

LA-UR-98-3-3525

Approved for public release;
distribution is unlimited.

Title:

Information Barrier Functional
Requirements

CONF-980887--

Author(s):

Duncan W. MacArthur
Rena Whiteson

Submitted to:

U.S./Russian/IAEA
Trilateral Technical Workshop
Savannah River Site, Aiken, SC
August 25-28, 1998

RECEIVED
APR 13 1998
USTI

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

Los Alamos
NATIONAL LABORATORY

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. The Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (10/96)

MASTER

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

Information Barrier Functional Requirements

Duncan MacArthur and Rena Whiteson
Los Alamos National Laboratory

INTRODUCTION: For the purpose of this paper, we have used the term “functional requirement” to indicate a required task rather than the recommended method for accomplishing this task. The creation of effective information barrier technology will proceed as a series of steps:

- 1) IB Conceptual Description¹
- 2) IB Functional Requirements (this document - ongoing)
- 3) IB hardware and software specification
- 4) IB hardware and software construction
- 5) IB implementation

This functional requirements document is not intended to supplant or supercede the conceptual description; rather, these functional requirements are intended to be used along with the earlier description to help generate hardware and software requirements.

ASSUMPTIONS: These assumptions are based on a “straw man” scenario for pit inspection. This set of assumptions are based on conversation with James Tape.²

- 1) Time Frame
 - a) Pits are received at the storage facility continuously
 - b) Inspectors are not present at the storage site continuously
 - c) Pits will be accepted into the program when inspectors are not physically present
- 2) Measurements
 - a) Some unclassified identifiers (such as container ID) will be measured
 - b) Some classified identifiers (such as radiation signatures) will be measured
 - c) No classified information will be revealed to inspecting party
 - d) Verification system operation may be checked (e.g. by inserting blind standards into the measurement area) by either party at any time
 - e) Any previously monitored pit can be remonitored with an inspector present
- 3) Accounting
 - a) All declared items must be accounted for
- 4) Data
 - a) Classified data will not be transmitted
 - b) Some classified data may be archived
 - c) Red light/green light output will be archived along with container identification
 - d) Any archived classified data must be in a form which is unalterable by the inspected party
 - e) Any archived classified data must be in a form which is unreadable by the inspecting party
 - f) Archived red light/green light data must be in a form which is unalterable by either party but readable by both parties

5) Equipment

- a) All inspection equipment will be under dual control
- b) System can be sanitized
- c) Commercial hardware is employed to the maximum extent possible
- d) Core software is unclassified

FUNCTIONAL REQUIREMENTS: Each requirement is numbered to identify the assumptions from which the requirement is derived. Assumption 2 mandates that an IB be in place, but this assumption does not make any specific requirements of the IB. Assumption 3 does not impact the IB directly. Thus, assumptions 1, 4, and 5 directly impact the functional requirements of the IB.

I have divided the IB functional requirements into the following areas:

- Physical protection
- Hardware hardening
- Assurance of capabilities and limitations
- Administrative controls
- Validation and verification of the systems and data
- Measurement error detection and resolution
- System error detection and resolution
- Equipment sourcing and maintenance
- Data paths (intended and unintended)

Physical Protection: (assumptions 1, 2, and 4)

- Access control
- Hardware
- Software
- Classified data archives
- Unclassified data archives

Hardware Emissions Control: (assumptions 1 and 4)

- Emission through the air (e.g. rf radiation)
- Transmission through conductors (e.g. power supply wiring)

Capability Assurance: (assumptions 1, 4, and 5)

- Commercial software
- Task-specific software
- Functional specifications of software elements
- Entire analysis system

Administrative Controls: (assumptions 1, 2, and 5)

- Procedural rules for participant behavior
- Procedural rules for unmonitored inspection
- Procedural rules for maintenance
- Continuity of knowledge
- Agreed on levels of participation in all activities
- Keys, passwords, etc
- Operational Security

Validation and Verification: (assumptions 4 and 5)

- Hardware and software inspection and verification
- Analysis system tests
- Authentication of archived data

Error Detection & Resolution: (assumptions 1 and 4)

- System errors
 - Misidentification of device under test
 - Detection
 - Rectification without revealing classified information
- Measurement errors
 - Identification of error
 - Remeasurement protocol
- Effect of error
 - False negatives
 - False positives

Equipment sourcing and maintenance: (assumption 5)

- Use commercial hardware if possible
- Allow for manufacturer maintenance of commercial hardware
- Use commercial software if possible
- Keep specialized software as simple as possible
- Allow for sanitation of most (all?) of the system

Data Paths: (assumptions 1 and 4)

- IB is combination of hardware and software barriers
- Defense in depth
- Hidden data paths
- Maintenance mode
- Interaction between elements
- Consider all barrier crossings

References:

¹ R. Whiteson and D.W. MacArthur, "Information Barriers In the Trilateral Initiative," Los Alamos National Laboratory Publication LA-UR-98-2137, May 1998.

²J. Tape, Private communication.