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Optimal Neural Computations Require Analog Processors

Valeriu Beiu*

Division Space and Atmospheric Sciences NIS-1, Los Alamos National Laboratory
Los Alamos, MS D466, NM 87545, USA
E-mail: beiu@lanl.gov

Abstract — This paper discusses some of the limitations of
hardware implementations of neural networks. We start by pre-
senting neural structures and their biological inspirations, while
mentioning the simplifications leading to artificial neural net-
works. Further the focus will be on hardware imposed con-
straints. We will present recent results for three different alter-
natives of parallel implementations of neural networks: digital
circuits, threshold gate circuits, and analog circuits. The area and
the delay will be related to the neurons’ fan-irn and to the preci-
sion of their synaptic weights. The main conclusion is that hard-
ware-efficient solutions require analog computations, and
suggests the following two alternatives: (f) cope with the limita-
tions imposed by silicon, by speeding up the computation of the
elementary ‘silicon’ neurons; (ii) investigate solutions which
would allow the use of the third dimension (e.g. using optical in-
terconnections).

Keywords — neural networks, Boolean functions, threshold
gates, analog circuits, circuit complexity, VLSI complexity, fan-
in, size, precision (accuracy).

I. INTRODUCTION

The model we shall discuss wants to duplicate the activity
of the human brain. This is made of living neurons composed
of a cell body and many outgrowths. One of these is the
axon — which may branch into several collaterals. The axon
is the ‘output’ of the neuron. The other outgrowths are the
dendprites. The end of the axons from other neurons are con-
necting to the dendrites through ‘spines’. Active pumps in the
nerve cell walls push sodium ions outside, while keeping
fewer potassium ions inside. Therefore, their tendency is to
keep the cell body at a small negative electric potential
(-60mYV). The electrical balance varies at the exit point of the
axon. If the electrical potential of the cell becomes too positive
(+10+15mV), the potential suddenly jumps to about +60mV.
After a short delay of 2+3ms the potential returns to the nor-
mal negative value (-60mV). This change of potentials is se-
quential and is called an action potential. The action potential
travels down the axon and its branches (with a speed in the
range 1+10m/s). This variation of potential represents the sig-
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nal sent by one neuron to its neighbours. The generation of the
signal is achieved by summing the signals coming from the
dendrites. The strength of the action potentials travelling along
an axon are identical, nevertheless, the effects to the neigh-
bouring cells are different. This is due to the rescaling effect
which takes place at the synapse. Although over-simplified,
this description of the living nerve cells is a correct repre-
sentation of the system.

Formally, a network is an acyclic graph having several input
nodes, and some (at least one) output nodes. If a synaptic
weight is associated with each edge, and each node computes
the weighted sum of its inputs to which a nonlinear activation
function is then applied:

&) = flxp.nx) =0 (2,2 wx+0), m

the network is a neural network (NN), with w; € IR the synap-
tic weights, © € IR known as the threshold, A being the fan-in,
and ¢ a non-linear activation function. Because the underlying
graph is acyclic, the network does not have feedback, and can
be layered. That is why such a network is also known as a
multilayer feedforward neural network. The connection
weights are quite important, as it is their modification that al-
lows the NN to ‘learn’. The basic idea is to present the exam-
ples to the NN and change the weights in such a way as to
improve the results (i.e., the outputs of the NN will be ‘closer’
to the desired values). The cost functions used to characterise
a NN are:

o depth (i.e., number of edges on the longest input-to-out-

put path, or number of layers); and
¢ size (i.e., number of neurons).

In the last decade the tremendous impetus of VLSI technol-
ogy has made neurocomputer design a really lively research
topic. Hundreds of designs have been already build, while sev-
eral are available as commercial products. Still, we are far
from the main objective as can be clearly seen from Fig. 1
where the horizontal axis represents the number of synapses
(i.e., the connectivity), while the vertical axis represents the
‘power of computation’ in connections per second (CPS). It
becomes clear that biological NNs are far ahead of digital,
analog and even future optical implementations. This paper
will try to explain why this is the case.
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Fig. 1. Different hardware alternatives for implementing artificial neural networks: (a) an enhanced version from [39]; (b) digital neurochips as circles, and
classical computers as crosses (for more details see [10]).

For hardware implementations the area of the connections
counts, and the area of one neuron can be related to its associ-
ated weights, thus “comparing the number of nodes is inade-
quate for comparing the complexity of NNs as the nodes
themselves could implement quite complex functions” [99].
That is why several authors have taken into account other cost
functions, which can be linked to VLSI by the assumptions
one makes on how the area of a chip scales with the weights
and the thresholds [9, 10, 15, 16]. Here are some of the other
measures (i.e., ‘cost functions’) — beside size — which have
already been used:

o the total number-of-connections, or . yy fan-ins, has been

used by several authors {1, 40, 67, 80];
o the total number-of-bits needed to represent the weights

and thresholds Y. (X ;(loglw;[1+(logl®11)" has been

used by others [29, 99];

¢ the sum of all the absolute values of the weights and
thresholds Y. (T ;1 wi | +101) has also been advocated [9,
16, 23, 25, 26, 27], while another similar ‘cost function’
is T, Wi + 62), which has been used in the context
of genetic programming for reaching minimal NNs [101].

The sum of all the absolute values of the weights and

thresholds has been used as an optimum criterion:

o for linear programming synthesis [71];

o for defining the minimum-integer threshold gate (TG) re-
alisation of a Boolean function (BF) [50];

¢ in the context of computational learning theory for im-
proving on several VC-theory bounds [6]; in particular,
the measure was used under the name of “toral weight
magnitude,” and it was proven that the generalisation er-
ror of NNs used for classification depends on the size of
the weights — rather than the number of weights — by
showing that the misclassification probability converges

at a rate of O {(cA) b \m } (here A is the sum of the mag-
nitude of the weights, [ is the depth, m is the number of
examples, and ¢ is a constant).

1 In this paper [x1 is the ceiling of x, i.e., the smallest integer greater than or
equal to x, and Lx] is the floor of x, i.e., the largest integer less than or equal
to x, and all the logarithms are taken to base 2 (except mentioned otherwise).

Such approximations can easily be related to assumptions
on how the area of a chip scales with the weights and the
thresholds [10, 12, 15, 21]:

 for digital implementation, the area scales with the cu-
mulative storage of weights and thresholds (as the bits for
representing those weights and thresholds have to be
stored);

e for analog implementations (e.g., using resistors or ca-
pacitors) the same type of scaling is valid (although it is
possible to come up with implementations having binary
encoding — for which the area would scale with the cu-
mulative log-scale size of the parameters);

» some types of implementations (e.g., transconductance
ones) even offer a constant size per element, thus in prin-
ciple scaling only with the number of parameters (i.e.,
with the total number-of-connections).

With respect to delay, two VLSI models have been com-
monly in use [96]:

e the simplest one assumes that delay is proportional to the
input capacitance, hence a TG introduces a delay propor-
tional to its fan-in;

¢ a more exact one considers the capacitance along any
wire, hence the delay is proportional to the length of the
connecting wires.

It is worth emphasising that it is anyhow desirable to limit
the range of parameter values for VLSI implementations
[100], be they digital or analog, because: (i) the maximum
value of the fan-in [40, 98]; and (if) the maximal ratio between
the largest and the smallest weight cannot grow over a certain
(technological) limit [29, 34].

The paper starts by overviewing several results dealing with
the approximation capabilities of NNs, and details upper and
lower bounds on the size of threshold gate circuits (TGCs).
These are followed by solutions which are optimal with re-
spect to different cost functions. We show that both Boolean
and TGCs require exponential size for implementing arbitrary
BFs, while there are TGCs which have low precision and
small fan-ins. Further, we argue that size-optimal solutions of
discrete NNs can be obtained only in analog circuitry, but re-
quire very high precision and large fan-ins (based on a fresh




constructive solution for Kolmogorov’s superpositions). It fol-
lows that the mapping onto silicon — lacking the third dimen-
sion of the biological nets — translates into limited fan-in and
reduced precision. Several conclusions are ending the paper.

II. PREVIOUS RESULTS

NNs have been experimentally shown to be quite effective
in many applications (see Applications of Neural Networks in
[3], together with Part F: Applications of Neural Computation
and Part G: Neural Networks in Practice: Case Studies from
[35]). This success has led researchers to undertake a rigorous
analysis of their mathematical properties and has generated
two directions of research for finding:

» existence/constructive proofs for the ‘universal approxi-

mation problem’;

e tight bounds on the size of the NNs solving the approxi-

mation problem.

Both aspects will be shortly discussed further.

A. Neural Networks as Universal Approximators

One line of research has concentrated on the approximation
capabilities of NNs [28, 53]. It was started in 1987 by Hecht-
Nielsen [43] and Lippmann [65] who, together with LeCun
[63], were probably the first to recognise that the specific for-
mat from [89, 90] of the form:

fepnx) = 220, [X,5h 0, v, +q0)]} @

of Kolmogorov’s superpositions f(x, ..., x,) =2 2;:,1 e, 0,)
[59], can be interpreted as a NN with one hidden layer. This
gave an existence proof of the approximation properties of
NNs. The first nonconstructive proof was given in 1988 by
Cybenko [31, 32] using a continuous activation function, and
was independently presented by Irie and Miyake [52]. Similar
results for radial basis functions were shortly reported [41,
81]. Thus, the fact that NNs are computationally universal —
with more or less restrictive conditions — when modifiable
connections are allowed, was established. Different enhance-
ments have been later presented (for more details see [16,
851
e Funahashi [36] proved the same result in a more con-
structive way, and refined the use of Kolmogorov’s theo-
rem in [43], giving an approximation result for
two-hidden-layer NNs;
o Hornik et al. [48] showed that the continuity requirement
for the output function can partly be removed;
¢ Hornik et al. [49] also proved that a NN can approximate
simultaneously a function and its derivative;
e Park and Sandberg [77, 78] used radial basis functions in
the hidden layer, and gave an almost constructive proof;
¢ Hornik [46] showed that the continuity requirement can
be completely removed, the activation function having to
be ‘bounded and nonconstant’;
¢ Geva and Sitte [38] proved that four-layered NNs with
sigmoid activation function are universal approximators;
o Kurkova [61] and Kurkovi ef al. [62] have demonstrated
the existence of approximate superposition representa-

tions within the constraints of NN, i.e. y and @, can be
approximated by ¥, @, ¢ (b, x + ¢,), where G is an arbitrary
activation sigmoidal function (depending on approxima-
tion, the size of the resulting NN is between nm (m + 1)
and m? (m+1)");

o Mhaskar and Micchelli [68, 69] approach was based on
the Fourier series of the function, by truncating the infi-

nite sum to a finite set, and rewriting e i in terms of the
activation function (which now has to be periodic);

e Koiran [58] presented a new proof on the line of Funa-
hashi’s [36], but more general in that it allows the use of
units with ‘piecewise continuous’ activation functions;

o Leshno et al. [64] relaxed the condition for the activation
function to ‘locally bounded piecewise continuous’ (i.e.,
if and only if the activation function is not a polynomial),
thus embedding as special cases almost all the activation
functions that have been previously reported in the litera-
ture;

e Hornik [47] later proved that: (7) if the activation function
is locally Riemann integrable and nonpolynomial, the
weights and the thresholds can be constrained to arbitrar-
ily small sets; and (if) if the activation function is locally
analytic, a single universal threshold will do;

¢ Funahashi and Nakamura [37] showed that the universal
approximation theorem also holds for trajectories;

o Sprecher [91] has demonstrated that there are universal
hidden layers that are independent of »;

¢ Barron [5] described spaces of functions that can be ap-
proximated by the relaxed algorithm of Jones [55] using
functions computed by single-hidden-layer NNs;

e Ito [54] gave an elementary constructive method improv-
ing on the estimates of Kurkova [61], the size of the re-

sulting NNs being now between nm and m ",

These results — with the exception of [5, 58, 77, 78] —
were obtained “provided that sufficiently many hidden units
are available” (i.e., with no claims on the size minimality).
More constructive solutions have been obtained in very small
depth later [61, 54, 56, 74, 75], but their size — or the re-
quired precision — grows fast with respect to the number of
dimensions n.

Two important recent results are those of:

o Attali and Pagés [4], who have given an elementary proof
based on the Taylor expansion and the Vandermonde de-
terminant, yielding bounds for the design of the hidden
layer and convergence results for the derivatives;

e Sprecher [92-94], who gave an explicit numerical algo-
rithm for superpositions.

B. Threshold Gate Circuits

The other line of research was to find the smallest size NN
which can realise an arbitrary function given a set of m vectors

from IR”. Many results have been obtained for TGs [71]. The
first lower bound on the size of a TGC for “almost all” n-ary

BFs (f: IB"— IB) was given by Neciporuk [73]:

size > 22 m)172, 3




Later a very tight upper bound was proven in depth =4 [66]:
size <22 ?x{1+Q[2n)1’?}). @

A similar existence exponential lower bound of Q (2 n/ 3)
for arbitrary BFs can be found in [87], which also gives
bounds for many particular but important BFs (see also [34]).

For classification problems (f: IR"— 1B k), the first result
was that a NN of depth =3 and size = m — 1 could compute an
arbitrary dichotomy. The main improvements have been:
¢ Baum [7] presented a TGC with one hidden layer having
Tm /n) neurons capable of realising an arbitrary dichot-
omy on a set of m points in general position in IR"; if the
points are on the corners of the n-dimensional hypercube,
m — 1 nodes are still needed;

¢ a slightly tighter bound of only 1 + (s — 2) / n] neurons
in the hidden layer for realising an arbitrary dichotomy
on a set of m points (which satisfy a more relaxed topo-
logical assumption) was proven in [51]; the m — 1 nodes
condition was shown to be the least upper bound needed;

o Arai [2] showed that 2 — 1 hidden neurons are necessary

for arbitrary separability, but improved the bound for the
dichotomy problem to m /3 (without any condition);

» Beiju [8] has detailed the following existence lower and

upper bounds: 2mlogm/n 2 < size < 2mlogm/n 2 logn,
by estimating the entropy of the data-set;

¢ Beiu and De Pauw [17] have presented several improve-
ments on the previous results {8], by proving two new
bounds 2m / (nlogn) < size < 1.44m / n (see also [18, 24]).

Other existence lower bounds for the arbitrary dichotomy
problem [42, 79] are:
o a depth-2 TGC requires m / {n log(m /n)} TGs;

* a depth-3 TGC requires 2 (m /logm) 172 TGs in each of

the two hidden layer (if m>n 2);
¢ an arbitrarily interconnected TGC without feedback

needs (2m /logm) 172 1Gs (ifm>n 2).

One study [30] has tried to unify these two lines of research
by first presenting analytical solutions for the general NN
problem in one dimension (having infinite size), and then giv-
ing practical solutions for the one-dimensional cases (i.e., in-
cluding an upper bound on the size). Extensions to the n-di-
mensional case using three- and four-layers solutions were de-
rived under piecewise constant approximations, and under
piecewise linear approximations (using ramps instead of sig-
moids).

C. Boolean Functions

The particular case of BFs has been intensively studied [16,
76]. Many results have been obtained for particular BFs [84,
87]. For example, IF, ,, is the class of BFs of n variables hav-
ing m groups of ones in their truth table. Obviously, any BE
can be represented by a suitable collection of its true values
(ones), but for achieving that the number of groups of ones
grows exponentially (i.e., IF, ,»/2 completely covers B,, the
set of all #n-ary BFs). This class of functions has been intro-

duced and analysed by Red’kin [83], who constructively
proved a size-optimal result in depth = 3.

Proposition 1 (from [83]) The complexity realisation (i.e.,
number of threshold elements) of F, , (the class of Boolean
Sunctions f(x;, x,, ..., X,_y, X,) that have exactly m groups of
ones) is at most 2 2m) 172+ 3,

The construction has: a first layer of I'(2m)1/ 21 TGs (COM-

PARISONSs) with fan-in = n and weights <2"~ 1; a second layer
of 2T(m/2)V*1 TGs of fan-in =n+[(2m)*"* and weights

<2 a TG of fan-in=2[(m/2)""*1 and weights & {~1,+1} in
the third layer. This result is valid for unlimited fan-in TGs.
Red’kin also proved that if the implementation of BFs of this
type is restricted to circuits having no more than three layers,
than the upper bound — following his method of synthesis —
is equal to the lower bound obtained from capacity considera-
tions. Although this construction is size-optimal, it is not
VLSI-optimal as the weights and thresholds grow exponen-
tially with the number of inputs (while the fan-in is polyno-
mial).

A general solution for synthesising one BF with fan-in 2
AND-OR gates is based on the classical construction developed
by Shannon [86]. It was later extended to the multioutput case,
and modified to apply to NN by Horne and Hush [45]:

Proposition 2 (from [45]) Arbitrary Boolean functions of the
formf: {0, 1} — {0, 1}* can be implemented in a neural net-
work of perceptrons restricted to fan-in 2 with a node com-
plexity of ® {u 2"/ (n+logl)} and requiring O (n) layers.

Proof Decompose each output BF into two subfunctions us-
ing Shannon’s decomposition [86]:

Fx %, ..

-> X1 xn)

= X fo (s oves Xgs X,) + X1 1 (Ks < evs Kppy X))

By doing this recursively, the output BFs will be implemented
by binary trees. To eliminate most of the lower level nodes, re-
place them with a subnetwork that computes all the possible
BFs needed by the higher level nodes. Each subcircuit elimi-
nates one variable and has three nodes (one OR and two ANDS).
Thus, the upper tree has:

Sizeupper = 3”2'1:16121
=3pQ" -1, ®

and depth ., =2 (n — g). The subfunctions now depend on g
variables, and the lower subnetwork that computes all the pos-
sible BFs of g variables has:

i
Sizelower = 3 * Zizl 22

4
<4.27%, ©

and depth ,,,, = 2 q (sce Fig. 2 from [45]).
That g which minimises the size of the two subnetworks:

SiZ€ gpe = SIZ€ e T+ SIZ€ jorver 9




is determined by solving d (size zr, ) /dg =0, and gives:
=~ log{n + logp — 2log(n + logw)}. ®

By substituting (8) in (5) and (6), the minimum size:

size g, (n, ) = 3p-2"77

= 3p-2"/(n+logw) ®

is determined. |

1. HARDWARE OPTIMAL SOLUTIONS

It is well known that implementing arbitrary BFs using clas-
sical Boolean gates (i.e., AND and OR gates) requires exponen-
tial size circuits. As has been presented in the previous section,
the known bounds for size are also exponential if TGCs are
used to solve arbitrary BFs. These bounds reveal exponential
gaps, and also suggest that TGCs with more layers might have
a smaller size (depth # small const. [11, 12, 19]).

A. Boolean Functions Using Threshold Gates

We start from the classical construction developed by Shan-
non [86] for synthesising one BF with fan-in 2 AND-OR gates,
and generalise Proposition 2 (from [45]) to arbitrary fan-in.

Proposition 3 (from [19]) Arbitrary Boolean functions f:
{0, 1}* — {0, 1}* can be implemented in a neural network of
perceptrons restricted to fan-in A in O (n /logA) layers.

Proof We use the approach of Horne & Hush [45] and 11m1t
the fan-in to A. Each output BF can be decomposed in 24
subfunctions (i.e., 24~ 1 AND gates). The OR gate would have
241 inputs. Thus, we have to decompose it in a A-ary tree of
fan-in=A OR gates. This first decomposition step eliminates
A — 1 variables and generates a tree of:

1+ [(A-1)/logAl,

depth

size =224 reb ' ons@a-n.

Repeating this procedure recursively k times, we have:

depth = k- {1+ [(A—1)/logAl} (10)

upper

size e = {2271+ 1227 ) /(A= 1)1} - B 21D

=size - {2¥G-D_1} /0227121 an

26@-D(141/A)

n

~ 2kA"k’

where the subfunctions depend only on g =n — kA variables.
We now generate all the possible subfunctions of g variables
with a subnetwork of:

depth,,, =l(n-kA)/Al-{1+T(A-1)/logAl} (1)

S iZe lower

n~kA—iA

{2A 1+ r(ZA_l 1)/(A—1)]} zl.n/AJ k 22

0 A A—k+1)A
= size- {22 +22 +...+22 }
n—{k+1)A 1
< (size+1)-22 43)
n—kA-A 4
~ A 52 a4

The inequality (13) can be proved by induction. Clearly:

0 {0
size 2% < (size+1)-22.

Let us consider the statement true for o; we shall prove it for
o+ 1:

0 ) @+DA
size - {22 +..+27 } + size - 22
2(a+1)A 2(u+l)A
< size-2 + 2
0 oA oA
size- {22 + .. 422} < (size+1)- 22

(due to hypothesis), thus:

oA e+ 1A
Gize+1)-2% < 2?
and computing the logarithm of the left side:

298 1 log (size + 1)

2% 4 jog{22- 4@ -y sa- DY}

A

2% 4 log{22 14247 1/A+1}
<2% 1A
< 2 @+DA

From (10) and (12) we can estimate depth gy, :

depth gp = {k+ L(n—kA)/AJ} - {1+ [(A-1)/logAl}

= (n/A)- (A/logA+1) (15)
= n/logA
= 0 (n/logA)
and from (11) and (13) size g, as:
size gpe = W - Size - (2¥4-D_1y/a-1)
2n—(k+1)A
+ (size+1)-2
n-kA-A
~ 2Kk A 2 1o
concluding the proof. a

Proposition 4 (from {19]) For arbitrary Boolean functions f:
{0, 1} — {0, 1}* implemented by a neural network of per-
ceptrons, all the critical points of the size: size gr, (W, 1, k, A),
are relative minimum and are situated in the (close) vicinity of
the parabola kA = n —log (n + log}l).

Proof To determine the critical points, we equate the partial
derivatives to zero. Starting from the approximation of size g,




given by (16) we compute dsize yp, /0k = O:

p-2 "% a2y a-1)

n—kA-A
+2822 (In2) 2"~ *~2(n2) (-A) = 0

n-kA~-A

{(R(A-1)/A/(n2)} -2 %KA—k=n =22

and using the notations kA=1, f =1 (A —1) /(A In2), and tak-
ing logarithms of both sides:

logB+2y—k—n =2""774 an

which has an approximate solution y=n —log (n + logp).
The same result can be obtained by computing with finite
differences (instead of approximating the partial derivative):
size g (L, 1, k+ 1, A) — sizegp, (W, 1, &k, A)= 0

n—-kA-A

size- {p- 2%~k — 22 } =0

n—kA~-A

b2 kA=K =92

and after taking twice the logarithm of both sides, and using
the same notations, we have:

log{logn + y(1-1/A)}=n-vy-A
n—{A+log(1-1/A)} —log{y+A/(A-1)-logu}

-
]

I

(18)

n — A - log (y+logw),

which has the same approximate solution:
. ¥ = n—log(n+logu).

Starting again from (16), we compute dsize g, /IA=0:

kKA—A

p2 =k g + 24 (n2) 22"

n—kA-A
+2%422 (1n2) 2" *A~41n2) (k) = 0

¥-A n-y-A

we- 277k = kn2). 27V 22 T J gA 2

pk-2Y"k.p7-n

y-4A

n-y—A n—
= k(In2)-27 —28.277n .92

k-2 2 kn e

{k(n2)-27+2-"} .22

W/In2) - 22k=m = (127 A=m gy} 22"

which — by neglecting 2 YA/ {k(n2) - 2™} — gives:

logB+2y~k—n =27"1"4

i.e., the same equation as (17).

These show that the critical points are situated in the (close)
vicinity of the parabola kA = n — log (n + logl). Q

From Proposition 4 it follows that size-optimal TGCs can
be obtained for small fan-ins (i.e., from constant to at most
n —logn < n). The exact size:

SiZe BFs = Size lower + u' : SiZe upper

has been computed for many different values of n, p, A and k.
Some results of those simulations are plotted in Fig. 2. From
Fig. 2(a), 2(b) and 2(c) it seems that k£ and A have roughly the
same influence (on size zr, ). The discrete parabola-like curves
which are approximations of kA = n —log (n +logu) can be
seen in Fig. 2(d), 2(e) and 2(f).

1000 1000, 1000,
g %o 3 800y 5 %0
2 2 g
£ £ £ oy
5 =0 5 2004, &=

0, 0. Q.

@ o 0

fan-in 35 fan-in 25 35
(a) o K-parameter (b) o k-parameter (C) . k-parameter

n=16 n=64 n=256
\ \ | \ \ - \\ | \ \
200 i + 3

(d) 5 10 15 2‘0 - 0 (e) 0 (f) 5 10 15 ZIO 25 0

Fig. 2. The size (in logarithmic scale) of NNs implementing arbitrary BFs for: (a) n = 16; (b) n=64; (c) n =256 (clipped at 21000), and the contour plots for
the same cases (d), (e), (f).




Proposition 5 (from [19]) The absolute minimum of size gp, is
obtained for fan-in A=2.

Sketch of proof We will analyse only the critical points by us-
ing the approximation kA = n —logn. Intuitively the claim
can be understood if we replace this value in (16):

_ _ n—-n+logn—~A
sizens, = p-2"7l8 "k 4 948 52

<p-anlo g8 52"
=p-2"/n+ 242"

which is minimised for A =2.
The detailed proof relies on computing size p, as a function

of (n, U, k, A), for the critical points k= (n —logn) /A, and
then showing that:

5ize g, (1, Wy A+ 1) — size pe, (1, 11, A) > 0, 19

therefore, the function is monotonically increasing and the
minimum is obtained for the smallest fan-in A =2. m]

Remark It is to be mentioned that the other relative minima
(on, or in the vicinity of the parabola kA = n —logn) might
have more practical interest as leading to networks having
fewer layers (n/logA instead of n).

B. IF, ,, Functions Using Threshold Gates

Similar optimal results can be obtained for implementing
IF, ,, functions. Beside the size-optimal solution detailed in
[83], another solution was presented in [25, 26, 27], and later
improved in [22, 23]. It has a first layer of COMPARISONs fol-
lowed by a second layer of MAJORITY gates. Because the first
layer is represented by COMPARISONS (i.e., IF, | functions), it is
possible to decompose them such as to satisfy the limited fan-
in condition [11-15, 23]. The previous known results were
that COMPARISON:
» cannot be computed by a single TG with polynomially
(in the number of inputs) bounded integer weights;

¢ can be computed by a depth =2 NN with O (n 4) TGs and
polynomially bounded weights [76];

* can be computed by a depth=3 NN with 3n TGs and
polynomially bounded weights [87];

e can be computed by a depth =3 NN with © (n/logn)
TGs and polynomially bounded weights [84].

@ C; X1 CiX,Y)

Yo

¢ can be computed by a depth =2 linear threshold network

of size =2[n/[Vnll, with weight values of at most 2 AZ 1,

and with an upper bound of 2[Va1+ 1 for the maximum
Jfan-in [97].
The solution presented in [25] has evolved into a class of
solutions [26, 27] which covers almost all the other solutions
(for more details see [15]).

Proposition 6 (from [26]) The COMPARISON of two n-bit num-
bers (i.e., IF, | functions) can be computed by a A-ary tree of
size O (n/ A) and depth O (logn /10gA) for any 3 <A< 2n.

Proof LetX=x,  x,,...x,x,and Y=Y, ,y,, ... ¥ ¥, be the
two binary numbers (integers) of n bits each. The COMPARI-
SON of the two numbers is defined as:

1 if X>Y Xz2Y) 20y

PEy) =
0 if X<Y (X<Y)

where the subscript indicates the number of bits (length). We

should mention that C.” and C? are isobaric functions (i.c.,

functions which can be implemented by TGs having identical
weights, but different thresholds [50]), so there is no relevant
difference:

CZ(X,Y)

CZ(X+1,5)
@

Co X Y-1)
(when working with TGs the addition or subtraction of 1 can
be done by changing the value of the threshold).

We shall describe the first layer of TGs and, then, use two
recursive equations which make it possible to reduce one layer
to the next layer (for the particular case n = A =4 the resulting
architecture can be seen in in Fig. 3(a)).

Divide X in A groups: &, _,, E,_,, ..., 2, =, (these groups
are not necessarily equal, but, for ease of notations, we shall
consider them equal), where Z ;=X 1,51 --- X;a/), (here we
have also considered n divisible by A, which is also not really
necessary but simplifies notations). Similarly, divide ¥ in A
groups: W, _, Wy o, ... Vi, W, with P, =Y6+0nsh-t o Yinrn
Now, take A =2n/A and build the first layer of TGs by com-
paring each group E; with the corresponding group ‘¥, using

two isobaric TGs, one for Cy/, (2, ¥):

® feF,,

Fig. 3. (a) Tree decomposition of coMPARISON for rn=A = 4; TGs are represented by circles; nodes are light tinted; not used TGs are dark tinted; thin connec-
tions represent lweightt = 1; thick connections represent lweightl = 2. (b) Solution for implementing I, ,, functions using COMPARISONs and MAIORITY gate.




Cin ('Y

CAz/z E, ¥+ 1)

sgn [ZA/Z o) (Xiarej — Yinsz+) = 1] @2

and the other one for C, AZ,Z E, )

> o
Csn(ELY) = sgn [ZAﬁol 2/ (xiA/2+j - yiA/2+j)] @)

To avoid encumbering notations, we shall use Cy; instead

of C5y (B, W), and CAz,i, instead of CAZ,2 (£, V). Here the
subscripts show how many bits (from one number) are com-
pared, and the superscripts represent the number (i.e., an in-
dex) of the group.

Further, consider the outputs from the first layer as two
numbers of (2r /A) bits each:

C>2n/A—1

22n/A- 1 20
A2 d C C

A/2 ey MA/D

0
. C @ @9

Suppose now that we are at the /-th level of the A-ary tree (I-th
layer), and that the inputs are two k-bit numbers:

CB> k-1 25)

,c2% and c2F 1 L, 20

The value B = (A/ 2)1 is obtained from the fact that at each
level a reduction by A /2 takes place. Divide these &-bit num-
bers in equal groups of A /2 bits each. We have 2k /A groups,
and it is not difficult to see that level [+ 1 can be built out of
2k/A nodes (i=0, 1, ..., 2k/A - 1). Each node has two cir-
cuits for computing CB>AZ',2 and CEAi,z. By using the notation

D =1i(A/2), we can write:
{VA/Z 2[C>D+] C D+k)]}

v e PA/2-1 6

/\ Ar2-1

k=j+1

C A/Z

and respectively:

= (NPT

(:BA/Z j=

v {vA/Z 2[C>D+]A(AA/2 1

k=j+1

SO}

\/CB>D+A/2_1. @7

Both these circuits have fan-in = A — 1 as out of all the possi-
ble A inputs (A/2 being ¢; P*47271 7P, and A/2
being CBZD+A/2" L CBZD) we do not use:

. CBZ D for computing CB>Ai,2 in (26);

e C; D for computing C;Ai,z in (27).

As the outputs of the first layer are two numbers repre-
senting results of partial COMPARISONs (as shown by (24)), we
can apply (26) and (27) to build the second layer. Because the
outputs of this second layer can also be interpreted as two
numbers representing results of partial COMPARISONs, we can

again (i.e., recurrently) apply (26) and (27) to build all the
subsequent layers.

The depth of the resulting tree can be computed from the
fact that the last node (the root) has to cover all the » input

depth (o
bits, thus B = (A/2)’ becomes n = (A/2) leading to:

depth oo = Togn/(logA— 1)1

= O (logn/logA) . 28)

The first layer has n/(A/2)=2r/A nodes of two threshold
gates: C:,é and Cf,; (as given by (22) and (23)). Each sub-
sequent layer reduces the number of nodes by A/2, and also

has two circuits per node: CB>A",2 and CBZA",2 (as given by (26)
and (27)). We are now able to compute the size as the follow-
ing sum:

. n n
Sizecomp = 2 m + 2 (A/2)2
R T
(A/2)
By simple mathematics, this gives:
size comp = 14 (n—1) /(A —2)1
=0 (n/A) (30
which concludes the proof. u]

Remark On each layer the rlghtmost node will need only
one circuit: either C;, ,2 or CB A , (see Fig. 3(a)). The size
given by (30) is, thus, reduced with one circuit per layer, and
there are depth conp layers (28). The exact value for size is:

sizecomp = 4 (n=1)/(A=2)1 — depthegye  GD

= [4(n—1)/(A-2)1 - Togn/ (logh - 1)1.

Remark II The proof has been given for A even, but the de-
composition also holds for A odd. If A is even, all the TGs
from the first layer (leaves) have fan-in = A (there are A/2
connections to bits of X and A/2 connections to bits of ¥),
weights <2 /2_1, and thresholds € {1, 0} (see (22) and
(23)). All the other circuits from the nodes of the tree have
fan-in=A-1. If A is odd, things are reversed: all the TGs
from the first layer have fan-in = A — 1, while all the other cir-
cuits have fan-in = A. The resulting tree is an incomplete A-ary
tree as anyhow some nodes will have A — 1 connections, while
others will have A.

The nodes from the decomposition tree are computing BFs
Ja» which form a particular class of functions IF,, namely “the
class of functions fy =f, (8 as2-1>€as2-1> ---» 8o €0) Of Ainput
variables, with A even, and computing:

def - 21
po VA]{ZOI J (/\ A/

k=j+1

(32)

Sa ek)]

. . _ def .. .
By convention, we consider A -} ¢, = 1. One restriction is

that the input variables are pair-dependent, meaning that we




can, group the A input variables in A /2 pairs of two input vari-
(8¢ €¢), and that in each

" such group one variable is ‘dominant’ (i.e., when a dominant
variable is 1, the other variable forming the pair will also be
1). Formally:

F, 2 {£1£:{0,0, 0, 1), (L, D}2? > {013,

def

A/2e N f, =

ables each: (g4,2_1,€a/2-1) s -++ >

VA/Z 1 [g /\(AA/Z—I
i s

k=j+1

e)l

g=e,i=0,1,...,A/2-1}. (33)
This is a class of linearly separable BFs, and it can be
shown that the absolute weights and thresholds for implement-
ing any function from this class are upper bounded by 2472,
Proposition 7 (from [23]) IF, is a class of linearly separable

Sfunctions.

Proof The proof is constructive, and shows that, by copying
the weights from f,, adding two new weights and modifying
the threshold we can find f, , ,, such as a recursive version of
(32) is satisfied. Thus, all f, € JF, can be implemented by one
TG having fan-in=A - 1.

For A=4, (32) becomes:
fi(gren8ne) =g vieirgy
which is a linearly separable function:
g1V(eng) =28 +e+g)is

= sgn(2g,+e,+g,—2). (34

Refining (32), we can determine the following recursive
version (we increment by 2, as A has to be even):

Javz = Jas2(8ara €aras -+ 5 80s €0)

v P [g_/ A (A _1+1 ek)]

% An ! {g, A A “ffﬂ‘ e A eA/Z]} V(ganrl)

= 8an2V [eA/Z AJa(8ar2-1> €ar2-1s -+ 80 eo)]

= 8asnzV (€asn ASy)- (33)

Suppose now that the claim is true for A (i.e., f, is linearly
separable), then:
fa = sgn(

A/2-1

=0 Vi& T (36)

'zAu{zEl w; e + tA)

is true. As hypothesis for recursion, we shall also consider that
all the weights are positive (non-negative) integers, while the
thresholds are negative integers (easy to verify for the particu-
lar case A =4 by simply looking at (34): v;=2, w; =1, v, =1,
wy =0, while £, =—2).

To constructively prove that f,, , is linearly separable, we
build it in three steps:

e copy all the corresponding weights from f,;

¢ add two additional weights v, ,, and w, ,, (which corre-

spond to the variables g, ,, and e, ,,):

Vas, =14 X425 w 37

Wasn = 22550V (%)
e change the threshold to t, ,

faer = =1 = X050y - BNEw 39

Replacing (37), (38) and (39) in (36) we have:
favz = sgn[(vas28as2 + X251 v, 8)
+ (Wayeapn + RO W E) + 1,,,].40)
We shall verify that (36) and (40) satisfy the recursion (35).

Three cases have to be considered:
» If g,,,=1, then f,,,=1 regardless of the other input

variables (see (35)). By hypothesis we also have e, ,, =1,
hence (40) becomes:

fava = sgnlva, + 2721 vi8)

w,e) + ol

The worst case — due to the fact that all the weights are
positive — is when all the other input variables are 0. By
substituting (37), (38) and (39) in the previous equation

A/2~1
+ (Wasy + 0

we obtain:
Java = 580 (Vasn + Wasy + fhio)
= sgn (0)
= 1.

If g,,, =0 we have to analyse two cases.

e First, suppose that e, ,, = 0. This makes f,,, =0 regard-

less of the other input variables (see (35)). Now, (40) can
be rewritten:

fave = sgn (V5T vig + X5 Wie + 1)
and even if all the (other) input variables are 1, the value
of the threshold ¢, , , (see (39)) is large enough, such that
Jasa=5gn(-1)=0.
e The last — and most complicated case —is e, ,, =1 (we
do remember that g, ,, =0). In this case, fi,,=f, (see
(35)). Starting again from (40), we have:

Jav2 = sgn [zAfzol Vi &i

+ (Wapn + T2 W €) + 1a,0]
and by substituting (38) and (39) we obtain:
favz = sgn 22750 vig + (R4 v+ X020 wie
-1 - Ty - W)
= sgn [(X45" vi g + X5 wie)

A/2 1

-1 - w;]




®

i IS Fy
-1 1 2 -3 2 -1 1 5-5 2 ~3 2 -1 1

@ f fs fs
2 1 1 2 3 2 1 1 5 5 2 3 2 11 2
Fig. 4. (a) The series of weights: 1, 1, 2, 3, 2, 5, 5 and the corresponding thresholds: — 2, ~ 5, — 10 for f,, f;, fs. (b) The series of alternate signs weights (in
our proof all the weights are positive): 1, - 1,2, -3, 2, - 5, 5 leading to constant threshold (1), for f; . f;, f; ; these BFs are identicat with f,, £, f; if the ¢,
inputs are inverted, i.e., fy = fa(8as2-1> €ara—1s -+ 80> €0) -

The first two sums are larger (or, smaller) than -z, (see
(36)) if f, = 1 (or, respectively f, = 0). Let these two sums
be —t, + €, with € > 0 if f, = 1, and respectively € <0 if
Ja=0. Then:

fave =sgnf(=t, + &) — 1 - X472

w]
and replacing ¢, as given by (39):
fava = sgn {[(1 + X427 + 2450 w) + ]

- 1= 2% w)

A/2-2

= sgn (B2 v + € — wapy)

Finally, we use (38) to obtain:

Java = sgn (BN v + & - X))
= sgn(€)
= fa
The fact that the recursion (35) is verified concludes the
proof. '

Remark It should be mentioned that the operation of copying
the weights of a linear separable function to build another
one — and possibly changing the threshold — does not give
rise to a linearly separable function in general. This has been
proven by Walker et al. [99] where the conclusion followed
that: “no direct mapping of weights exists between fully and
limited-interconnect nets.” Proposition 7 shows that there are
particular classes of BFs which have the property that such a
direct mapping of weights exists and can be found.

Another interesting property of this class of functions is that
the weights and thresholds (of IF, functions) are bounded.

Proposition 8 (from [23]) The absolute weights and thresh-

olAd;'ZOf the gates implementing Vf, € IF, are bounded by
2774

Proof By solving the system of recurrent equations (37) and
(38) with the initial conditions v, =2, w, =1, v;=1, w,=0
(see (34)), we found that for Vi>4 (i.e., A2 8):

v, =w =5.273

By replacing i with the largest possible value i=A/2-1),
we get the maximal weights:

Vajat = Wasyoy = 5287274 = 5/716.2872 < 2472

From (37), (38) and (39) we know that £, =—v,,,_| —Ws,5_1,
so the absolute maximum threshold (for A > 8) is:
) = 5287273 = 5/8.2472 < 9472
concluding the proof. a
The TGs which realise the first three IF, functions (fy, fo, )
can be seen in Fig. 4(a), while in Fig. 4(b) a constant threshold
solution fy =f, (8 a/2-1> €asa1» ---» Bo» €) iS presented.
Proposition 9 The COMPARISON of two n-bit numbers can be
computed by a neural network having O (n/A) size and

O (logn / logA) depth. The integer weights and thresholds are:
(i) polynomially bounded for all the values of the fan-in in the

- range 3 < A < clogn; (ii) super-polynomially bounded for all

the values of the fan-in in the range clogn<A<c logkn; and
(iii} exponentially bounded for all the values of the fan-in in
the range ¢ logkn <AL2n.

Proof We use Proposition 6 to build the A-ary tree. From
Proposition 7 we know that all the functions are linearly sepa-
rable. Finally, using Proposition 8, we shall prove the
bounded weights condition.

In Proposition 6 we have shown how to build a A-ary tree
of size O (n/A) and depth O (logn /logA) to compute COM-
PARISON. As only the leaves (of the tree) are TGs, we use
Proposition 7 which shows that each of the circuits from the
nodes of the subsequent layers can be implemented by one

TG. Clearly, CB>Ai , is an f, function (see (26) and (32)), so it
/

can be realised by a TG. CBZA",2 is also an f, function either by
rewriting (27) such as to look like (32), or by using (21) which

shows that C,_I,ZA",2 is TG realisable as CB>A",2 is.

For odd values of A, the decomposition tree can be built in

the following way:

» the first layer is made of A— 1 fan-in TGs (A — 1 being
now even);

e all the other layers implement f} , | functions — but any
/1 function has A — 1 inputs (see (32) and Fig. 3(a)) —
which implies that f, ., functions have fan-in=A (as
(A+1)—1=A).

Lastly, the bounding conditions for weights and thresholds

will be proven. By construction, all the weights and the thresh-




olds are integers. From Proposition 6 we know that the
weights of the TGs from the first layer are bounded by
227271 and that the thresholds are either O or — 1 (see (22)
and (23)). From Proposition 8 we know that the weights and
the thresholds of all the other TGs are upper bounded by
2272 These show that the bounds on the weights and thresh-
olds are: (i) polynomial for A < ¢ logn; (i) super-polynomial
forclogn<A<c Iogkn; (iif) exponential for ¢ logkn <A< 2n;
and concludes the proof. Q

It is thus clear how one can lower the fan-in to a constant
(i.e., O (1)) and obtain a linear size NN having logarithmic
depth. A more interesting result is to let fan-in = O (logn);
now, the very slow growth of depth O (logn /loglogn), makes
it ‘almost constant’ for normal values of n: depth <7 for

n <10°. This increase of the Jfan-ins is rewarded by a signifi-
cant decrease of the size from linear to O (n/logn). In the
meantime, the weights grow only from constant to linear.

Proposition 10 Any function fe IF, , can be computed by a
neural network with polynomially bounded integer weights
(and thresholds) having depth O {log(m 1 /logA} and size
O (mn/A) for all the values of the fan-in in the range 3 to
c logn.

The proof follows from Proposition 9 [20, 27]. The size is
increased 2m times, as 2m COMPARISONs are used in the first
layer (see Fig. 3(b)). The size of the decomposition tree for the
MAIJORITY function (i.e., function which can be implemented
by a TG having all the weights £ 1) from the second layer is
only (2m —1) /(A — 1), and can be neglected [27], thus:

1
(A/Z)depth”,} ’

sizep = 2nm-{—1— + @1

A/2

8 & & g

Reduced size (in log scale)
g

Reduced size (in log scale)}

il
il
”///W«/{’///u i
W/“”m’,m/’;7”"”//‘
i

o

8
E
g
E

‘where depth  =Tlogn /(logA — 1)1. The depth grows with the
depth of the decomposition tree having 2m inputs implement-
ing the MAJORITY function, which is (logm + 1) /logA. A sub-
stantial size reduction is obtained if the fan-in is limited. Due
to that, the maximum number of different BFs which can be
computed in each layer is:

2n/A

2n 4 20/A _A@r)
e (A/z)depth,p—l

A@sy® -l @2)
AT A/2 )
For m large enough (needed for achieving a certain precision
[14, 29, 100]), and/or n large enough, the first terms of the
sum from (41) will be larger than the equivalent ones from
(42). This 1s equivalent to the trick from [45], as the lower lev-
els will compute all the possible functions using only limited
fan-in COMPARISONs. Hence, the optimum size becomes:

LUNIV depth 43)

2 + m

NI M (V)Y

. *
sizep = 2n-

explained as the same BFs are computed redundantly. In terms
of fan-in, several exponentially decreasing terms will be re-
placed by double exponential increasing terms.

To get a better understanding we have done extensive simu-

lations by considering that m=2%". Some of the results of
these simulations can be seen in Fig. 5. They show that it is al-
ways possible to obtain a significant reduction of the size by
properly choosing a small constant fan-in. It is to be men-
tioned that the size reduction is by a huge factor which is of

the form 2 ** ™€ for very small fan-ins A ppiim = 4...6. Follow-
ing similar steps to the ones used in Proposition 5, it is possi-
ble to show that the minimum size is obtained for very small
Jan-ins (A = 3).

g

g

Roeduced size (in log scale)
re
g &

g,
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Fig. 5. The reduced size (in logarithmic scale) of NNs implementing IF, ,, functions for m = 2% (a) £=0.1; (b) £=0.5; (c) €= 0.9; and the contour plots for
the same cases (d), (e), (f); the lowest values are obtained for very small constant fan-in values.




The method can be directly used for implementing k func-
tions of m examples when the fan-in is limited by A.

Proposition 11 Any finite set of k functions f from IF, , defined
by m examples (i <m <ik), can be computed by a neural net-
work with polynomially bounded integer weights and thresh-
olds, of O {m (2n+k)/ A} size and O {log(mn) /logA} depth
for all the values of the fan-in in the range 3 to O (logn).

The proof follows from Proposition 10. Because all the &
function are using the same n inputs, the first layer will need
2m COMPARISONSs in the worst case (for all the k functions).
The size is obtained by adding the size of the k decomposition
trees of 2m inputs (implementing the kK MAJORITY functions) to
the size of the 2m COMPARISONS.

Finally, we will show that even VLSI-optimal implementa-
tions of IF, ,, functions are obtained for small constant fan-ins
(A=6...9). This result builds on the closer estimates of area
and delay suggested in INTRODUCTION. Different estimates for
areq and delay have already been computed for JF, ,, functions
[15, 26]. Not wanting to complicate the proof, we shall deter-
mine the VLSI-optimal fan-in when implementing COMPARI-
SON (the same result is valid for F, , functions as can be
intuitively expected as: the delay is determined by the first
layer of COMPARISONS, while the area is mostly influenced by
the same first layer of COMPARISONS). We have chosen the fol-
lowing approximations: area =73 ;1 wil+161), and depth
for delay, but other estimates lead to the same results [15] (the

optimal AT? being O (n logzn)).

Proposition 12 (from [11, 15]) The VLSI-optimal neural net-
work which computes the COMPARISON of two n-bit numbers
has small-constant fan-in threshold gates, with small-constant
bounded weights and thresholds.

Proof From Proposition 6, 7, and 8, the AT 2 of COMPARISON
can be determined (for details see [11, 15]):

up? o 2872 8nA—6n-5A (logn)z

N

A A-2 logA

0 {nlog’n - 22/ (Alog?A)} “4)

and we can compute the derivative:

A2,
A%A-2)? log’A

d (AT
dA

X (8nA3logA —22nA%logA

+ 12nAlogA — 5A3logA + 10A210gA

16 .2 24 _24
- annA logA + 1112nAlogA 1112nlogA

10,0 . 32 .2 88 . 48
+1n2A lOgA lnznA +1n2uA 1112”

20,240

1n2A In2 )

This — unfortunately — involves transcendental functions of
the variables in an essentially non-algebraic way. By consider-
ing the simplified ‘complexity’ version (44) we obtain:

= d {nlog’n - 2272 /(Alog?A)} 7d A

dAT?/d A

- AIOgZA' 2 A AlnA

which, when equated to zero, leads to InA (Aln2 -2) = 4
(againatranscendentalequation).ThishasA ;= 6 as integer
solution. because the weights and the thresholds are bounded

by 2 Ar2 (Proposition 8), the proof is concluded. ]

N
RS
N

N
IR
We—
K
D

=

N
=
xS

N
NN

N
N

X
T

W
Sy

el

R

R
N

N

\

D7

\
N

N

W
N
\

N

N
N

W

\

\
\\\
7N
W

)
W
W

I
T
TS
W
W
D

A\

AN
e
ron

LA NS
Al L)\ AT
oY
)] \ WA \\
/// \ \\\
\;é\ % N '
~J

IS
Py
®
3
]
2
H
®
3
»
»
®
3

@ ©

®

Fig. 6. The AT? values of COMPARISON — plotted as a 3D surface — versus the number of inputs # and the fan-in A for 4 <A <20: (a) n<64; (b) n <256,
(c) n<1024; (d), (e), and (f) show the contour plots for the same cases. Clearly the a ‘valley’ is formed, and the ‘deepest’ points constantly lic somewhere
between A minim=06 and A pgzim=9.



The minimum AT > is obtained for A gprim = 6...9 (the proof
has been obtained using approximations: neglecting ceilings,
* using the complexity estimate, etc.), as can be seen from the
simulations (for variable fan-ins and different number of in-
puts #n) presented in Fig. 6. We mention that there are similar
small constants relating to our capacity of processing informa-
tion [70]. This result has been extended to IF, ,, functions. By
extending this result to a three dimensional hardware imple-

mentation, the energy (VT2 in this case) is minimised for fan-
ins in the range A =36...81 (which are still small as opposed
to the fan-in of the cells in the human brain, normally in the

range 10%...10%.

C. Boolean Functions Using Analog Neurons

A different approach is to use Kolmogorov’s superposi-
tions, which shows that there are NNs having only 2n + 1 neu-
rons (i.e., size-optimal) which can approximate any function.
We start from a constructive solution for the general case [92—
941.

Proposition 13 (from [92]) Define the functiony:6— 9
such that for each integer k € N:

r—m
n T-1

n-1

é3)

v

k
\'! (Zriliry_r) = z l~r2
r=1

where i, = i,—(y-2){,) and
m, =Gy {1+ XIIE)x...x[i,_,]}

forr=1,2,...,k

Here y=2n +2 is a base, =10, 1] is the unit interval, 2 is
the set of terminating rational numbers d,=Y %, i, v~ de-
fined on ke N digits (0<i, <y~ 1). Also, {i;)=[{,] =0,
while for r 22: (i )=0when i,=0,1, ...,y—2, {i,) = 1 when
i,=y-1,[i]=0wheni,=0,1,...,vy-3, and [i,] =1 when
i,=y-2,y-1

If we limit the functions to BFs, one digit (k = 1) is enough,
which gives y (0.i ) =0.i;, i.e. the identity function y (x) =x.

Such a solution builds simple analog neurons having fan-in
A<2n+1.

The known weight bounds (holding for A =4) are [72, 76,
82, 88]:

s (A-1)72 yA+D/2 4

< weight < (A+1
Thus, a precision of between A, and A logA bits per weight
would be expected. Unfortunately, the constructive solution
for Kolmogorov’s superpositions requires a double exponen-
tial precision for y (45), and for the weights:

" 1
A
-e-n i

= X

r=1

For BFs this precision is reduced to (2n +2) ~ ", or 2nlogn bits
per weight. Analog implementations are limited to just several
bits of precision [60], this being one of the reasons for investi-
gations on precision [33, 44, 95, 100], and on algorithms rely-
ing on limited integer weights [14, 34, 57]. Due to the
limitation on precision the solution for implementing BFs
should decompose the given BF in simpler BFs which can be
efficiently implemented based on Kolmogorov’s superposi-
tions (i.e., we have to reduce n to reasonable small values).
The partial results from this first layer of analog building
blocks can be combined using (again) Kolmogorov’s superpo-
sitions, TGs or Boolean gates. The final mixed analog/digital
implementation will requires more than three layers. It follows
that a systematic solution which would utilise silicon to the
best advantage would be to rewrite a given computation (i.e.,
set of BFs) in a base larger than 2, and use Kolmogorov’s su-
perpositions for the analog implementation of the digit-wise
computations in this larger base.

IV. CONCLUSIONS

The main conclusion of this overview paper is that hard-
ware implementations of NNs are highly limited by the two
dimensional mapping into silicon, which leads to limited fan-
in and precision. For example, arbitrary BFs can be imple-
mented using:

¢ classical Boolean gates, but require exponential size;

¢ TGs, but (again) in exponential size (still, there is an ex-

ponential gap in between);

¢ analog building blocks in linear size (having linear fan-in

and polynomial precision weights and thresholds), the
nonlinear activation function being the identity function.

Clearly, there are interesting fan-in dependent depth-size
and area-delay tradeoffs, as well as optimal solutions having
small constant fan-in values, and the problems are not allevi-
ated by futuristic three dimensional optical implementations.

These results also suggest that:

o the brain does not optimise energy and power — like en-
gineers do when designing integrated circuits — and
might trade-off the slower individual speeds of its ele-
mentary computing elements (thus, reducing power), for
their higher connectivity (larger fan-ins);

¢ two dimensional silicon implementations are limited with
respect to connectivity, and might only slightly compen-
sate by using higher computing speeds (see-Fig. 1(a));

¢ three dimensional hardware implementations (e.g., opti-
cal) might be still lagging behind biological ones with re-
spect to connectivity, but it is to be expect that the higher
computing speed might eventually compensate for that.

Future work should concentrate on finding closer estimates
(i.e., new cost functions) for comparing analog/digital as well
as optical implementations.
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