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THERMODYNAMICS AND SOUND SPEEDS AT THE
CHAPMAN-JOUGUET STATE*

J. N. Fritz and C. A. Forest
Los Alamos National Laboratory, Los Alamos, New Mexico, 87545

Some thermodynamic relations about an equilibrium Chapman-Jouguet (CJ)
state are obtained. Relations for sound speeds in the wave velocity-particle ve-
locity plane are derived. A relation between the slope of the sound speed in this
plane and the asymptotic slope of the Hugoniot is suggested.

INTRODUCTION

In a previous paper [1] experimental measure-
ments of sound speeds at high pressures were used
to determine the Chapman-Jouguet (CJ) state
of the plastic-bonded explosive PBX-9501. In
this paper we derive some general relations about
sound speeds at high pressures, and in particular,
some relations between the sound-speed curves
and overdriven detonations in the vicinity of the
CJ state. Such relations are, of course, implicit
in the thermodynamic EOS description of 2 ma-
terial and have been touched upon before [2—4].
When an experimental technique becomes active
and new results are available, it is appropriate
to refine and look more closely at these relations
in the variables appropriate to the experiment.
We do that here.. In section II we review the
basic thermodynamics for shocks. In III we ob-
tain the sound speed along the Hugoniot in terms
of the Hugoniot.and the Griineisen function and
in terms of the: CJ isentrope and the Griineisen
function. Special relations at the CJ state are de-
rived. An approximation relating the slope of the
sound-speed curve to the asymptotic slope of the

*This work supported by the U. S. Department of
Energy.

Hugoniot is derived. In IV we apply a few of these
relations to the data obtained before [1].

The overdriven Hugoniot for explosives has
certain peculiarities in the velocities plane. These
peculiarities make many fitting schemes (eg., 2
simple polynomial in u) ineffective. The exact
thermodynamic relations obtained here show the
properties that any effective data-fitting scheme
must have.

SHOCK THERMODYNAMICS

The jump conditions for mass and momen-
tum across a shock wave (pous = p(us — u) and
P — P, = pousu) give pressure and specific vol-
ume in terms of the shock and particle veloci-
ties. Inverses (p2u2 = (P — Po)/(Vo — V) and
u? = (P — Po)(Vo — V)) serve to define the ve-
locities in terms of the Hugoniot locus Ph(V)-
The jump condition for the energy E — Ep =
L(P+ Po)(Vo — V') together. with an E(P,V) de-
fines the Hugoniot locus in P(V). The trans-

formation betwéen P(V) and u,(1) permits de-

scription of thermodynamics in the wave velocity—
particle velocity plane, a description suited to the
measured experimental variables.

If we have some cross-curve P, (V') (one where

the volume is varying) and we know the energy
along this curve (isentropes and Hugoniots are



two types of curves where the energy is readily
obtained), then we can express the energy in the
desired E(P,V) form:

P
E(P,V) = B (V) + /P o, BV

where p is an integration variable with V held
constant, and v = V(6P/0E)y, the Griineisen
function.

If we have a curve P,(V) we define the mod-
ulus for that curve as B = —VdP;/dV. The
isentropic bulk-modulus Bg is related to the ve-
locity ¢ of a small-amplitude wave in a fluid media
by Bs = pc? [5]). This velocity is with respect to
the compressed media at rest. It is convenient

to work with the Lagrangian velocity Le = pe/po.
‘We have:

¢® = Bs/p, **=pBs/p} (2)

Other moduli will be useful. Along a Hugoniot
curve Pp(V) we define B, = —VdP,(V)/dV.
The chord connecting the initial state to the fi-
nal shocked-state is the Rayleigh line. We define
a modulus associated with this slope as Bg =
Vo(P — Ry)/(Vo — V) = poul. For the chord the
choice for the multiplying volume is ambiguous.
We also define By, = V(P — B)/(Vo = V) =
pous(us — u). This will permit a pleasing sym-
metry in an equation for the Griineisen function.
The dimensionless curvature of a P.(V)
curve is also of interest. I B, = —VP] (a
prime on P will usually denote a volume deriva-
tive), then dB;/dV = —P. — VP]. Alterna-
tively we have dB,/dV = (dP;/dV)(dB./dP) =
—(B;/V)(dB./dP). Equating these yields:

V2P dB,
5o =1+ 3)

The “fundamental derivative” G used by Menikoff
and Plohr [4] is half of this curvature on an isen-
trope, i. e., 2G = V2P¥/Bs.

D1mens19nless forms for ﬂe moduh are fre-

quently used. ‘We define 4, = B, /P.. The isen-
tropic gamma .
_Bs_ (8mP\ _ pc
=P T (aan)S =P “

is a variable frequently used to describe
detonation-product isentropes [6].

Following Courant and Friedrichs [5] we use
the Hugoniot function h(P,V) = E— Ey— (P +
Py)(Vop — V). Clearly h = 0 defines P, (V). Other
curves with constant-h correspond to Hugoniots
with a different energy in the initial state. From
the first law and T'dS(dP,dV) we get

dh=TdS — (Vo — V)dP — (P — Ry)dV
(V W=V Bs P-FR
_(7 5 )dP (7 5 )dV. (5)
For dh = 0 we obtain
oP
v(av) =By =

This equation can be solved for the Griineisen
function:

T (Vo-V) =

BS - (7/2)(P - PO) (6)
1-(v/2V)(Vo - V)’

By — Bs
Sa—3s 7
Bi — B ™

These B’s all have a common V-factor, so this ra-
tio of differences can also be regarded as the ratio

of differences of the slopes of the various curves.
Eq. (6) can also be solved for Bs:

Bs={1-(55) (o -V} Bs+ 2(P - o).
(8)

This, with (2), gives the sound speed on the Hugo-
niot.

For an exothermic Hugoniot (more precisely,
for h(P,, Vo) > 0) the “first” solution for a shock
is obtained when we raise the Rayleigh line to be
tangent to the Hugoniot curve, i. e., By, = Beh.
At the tangent point we can make the following ob-
servations. If we insert this condition in Eq. (8)
we find Bg = By, This result in Eq. (2) im-
plies Zc = u,. This, combined with the relation
between Zc and ¢ and the mass jump condition im-
plies ¢ = u,—u, the sonic condition. The u, at this
minimum shock-velocity is denoted by D, the CJ
detonatiori-velocity. 'The argument is reversible,
the sonic condition implies the triple-tangency be-

-tween the Hugoniot, -Rayleigh line,-and isentrope.

The -usual cavéats' apply;:these results are valid
when reaction rates are fast enough to get a close
approach to equilibrium.

SOUND-SPEED RELATIONS

In this paper we are particularly interested
in the curves Lcp(u) (the Lagrange sound-speed



along the Hugoniot) and u,(u) (the OD Hugo-
niot) as they extend above the CJ state. As we go
higher in pressure we expect reaction rates to be
faster, and we expect that measured results will
be closer to true equilibrium values. The equilib-
rium Lagrange sound-speed can be obtained as a
functional of the OD Hugoniot and the Griineisen
function with the aid of Egs. (2) and (8), i. e,
Len(u) = f @ ug(w),y. These would directly ex-
press Ze(P, V). We would like it in the u,-u plane.
The jump conditions and their inverses can be
regarded as transformations between these two
planes of variables. Differential forms of the trans-
formation

—dV/du = Vo(us — uty)/uj, (9)

dP/du = po(us + uuy), (10)
where u!, = du,/du, can be used to effect the
transformation to the velocities plane. An inter-
mediate result, using the definition of By, is

ug + uul,
ug —uul,

B, = pous(us — u) (11)

One notes that By, = Bey, implies 2uug =0, i. e,
you can have this condition at the beginning of
the Hugoniot (u = 0), or if the tangency occurs
for finite u the slope of the u,(u) Hugoniot must
be zero. We then have:

fen)* _ - () 2 Uy + uty
Ug W ) ug | us —uul

Ve
+(TR) & =G/ —wi), (2
where
G=us+uuq1— o) x (13)
s V /)us)

We take the logarithm of Eq. (12) and then the
derivative to obtain:

o2k _ U =
Lch Usg -
where

G = ul + (v +uuy) {1— (-’Y—V‘é) 3-}

Us

o (us —uup\ Vo v din(y/V)
+u'u,,( u?2 ) 14 {u,—u dinV; g

(15)

uul (ed

—_— 14
u—uy, G’ (14)

We expect Lci, = dlcn/du to be approximately
constant over our data range. The complexity of
(14) is due to the structure a Hugoniot has when it
represents a detonation. We switch quickly from
u! = 0 and a non-zero curvature at CJ to u; a
constant and ! ~ 0 in the linear range of the
OD Hugoniot. The complicated form for ¢}, is
probably required to keep it roughly constant. At
the CJ state we have v, =0, e = v, =G = D,
and thus:

dlen T E Vo Ugj
(du)c,-—u”u‘{l (w)c,-p - (16)

This equation gives a close connection between
the slope of our experimental sound-speed and the
curvature of the OD Hugoniot at the CJ state.
This equation is likely to be used to establish a
good value for the curvature rather than the other
way around. If a very accurate u; could be ob-.
tained from the Hugoniot curve an estimate of
at the CJ state could be made.

What we would really like is a relation be-
tween ¢}, and some other readily measurable EOS
parameter, e. g., the asymptotic slope of us(u).
We have concentrated on Lcp(u) = f : us(u),7-
We may expect a simpler result if we consider
Ley(w) = f : Ps(V),7, where Ps(V) is the CJ
isentrope. It does not have the complications
that the Hugoniot does. We do have the ad-
ditional complication that we follow the sound
speed along the Hugoniot experimentally, and not
along the isentrope. In Eq. (1) we let the z-
curve be the CJ isentrope. Then with E.; —Fo =
L(P,; + Po)(Vej — Vo), 2nd E; = Eej — [ PsdV;
we obtain:

L(Pru+ Po)(Vo — V) = 5(Pej + Po) (Vo — Vis)

v Py 174

Ves

i. e., we have P, = f : Ps,7. We take the volume
derivative of (17) and rearrange the terms slightly:

-VP!
Yoh

Ygh 4
{1-BLvo-V)} =3B+ Po)—Ps

VPL /Ph ] ( 14 )
2 -Ss dp— | ——). (18
s e, 2o o)

This combines with (8) to yield:



BS(PfHV) = BS(PS’V)
Ygh Y¢S
Po 9 14
o [Ca (1)
( h S) e pa‘/p ’)’(p,V) ( )

We note that this equation is the integral form
of the Maxwell relation, (8(Bs/y — P)/0P)y =
(6(V/v)/8V)p. It does not depend on the P’s be-

ing on particular curves; any two pressures would
do. Combined with Eq. (2) it does give us the
sound speed along the Hugoniot in terms of the
sound speed along the isentrope plus a term pro-
portional to the offset P, — Ps. We have a slowly-
varying major term and a linearly-increasing mi-
nor term which combine (in view of the experi-
mental result) to give a linear variation of sound
speed with velocity. This is in contrast to Eq. (14)
where both ! and ! are major players and
switch roles as we move from the CJ state to an
asymptotic linear us(u). We then have:

L2 _ Pt {Bs(Ps,V)
h — 2
Po Y9S
Pn B v
dp— [ —— ) L. (20
A (v(p,V)>} 20)

We could write down the complete equation for
Le! by introducing a lot of y-derivatives, but this
is not particularly illuminating. We concentrate
on the derivative at the CJ state. There, any
term with P, — Ps or P; — Pg as a factor will
vanish because of the coincidence and tangency
of the isentrope and Hugoniot. The derivative of
Yoh/7gs has a factor P; — P5. The only term
contnbutmg is pBs = —Pf. Then we use I} =
(dV/du)(d*cy /dV). From Eq (9) and the jump
conditions we have:

+(Py — Ps) +

v _ 2/ —P)(%—V) _ _ 2Vpous
du (Vo =V) — (Pr — R) By + Bay
(21)

We obtain at the CJ state (freely using fc = u, =
D and B, =By = Bs):

- - (8) (%)

(22)

Eq. (18) retains an explicit connection between
the isentrope and Hugoniot that we lost in going

to (19). If we take the volume derivative of (18)
and use the simplifications at CJ we get a sim-
ple relation between the second derivatives of the
isentrope and Hugoniot at the CJ state:

P! = Pl {1——(%—V)} (23)

From the volume derivative of u2(P, V) we obtain
the general equation:
vy = B (Bu = Bo)/ (6 =)
2 (Vo = V) = (P - Po)
Vo Bi—Ba
=~ Vo—V Bn+Bay’

(24)

A linear u,(u), where uj = s, a constant, de-
scribes many inert materials. This is clearly not
the case for a OD Hugoniot, where By, = By,
at CJ and u, = O there; and then increases to
an asymptotic value for the high-pressure range.
Another volume derivative yields:

v (olp0)Pan_
¢ (Bp+Ba)?

T (B - ch)(th+Bch)}. (25)

{4Bchv2p,','

At CJ this reduces to:

n_ P ViR

wu, = . 26
2po Ben (26)

8

This, in (16), with the aid of (23) and (3) again
leads to (22).

For a linear u,(u), n =1-V/Vp = up/u,, we
have P, = pocZn/(1 — sn)?, and we can evaluate
1+ dB/dP, a measure of the curvature P}/(V)
as:

dBn _ , (1+s9/2)(1—17)

Tl s T g

@7)

This “curvature” has the value 4s times a slowly-
varying function of 1. At the centering point
1+4dBy/dP = 1+dBg/dP because of the second-
order contact between the isentrope and Hugo-
niot. A linear u,(u), an initial porous-state, and
an appropriate Griineisen function works well (the
snowplow model) for many materials, at least
for higher pressures. In the high-pressure range
the u,(u) for the porous media asymptotes to a



line slightly below and parallel (i. e., the same
s) to the linear u,(u) for the solid material. A
similar description is possible for an OD Hugo-
niot; one changes the Ep for the centering point
from its regular thermodynamic value just as one
changed Vp to represent a porous material. The
OD Hugoniot would then asymptote to the base
linear Hugoniot from above. Setting 1 + dB/dP
constant is the basis for the Murnaghan family of
equations of state. If this quantity is constant for
detonation products and the reverse “snowplow”
model is valid, the following relation is suggested
between the slope of the measured sound-speed
and the asymptotic s of the OD Hugoniot:

L, ~ 25(Vo/V).j- (28)

We consider the relation between the slope of
¢ +u and Le. From ¢ = (po/p)%e = (1 — ufus)’e
we obtain:

dlc+u) . us— Ul po dle
v 1- T c+ ';";1';' (29)

At CJ this reduces to

dic+u) _pode 1 dBs\ _,

APPLICATION TO THE DATA.

In the previous paper [1] an analytic form
was chosen to represent the overdriven Hugoniot
of PBX-9501. An alternative approach is to have
a running local fit to the data with a level of
smoothing compatible with the precision of the
data. A tabular function (briefly described in Ap-
pendix A) is used to fit the detonation-Hugoniot
data with particle velocities greater than the par-
ticle velocity of the CJ state. The slope u; of the
tabular function was set equal to zero at the u,cs
from the analytic fit, but the detonation velocity
was allowed to vary. The tabular function rep-
resenting the slope of the detonation Hugoniot is

presented in Fig. 1.

The characteristic shape of the PBX-9501
detonation Hugoniot is graphically displayed in
this figure. The slope is zero at the CJ state and
monotonically increases with increasing particle
velocity. The slope linearly increases near the
CJ state and then gradually flattens out at larger
particle velocities to essentially a maximum slope.

1.2 ; T - T

1.0 -— ....-.--..-...-..-: ’—
oy —
= 06 _
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20 30 - ]
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FIGURE 1. The slope u}(x) (solid line) from lo-
cal running fits. The dotted lines indicate error limits.
The dashed line is the slope from the previous analyt-
ical fit.

The general shape of v} is common to other det-
onation Hugoniots we have studied (Composition

B, PBX-9502, and TNT). However, for some of

these explosives the maximum asymptotic slope
was not attained over the particle-velocity range
investigated. For these explosives there was still
a small non-zero slope to u4(u) at large particle
velocities.

The dashed lines above and below the fitted
curve represent the two-sigma error limits at the
95% probability limit. The error limits are close
together at the CJ state, because of the slope
constraint, and gradually increase at intermedi-
ate particle velocities. The large error limits at
the end of the data range occur because central
centered differences can no longer be taken over
the usual interval. The other curve in Fig. 1 is the
slope of the analytic fit obtained in the previous
paper. If error limits were placed on this curve,
a satisfactory overlap of the methods of fitting
would be obtained.

From the figure we estimate an asymptotic
slope for the OD Hugoniot of 0.95+0.10. The
RHS of the approximate relation Eq. (28) then
(with our best estimate for the CJ state) predicts
9.5020.3 for Z¢’(1). The inferred slope 2.712 [1]
falls within this range.

Eq. (22) can be combined with Menikoff and
Plohr’s definition of the derivative G to yield:

Le; = (Vo/Ve)Ges- (31)

The slope of the sound-speed curve is closely re-



lated to their fundamental derivative, and the
measured Ic/(u) implies G.; = 2.05. This value
implies a non-pathological concave-upward curve
for the CJ isentrope.

In the previous data fitting we were able
to choose analytical forms that adequately rep-
resented the data. This just means the data
doesn’t uniquely specify a particular functional
form. However, we do recommend that any func-
tional form chosen duplicates the !, shape given
in Fig. 1. This insures that both u, and u} are
smooth continuous functions, which are neces-
sary constraints to obtain thermodynamic vari-

ables that are well behaved.

In Fig. 2 the second derivative of the detona-
tion Hugoniot is given. The tabular function code
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E 06 .
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FIGURE 2. The derivative v (x) from the run-
ning fits. Error limits are shown.

was also used to calculate this curve. The curva-
ture is 2 maximum at the CJ state and mono-
tonically decreases to zero at the end of the data

range. The two-sigma error limits are also shown
and have the usual behavior at the constrained
and unconstrained end points. The exact relation
(Eq. (16)) gives u! = 1.36s/km at CJ. This is
considerably larger than the 0.87£0.1 value indi-
cated on the graph. This is not too surprising.
There weren’t a lot of points in the vicinity of the
CJ state measuring the curvature.

The high value for the curvature at the CJ
state from Eq. (16) and the following measured
smooth behavior of the Hugoniot imply difficulties
in fitting the Hugoniot with some smooth polyno-
mial. The analytic fit previously used [1] proba-
bly matches u,(u) at the CJ state, but does not
match the detailed behavior of u)(u) and u!(u)

mandated by these thermodynamic relations.

CONCLUSIONS

The PBX-9501 overdriven-detonation and
sound-speed data is smooth and relatively feature-
less. Many smooth functions exist that can repre-
sent such smooth data. The functions must satisfy
the conditions imposed by the Chapman-Jouguet
conditions. Further restrictions come from im-
posing reasonable extrapolation conditions on the
functions.

In this paper a tabular function was used to
fit the experimental detonation Hugoniot data.
An interesting functional form for the derivative
ul(u) of the detonation Hugoniot was observed,
mainly a derivative that’s zero at the CJ state
and monotonically increases with increasing parti-
cle velocity until a constant maximum value is at-
tained. The measured Lagrange sound-velocities
displayed a linear dependence with increasing par-
ticle velocity.

Eq. (28) can be used to estimate the sound
speed for experimental design purposes, and, in
the absence of experimental data, should give
a reasonable approximation for the sound speed
in the reacted products of a detonation. The
near-validity of Eq. (28) and the linearity of the
measured Lagrange sound-velocities suggests that
EQOS models with relatively constant curvature
(Murnaghan EOS’s, linear u-u,) might also de-
scribe detonation products very well. The lin-
ear base curve would have to be lower in the u,-
up plane than the OD Hugoniot. The variations
that u} goes through on the OD Hugoniot would
have to be achieved through an initial energy off-
set (i. e., the “reverse snowplow” model discussed

previously.).

APPENDIX: DATA FITTING WITH
A TABULAR FUNCTION

Least-squares fitting of data is ofteri done by
assuming a particular functional form and opti-
mizing with respect to its parameters. In exam-
ining a property of the determined function (such
as its derivative) it may be unclear whether the
property is strongly related to the data or is prin-
cipally a result of the assumed functional form. To
circumvent this uncertainty, least-squares can be
done with functions that have no particular func-
tional form, for instance cubic splines are com-
monly used. Another choice, which is used here,



is to represent the fitting function as a uniformly-
spaced table which is interpolated by a local cu-
bic Lagrange polynomial. The functional values
of the table are then the parameters of the fitting
function. Smoothness of the fitting function is in-
duced by adding to the merit function a weighted
sum of squares of the n*® order forward-difference
operator over the domain of the table. Let {zi, 9}
be the data set and {t;, f;} be the table where ¢;
are uniformly spaced over the interval min{z;} to
max{z;}. Let F(z) be the local central-interval
cubic Lagrange interpolation polynomial for the
table {;, f;}. Then the merit function for opti-

mization is:

£= Z (P -y +ut S (A°F). (A1)
i=1 i=1

The normal equations are then:

o€
Eriak

Because the optimizing parameters are the fi’s,
which are local function-values and thereby are
directly associated with the residuals of the least-
squares, the so determined function is highly dom-
inated by the data and gives residuals randomly
distributed about zero. For our particular appli-
cation we had 20 tabular values uniformly cover-
ing the data (myable = 20), a third order smooth-
ing operator (n = 3), and a value for wt that gave
an effective weight of 2 for the second term rela-
tive to the first term.

The derivative table {t;, fi} is calculated
from the {t;, f;} table by using a running 4*™-
degree polynomial about central points. A table
{t:, '} is constructed similarly from {t:;, fi}.

for =1, Msable (A2)
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