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ABSTRACT

This paper describes a new 3D parallel GILD electromagnetic (EM) modeling and

nonlinear inversion algorithm. The algorithm consists of: (a) a new magnetic integral

equation instead of the electric integral equation to solve the electromagnetic forward
modeling and inverse problem; (b) a collocation finite element method for solving the
magnetic integral and a Galerkin finite element method for the magnetic differential
equations; (c) a nonlinear regularizing optimization method to make the inversion
stable and of high resolution; and (d) a new parallel 3D modeling and inversion using
a global integral and local differential domain decomposition technique (GILD). The
new 3D nonlinear electromagnetic inversion has been tested with synthetic data and
field data. We obtained very good imaging for the synthetic data and reasonable
subsurface EM imaging for the field data. The parallel algorithm has high parallel
efficiency over 90% and can be a parallel solver for elliptic, parabolic, and hyperbolic
modeling and inversion. The parallel GILD algorithm can be extended to develop a
high resolution and large scale seismic and hydrology modeling and inversion in the

massively parallel computer.
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INTRODUCTION

Three dimensional electromagnetic inversion imaging is an important tool in
geophysical exploration, oil reservoir management, and environmental site character-
ization, because electrical conductivity is directly related to the pore fluid compo-
sition, porosity, and saturation of the rocks. Ill-posedness, strong nonlinearity and
high computational costs are the main difficulties in developing 3D nonlinear electro-
magnetic inversion algorithms and software. Nevertheless active work continues in
this area. Habashy, Groom, and Spies (1993) developed the static localized nonlinear
approximation and localized nonlinear extended Born approximation. Zhou et al.
(1993) developed an audio-frequency electromagnetic tomography in 2D. Habashy,
Oristaglo, and de Hoop (1994) developed a simultaneous nonlinear reconstruction
of two dimensional permittivity and conductivity. Lee and Xie (1993) developed an
electromagnetic crosshole imaging. Nekut (1994) developed an clectromagnetic ray-
trace tomography. Mackie and Maden (1993) developed a 3D MT inversion scheme
using conjugate gradients. Pellerin et al. (1993) developed a three-dimensional inver-
sion of electromagnetic data. Chen and Kim (1995) developed a parallel algorithm
for inverse scattering problems of Maxwell’s equations on hypercubes. Ellis (1995)
developed a joint 3D electromagnetic inversion. Li et al. (1995) developed a non-

linear three-dimensional inverse imaging for direct current data. Torres-Verdin and

Habashy investigated the 2D electromagnetic inverse problem by the extended Born
approximation. Newman (1995) developed crosswell electromagnetic inversion using
integral and differential equations. Newman and Alumbaugh (1995) developed 3D
massively parallel electromagnetic inversion. Zhdanov and Fang (1995) developed a
3D quasi-linear electromagnetic inversion. In the past 3 years, we have developed two
kinds of 3D nonlinear electromagnetic inversion schemes, one using the magnetic field
integral equation and the other using the electric field integral equation (Xie et al.,

1995a, 1995b). In this paper, we developed an algorithm that consists of: (a) a new
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magnetic integral equation instead of the electric integral equation to solve the elec-
tromagnetic forward modeling and inverse problem; (b) a collocation finite element
method for solving the magnetic integral and a Galerkin finite element method for
the magnetic differential equations; (c) a nonlinear regularizing optimization method
to make the inversion sta,-ble and of high resolution; (d) a new parallel 3D inversion
algorithm using a global integral and local differential (GILD) domain decomposition

technique. The main advantages of the new magnetic integral equation and GILD

algorithm are: (a) the magnetic field in the magnetic integral equation remains con-
tinuous when electric conductivity is discontinuous, which is convenient for using the
finite element method; (b) the kernel function in the magnetic integral equation ex-
hibits as integrative weakly singularity; (c) there is a natural relative difference term
in the magnetic integral equation; (d) there is no artificial boundary condition needed
in the GILD modeling and inversion; and (e) the computational time and storage are
reduced. The plan of this paper is as follows. The introduction has been already
presented in this section. In the next section, we derive the new 3D magnetic integral
equation for the magnetic field, new electric integral equation for the electric field,
and their corresponding differential equations for forward modeling. The 3D nonlin-
ear EM inversion using the new magnetic integral equation globally and differential
equations locally will be presented in the section “3D EM inversion using integral
and differential equations”. In the next section, we describe a finite element method
for solution of the magnetic integral and differential equations on the modeling and
inversion. The nonlinear regularizing optimization methods and their optimum reg-
ularizing parameters will be presented in section “regularizing method”. In the next
section, we describe a parallel GILD algorithm for the forward and inverse problems
by using a global integral and local differential domain decomposition technique. For
completeness, we used the section “electric field calculation” to describe the finite el-
ement approximation of the electric field. Many applications are presented in section

“applications”. Finally, we describe some conclusions.
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NEW 3D ELECTROMAGNETIC INTEGRAL EQUATIONS

New magnetic integral equation

From the Maxwell equations,
V x E = —iwp(H + M,) 1)
and
V x H = (0+we)E + J, (2)

the electric integral equation can be derived (Raiche 1974, Hohmann 1975, Weidelt
1975, Habashy et al., 1993, Torres-Verdin and Habashy 1994),

E(r) = By (r) — swp / GE (r,1') [(0 — o) + iw (€ — &3)] E () dr". (3)

Where E is the total electric field, Fj is the background layered earth electric field,
H is the total magnetic field, p is the magnetic permeability, o is the electric con-
ductivity, € is the permittivity, w is the angular frequency, o} and ¢ are the layered
background electric conductivity and permittivity, J, is the electric current source
term, M; is the magnetic moment source term, and points r and ' are in V;, V, is
the finite bounded scattering volume domain in which ¢ — o} + iw(e — &) # 0. In
this paper, the background layered parameters, o, and ¢, are known. GF (r,r') is the

layered background electric Green’s function,

1
GbE (r,7') = (I + ﬁvr,vr,) g (ry7') + Gf; (r,7), (4)
b
where
, e—ikb|r—r’l
g (ry7") = yry——E (5)

ki = —iwp (o) + iwey) (6)
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Ir =] =z - 22+ (y = ¥')? + (2 — 2)*. (7)
In the equations above, GZ (r,7') is the layer contribution apart from the whole

space part of the Green’s function, gs(r,r') is the whole space Green’s function, and

I is the 3 x 3 identity matrix. Taking the curl of both sides of equation (3), us-
ing V., x GE(r,v") = V, x (g (r,7") I) + V, x GE (r,7') and V, x (g (r,r")I) =
—V,gy (r,7") x I, changing the curl operator from the unprime to the prime coor-
dinate, using the formula (2), and manipulating some calculations, we obtain the

following new magnetic integral equation (Xie et al. 1995a)

o+iwe

+ [V, x GE (r,7') lemeeltivleze) (g, « H — J.)dr, (8)
Vs

o+iwe

H (r) = Hy (r) = [ Vogo(r,') X lezao)tivlemss) (g, o H — J,)dr

where H is the magnetic field to be found, Hj is the background magnetic field, V.,
is the grad over the variable r, and V,. is the grad over the variable ’. Even though
the magnetic integral equation (8) is equivalent to the electric integral equation (3)
theoretically, they are not equivalent numerically. The magnetic field in (8) is con-
tinuous when the electric conductivity is discontinuous, but the electric field in (3) is
discontinuous when the electric conductivity is discontinuous. In the integral equation
(8), the unknown function is only the magnetic field H, but not the discontinuous
term V x H. When the magnetic permeability is continuous, the electric conductivity
and permittivity are discontinuous but piecewise continuous, (i.e., let Vs C Vi be
a point set where o and € vary discontinuously, the volume of the set Vg is zero,
Vf dr = 0.), then the magnetic field H has the following properties: (a) It is contin-
1:cl;us and piecewise differentiable; (b) V x H is bounded and piecewise continuous;
(c) The discontinuity of V x H does not influence on the magnetic integral equa-

tion (8) because the volume integral of V X H on the discontinuous set Vy;, is zero,

[ V x Hdr = 0; (d) The magnetic field H satisfies the following integral inequality,

Vdis

2 1 2
wp,V/ |H (r)[2dr +V/ o iog IV % HIPdr < BUH) < oo, (9)
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where B(H) is a finite number that is depended on the magnetic field H; The physical
meaning of the above inequality (9) is that the energy of the magnetic field is finite;
(e) The singular part, V,.gy(r,r'), of the kernel function in (8) is the integrative
weakly singular term, [ V,.g(r,r)dr’ =0,and [ V.g(r,r') x(V x H)dr' =0, but
the kernel function in ‘(/?3'3 .involves the strongly sirigular term ,}—gv,,vr,g,,(r, r'). These

properties of the magnetic integral equation (8) are important for using finite element

method and guarantee the convergence of its finite element approximation.

Magnetic differential equation

Suppose that ¢ + iwe # 0, dividing o + iwe and taking the curl of both sides of

equation (2), and using equation (1), we have a magnetic differential equation

1
VxH iwpH = P, 10
vx(a—i—iws % )+zw,u (10)

where source term P; is as follows,

Je

P, =V x -
o + we

—wpM;.

The above magnetic integral equation (8) and the magnetic differential equation (10)
are convenient to use the finite element method for magnetic field in an isotropic
heterogeneous electric conductivity ¢ and permittivity € and constant magnetic per-
meability ¢ medium. The magnetic integral equation (8) on the boundary and the

magnetic differential equation (10) in the internal domain is coupled to construct a

new GILD magnetic-electric modeling that will be described later.

New electric integral equation

In an isotropic heterogeneous magnetic permeability ¢ and constant electric con-
ductivity o and permittivity ¢ medium, a new electric integral equation by Li and

Xie (1997) and Xie et. al (1995) can be written following as
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E(r)=Ey(r) — [ Vugs(r,r') x =22 (Vi x E — M) dr’
Vs
+ [V, x GH (r,7) %&(v,, x E — M,)dr', (11)
Ve

and its corresponding the electric differential equation follows, as
V x (%V X E) +iw (0 + we) B = Qs, (12)
where the source term
Qs = —w(J.+V x M), (13)

are suitable for determining the electric field. The electric integral equation (11)
on the boundary and the electric differential eq.ua,tion (12) in the internal domain
is coupled to construct a new GILD electric-magnetic modeling. In the equations
above, y is the magnetic permeability to be defined, ps is the background magnetic
permeability, G¥ (r,r') is the background secondary magnetic Green’s function, M
is a magnetic source term, J, is a electric source term, E; is the background electric

field, V, is the scattering integral domain in which x — ps # 0, and o, € are constants.

3D NONLINEAR EM INVERSION USING INTEGRAL AND

DIFFERENTIAL EQUATIONS

The following nonlinear magnetic integral equation can be used to find ¢ and

¢ from the measured magnetic field data Hy:

Hy(r) = Hy (r) = [ Veugs(r,7') lo=opltivlemes) (7,  H — J,)dr!

o+iwe

+ [V, x GE (r,p!) e=mtivle—a) (g, H — J.)dr'. (14)
|

otiwe

The integral equation (14) is similar to (8) in form, but they are used differently. The
equation (8) is a linear Fredholm integral equation of the second kind for magnetic
field H(r) with r € V,. The equation (14) is a nonlinear Fredholm integral equation

of the first kind for the electric conductivity o(r) and permittivity e(r) with r at the
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receiver site. In the integral equation (14), the magnetic field H is the solution of the
integral equation (8) and is also a nonlinear operator of o and . Because equation
(14) is essentially ill-posed and underdetermined when there are not enough data, we

translate (14) to the following nonlinear optimization problem instead of solving it

directly.
nr s ! (9=0p)+iw(e—es) /
e; 121 Hd,l (T‘g) — Hb,l (T'e) +J V,:gb(rg,r ) X R (Vr/ x Hy — Jc;) dr
: 2
— [ V. X GE (ry, ) le=mdtilees) (g, « H, — J.)dr'| = min, 15
v s otiwe l
where £ =1,---,n,, n, is the number of receivers, | = 1,--+,ng,, ny, = ns X n,, ny is

the number of frequencies, n, is the number of sources. From the magnetic integral
equation (14), we known that the magnetic field H is a nonlinear operator depended
on the electric conductivity and permittivity. Let S be the Jacobian operator of (14),

then & satisfies
S6(o + iwe) =6H, (16)

where 6 H is the variation of the nonlinear operator H. We approximate the variation

0H by 6H, and 6H,, where § H; is the first order term

§Hy (r) = [ Vagy(r,r') x detive) otive) g o g 1) gyt
Vs

c+iwe o+iwe

— [ Ve x GE (r,r) detiee) ovtivn) oy g — J.)dr, (17)
. V,

o4iwe o+iwe

and

6Hy (r) = [ Vug(r,r') x 8(otiwe) (optiwes) (Vo x H—J,)dr'
Vs

o+iwe o+iwe

_ f V, x GsE (T‘, ,r/) §(otiwe) (optiwey) (V,-I « H — ']c) dr'
Vs

o+iwe otiwe

—J Vogy(r,r!) x lezaltivle=alg o s g

o+iwe

o+iwe

+ [V, x GE () L=eltivlea) g | o 551, g (18)
Vs

is a higher order approximation that accounts for some of the nonlinearly in equation

(16).
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As described later, §H;, 6 H, and the Jacobian operator & are used in the Gauss-

Newton iteration for solving the nonlinear optimization problem in equation (15).
The full matrix required for the Gauss-Newton iteration needs large storage and
significant computational time costs are involved. To overcome this difficulty, a new
global integral and local d-ifferentia,l decomposition algorithm has been developed (Xie
and Li, 1997a and 1997b). For the electric conductivity and permittivity inversion
algorithm, we employ the nonlinear magnetic integral optimization (equation (15))

with the following magnetic variation differential equation,

x (‘5"—+?°"-5E2V><H) =Vx( L V><6H)+z'w,u6H, (19)
(o + iwe) o + twe

to assemble a global integral and local differential decomposition; equation (19) is
obtained by perturbing equation (9) in the ¢ and e. Similary, in the magnetic perme-

ability inversion, the following nonlinear electric integral optimization problem can

be formulated, where

ny Nfs
221 Izjl Ed,l (’l‘e) — Eb,] (7‘3) —l—J Vrlgb(rg, 7") X ‘u—_‘-‘& (V.,.: x B, — Ms,) dr!
’ 2
— [V, x GH (ry,7) L"f—’l (Ve x By — My,)dr| = min, (20)
Ve
with the electric variation differential equation,
bp 1 ) .
Vx| SVXE]|=Vx|=Vx§E|+iw(o+iwe)dE, (21)
7 p

obtained by perturbing equation (12) in the electrical properties. Equations (15)
and (19), (20) and (21) are assembled and constructed the GILD decomposition

solution. In this paper, however, we confine ourselves to the electric conductivity and

permittivity inversion. The magnetic permeability inversion will be presented in a

subsequent paper.
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DISCRETIZATION OF THE INTEGRAL AND DIFFERENTIAL

EQUATIONS USING THE FINITE ELEMENT METHOD
Finite element approximations

The domain V; is divided into a set of finite cubic block elements, V,, e =
1,2,..., M, where the M is total member of the elements in the domain V;, V. V., = 0
if e # ¢, and V, = UM, V.. We use a linear finite element approximation functions
with point collocation to discretize the magnetic integral equations (8) and (15) and
the Galerkin finite element method to discretize equations (9) and (19). There are
8 vertex nodes in each element. The magnetic field value H; is assigned at each
node, the electric conductivity value o, the background conductivity value oy,

permittivity value €., and background permittivity value €;, are assigned in each

element. Let (;,y;, 2;) be the coordinates of the vertex i, and let I, k, and v be the
lengths of the sides of the element in the z, y, and z directions, respectively. The

trilinear finite element approximation vector function H” can be constructed with

base functions ¢; by Xie (1975).

He0.) = 3 Hid(o,), =)
where
Hy(z,y,z2)
H*(z,y,2) = | H}z,y,2) |, (23)
H}(z,y,2)
and
H,;
Hi=|H;|. (24)
H;

In each cubic element, the base magnetic field is a trilinear function,

(z =)y —y5)(z—23)
I —2z%)(h — 2y%)(v — 22_’1-“)’

¢j($7yaz) = ( (25)
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where
(23,23,23) = (I, kyv) ;- -+, (23, 73, T3) = (0,0,0), (26)
and

($1,y1,21) = (0) 030)’ Tty (iBg,?jg,Zs) = (l’ h’v)‘ (27)

Finite element magnetic integral equation for modeling

Upon substituting (22)-(25) and their derivatives into (8), we have

o+tiwe

Hh' (7") = H[fl (7‘) - f v,.lgb(’l", 7’,) X (o=op) tiw(e=ep) (V.,./ X Hh — JC) dr’
Vs
+ [ V. x GE(r,r") (o=0p)tiv(e=cy) (V,: x Hb — Jc) dr', (28)
Vs

o+iwe

Because (a) H" is continuous and piecewise differentiable; (b) V x H is bounded and
piecewise continuous and the linear function in each element V.; (c) the discontin-
uous set Vy;, of V x H is the set of the inter boundary between the elements; (d)
the discontinuity of V x H"* does not influence on the magnetic integral equation
(28) because the volume integral of V x H k on the discontinuous set Vj;, is zero,

J VxH'r=0,and [ (V,/g (r,7") -V, x GE (r,r')) x (V x H)dr' =0; (e) the
Viis Viis
magnetic field H” satisfies the integral inequality (9) and belong to the Sobolev space

R (Ciarlet 1978, Xie 1981, and Xie and Chen (1985)). We can present the integral of

(28) in the V; as the summation of the integral in the cubic elements,

Cetiwee

M .
H" (7‘) = H", (r)— % (0e—0p)+iw(ee—ep) [ Vg (r,7') x (V,/ < H* (r') — Jc) dr'
e=1 Ve

Tetiwee

M ,
+ 3 lremsieleea) [V, % GF (ryr) - (Voo x HP () = J) dr'. (29)
e= Ve

Upon substituting the expressions of H*, (23)-(25), into the (29) and giving the node
location coordinate, r;, the integral in each element V, of the discrete integral equation

(29)
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f Vorgy(rs, vy x {Z=oeltivle=z) (vr' X H") dr'

o+iwe
—fV x GE (r;,r) lemoaltielemes) (7, 5 HF) dr

2 h

where

I{sj _ (ae—ab,e)ﬁw(ec—eb,c) fv fgb(r,, ) ( X ¢J) dr'

Tettwee

_ (ae—db,e)'!'fw(ee_sbe) f V., X GE (T‘,, I) (vr’ X ¢J) dT‘

Cettwee

i=1)2’ ’N,]_1)27 ’8’ (31)

The integral in (31) is evaluated using the Gaussian numerical integral formulation.
When the length of the mesh is going to zero, the equation (28) is approximation to
the equation (8). The solution of (28), H" (r), is a finite element approximation of the
solution of the magnetic integral equation (8). After calculating and arrangements,

we obtain the total matrix equation for the discrete magnetic field:

(I+K)H" =35, (32)
where
KT
K,
K= K| (33)
| Ky |

This matrix K is a full matrix and

K; = ZZ e (34)
e=1 j=1
where N is the number of total nodes, H* = (Hy, Hy, -, Hy)" is an unknown vector

of the magnetic field value at nodes, and S is the source vector. The discrete equation

(32) is the full matrix equation. The high cost of computation time and storage is a
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serious limitation of the discrete integral equation (32), but it is needn’t any artificial
boundary condition that is a great merit of (32). In the section of the “parallel GILD
modeling and inversion algorithm”, we don’t need to solve the complete discrete
integral equation. The discrete integral equation only is built on the boundary, i.e,

the r; are only the boundary node of the domain in (30)-(31). The discrete integral

equation on the boundary node and discrete differential equation in the internal node

will be coupled to construct a GILD modeling.

Finite element magnetic differential equation for modeling

In the paper by Xie et al. (1995c), a finite element scheme for the 3D magnetic

differential equation was presented. The Galerkin equation of (10) will be

f/[ (a+1iwe (v X H) . (v S [¢z]) + Zw/LH . [(ﬁ,])dv
=B [dddv, (35)

s

where the P, is the source term, and [¢;] is the 3 x 3 base function matrix , [¢;] = ¢:[I],

the I is 3 x 3 identify matrix and the ¢; was described in (25). Substituting (22)-(25)
into (35), we obtain the finite element equation of the magnetic Maxwell equation

(10)
KH"=38. (36)

In the equation above, K, the stiffness matrix is a sparse one, H h is the discrete

magnetic field to be found, S is the discrete source term. K is given by

M
K =3 K, @
e=1
where
06,96, | 0696, _06:0% 84,96,
8y Jdy 8z 08z 3y Oz 9z Oz
e _ [ _1 _ 06:98, 86: 06, | 949, _06:94,
‘[{ivj _I:/f Oetiwee dzr 8y 3z Oz + 8z 08z 3z By dv
e
_ 04 9¢; _ 9694, 04:0¢; | 096i94,
9zr 8z 9y Oz 8z Oz 3y 3y
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¢g; 0 0
+ iwuvf 0 ¢, 0 |do,
o 0 gy
ij=1,-- 8 (38)

In the forward modeling, K and S in (36) are known, and the discrete magnetic
field H* will be found by solving (36). The finite element discrete magnetic integral
equations (31)-(34) is built on the boundary and the finite element discrete magnetic
differential equation (36)-(38) is built in the domain that will be assembled to con-
struct a global integral and local differential parallel modeling. A parallel multi-level
algorithm will be used to solve the equation from domain to the boundary that will

be described in a later section.

Finite element approximation of normal equations for inversion

Let Hgat, be the field measured data with noise, Hynoqer be the numerical realization

of data, and H" be the finite element discrete magnetic field.

Define
| Haate — Hmoael||* =
g:l g Hai (re) = Hyy (re) +‘{ Vgs(re, ') X ia_—”';)%f;(ﬂl (Vr/ x H" — Jc,) dr’
= Ve X GZ (re7) lmnlbilee) (V. x H* — J,) dr 2 (39)
The discrete nonlinear optimization problem in equation (15) will be
| Hiate — Hrmodet||* = min. (40)

The Gauss-Newton iterative method is used to solve the nonlinear optimization (40).

The normal equations are as follows,

[C\}hzl%hu} 5(0‘ + iwe) = —%hzl [Hd,l (7‘4) — Hb,l (T'g)
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otiwe

+] Vg(re, ) x Le=oltislea) (7, x B}~ 7,) dr’

_Vf Vr % Gf} (rla 7,/) ﬁ‘."‘_%&“_(f‘_‘sbl (V.,./ X th —_ Jc,) dr'} , (41)

otiwe
where $%, is the finite element discrete representation of the Jacobian operators S,
given by equation (16). Depending on the accuracy desired, either one of the approx-

imate Jacobian operations, S ,, and §% o> are employed, where

M .
g{l,l,l (T‘g) = 521{[ Vr'gb (’I‘g,')",) X (V,./ X th — Jc,) Thetivene e dr’

Tettwee Cetiwee

M .
— Z f V,-X Gf" (’I‘e,?"l) (V,: X H[h - Jc,) Tb,etiWehe e d?"l, (42)

Cetitwee Oetiwee
e=1 Vc C+ e [

and

M .
Cxh — ! h Opetiwepe 1o !
\S\2 ’e'I (7‘[) —_— CE f vrlgb (7‘(, T ) X (VTI X Hl - JC[) 0'3+i(d€¢ a¢+iws¢ dT‘
- [

M .
— = [ Vox GE (re,r') (Vo x Ht — J,) Dosetibe —te—dr!

Tetiwee Oetiwee

e=1V,
M .
" h Tpettiwey ot Yo "
+ e’Z_:IJ vr// X QI(T'E,T ) . (Vru X Hl - Jc,) o tiwe, o tive dr
=1V, ‘
M .
" h Op ot HIWEY 1 Yot "
+ egl Vf Q2(rl, r ) : (Vr" X Hl - Jc,) 0':/+iwee,e v ative, dr 5 (43)
=1V,

where 1.(r) = 1, if r in element e, otherwise (r) = 0, the 3 X 3 matrices ; and Q>

are
M Ge—0pe |4iw|Ee—¢p,e
Qi(r,?) =3 [ ( b'a)Iin o)
e=1V, ° ¢
{( Vogs(r,7') x 1=V, x G (r,r")) (Vg (r',7") x 1)} dr', (44)
and

Q2 (T‘, 7./1) — % f (ae_ab,e)+iw(5c—ib,¢)

=17, Cettwee

{ (V,/gb (r,r') xI -V, x GE(r, r')) (VT: X Ve x GE (1",7’”))} dr'. (45)

Finite element magnetic differential variation equation for inversion

In the electric conductivity and permittivity inversion, we used the Galerkin finite

element method to discretize the magnetic variation differential equation (19). The

Galerkin equation of (19) is
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T (755 (V< 0 (V < [90) v

=/ (575 (Y x 6H) - (V x [i]) + twpbH - [¢:])dv. (46)

o+twe
Upon substituting (22)-(25) and their derivatives into (46), we obtain the finite ele-
ment equation of (19), make a perturbation of which expression, where

HY'T (60 + iwbe) = 6H K. (47)

In the equation above, I' is a sparse matrix, K is a sparse stiffness matrix in (36),
sHY = HN™ _ g s 4 Tocal approximate variation, H 8(%) is a finite element

magnetic field at n’th iteration, (. )7 denotes the transport of a vector. I'is given by

M
- e
['=) T (48)
e=1
where
80 04, | 96 08 _ 0498, _ 0498,
dy Oy 9z 8z 8y Oz 9z Oz
Pe oo _eidh,  awdb | sed%  _owdd, |
t,] _V (oetiwe.)? dz By z Oz 8z 8z 3z Oy U,
_96:9%, _98:9%, 86:98; | 06: 04,
8z 0Oz dy 8z 3z Oz dy 9y
i,j=1,--,8. (49)

The finite element magnetic integral Jacobian equations (41)-(45) and finite element
magnetic differential variation equation (47)-(49) will be assembled to construct a

global integral and local differential inversion algorithm in the following next section

of the parallel GILD algorithm.

REGULARIZING METHOD

Tikhonov regularizing method

Because the first type magnetic integral equation (14) for the electric con-
ductivity and permittivity is essentially ill-posed, the Tikhonov regularizing method

must be used (Tikhonov et al., 1977) to make a stable inversion.
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The discrete nonlinear regularizing optimization of (15) will be
| Haata — H,,L,,dez”2 + a (R(0 + iwe), 0 — iwe) = min. (50)

Where, the regularizing operator R is a symmetry positive definite operator, the (-, -)

is the complex inner product.

Define

((A+ 1) (o +iwe), (0 — iwe))
~1{[@)+ (@) + ()] + (8" + (3" + ()] + o7 r et i (1)
whel"e & and € are linear continuous and piecewise smooth fitting functions based on
the o and e, respectively, by Kraft (1990) and Xie and Li (1979).
We choose R = A + I as a regularizing operator and use the modified Gauss-

Newton iterative method to solve the regularizing optimization equation (50). The

iteration scheme is as follows

%, S, + aR] (0 + iwe)

— _c\\s.-hzl Hd,l (T'Z) _ Hb,l (7-2) +J v,.:g(rg,r’) X (o—0p)+iw(e—cs) (vrl x th _ Jc;) dr'

otiwe

— [V, x GE (rg, 1) lmoeltislezes) (V,: x H"* — Jc,) dr’]
Ve

ottwe

— aR (o + iwe), (52)

where %f_}_ , is the finite element approximation of the Jacobian operator ¢y by (16).

The approximate Jacobian operations $% ,; and §% ,; are defined by (42)-(45).

Optimum regularizing parameter o

The regularizing parameter, «, is very important in the regularizing approach.
The optimum regularizing parameter « has to be chosen for high resolution imaging.
Let H,...: be the exact measured data, Hgy be the field measured data with
noise, Hemoder be the exact model data, and Hy,o4e1 be the numerical model data, we

have
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”-He.‘cact - Hdata” S 57 (53)

”Hemodel - Hmodel” S ,B, (54)

From optimization of (50) and definition of the regularizing operator, R = A+ I in

(51), for a given a, the Hyzta — Hmodet and (R (o + iwe), 0 — iwe) can be calculated.

Therefore
f(@) = |Hazta — Hmoaet||* (55)
g(a) = (R (o + twe), 0 — iwe), (56)
and
ha) = ||Haata — Hmouel||” — 6% — B2 (57)

are functions of c.

It can be proven that f(«) is a continuous and almost mounotonic non-decreasing
function, g(e) is a continuous and almost monotonic non-increasing function of «,
and k() is a continuous and almost monotonic function. The minimum root of (57)
will be an optimum regularizing parameter by Yagola (1980). Xieet al. (1987) proved
that the regularizing solution is convergent when « goes to zero.

In the nonlinear 3D EM inversion for practical data, § is a physical system data
noise bound and f is a numerical discrete error bound. The parameter § can be
estimated by statistics data analysis and § can be estimated by numerical analysis.
The 6=0 is for synthetic data. For given noise bounds, § and 3, because the discrep-

ancy function h(c) is continuous and almost monotonic, we use the quasi-Newton

and bisection mixed method to find the optimum regularizing parameter.

A weaker regularizing method

A weaker regularizing method is used for the ill posed variation discrete equation

(47). We rewrite the (47) as
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Yo
r [ ] _b. (58)
é¢e

The matrix I' will be decomposed into the
'=PSQ (59)

where S is diagonal matrix with the singular values of I', the P and Q are orthonormal
matrices. The weaker regularizing solution of (47) is
bo 1
= Q7 (8 +BI)” SPTsD, (60)
e

where f is a weaker regularizing parameter. A quasi-optimality approach by Leonov

(1978) is used to find an optimum weaker regularizing parameter f.

PARALLEL GILD MODELING AND INVERSION ALGORITHM

In the preceding sections, we have described two systems, integral equation system
and differential equation system, for the electromagnetic modeling and inversion. A
question is why do we need two systems for the modeling and inversion? A new
parallel global integral and local differential decomposition algorithm, GILD, for the

modeling and inversion is presented in this section.

The conventional nonlinear inversion using the Gauss-Newton iteration

In the conventional nonlinear inversion using the Gauss-Newton iteration, the
algorithm process'is that (1) For giving conductivity, using finite element or finite
difference scheme to solve Maxwell differential equation with an artificial absorption
boundary condition to obtain the EM filed. (2) Solving a discrete norm equation of
the regularizing optimization of the first type integral equation to update the electric
conductivity. (3) The step (1) and (2) constructed the Gauss-Newton iteration for the

conventional nonlinear inversion. The regularizing Gauss-Newton nonlinear inversion
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1s a robust approach, but the limitations are: (1) Along the iterations, the inaccurate
reflection error of the absorption boundary condition in the forward modeling enters
the inversion domain as numerical noise that will cause low resolution; (2) the discrete
integral equation in the inversion produces an ill-posed larger full matrix which is
difficult or impossible to invert and store. A new GILD EM modeling and inversion

algorithm is developed to overcome these limitations of the conventional nonlinear

1nversion.

New GILD modeling and nonlinear inversion

For simplicity, we used a rectangular mesh for modeling and inversion. The un-
known magnetic field is defined on the set of the nodes for modeling. The unknown
electric conductivity and permittivity are defined on the set of the cells for inversion.
The new GILD modeling and inversion method consists of three steps: First, in (A) of
Fig.1, the domain is decomposed into a subdomain C'ST with white cells J and a sub-
domain C'SII with dark cells M. This decomposition is called a cells-decomposition.
The cells-decomposition should satisfy the following requirements: (1) the subdomain
C'51 should include the boundary of the domain; (2) the subdomain C'SI should be
a logical boundary of the subdomain CSIT; (3) the subdomain C'SIT can be decom-
posed into 27 x 27 x 2" subdomains for 3D problem or 27 x 27 subdomains for 2D
problem, the p, q, r are integer. We used 22 x 22 2D cells-decomposition to explain
the GILD algorithm. The cells-decomposition induced a nodes-decomposition of the
whole nodes of the domain, NSI and NSII. The subdomain NST is the set of the
boundary nodes » and internal nodes e, i.e., the set of the nodes on the CSI. The
subdomain NSII is the set of the internal circle nodes o , 1.e., the set of the inside
nodes of C'SII. Second, suppose that the electric conductivity o and permittivity ¢
are obtained by the previous iterative step, the discrete magnetic integral equation

(29) on the boundary nodes and the discrete magnetic differential equations (35) on
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the internal nodes of domain will be coupled to construct a complete equation system
for the discrete magnetic field. The nodes-decomposition can be used for solving the
modeling equations. Third, after obtaining the magnetic field, the global discrete
magnetic Jacobian volume integral equation with the stronger regularizing (50) on
cells of CSI and the locai discrete magnetic Jacobian differential equations with the
weaker regularizing (58) on cells of C'SII will be coupled to construct a complete
equation system for updating the electric conductivity and permittivity.. The cells-
decomposition can be used for solving the equation system for updating parameters.
The second step and third step are used to construct a loop of the parallel GILD
Gauss-Newton iteration. If the residual of the misfit between the model field and

the measured field data less than the giving tolerance then the iteration will be stop,

otherwise the iteration should be running continuously.

The second step of GILD for magnetic field

The unknown magnetic field is defined on the set of the nodes for modeling. The
discrete magnetic integral equation (29) - (32) only is built on the nodes u of the
boundary, i.e., the r; in (30)-(31) are coordinate of the boundary nodes = in (A) of
Fig. 2,

II{B,BHB + IKB,DHD = Sg, (61)

where Hp is the discrete magnetic field vector on the boundary nodes, Hp is the
discrete magnetic field vector on the nodes in the internal domain, Sp is the discrete
source term on the boundary, the matrices, I Kp p and the I Kp p, are full matrices
from the discrete integral equation (29)-(32) on the boundary. The IKpp is the
relative block matrix from the boundary nodes to boundary nodes, the I Kp p is the
relative block matrix from the boundary nodes to the nodes in the internal domain.

On the internal nodes of the domain in (A) of Fig. 2, e and o, we used the discrete

sparse matrix equation (36) of the magnetic differential equation (10),
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DKppHp+ DKppHp = Sp, (62)

where the DKp g and DKp p are sparse matrices from the discrete differential equa-
tion, the DKp p is the relative block matrix from the internal nodes to the boundary
nodes, the DKp p is the relative block matrix from the internal nodes to the inter-
nal nodes, Sp is the discrete source term on the internal nodes of the domain. The
equation (61) and (62) are coupled to construct the complete equation system for the
magnetic field. We used the following parallel GILD modeling algorithm based on
the nodes-decomposition to solve this equation system.

Parallel GILD modeling algorithm

1. According to the nodes-decomposition, NSI and NSII, the discrete magnetic

field is decomposed into the two sub-magnetic vectors, H; and Hj;. The H; is the

discrete magnetic field defined on nodes » and o, in the NSI, the Hj; is the discrete
magnetic field defined on nodes, o, in the NSIT in (A) of Fig. 2.
2. By reorganizing the equations (61) and (62) using the nodes-decomposition,

we have
KirHr+ KpHr = Si, (63)

and

K Hr+ K Hir = Sir, (64)

where the K is the relative block matrix from the nodes in NSTI to the nodes in
NSI, the K1 is the relative block matrix from the nodes in NSI to the nodes in
NSII, Kprr is the relative block matrix from the nodes in NSII to the nodes in
NSI, the Ky 1 is the relative block matrix from the nodes in NSII to the nodes in
NSII.

3. In (B) of Fig. 2, the subdomain NSII can be decomposed into the 22 x 22
smaller subdomains, NSII(l), l = 1,2,...,4%, there is the same number of internal

nodes in each subdomain. In each subdomain NSII(I), there is internal node o in
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NSII and logical boundary nodes e in NSI. The matrix equation (64) is decomposed

into the following 42 independent matrix equations about H }?,

! 4 ] ) 1
KO HY + K9 HY =50, 1=1,2,--,4. (65)

The 42 CPU processor elements in the Massively Parallel computer can be used to
solve the equations (65), in parallel, and to present the sub magnetic field vector H }II)

as follows
-1
HY = - (k)™ (89 - &0,8D), 1=1,2,. 4, (66)

using the LDLT decomposition, the conjugate gradient iteration (Varga, 1962, Jacobs,
1986, and Golub et al., 1989), or Lanzos method (Simon 1982, Simon and Wu 1998).

4. Upon substituting

42
HII =EH§II)1 ) (67)

I=1
into the equation (63), and made some arrangements, we have a reduced matrix

equation on the subdomain NSI in (C) of Fig. 2
PiH; =0 (68)

5. By decomposing the internal nodes e in the ( C ) of the Fig. 2 into the four
groups, in general, 27~ x 297! groups, we make a frame in each group ((D) of Fig.
2). Let NSI; be a set of the internal nodes o on the frames and the boundary nodes

s , (H/); be the unknown magnetic field vector on the NSI;, NS be a set of the

nodes o inside of the frames, (H;),; be the unknown magnetic field vector on the

NSIjr . The equation (68) will be rewritten as

(Pr);; (Hr); + (Pr); gy (Hr) 1r = (©1);, (69)

and

(PI)II,I (HI)I + (PI)U,H (HI)U = (@I)Ua (70)
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where (P1); 1, (P1)r 1, (P1)yrp» and (Pr)yp g are block matrices by reorganizing and
splitting the matrix P1, (©); and (©y),; are split source terms from the source term
Oy in (68).

6. The equation (70) is decomposed into the 4 equations
(Po)it (HDY + (PO (HD)iy = (O)if, 1=1,2,-++,4 (71)

The 16 PES is divided into the 4 groups, the 4 PES in each group is used to solve

each equation of (71) and to present the (H I)yl) as

-1
H) = (Po0)” (@08 - @Y, (HDP), 1=1,2,3,4, (72)

in parallel, using the parallel LDL decomposition, or parallel conjugate gradient
iteration, or parallel Lanzos method.
7. Upon substituting the
4
(Hr)yr = 3 (Hi) (73)

into the (69), we have reduced equation on the reduced mesh ((E) of Fig. 2),
P (Pr);(Hi);=©(01);. (74)

8. A multi-level parallel LU forward decomposition will be used for the smaller
matrices equation (74) on NSI in (E) and to obtain a 2 x 2 double layered block
matrix equation in (F) of Fig. 2. Using the parallel LU algorithm, the magnetic field
on the double layered in (F) of Fig. 2 will be obtained. Finally, a multi-level parallel
backforward processor from the nodes on the boundary to the nodes in the internal

domain is used to obtain the magnetic field on all nodes of the domain.

The third step of GILD for updating parameters

1. The cells-decomposition
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In the (A) of Fig. 1 and (A) of Fig. 3, by cells-decomposition, the cells in the
whole domain are decomposed into the subdomain C'SI and the subdomain C'SII.
The subdomain CSI is the set of white cells [1, the subdomain CSII is the set of
dark cells M. The electric conductivity and permittivity increment vector (éa, 6¢) is
decomposed into the two éub vectors, (81, 6¢r) and (6071, 8€11), the (6071, ber) is the

electric conductivity and permittivity vector defined on cells in the subdomain CS1,

the sub vector (871, 6€11) is the electric conductivity and permittivity vector defined

on cells in the subdomain C'SII.
2. A global discrete normal magnetic integral equation (52) on the subdomain
CSI
Using the collocation finite element approximation of normal equation (52) on the
cells of CSI, we have the following matrix equation.
bor Sorr
r{ }+r,,,,{ }= DAy, (75)
beg d€err
where 'y ; and I’y 17 are finite element discrete submatrices of (52) on CSI, The DH;
is data on C'S1.

3. A local discrete variation magnetic differential equation on the subdomain

CSII.

In (B) of Fig. 3, the subdomain CSII can be decomposed into the 4% sub-cubic
domains, each sub-cubic domain has same number of the internal cells M in CSII and
logical boundary cells [ in C'SI. In each sub-cubic domain, by using the Garlekin
finite element approximation of variation differential equation (47) on the cells W
we have 2 block matrix equations

509 609
FS’?I +P(III)II = DH}II)’I= 1’21"'742’ (76)
sl sl
where I‘n,-[(l) and Iy, H(l) are finite element discrete matrices of (47) with the weaker

regularizing, the DHy;() are data term on CSII.
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The sparse matrix equations (76) are independent of each other and have the

same size and structure. We use 4> CPU processor elements in the Massively Parallel

computer to solve equations (76) and to present the local the electric conductivity

and permittivity increment vector, in parallel,
so) -1 . 5o
l - { { - l
{ (l)}z(rs},n) o) - (1)1 o L=zl

where (I‘(Il} I I)—l is generalized inversion of the I'ry ;1 with weaker regularizing in (60)

(Xie et al., 1987) and (Lee and Xie, 1993).

60‘[[ 4? 50’?1)
= (78)

derr I=1 66([[
DH;
DHy;

4. Upon substituting

into the (75), we have

50’1
II

(79)

oer
where II and T are smaller full matrices on the C'ST.

5. A parallel LU decomposition or parallel preconditioned biconjugate iteration
algorithm (Golub et al., 1989) will be used to solve the smaller full matrices equation
in CSI, (79), in parallel. Finally, a parallel backforward processor is used to obtain
60 and d¢ on the cells of the C'SIT by (77). (Xie and Zuo, 1991, Xie and Li, 1988,
and Xie et al., 1995c¢).

In the parallel program, the shared data, the shared do loops, and message passing
interface (MPI) are used for communication and distribution of subdomain field data
and matrix data on a massively parallel computer. In this parallel program, distribu-
tion of the jobs in the parallel processing is uniform and the parallel arrangement is
done appropriately. The new global integral and local differential parallel inversion
has been tested in the multiple processor of the Special Parallel Processing (SPP) in
the CRAY-A.NERSC.GOV and the Massively Parallel computer T3D. The parallel

effective rate is 80% to 96%. The description of the new parallel GILD modeling
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and inversion algorithm is presented in a Lawrence Berkeley National Laboratory

technology report by Xie and Li (1997).

ELECTRIC FIELD CALCULATION

In the preceding sections, the calculation method of the magnetic field in the
domain V, is described. The magnetic field outside of the domain V; is calculated by
using the discrete magnetic integral representation (28), where r is located outside
of the domain V, and 7' is in the domain V,. For completeness, the finite element

approximation of the electric field is presented in this section.

Electric field approximation in the domain V;

In the point r inside of each element V, C V;, the finite element approximation of
the electric field is calculated by

E"(r) = ! v« H*, (80)

O + 1WE,

where H" is presented by (22). In the point 7 on the interface boundary plane
between the elements, for example, element el and element e2, the finite element

approximation of the electric field is calculated by

1 1
h — h h
E"(r)], =05 { (0_61 n iwaelv X Hel) s + (——-—aez - Z,wgezv X Hez) |t}, (81)
and
Eb(r) | = (——1——v x H") 1=1,2 (82)
Tel + tweg “)’ T

where |; denotes a tangent component and |, denotes a normal component with
respect to the interface boundary plane. Similarly, the formulas for electric field on

the edge and corner of the element can be written.
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Electric field approximation outside of the domain V,

The electric field approximation outside of the domain V; is calculated by the

following discrete integral representation

E* (r) = B} (r)

M .
g § {temmdtitecsad 1 G () (¥ x £ - 5, ', (53)

Electric field approximation on the boundary of the domain V,

The electric field approximation on the boundary of the domain V; can calculated

by using (83), or (81) and (82).

APPLICATIONS

The new 3D nonlinear magnetic integral inversion algorithm has been tested
by using two synthetic models. Model 1 in (A) of Fig. 4 is a (90m, 90m, 80m) cubic
conductor of 0.1 S/m conductivity that includes a (30m, 30m, 50m) cubic conductor
of 0.25 S/m conductivity inside. The geometry of model 2 in (B) of Fig. 4 is the
same as model 1, the conductivity in the outer part of the cube is 0.25 S/m, and the
conductivity of the inner cube is 0.1 S/m. The permittivity is 9. The 18 frequencies
employed are 10, 18, 31, 585, 96, 180, 300, 530, 938, 1658, 3000, 5000, 10000, 16000,
20000, 28000, 38000, and 50000 Hz. 64 vertical magnetic dipole sources on the sur-

face, and 768 receivers on the surface were used to create synthetic surface data by

solving the forward finite element discrete magnetic integral equation. The geometry
pattern of the 1 source and 12 receivers is shown in (B) of Fig. 1. At each receiver
point, the three magnetic components, Hx, Hy, and Hz are measured. The amplitude
of the vertical magnetic surface data of the model 1 excited by the vertical magnetic

source in the center of the surface is shown in Fig. 5 with a solid line. The total
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field, incident field, and scattering field for 50000 Hz are plotted in frames (1.1), (1.2),

and (1.3), respectively; the total field, the incident field, and the scattering field for

10000 Hz are plotted in frames (2.1), (2.2), and (2.3), respectively; the total field,
the incident field, and the scattering field of 10 Hz are plotted in frame (3.1), (3.2),
and (3.3), respectively. Tile phase of the vertical magnetic surface data of the model
1 excited by the vertical magnetic source in the center of the surface is shown in
Fig. 6 with a solid line. In testing of the new inversion, the background conductivity
was assumed known (0.05 S/m), the above model was imbedded in the large cubic
domain [-90m, 90m; -90m, 90m; 0,120m] and the initial conductivity is 0.05 S/m.
The model is divided into the 35 x 35 x 25 = 30625 cells and 33696 nodes. The 16
CPU processors and 33 minutes wall time in the the Cray-C90 were used to run the
inversions for the synthetic data. The new 3D nonlinear electromagnetic inversion is
stable convergent and the parallel efficiency is 90%. The normalized residual going
down to 1.0e-3 from 1.0 after 18 iterations and the conductivity image were obtained.
The initial regularizing parameter is 1.0~2 for two models, the optimization regulariz-
ing parameter is 1.07639X10-5 for model 1 and 1.17856X10-5 for model 2. The cross
section of the conductivity image of model 1 is shown in (C) and the conductivity
image of model 2 is shown in (D) of Fig. 4. The amplitude and phase of the vertical
magnetic field obtained by the inversion of the model 1 are shown in Fig. 5 and Fig.
6 with a dashed line. For comparison with the conventional electric integral inversion,
we used our electric integral inversion program for the above models. The model is
divided into the 23 x 23 x 21 = 11109 cells and 12672 nodes. The one CPU proces-
sor and 39 hours in CRAY-C90 were used to run inversion for each model synthetic
data. After 24 iterations, the normalized residual going down to 1.0e-3 from 1.0. The
initial regularizing parameter is 1.073 for two models, the optimization regularizing
parameter is 1.8346X10-4 for model 1, and 1.7578X10-4 for model 2. The results are
shown in (E) and (F) of Fig. 4. We used EPA Rocky Mountain Arsenal field data

to test the 3-D new nonlinear inversion and the traditional electric integral inversion.
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The data configuration was described in Lee et al. (1996). The twelve (12) transmit-
ters on the surface were used. For each transmitter, the vertical magnetic fields are
available at five location ((B) of Fig. 1); 11 frequency data have been selected for
the inversion. These frequencies were 36, 73, 164, 346, 746, 1602, 3458, 7445, 16036,
25410, and 40280Hz. Thé cells of the inversion domain were 46x46x46=97336. After
18 iterations, the normalized residual was decreased to 0.012 from 1.0 and the iter-
ative processes was stable. We used 64 PES and 56 minutes wall time with parallel
rate 89% in the T3D to solve the nonlinear inversion. The resistivity imaging using
the new 3D inversion were shown by five plots on left size of Figure 7. The one in

the middle with Y=0 m represents an east-west cross section bisecting the survey

area. This imaging is consistent with that indicated by the result of 1-D inversion.
The next two cross sections Y=30 m and Y=60 m to the south, the cross section at
Y=-30 m and Y=-60 m to the north. These imaging show the 3D high resolution
conductivity structures. The five imaging in the right side of Fig. 7 were results of
the traditional nonlinear electric integral inversion, the cells are 31x31x31= 29791.
The one CPU processor and 87 hours in CRAY-C90 were used to run this job. After
10 iterations, the normalized residual was decreased to 10! from 1.0. The figure
shows five conductivity cross sections. We compared the imaging on left and imaging
on the right. It is obvious that the imaging using the new 3D nonlinear inversion has
a high resolution. In Fig. 8, the high resolution resistivity imaging using the new 3D
nonlinear and the crosshole field data is shown. The two resistivity imaging of the

before and after steam injection are shown in plots (a) and (b), respectively. The (c)

shows a differences imaging made by substracting the two images (a) and (b). Based
on the difference in the imaging before and after the steam injection, how and where
the steam was moving that can be shown clearly. The field data is from the steam
injection experiment in the Bakersfield oil field in central California by Dr. Michael
Wilt. The 32 x 18 crosshole source receiver pairs and single frequency of 5K Hz data

is used for inversion. The distance between crosshole is 54 m. We used 61x21x80
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=102480 cells for inversion domain. We used 64 CPU processor elements (PEs) and
2.5 hours wall time in the massively computer T3D to run the imaging job using the
new 3D nonlinear inversion code. After 28 iterations, the normalized residual was
decreased to 0.026 from 1.0. The reasonable imaging was obtained that is shown in

Fig. 8. In this paper, only conductivity imaging is presented.

CONCLUSIONS

In this paper, a new 3D parallel GILD EM modeling and nonlinear inversion algo-
rithm is developed. The new 3D modeling and nonlinear inversion has been tested by

using synthetic data and field data obtained from environmental sites and oil field.

We obtained very good imaging (Fig. 4) for synthetic data and a reasonable sub-
surface EM imaging (Fig. 7 - Fig. 10) for practical data. By comparison between
(C) and (E), (D) and (F) of Fig. 4, the new magnetic integral inversion is better
than the traditional electrical integral equation for 3D electric conductivity inversion.
The new nonlinear inversion method in this paper is available for w > wp > 0. For
the magnetic permeability inversion, we used an electric integral equation (11) (Li
and Xie, 1997). It is interesting to note that the new magnetic integral equation
(8) is a dual integral equation of the electric integral equation (11). The benefits of
the new magnetic integral equation for modeling and inversion are: (a) The mag-
netic field in (8) is continuous when electric conductivity is discontinuous, which is
convenient for using the finite element method, (b) The kernel function in equation

(8) is integrative weakly singular, (c) There is a parameter relative difference term,

Sotiwbe o §log(g + iwe), that is the natural logarithmic scale inversion, and (d) The

o4twe

magnetic integral equation (8) and magnetic differential equation (10) can be con-
sistently assembled to construct a new global integral and local differential parallel
algorithm. The discrete matrix of the differential equation for modeling is sparse,

but the inconvenient artificial radiation or absorption boundary conditions must be
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imposed. A merit of the integral equation approach for modeling and inversion is
that the artificial boundary condition is not needed, but its discrete matrix is full.
The new parallel GILD algorithm has both the merits of a local sparse matrix and

no artificial boundary condition needed.

Advantages of new parallel GILD modeling and nonlinear inversion

The new GILD parallel modeling and nonlinear inversion algorithm is a new de-
velopment of 3D nonlinear inversion. The algorithm is designed to overcome the
shortcomings of the conventional inversion. The advantages of the GILD algorithm
are: (1) using a new exact global volume or boundary integral equation (Xie et al.
1998) and local differential equation in the domain that reduces the numerical bound-
ary noises and improves accuracy of the modeling and inversion; (2) using a new global
integral and local differential decomposition in inversion that decompose the ill-posed
full matrix into 4 small sparse matrices and a smaller full matrix, greatly improved
the ill-posed condition, and reduced computation time and storage requirements; (3)
the GILD is a high performance parallel multiple hierarchy algorithm with parallel
efficiency of 96%; (4) it minimized data communication between processors that is
suitable for the architecture of the massively parallel computer T3E with distribu-
tion memory; (5) the GILD parallel algorithm can be widely useful to solve elliptic,
parabolic, and hyperbolic modeling and inversion in the T3E massively parallel com-
puter that will be a great benefit for expanding T3E’s applications in science and

engineering.
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FIGURES

FIG. 1. The new GILD domain decomposition and source pattern

FIG. 2. The GILD nodes-decomposition

FIG. 3. The GILD cells-decomposition
FIG. 4. Resistivity imaging of the 3D EM inversion for synthetic data

FIG. 5. Amplitude: solid line - magnetic field of modeling, dashed line - magnetic

field of inversion

FIG. 6. Phase: solid line - magnetic field of modeling, dashed line - magnetic field of

inversion

FIG. 7. Comparison between resistivity imaging using new 3D nonlinear inversion

and the traditional electric integral nonlinear inversion

FIG. 8. Resistivity imaging using new 3D nonlinear inversion and the crosshole field

data

FIG. 9. Parallel 3D GILD resistivity imaging using new 3D nonlinear inversion and

the crosshole field data

FIG. 10. Parallel 3D GILD Resistivity imaging for VETEM field data
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