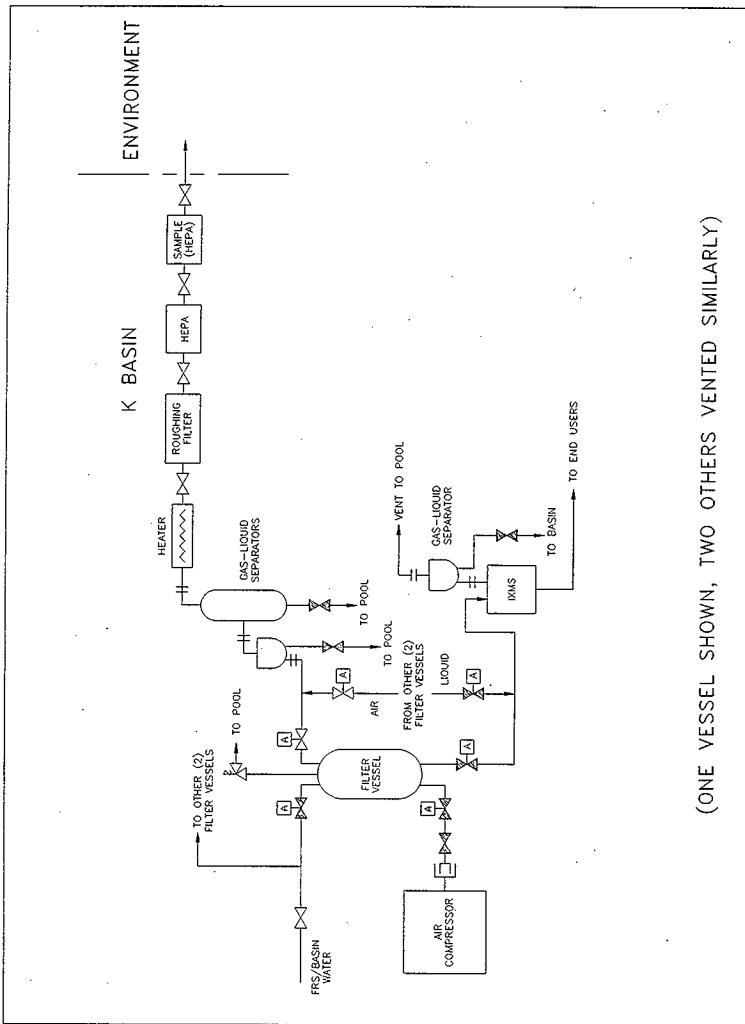


Figure 6-3. Venting Arrangement of Filter Vessels During IWTS Shutdown.

1 **6.1 EXISTING IWTS FILTER VESSEL EQUIPMENT AND PROCESS DESCRIPTION**

2
3 The IWTS will treat the basin water by filtering, settling, cooling, and
4 providing ion exchange capabilities. Filtering of coarse particulates
5 released into the water during fuel handling will be accomplished by means of
6 deep bed sandfilters, i.e., mechanical filters. The deep bed sandfilters will
7 be contained in three filter vessels, which are approximately 200 cubic feet
8 each in volume and are located above the water in the transfer area of the
9 basin. The filter vessels will contain a filter media sized to remove
10 particulates. Each filter vessel has the filter media arranged in an annular
11 fashion inside the vessel.

12
13 During IWTS operation, the filter vessels will be full of water. As
14 particulates accumulate on the filter media in the vessels, the vessels will
15 be backwashed periodically. Backwashing is accomplished by reversing the
16 water flow through the vessels and directing the effluent stream for
17 collection underwater in another portion of the IWTS.

18
19 During IWTS shutdown, water can drain from the filter media in the
20 vessels and gasses might be generated from hydrolysis of water retained in the
21 filter media. A float valve is provided in the filter vessel design to allow
22 passive venting into the basin airspace during IWTS shutdown.

23
24 The IWTS filter vessels are similar in nature to the large sandfilter
25 that has been in operation at 105-KW Basin for many years and is passively
26 vented in a similar fashion.

27
28 **6.2 PROPOSED IWTS FILTER VESSEL MODIFICATION AND PROCESS DESCRIPTION**

29
30
31 The proposed modification is limited to the IWTS filter vessels. To
32 provide operational flexibility, it is proposed to modify the operation of the
33 filter vessels. Backwashing of the vessels, as described previously, is
34 expected to remove 95 percent or greater of the radionuclides that accumulate
35 on the filter media. In the event that backwashing is not as effective as
36 desired, e.g., the back pressure remains too high, or excessive backwashing is
37 required, air sparging of the filter bed is proposed.

38
39 Air sparging consists of the injection of compressed air into the filter
40 vessel media bed to disturb the aggregate. Air sparging has been employed on
41 similar equipment off site to restore filter efficiency. The filter vessels
42 have existing valves and flanges to allow for connecting a compressed air
43 source. The compressed air source either will be connected permanently or
44 connected as needed. Air sparging, when performed, typically would involve
45 air flows of approximately 140 standard cubic feet per minute (scfm) for
46 periods of time of approximately 1 hour. Only one filter vessel would be
47 sparged at any given time.

48
49 The air displaced from the filter vessel will be directed, through valved
50 vent piping, into an exhaust stack. The existing filter vessel passive vent
51 would be disconnected from a vent pathway back to the basin and connected to
52 the same exhaust. The exhaust would be HEPA filtered and provision for

1 sampling the air stream incorporated into the design. The effluent would be
2 directed out of the transfer area through the wall or roof.
3

4 During normal operation, a valve in the vent piping will be closed and no
5 air emissions from the filter vessels will occur (Figure 6-2). During IWTS
6 shutdown, automatic valve arrangements will occur that will create a vent
7 pathway to the exhaust stack (Figure 6-3). When air sparging operations are
8 underway, automatic valve arrangements also will ensure the discharge from air
9 sparging operations will occur through the exhaust stack (Figure 6-1).

10 **6.3 CONSTRUCTION ACTIVITIES**
11

12 The construction of the IWTS sparging stack will involve placement of
13 uncontaminated new equipment into the transfer area in the basin. There are
14 no known areas of contamination expected to be encountered during this
15 construction. However, normal as low as reasonably achievable (ALARA)
16 measures will be employed before and after construction (e.g., HEPA filtered
17 ventilation, performance of radiological surveys before, during and after
18 work) to minimize the spread of contamination, should contamination be
19 encountered. The processes employed for this construction typically involve
20 the following:

21

- 22 • Drilling, including but not limited to, steel, wood, asbestos,
concrete
- 23 • Grinding, cutting, and abrading of metals
- 24 • Carpentry activities
- 25 • Welding activities
- 26 • Electrical wiring installation, reconfiguration, and rerouting
- 27 • Pipe, hose, and valve installation, reconfiguration, and rerouting
- 28 • Instrument installation, reconfiguration, and rerouting
- 29 • Paint and coating removal and application
- 30 • Structural steel removal, replacement, reconfiguration, and upgrade
- 31 • Cement, mortar, grouting and concrete removal, replacement,
reconfiguration, and installation
- 32 • Lifting, hoisting, lowering, dragging, pulling, and pushing of
construction supplies and equipment
- 33 • Use of hydraulic, pneumatic, and electric hand-tools and equipment.

34 The potential to emit (PTE) for the above construction activities will be
35 additive to the emissions from the roof vents in the 105-KW Basin. In
36 Table 10-2 of DOE/RL-97-28, the PTE for above water activities for the Fuel

1 Removal Project was determined to be 1.5 E-05 curies that would result in a
2 dose of 5.99 E-06 mrem/yr TEDE to the MEI. The construction activities
3 proposed will involve much less activity than that of the Fuel Removal
4 Project. Therefore, the PTE of the construction activities will
5 conservatively be represented by adopting the additive values of
6 1.5 E-05 curies and a dose of 5.99 E-06 mrem/yr TEDE to the MEI.

1 **7.0 ANNUAL POSSESSION QUANTITY AND PHYSICAL FORM**

2 (Requirements 10 and 11)

3
4
5 The 105-KW Basin contains approximately 961 MTU of N Reactor fuel
6 (approximately 3,800 canisters) and 22 canisters filled with 2.9 MTU of single
7 pass reactor (SPR) fuel. The N Reactor fuel consists of slightly enriched
8 metallic uranium completely enclosed and bonded to a layer of zirconium alloy
9 (Zircaloy-2), also known as the cladding. The SPR fuel is very similar,
10 except the fuel is of smaller dimensions and is clad in aluminum. The
11 cladding is designed to provide a barrier against the escape of the
12 radionuclide source term (fission products and fissile materials).

13
14 The N Reactor fuel was discharged between 1975 and 1987. The fuel has
15 decayed sufficiently to essentially eliminate iodine-131, as well as other
16 short half-life radionuclides. Following discharge of the fuel from the
17 N Reactor, the fuel was allowed to cool for a minimum of 150 days in N Basin.
18 The fuel was encapsulated in closed canisters, loaded onto railcars, and
19 transported to the 105-KW Basin for storage. Some of the canisters are known
20 to have leaked and corrosion has occurred in the fuel stored within the
21 canisters. The majority of fuel corrosion products within the canisters as
22 well as the majority of the corrosion products released to the water during
23 fuel removal activities will be treated by the IWTS and associated filter
24 vessels.

25
26 **SOURCE TERM DESCRIPTION**

27
28
29 Based on the latest characterization data, the current best estimate of
30 the quantity of canister sludge is 4.25 MTU. The conservatism of this value
31 can be judged by comparison with the quantity presented in the KE Fuel Removal
32 NOC of 3.79 MTU (DOE/RL-96-101). In addition, another 3.9 MTU is estimated to
33 be generated by the fuel removal process. Hence, a total of 8.15 MTU of
34 sludge (the number used in calculations to identify the source term) would be
35 presented to the IWTS during fuel removal operations. An upper bound, used
36 for safety analyses, is that a total of 16.2 MTU of fuel corrosion products
37 would be handled by the IWTS system. This estimate is approximately double
38 the best estimate and is highly conservative.

39
40 Table 7-1 represents the source term in 16.2 MTU of fuel that would be
41 passed through the IWTS. A total of 964 MTU of fuel is present in the basin
42 in the source term as previously described in Table 7-1 of DOE/RL-97-28. Each
43 of the IWTS source term entries listed in Table 7-1 of this document was
44 calculated by applying the ratio (16.2/964) times the quantities listed in
45 Table 7-1 of DOE/RL-97-28. Other isotopes identified in Table 7-1 of
46 DOE/RL-97-28 are present in the source term but are not accounted for in
47 Table 7-1 of this NOC. Since the proportions of these isotopes are identical
48 in both cases, only those that might change the calculated TEDE to the MEI
49 have been included in this NOC.

1 Table 7-1. Integrated Water Treatment System Source Term Throughput.
2 (physical state = particulate solid)
3

4	Radionuclide	Inventory (Ci)
5	H ³	3.22 E+02
6	Co ⁶⁰	3.74 E+01
7	Kr ⁸⁵	5.31 E+03
8	Sr ⁹⁰	8.80 E+04
9	Ru ¹⁰⁶	9.71 E+00
10	Sb ¹²⁵	3.12 E+02
11	Cs ¹³⁴	1.74 E+02
12	Cs ¹³⁷	1.13 E+05
13	Eu ¹⁵⁴	9.47 E+02
14	Eu ¹⁵⁵	1.94 E+02
15	Pu ²³⁸	8.63 E+02
16	Pu ^{239/240}	2.60 E+03
17	Pu ²⁴¹	5.09 E+04
18	Am ²⁴¹	2.82 E+03
19	Total	2.66 E+05

1 **8.0 CONTROL SYSTEM (Requirement 6)**
2
3
4 The 105-KW Basin does not provide for inlet supply air and exhausted air
5 is not filtered. However, the filter vessel vent will be HEPA filtered and
6 exhausted through a separate vent path other than the basin roof exhausters.
7
8
9 **CONTROL EQUIPMENT**
10

11 Two HEPA filters will be provided in the filter vessel vent, the second
12 one employed to serve as a sample collector. The filters are sized to
13 accommodate a 150 cfm air flow rate and are approximately 12 inches by
14 12 inches by 6 inches in size. Both HEPA filters are in-place tested to
15 remove 99.95 percent of particulates at 0.3μ median diameter from the air
16 stream. HEPA filters will be designed per ASME N-509 standards and be
17 designed to test to ASME N-510 standards. Differential pressure gauges will
18 be provided for each filter. Isolation valves will be installed prior to and
19 after each HEPA filter. The HEPA filter housings will utilize a bag-in
20 bag-out housing constructed of stainless steel. Detailed design drawings of
21 the system will be available for inspection at the facility.
22

23 A stainless steel moisture separator will be employed ahead of the HEPA
24 filters to remove a minimum of 99 percent of the water from the filter vessel
25 vent. Water collected by the moisture separator either will be drained into a
26 portable tank for disposal or piped directly back into the basin. The system
27 incorporates a prefilter ahead of the HEPA filters. The prefilter consists of
28 a glass microfiber paper filter rated at 60 to 65 percent ASHRAE efficiency.
29 Finally, a preheater has been incorporated into the design to ensure moisture
30 does not impair HEPA performance.
31

32 The air discharged from the HEPA filters will be piped outside of the
33 building in the northwest corner of the transfer area of the basin.

9.0 MONITORING SYSTEM (Requirement 9)

The 105-KW Basin does not provide inlet supply air and exhausted air is not filtered. Air is exhausted from the building via roof vents, two over the basin and two over the transfer high bay area. The new exhaust path created would create a separate emission point for the basin. As required by 40 Code of Federal Regulations (CFR) 61, Subpart H, the emission measurements need to be in conformance with the requirements of 61.93(b). Included in Section 61.93(b)(4)(i) is the statement: "With prior Environmental Protection Agency (EPA) approval, DOE may determine these emissions through alternative procedures." Because of circumstances that will be explained below, a request for alternative monitoring pursuant to 40 CFR 61.93(2)(i) is incorporated into this NOC.

The sparging vent is a new source and the request for approval of the alternative method is consistent with requirements specified in 40 CFR 61.93(b)3 for existing sources (before December 15, 1989). The requirements of 40 CFR 61.93(b)3 are as follows:

"When it is impractical to measure the effluent flow rate at an existing source in accordance with the requirements of paragraph (b)(1) of this section or to monitor or sample an effluent stream at an existing source in accordance with the site selection and sample extraction requirements of paragraph (b)(2) of this section, the facility owner or operator may use alternative effluent flow rate measurement procedures or site selection and sample extraction procedures provided that:

- (A) It can be shown that the requirements of paragraph (b)(1) or (2) of this section are impractical for the effluent stream;
- (B) The alternative procedure will not significantly underestimate the emissions;
- (C) The alternative procedure is fully documented;
- (D) The owner or operator has received prior approval from EPA."

The following describes the criteria to justify use of an alternative method.

A. Requirements Are Impractical

The sparging vent will normally be closed and will open intermittently for either passive ventilation during IWTS shutdown or for forced ventilation during sparging (See Figures 6-1, 6-2 and 6-3). The system would need to be designed for continuous flow to accommodate a flow monitoring and record sampler installation. These increased emissions would be counter to as low as reasonably achievable (ALARA) guidelines.

1 B. Alternative Procedure Will Not Underestimate Emissions
2
3 1. Particulate Emissions

4
5 The proposed alternative approach involves using a second HEPA filter
6 as the sampler for the entire air stream. The capture efficiency of
7 the second HEPA filter will be 99.95 percent for particles with a
8 median diameter of 0.3 micron. The second HEPA filter will undergo
9 non destructive assay (NDA) to detect the gamma rays emitted from the
10 decay of the cesium-137 isotope using a gamma spectrometer
11 (HPJ 1996). Because the entire exhausted flow is routed through the
12 sample filter, essentially all emissions will be measured and
13 accounted for. The assumption is made that whatever is on the sample
14 filter would be exhausted to the atmosphere. This results in a
15 highly conservative estimate of emissions, and does not under
16 estimate emissions. Because the sample filter has at least a
17 95.95 percent efficiency for 0.3 micron particulates, better than
18 95 percent of the particulate emissions are expected to be collected
19 on the filter. Assuming that the material collected on the filter
20 was exhausted is extremely conservative for estimating actual
21 emissions.

22
23 2. Gaseous Emissions
24

25
26 There are no measurable concentrations of gaseous radionuclides
27 expected to be released. As a result, gaseous radionuclides would
28 not contribute more than ten percent of the potential offsite dose.
29 Therefore, only particulate samples are required.

30 C. Full Documentation of the Alternative Procedure
31

32 The alternate procedure is that the second HEPA filter will undergo NDA
33 analysis to measure Cs-137. The filter will be removed and relocated for
34 assay using gamma ray spectroscopy. Detection limits are 100 nanocuries
35 or less for Cs-137. It is unlikely that other isotopes will be
36 detectable. The measurements will be done quarterly whenever air
37 sparging has been operated, i.e., a forced air flow has been used. If
38 the vessels are only passively ventilated, i.e., air sparging has not
39 been operated, then the measurements will be done at least annually. The
40 increase in radionuclide content of the HEPA filter will be considered
41 the emissions released over the period. The procedure includes the
42 following.

43
44 1. The samples will be representative.
45
46 2. A log will be maintained with the date of filter installation and
47 NDA, along with previous NDA results. NDA testing will be
48 performed quarterly when sparging has been performed, or at least
49 annually when used as passive ventilation.

1 3. The quality assurance program will follow the onsite quality
2 assurance program plan for radionuclide airborne emissions
3 monitoring.

5 4. Aerosol testing will be performed annually on the both HEPA
6 filters to ensure the filters maintain 99.95 percent removal
7 efficiency of the test aerosol.

9 The particulate radionuclides contributing 10 percent or more of the
10 potential to emit total effective dose equivalent (TEDE) to the maximum
11 exposed individual (MEI) are plutonium-239/240 and americium-241. The
12 particulate radionuclides that could contribute greater than 0.1 mrem of the
13 potential to emit TEDE to the MEI are plutonium 238, plutonium 239/240,
14 plutonium-241, americium-241, cesium-137, and strontium-90. The particulate
15 radionuclides that could contribute greater than twenty five percent of the
16 TEDE to the MEI, after controls, are plutonium 239/240 and americium-241.

18 For the NDA assay, any isotopes listed above that are not detected will
19 be estimated from the measured cesium-137 values. The estimate will assume
20 that isotopes are present in proportion to those listed in Table 7-1. These
21 proportions are generally reflective of the proportions reported for previous
22 105-KW radioactive air emissions. As an example, the quantity of Pu-239/240
23 emissions from the 105-KW facility in 1996 was 1.7 E-07 Ci, which is 1.8
24 percent of the Cs-137 emissions of 9.1 E-06 Ci (see Table 10-2 of
25 DOE/RL-97-28). Using Table 7-1 values from this NOC, the plutonium-239/240 is
26 2.3 percent of the cesium-137. Therefore, it is believed that using Table 7-1
27 ratios conservatively estimate the emissions of other isotopes. The measured
28 quantities and estimated values will be reported as the emissions for the
29 filter vessel vent for the sample period.

1 **10.0 RELEASE RATES (Requirements 12 and 13)**
2
3
4

5 The following provides projections of potential emissions based on good
6 engineering judgment, actual emissions data, and the required assumptions
7 regarding absence of emissions control equipment.
8

9 **10.1 PROJECTED EMISSIONS WITHOUT ABATEMENT CONTROLS IN PLACE**
10 **(POTENTIAL TO EMIT)**
11

12 The PTE will be determined by using a release factor of 0.001 for
13 particulate solids in accordance with Appendix D to 40 CFR 61. There is
14 considerable uncertainty as to the number of cycles and frequency of air
15 sparging operations that will be required. In addition, the source term that
16 remains in the filter media when air sparging occurs is variable and
17 uncertain. Therefore, to allow for maximum flexibility, the entire IWTS
18 source term throughput will be assumed, i.e., the values presented in
19 Table 7-1. This results in a very conservative PTE in that all sludge is
20 assumed to be processed by the IWTS filter vessels in a 1 year period, and
21 none is assumed to be retained in the settlers and polishing filters. Because
22 of the fragmentation of the source into small particulates, all gasses are
23 assumed to have escaped elsewhere in the process and are not accounted for in
24 the release. The physical state of all radionuclides is solid. Gasses are
25 assumed to have been released earlier in the process from particulates. The
26 results are shown in Table 10-1 and are equal to 260 curies.
27

28 The potential to emit (PTE) for the construction activities will be
29 additive to the emissions from the roof vents in the 105-KW Basin. In Table
30 10-2 of DOE/RL-97-28, the PTE for above water activities for the Fuel Removal
31 Project was determined to be 1.5 E-05 curies that would result in a dose of
32 5.99 E-06 mrem/yr TEDE to the MEI. The construction activities proposed will
33 involve much less activity than that of the Fuel Removal Project. Therefore,
34 the PTE of the construction activities will conservatively be represented by
35 adopting the additive values of 1.5 E-05 curies and a dose of
36 5.99 E-06 mrem/yr TEDE to the MEI.

1 Table 10-1. Projected Unabated Radioactive Air Emissions
2 for Integrated Water Treatment System Filter Vessels
3 (Potential to Emit).

5 Radionuclide	6 Inventory (curie), from 7 Table 7-1	8 40 CFR 61 Appendix D 9 Release Factor*	10 Estimated release, 11 potential to emit (curie)
Co ⁶⁰	3.74 E+01	.001	3.74 E-02
Sr ⁹⁰	8.80 E+04	.001	8.80 E+01
Ru ¹⁰⁶	9.71 E+00	.001	9.71 E-03
Sb ¹²⁵	3.12 E+02	.001	3.12 E-01
Cs ¹³⁴	1.74 E+02	.001	1.74 E-01
Cs ¹³⁷	1.13 E+05	.001	1.13 E+02
Eu ¹⁵⁴	9.47 E+02	.001	9.47 E-01
Eu ¹⁵⁵	1.94 E+02	.001	1.94 E-01
Pu ²³⁸	8.63 E+02	.001	8.63 E-01
Pu ^{239/240}	2.60 E+03	.001	2.6 E+00
Pu ²⁴¹	5.09 E+04	.001	5.09 E-01
Am ²⁴¹	2.82 E+03	.001	2.82 E-00
Total	2.60 E+05		2.60 E+02

19 * Release factor = 0.001 for particulate solids.

20 10.2 PROJECTED ABATED EMISSIONS

21 The estimated abated emissions are determined by assuming HEPA filter
22 removal efficiency is equal to a factor of 2000, i.e., 1/2000 of the
23 particulates escape. No credit has been taken for particulate removal by the
24 sample HEPA filter or the pre-filter. All gasses also are assumed to have
25 escaped elsewhere in the process and are not accounted for in the projection.
26 The estimate is shown in Table 10-2, where the abated release is projected to
27 be 0.13 curies.

1 Table 10-2. Projected Abated Radioactive Air Emissions
2 for Integrated Water Treatment System Filter Vessels.
3

4	Radionuclide	Inventory (curie), from Table 7-1	40 CFR 61 Appendix D release factor	Estimated release, potential to emit (curie)	Abatement factor (HEPA = 1/2000)	Abated release (curie)
5	Co ⁶⁰	3.74 E+01	.001	3.74 E-02	.0005	1.87 E-05
6	Sr ⁹⁰	8.80 E+04	.001	8.80 E+01	.0005	4.4 E-02
7	Ru ¹⁰⁶	9.71 E+00	.001	9.71 E-03	.0005	4.85 E-06
8	Sb ¹²⁵	3.12 E+02	.001	3.12 E-01	.0005	1.56 E-04
9	Cs ¹³⁴	1.74 E+02	.001	1.74 E-01	.0005	8.68 E-05
10	Cs ¹³⁷	1.13 E+05	.001	1.13 E+02	.0005	5.66 E-02
11	Eu ¹⁵⁴	9.47 E+02	.001	9.47 E-01	.0005	4.74 E-04
12	Eu ¹⁵⁵	1.94 E+02	.001	1.94 E-01	.0005	9.69 E-05
13	Pu ²³⁸	8.63 E+02	.001	8.63 E-01	.0005	4.32 E-04
14	Pu ^{239/240}	2.60 E+03	.001	2.60 E+00	.0005	1.30 E-03
15	Pu ²⁴¹	5.09 E+04	.001	5.09 E+01	.0005	2.55 E-02
16	Am ²⁴¹	2.82 E+03	.001	2.82 E+00	.0005	1.41 E-03
17	Total	2.60 E+05		2.60 E+02		1.30 E-01
18						

1 11.0 OFFSITE IMPACT (Requirements 8, 14 and 15)
2
3
4

5 The total effective dose equivalent (TEDE) for unabated potential
6 emissions to the maximally exposed individual (MEI) is presented in
7 Table 11-1. The MEI is located 6.14 miles west of the 100 Areas. The dose
8 conversion factors used were derived from the EPA-approved CAP-88 code
9 (EPA 1990). The projected dose for each individual radionuclide was
10 calculated by multiplying the projected annual emission (Chapter 10.0,
11 Table 10-1) by the dose conversion factor. The resulting dose is
12 118 millirem.

13 The TEDE to the MEI of the projected abated emissions is presented in
14 Table 11-2. The MEI is located 6.14 miles west of the 100 Areas. The dose
15 conversion factors used were derived from the CAP-88 code. The projected dose
16 for each individual radionuclide is calculated by multiplying the projected
17 annual emission from Table 10-2 by the dose conversion factor. The resulting
18 dose is 0.059 millirem.

19
20 The particulate radionuclides contributing 10 percent or more of the PTE
21 TEDE to the MEI are plutonium-239/240 and americium-241. The particulate
22 radionuclides that could contribute greater than 0.1 mrem of the PTE TEDE to
23 the MEI are plutonium-238, plutonium-239/240, plutonium-241, americium-241,
24 cesium-137, and strontium-90. The particulate radionuclides that could
25 contribute greater than 25 percent of the TEDE to the MEI, after controls, are
26 plutonium-239/240 and americium-241.

27
28 As per Section 10.0, the PTE of the construction activities will
29 conservatively be represented by adopting the additive values of 1.5 E-05
30 curies and a dose of 5.99 E-06 mrem/yr TEDE to the MEI.

Table 11-1. Total Effective Dose Equivalent to the Maximally Exposed Individual for the Unabated Emissions.

Radionuclide	Unabated emissions (Ci/yr)	CAP-88 Dose conversion factor (mrem/Ci)	TEDE to the MEI (mrem/yr)	Dose ^a (percent of total)
Co ⁶⁰	3.74 E-02	4.28 E-02	1.60 E-03	<0.1
Sr ⁹⁰ b	8.80 E+01	6.45 E-02	5.68 E+00	4.8
Ru ¹⁰⁶	9.71 E-03	3.08 E-02	2.99 E-04	<0.1
Sb ¹²⁵	3.12 E-01	6.13 E-03	1.91 E-03	<0.1
Cs ¹³⁴	1.74 E-01	4.62 E-02	8.02 E-03	<0.1
Cs ¹³⁷ b	1.13 E+02	3.53 E-02	3.99 E+00	3.38
Eu ¹⁵⁴	9.47 E-01	2.69 E-02	2.55 E-02	<0.1
Eu ¹⁵⁵	1.94 E-01	4.90 E-03	9.50 E-04	<0.1
Pu ²³⁸ b	8.63 E-01	1.18 E+01	1.02 E+01	8.62
Pu ^{239/240} b,c	2.60 E+00	1.28 E+01	3.33 E+01	28.21 ^c
Pu ²⁴¹ b	5.09 E+01	2.03 E-01	1.03 E+01	8.74
Am ²⁴¹ b,c	2.82 E+00	1.94 E+01	5.46 E+01	46.21 ^c
Total	2.60 E+02		1.18 E+02	100.0

a Column might not add up to 100% due to rounding off.

b Radionuclides that could contribute greater than 0.1 mrem per year PTE TEDE to the MEI.

c Radionuclides that could contribute greater than 10% of the potential to emit.

Ci/yr = curie per year.

MEI = maximally exposed individual.

mrem/Ci = millirem per curie.

mrem/yr = millirem per year.

TEDE = total effective dose equivalent.

1 Table 11-2. Total Effective Dose Equivalent to the Maximally Exposed
2 Individual for the Abated Emissions.
3

4	Radionuclide	Abated emissions (Ci/yr)	CAP-88 Dose conversion factor (mrem/Ci)	TEDE to the MEI (mrem/yr)	Dose ^a (percent of total)
5	Co ⁶⁰	1.87 E-05	4.28 E-02	8.01 E-07	<0.1
6	Sr ⁹⁰	4.40 E-02	6.45 E-02	2.84 E-03	4.8
7	Ru ¹⁰⁶	4.85 E-06	3.08 E-02	1.50 E-07	<0.1
8	Sb ¹²⁵	1.56 E-04	6.13 E-03	9.56 E-07	<0.1
9	Cs ¹³⁴	8.68 E-05	4.62 E-02	4.01 E-06	<0.1
10	Cs ¹³⁷	5.66 E-02	3.53 E-02	2.00 E-03	3.38
11	Eu ¹⁵⁴	4.74 E-04	2.69 E-02	1.27 E-05	<0.1
12	Eu ¹⁵⁵	9.69 E-05	4.90 E-03	4.75 E-07	<0.1
13	Pu ²³⁸	4.32 E-04	1.18 E+01	5.09 E-03	8.62
14	Pu ^{239/240} b	1.30 E-03	1.28 E+01	1.67 E-02	28.21
15	Pu ²⁴¹	2.55 E-02	2.03 E-01	5.17 E-03	8.74
16	Am ²⁴¹ b	1.41 E-03	1.94 E+01	2.73 E-02	46.21
17	Total	1.30 E-01		5.91 E-02	100.0

19 a Column might not add up to 100% due to rounding off.

20 b Radionuclides that could contribute greater than twenty five percent
21 of the TEDE to the MEI, after controls.

22 Ci/yr = curie per year.

23 MEI = maximally exposed individual.

24 mrem/Ci = millirem per curie.

25 mrem/yr = millirem per year.

26 TEDE = total effective dose equivalent.

1 **12.0 FACILITY LIFETIME** (Requirement 17)

2

3

4 The activities described in this NOC are scheduled to begin in calendar

5 year 1998 and will continue approximately six years. At the point the air

6 sparging is no longer necessary, it is anticipated that the air sparging stack

7 will be removed, the passive vent pathway back to the basin will be restored,

8 and a report of closure filed in accordance with WAC 246-247-080(6). The date

9 for basin deactivation has not been established and depends on milestones

10 established in the *Hanford Federal Facility Agreement and Consent Order*

11 (Ecology et al. 1996).

1 13.0 TECHNOLOGY STANDARDS (Requirement 18)

2

3

4 The filter vessel vent HEPA filters will be designed and constructed to

5 meet ASME N-509 and ASME N-510 standards. The design of the filter vessel

6 vent will comply with ANSI/ASME NQA-1 quality assurance requirements. The

7 other control technology standards described in 246-247-110 (18) are not

8 applicable to the alternative sampling method.

9

10 During the other activities described in this NOC, good engineering

11 practices will be employed to reduce airborne emissions. General design

12 criteria are based on "National Consensus" codes and standards and pertinent

13 state and local codes and standards will be used.

1 14.0 ACCIDENT SCENARIOS
2

3 There are no postulated accidents, with the probability of occurrence
4 of 1 in 100 during the postulated lifetime of the 105-KW Filter Vessel
5 Sparging Vent, that would cause an accidental uncontrolled release.

1 15.0 REFERENCES
2
3
4 97-EAP-814, Correspondence from James E. Rasmussen, U.S. Department of Energy,
5 Richland Operations Office to A. W. Conklin, Washington State Department
6 of Health, "Radioactive Air Emissions Notice of Construction (NOC)
7 105 K West Fuel Removal, Page Changes", dated December 9, 1997.
8
9 DOE/RL-96-101, *Radioactive Air Emissions Notice of Construction Fuel Removal*
10 for 105-KE Basin, U.S. Department of Energy, Richland Operations Office,
11 Richland, Washington, 1997.
12
13 DOE/RL-97-28, *Radioactive Air Emissions Notice of Construction Fuel Removal*
14 for 105-KW Basin, U.S. Department of Energy, Richland Operations Office,
15 Richland, Washington, 1997.
16
17 Ecology, EPA, and DOE-RL, 1996, *Hanford Federal Facility Agreement and Consent*
18 *Order*, Washington State Department of Ecology, U.S. Environmental
19 Protection Agency, U.S. Department of Energy, Richland Operations Office,
20 Olympia, Washington, amended periodically.
21
22 EPA, 1997, Letters, OAQ-107, A. J. Frankel, Environmental Protection Agency,
23 to J. E. Rasmussen, U.S. Department of Energy, Richland Operations
24 Office, 291-B air filters, and LR56 Cask Truck, July 17, 1997.
25
26 HPJ, 1996, "Six Methods To Assess Potential Radioactive Air Emissions From
27 A Stack", Health Physics Journal, Volume 71, Number 5, November 1996.
28
29 WDOH, 1992, Letter, Air 92-107, A. W. Conklin, Washington State Department of
30 Health, to J. D. Bauer, U.S. Department of Energy, Richland Operations
31 Office, no subject, October 5, 1992.
32
33 WHC-EP-0498, *Unit Dose Calculation Methods and Summary of Facility Effluent*
34 *Monitoring Plan Determinations*, Westinghouse Hanford Company, Richland,
35 Washington.
36
37 WHC-SD-WM-SAR-062, *K Basins Safety Analysis Report*, Rev. 3, Westinghouse
38 Hanford Company, Richland, Washington.
39

1 APPENDIX A
2
3
4

5 **DISCUSSION OF BEST AVAILABLE RADIONUCLIDE CONTROL TECHNOLOGY**
6

7 As stated in WAC 246-247-040(3), "All new construction and significant
8 modifications of emission units commenced after August 10, 1988, shall utilize
9 BARCT." The proposed modification is considered significant.
10

11 As stated in WAC 246-247-120, only those radionuclides comprising more
12 than 10 percent of the unabated dose need to be evaluated. All of these are
13 particulate radionuclides. The Washington State Department of Health has
14 provided guidance that HEPA filters generally are considered BARCT for
15 particulate emissions (WDOH 1992).
16

DISTRIBUTION

OFFSITE

A. W. Conklin, Head
Department of Health
Division of Radiation Protection
7171 Cleanwater Lane, Bldg. 5
P. O. Box 47827
Olympia, Washington 98504-7827

E. R. Skinnerland
Section Manager
Washington State Department of Ecology
1315 West Fourth Avenue
Kennewick, Washington 99336-6018

S. M. Alexander
Perimeter Section
Washington State Department of Ecology
1315 West Fourth Avenue
Kennewick, Washington 99336-6018

A. J. Frankel, Director
Office of Air Quality
U.S. Environmental Protection Agency
Region 10
Mail Stop AT-082
1200 Sixth Avenue
Seattle, Washington 98101

J. Wilkinson
Confederated Tribes of the Umatilla
Indian Reservation
P. O. Box 638
Pendleton, Oregon 97801

D. Powaukee
Nez Perce Tribe
P. O. Box 305
Lapwai, Idaho 80540

R. Jim, Manager
Environmental Restoration/
Waste Management Program
Confederated Tribes and Bands
of the Yakama Nation
P. O. Box 151
Toppenish, Washington 98948

DISTRIBUTION (cont)

ONSITE

MSIN

U.S. Department of Energy
Richland Operations Office

C. A. Ayoub (3)	S7-41
G. M. Bell	A4-52
B. A. Biro	S7-41
J. M. Escamillo	S7-41
R. M. Hiegel	S7-41
R. G. Holt	S7-41
R. L. Long	S7-41
P. G. Loscoe	S7-41
G. Z. Morgan	S7-41
H. M. Rodriguez (7)	A5-15
K. M. Schierman	S7-41
E. D. Sellers	S7-41
Reading Room	H2-53

Duke Engineering & Services Hanford, Inc.

K. H. Bergsman	X3-85
R. G. Gant (5)	X3-79
J. R. Gregory (3)	X3-72
G. S. Hunacek	X3-79
P. G. Huntley	X3-72
D. P. Kimball	X3-71
P. G. LeRoy	R3-11
J. E. Loomis	X3-85
D. S. Takasumi	X3-85
D. J. Watson (3)	X3-79
PGL File/LB	R3-11
SNF Project Files	R3-11

Fluor Daniel Hanford, Inc.

J. A. Bates	H6-36
E. W. Gerber	R3-11
J. L. Jacobson	B3-70
E. S. McGinley	H8-68
K. A. Peterson	H6-36
L. K. Trent	H8-67
N. H. Williams	R3-11
B. D. Williamson	B3-15

DISTRIBUTION (cont)

ONSITE	MSIN
<u>Hanford Technical Library</u>	K1-11
<u>Numatec Hanford Corporation</u> G. P. Chevrier	R3-86
<u>Rust Federal Services of Hanford, Inc.</u> E. M. Greager L. D. Kamberg J. J. Luke Air Operating Permit File	H6-36 H6-26 H6-25 H6-25
<u>Lockheed Martin Services, Inc.</u> Central Files DPC EDMC (2)	A3-88 H6-08 H6-08