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WORKSHOP
. on
NONLINEAR MHD and EXTENDED-MHD

DATE: March 25 (afternoon) and 26 (full day), 1998

PLACE:  Atlanta, Georgia (following the Sherwood Theory Conference)

SCOPE: Numerical and Analytic studies using Nonlinear MHD, and Nonlinear
Extended-MHD, such as Kinetic-MHD, Neoclassical-MHD, Psuedo-
MHD, Two-fluids, Hybrid Particle/MHD, Fluid/Kinetic, etc, with
emphasis on application to experiment

BACKGROUND:
Nonlinear MHD simulations have proven their value in interpreting
experimental results over the years. As magnetic fusion experiments reach
higher performance regimes, more sophisticated experimental diagnostics
coupled with ever expanding computer capabilities have increased both the need
for and the feasibility of nonlinear global simulations using models more
realistic than regular ideal and resistive MHD. Such extended-MHD nonlinear
simulations have already begun to produce useful results. These studies are
expected to lead to ever more comprehensive simulation models in the future
and to play a vital role in fully understanding fusion plasmas.

This workshop will be in the same spirit as the International one held last April
30 - May 2, 1997 in Madison, Wisconsin, but will be shorter and primarily

domestic
in emphasis this year.

TOPICS:
Current state of nonlinear MHD and extended-MHD simulations,
Comparisons to experimental data,
Discussions between experimentalists and theorists,
Equations for extended-MHD models, kinetic-based closures,
Paths toward more comprehensive simulation models, etc.

ORGANIZERS: ].D. Callen (UW)
W. Park (PPPL)
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Brief Overview and Summary

This workshop was a domestic sequel to the international one with the same
name [1] held last year in Madison. The ample discussion time provided oppor-
tunity for detailed discussion of many modern computational MHD issues among
the 25 registered participants. The following paragraphs highlight a few of the
key issues discussed. More details are provided in the short written summaries
in the remainder of this proceedings.

Problems, Approaches and Codes

The first talk in this session highlighted the current major nonlinear resistive
MHD issues in DIII-D (total of 5 with the two simplest, experimentally rel-
evant ones being coupling of resistive and global modes in NCS disruptions,
and sawtooth trigger of neoclassical tearing islands). Then, the status of the
major extended, nonlinear MHD code projects was reviewed: NIMROD —
background, basic code working, being benchmarked on tokamak ideal, resis-
tive MHD instabilities and RFP turbulence simulations; M3D — multi-levels of
physics (MHD, two-fluid, gyrokinetic hot particles, gyrokinetic ions), geometry
and mesh schemes, simulations being used and benchmarked against experimen-
tal reality at each physics level. The ensuing discussion focused on the need for
code speedups to facilitate higher level (beyond MHD) physics models and some
of the difficulties embodied in using the massively parallel computers, versus the
vector spercomputers that are unfortunately being deamphasized.

Simulations

Talks in this session reported on progress in simulating current-drive stabi-
lization of neoclassical tearing modes, use of unstructured meshes to simulate
MHD effects of pellet injection, and exploring the comcomitant effects of field
line stochasticity and parallel heat conduction during a sawtooth crash. Issues
brought out in these talks and the subsequent discussion highlighted the diffi-
culty in equilibrating pressure along magnetic field lines in relevant hot tokamak
plasma regimes, and the possible use of 3D curvilinear grids for stellarators and
adaptive grids.

Hybrid Models, Simulations

Some of the various approaches and problems in developing fluid/kinetic hy-
brid simulation models were discussed in this session: development of extended
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Chapman-Enskog-like closures for treating parallel heat conduction in low col-
lisionality plasmas, poloidal and toroidal rotation simulations using neoclassi-
cal poloidal flow damping closures, simulations with gyrokinetic particle ions
and fluid electrons, and drift wave simulations including magnetic perturbation
(Alfvéen wave) effects. Most of the discussion in this session emphasized the
need to develop models for treating important electron kinetics effects beyond
the usual electron fluid models, and proper inclusion of diamagnetic low and
finite ion orbit effects in two-fluid simulations.

Diverse Numerical Approaches

A broader range of simulations was discussed in the final session. These included
studies of the instabilities implicated by bifurcated solutions of the ideal MHD
equilibrium for stellarators, tearing-mode-induced nonlinear magnetic islands
using the “almost ideal MHD” constraint, nonlinear mode coupling damping
effects on TAE modes using the CUTIE code, and dramatic demonstrations of
the efficiency of using an adaptive mesh algorithm for exploring the dynamics
of current sheet formation and magnetic reconnection.

Concluding Discussion

A general feeling at the workshop was that a full simulation of a toroidal plasma
discharge with actual physical parameters is not now feasible. Nor is it likely to
be so even with computer upgrades and algorithm improvements anticipated over
the next 5 years. However, simulations are becoming quite useful in modeling
many short-time-scale nonlinear MHD-like phenomena and in developing physi-
cal insights. Also, they are on the threshold of being able to quantitatively model
most of the important nonlinear MHD-like phenomena in toroidal plasmas, and
of being useful for designing efficient experiments to explore these plasma effects
and for exploring stabilization techniques near stability boundaries. However, it
was also noted that the manpower involved in these developments needs to be
expanded by at least a factor of two for this promise to be realized.

Reference

[1] W. Kerner, W. Park, S. Tokuda, J.D. Callen,“Proceedings of the Interna-
tional Workshop on Nonlinear MHD and Extended-MHD,” Report UW-CPTC
97-5, April 30 — May 2, 1997.



PROBLEMS IN NONLINEAR RESISTIVE MHD*

A.D. Turnbull, E.J. Strait, R.J. La Haye, M.S. Chu, and R.L. Miller
General Atomics, P.O. Box 85608, San Diego, CA 92138-9784

Linear ideal MHD stability has been remarkably successful in describing many of the general
features of DIII-D operation, for example disruption and B limits, resistive wall mode onset, and
the geﬁeral features of the observed modes (whether internal, global, or edge localized for
example). Nevertheless, there are several instances where linear ideal magnetohydrodynamics
(MHD) does not provide an adequate description of observed phenomena. This is becoming
increasingly more common as improved diagnostics provide an unprecedented detailed
description of the plasma. The success of ideal MHD in reproducing the general MHD observa-

tions gives confidence that the lowest order operation is well understood and that the addition of
various nonlinear non-ideal effects to theoretical predictions will greatly expand our predictive
capabilities.

A number of research areas and specific problems that are likely to further this goal have been
identified. The categories are somewhat arbitrary, but are useful in organizing the individual
problems. The list is not intended to be all-inclusive but it does reflect the highest priority topics
for DIII-D. These are as follows (not necessarily in priority order).

1. P limit disruptions and B crashes
a. Nonlinear development of ideal and ideal-like MHD modes near the B limit.
b. Nonlinear coupling and interaction of multiple MHD modes near the B limit.
c. Development of overlapping islands into full-scale turbulence and relation to
disruptions.
2. Sawtooth physics
a. Simulation of Kadomtsev and Wesson-type reconnection with observed stability
thresholds and fast crash times.
b. Nonlinear coupling of the m/n=1/1 sawtooth mode with higher n (gongs) and
development of seed islands outside g =1.
3. Resistive wall physics
a. Nonlinear evolution of resistive wall mode and its relation to disruptions and B

crashes.
b. Interaction of resistive wall modes with tearing modes and plasma rotation.
c. Effect of error fields and mode locking.
4. Neoclassical tearing modes
a. Nonlinear evolution of neoclassical modes, saturation amplitudes, and role of
polarization term.

*Work supported by the U.S. Department of Energy under Grant No. DE-FG03-95ER54309.
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5. Fast ion modes
a. Fast particle stabilization of MHD branch and destabilization of non-MHD fast
particle driven modes (fishbones, TAE, BAE, KBM, ...).
b. Nonlinear development of fast particle driven modes and fast particle expulsion.

Each of these research topics requires specific nonlinear nonideal effects to be included for an
adequate description. Table I shows each of the topics with the physics believed to be crucial
given by an asterisk (*) and that believed to be useful denoted by a check (v/). The first four
rows are clearly necessary in all cases for any realistic success at providing a quantitative
comparison with observations. Hence the focus is really on the bottom seven rows. This table

can be used in two ways. First, if one assumes a code is given with certain physics elements
already modeled, one can use the table to search for appropriate research problems to tackle. We
have done this and identified two particular problems that will require minimal additional physics
beyond the top four rows for a useful comparison to be made. These are shown highlighted and
will be discussed in more detail below.

Alternatively, one can use this table from the point of view of a code developer and look for
the physics elements that, if added to a given code, would provide the highest leverage in
increasing the applicability of the code to the maximum number of problems. The result of this
exercise is clear. Addition of plasma rotation (equilibrium and perturbed) would provide the
highest leverage followed closely by the addition of vacuum boundary conditions. This, at least,
is the highest priority for DII-D. ]

From Table I it is clear that some additional physics beyond the first four rows is necessary in
order to treat real problems of experimental interest. Two problems, however, can be identified
that could be attacked with only the addition of plasma rotation. These are discussed below.

1. Nonlinear coupling and interaction of multiple MHD modes near the B limit

The essence of this problem is the nonlinear coupling between MHD modes that are
simultaneously linearly unstable near the § limit. A specific example is of interest here, namely

the interaction of localized resistive interchange modes and ideal-like global modes [1] in DINI-D
L-mode negative central shear (NCS) discharges near Bn ~2. The latter are believed to be
responsible for the observed disruptions. However, the localized resistive interchange modes are
also usually present and are likely to play a role also. The localized mode -appears often as an
early MHD burst at around 50 kHz corresponding to the measured rotation in the core of these
discharges where ¢”<0. The final terminating global mode, however, typically has a lower real
frequency around 15 kHz near the measured rotation speed of the minimum in q.

The interaction can be direct or indirect. Indirectly, the localized interchange modes have
been found to reduce rotation shear [2] which is known to be destabilizing for the global mode.
They also affect the other profiles. In some cases, they appear to be directly coupled as they
grow and saturate and slow down until their frequency matches that of the global mode, at which
point the global mode rapidly grows and results in disruption [3]. Figure 1 shows the observed
frequency spectrum for both types of interaction. Clearly, rotation is crucial for describing the
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Fig. 1. Coupling between localized resistive interchange mode and global ideal-like mode in L~mode
NCS discharges. (a) Indirect coupling: prior localized burst uncoupled but modifies rotation and
g profile. (b) Direct coupling: localized mode grows, saturates, and slows to global mode
frequency = fast disruption.

interaction. Vacuum boundary conditions would be useful for describing the final disruption but
are probably not essential for understanding the essence of the interaction between the modes in

the early phase.

2. Nonlinear coupling of the m/n = 1/1 sawtooth mode with higher n gongs and development

of seed islands outside g = 1

In DIII-D, sawteeth have been observed to trigger m/n=3/2 seed islands which subse-
quently grow and saturate at large amplitude [4]. This subsequent nonlinear evolution is well
described by the modified Rutherford equation with neoclassical effects. However, a key unre-
solved problem is the initial 3/2 island excitation mechanism and its relation to the sawtooth
crash. An example is shown in Fig. 2 which shows the 3/2 mode appearing on the Mirnov
diagnostic immediately after the large sawtooth crash [soft x-ray (SXR) signal] at 2275 ms.
Nonlinear mode coupling between the predominantly m/rn=1/1 kink associated with the
sawtooth crash and the n =2 mode is clearly essential to model this correctly. The 1/1 mode is
thought to nonlinearly drive an n/m =2/2 mode (and probably higher n ‘‘gongs’’) at g =1.
This should have an m/n=3/2 component as well, simply from linear coupling of poloidal
harmonics through toroidicity, noncircular cross-section, and finite 8. At the crash, the plasma
reconnects at g =1 but leaves the 3/2 island. Rotation shear is almost certainly important in
modeling this process correctly since it is the most likely cause of the decoupling of the 3/2
island at g=1.5 from the n/m=2/2 gong at g=1. There may also be a lot of additional
effects required to reproduce all the details of the sawtooth crash. However, it does not appear to
be essential to correctly model all the details of the crash — the dominant process of interest here
is the coupling between different toroidal modes, which should be well described by nonlinear
MHD codes.

Data from DIII-D [4] also shows a scaling of the initial 3/2 island size with magnetic
Reynolds number S™ 1. This scaling is difficult to derive from the neoclassical threshold models




86144

0.80 ] ‘——-—v—-—‘\‘_
1Bq
0.00 i FPPTUTTVE TYTTITINS FETOTITIVE PPTITTTUN FUTPTETINT PYRY FETTE PYTTUTITIN ITRVITRTT FTTTUTINTI FUTITRTTT.
0.04
1 vtat32 —
0.00 . [TVUTITE TRRITTTUI FRTPTITITE PTTUTITIV FETTVITTET FYPY FUVTS FYTTUTTTN FYUTTTRTTS FYSTRVERTS FIVTTITIN

1.0 SXR Sawteeth 1\_,—\.
] o\

—4.00-
6.00
{ BRMn=2(G)

Sawteeth

0.00 |
2000 2100 2200 2300 2400 2500

Time (ms)
Fig. 2. 3/2 seed island generated by a 1/1 sawtooth crash at 2275 ms.

and, instead, seems to be a consequence of the 3/2 seed island generation. Simulation with a
nonlinear MHD code should shed some light on this scaling also.

In conclusion, two experimentally relevant problems can relatively easily be tackled by
nonlinear MHD codes. Both problems require plasma rotation in addition to the nonlinear mode
coupling and full geometry already incorporated into the codes, but no additional physics seems

to be crucial. Addition of plasma rotation to the codes is identified as providing the most
leverage for increasing the utility of these codes. Addition of vacuum boundary conditions would
also provide high leverage and should be the second highest priority from the point of view of
benchmarking the codes against DIII-D.

References

[1] M.S. Chu et al., Phys. Rev. Lett. 77, 2710 (1996).

[2] L.L.Lao et al, Phys. Plasmas 3, 1951 (1996).

[3] E.J. Strait et al, Bull. Am. Phys. Soc. 42, 1845 (1997).

[4] R.J.LaHaye and O. Sauter, ‘“Threshold for Metastable Tearing Modes in DITII-D,’” accepted for
publication in Nuclear Fusion.



Nonlinear Simulations with and Computational Issues for NIMROD

Carl R. Sovinec2 and the NIMROD Team

The NIMROD (Non-Ideal Magnetohydrodynamics with Rotation, Open Discussion) code
development project was commissioned by the U. S. Department of Energy in February, 1996 to
provide the fusion research community with a computational tool for studying low-frequency
behavior in experiments. Specific problems of interest include the neoclassical evolution of
magnetic islands and the nonlinear behavior of tearing modes in the presence of rotation and
nonideal walls in tokamaks; they also include topics relevant to innovative confinement concepts
such as magnetic turbulence. Besides having physics models appropriate for these phenomena, an
additional requirement is the ability to perform the computations in realistic geomedtries.

The volunteers comprising the NIMROD Team are located across the U. S. and Europe, so
communication and project organization have challenges that are fitting to the modern age. In fact,
a secondary goal of the project is to determine if managerial techniques such as quality function
deployment and integrated product development can help meet these challenges and accelerate the
development of a large-scale physics code. There are two notable ways in which these techniques
have been applied to the project. First, members of the theory group at General Atomics have
represented the interests of customers, and their input and feedback have helped us improve the
code in many ways. Second, team meetings at the beginning of the project focused on creating
 task matrices which link technical goals and customer requirements with properties and features to
be developed. This proved very useful for the initial organization of the project, and periodic
visitation of the matrices has helped keep the project on track. However, the management
techniques did not provide help when unexpected technical difficulties upset the development
milestone schedule. Another lesson learned is that having a management expert on the team is
important for realizing the potential of these techniques.

Concurrent with the physics kernel development, we have taken several steps to prepare
NIMROD for use by people outside the development team. A graphical user interface (GUI) has
been developed to facilitate the sequence of preprocessing, code running, and postprocessing.
Documentation is being written describing the physics, numerical methods, and programming to
make the job of learning NIMROD easier for new users, including those interested in making their
own modifications. Finally, the code is portable to many different computer systems ranging from
workstations to massively parallel computers to traditional vector supercomputers. Restart files are
written in a standard binary format, so that they may be moved from one machine to another.

2 Los Alamos National Laboratory, Los Alamos, NM 87545. e-mail: sovinec@lanl_gov



In its current form, the NIMROD kernel has enough physics to perform nonlinear
magnetohydrodynamic (MHD) computations and some two-fluid computations. The equations
presently solved are
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plus a linear version of a Hirshman-Sigmar neoclassical closure.l At present, there is a single
pressure equation, representing the sum of ion and electron pressures, and density is considered
constant in time. Eventually, NIMROD will have full two-fluid physics, assuming only
quasineutrality and zero displacement current.

Spatial discretization is finite element in the poloidal plane and truncated Fourier series in the
toroidal/axial direction—NIMROD can represent either toroidai or periodic linear geometries. The
grid is broken into structured blocks of quadrilaterals and unstructured blocks of triangles. This
allows us to combine the accuracy and efficiency of a topologically polar grid in the central plasma
region with the flexibility of triangular elements near a realistically shaped physical boundary.
Dependent variables are treated as bilinear elements within the blocks of rectangles, where
equilibrium and geometric quantities are treated as bicubic. In blocks of triangles, all quantities are
considered linear.

The solution is advanced from initial conditions with a time-split, semi-implicit algorithm.
Though most similar algorithms have the semi-implicit operator for MHD in the velocity advance,2
in NIMROD it appears in the magnetic field advance in a symmetric but anisotropic form. The
linear numerical dispersion relation for this algorithm has no truncation error coupling the shear
and compressional Alfven waves,3 which is important for accuracy when simulating slow resistive
MHD behavior with time steps that are large compared to the Alfven time. A separate operator is



also used in the pressure advance. None of the matrices solved each time step couple different
Fourier components; coupling only appears in explicit terms that are computed in configuration
space after an application of the Fast Fourier Transform.

A predictor/corrector approach is used for each equation containing advection terms. The
predictor steps are computed with the semi-implicit operators, as recommended in Ref. 4. We also
have the wave-like terms in the predictor steps to avoid effective nonlinear anti-diffusion in the
truncation error.>

A sample physics application of NIMROD is a simulation of a low aspect ratio reversed-field
pinch (RFP), computed in toroidal geometry. Previous numerical RFP studies have been
computed in linear geometry. Since the magnetic configuration has safety factor below unity, no
linear stabilization is expected from the toroidal geometry, and the approximation is usually
appropriate. However, we anticipate that at small aspect ratio, nonlinear coupling is affected. This
simulation is the first in a series to explore where the toroidal geometry becomes important and
how it manifests itself in the MHD behavior. The simulation has an aspect ratio of 2, the poloidal
cross section is circular, the Lundquist number is 1000, and 0-B conditions are assumed. The
simulation includes toroidal mode numbers 0sn=<21. Advection has not been included in the
velocity equation in this particular case, and the time step was 0.2 Alfven times throughout the
simulation. Figure 1 displays the reversal parameter, F = (de By / de)(de By / fav )_1, as a
function of time. It shows that magnetic field reversal is sustained after the initial saturation at
t=2x10-5s. During the last half of the simulation, the magnetic and kinetic energies of the magnetic

perturbations are unsteady, which is reflected in the unsteady behavior of the reversed field.

Reversal Parameter vs. Time
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Figure 1. Reversal parameter as a function of time in the toroidal RFP simulation.



With the progress made on the numerical implementation of the plasma fluid equations,
validation tests, and new research simulations, the most important issue for the NIMROD project is
speed of execution. In most simulations, more than 75% of the CPU time is spent inverting
matrices. While the semi-implicit formulation overcomes the stiffness of the Alfven normal
modes, the operators in the magnetic field advances lead to ill-conditioned matrices. We have
implemented the conjugate gradient scheme with several preconditioning options in the data
structures used throughout the code. We are also investigating the possibility of linking the
physics kernel to matrix solvers such as AZTEC® and ISIS.”

Of the computers available to the fusion community, the fastest have massively parallel

architectures. We have therefore made the NIMROD kemel a parallel code from the very
beginning of its development. When run in parallel, different blocks of the grid are assigned to
different processors, and message passing is used to communicate between adjacent blocks. While
we have demonstrated favorable scaling on problems run with diagonal preconditioning in the
matrix solver, the more powerful preconditioners are sensitive to block decomposition. To reduce
the need for grid decomposition, we are presently attempting to assign different Fourier
components to different processors. Very little time is spent in the pseudospectral operations, so
the components are essentially independent over most of the time step.

To summarize, the NIMROD Team is using contemporary management and computational
methods to develop a computational tool for investigating low-frequency behavior in plasma fusion
experiments. We intend to make the code freely available, and we are taking steps to make it as
easy to learn and use as possible. An example application for NIMROD is the nonlinear toroidal
RFP simulation—the first in a series to invesfigate how toroidal geometry affects MHD activity in
RFPs. Finally, the most important issue facing the project at present is execution time, and we are

exploring better matrix solvers and a better parallel decomposition to address this.
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M3D Project for Simulation Studies of Plasmas

W. Park, E.V. Belova, G.Y. Fu

Princeton University Plasma Physics Laboratory, Princeton, New Jersey

H.R. Strauss
New York University, New York, New York

L.E. Sugiyama
Massachusetts Institute of Technology, Cambridge, Massachusetts

Abstract

The M3D (Multi-level 3D) project carries out simulation studies of plasmas of various regimes
using multi-levels of physics, geometry, and mesh schemes in one code package. This paper and
papers by Strauss, Sugivama, and Belova in this workshop describe the project, and present
examples of current applications. The currently available physics models of the M3D project are
MHD, two-fluids, gyrokinetic hot particle/MHD hybrid, and gyrokinetic particle ion/two-fluid
hybrid models. The code can be run with both structured and unstructured meshes.

1. Introduction

The M3D (Multi-level 3D) project[1] carries out simulation studies of plasmas of various
regimes using multiple levels of physics, geometry, and mesh schemes in one code package.
More physics levels are also being added for & more complete object oriented code package,
which can be used to simulate a wide range of plasma regimes, spanning various fusion devices,
space plasmas, and astrophysical plasmas.

Such a general code package would have a profound impact on the search for better confine-
ment schemes. The capability of the code package to apply to a full range of general plasma
states will stimulate one’s imagination, at the same time requiring it to be firmly based on real-
ity. The interrelations between fusion, space, and astrophysical plasmas borne out by using the
same code package would also be of mutual benefit. The object oriented modular code design
ensures that carrying the multi-level capability in one code package would incur only a minimal
overhead.

The code is currently used to study existing fusion devices. For this application, the benefits
include: the most suitable physics, geometry, and grid models, can be chosen for the problem at
hand; and running the same problem with physics models of differing complexity aids in physics
understanding by isolating the most important physics, and also helps code validation.

The physics levels which are already available and have been used extensively include

MHD(2], Two-fluids[4], the hybrid Gyrokinetic Hot Particle/MHD levels.[5-7] Recently, a bulk
Ion Gyrokinetic Particle/Two-fluid hybrid level[8] has been added. A Full-kinetic Ion Parti-
cle/Fluid Electron hybrid level will be added shortly. For mesh schemes, both structured and



unstructured mesh[9, 10] options are available. Recently, neoclassical parallel viscosity has also
been incorporated in the two-fluid level.

In the next sections, physics models and the general structure of the code package are
described. Further description of each level and results of current applications are given in papers

by Strauss(unstructured mesh MH3D++), Sugiyama(two-fluid MH3D-T), and Belova(bulk ion
Gyrokinetic Particle/Two-fluid hybrid level) at this workshop.

2. Physics models

Nonlinear simulation of plasmas is one of the most challenging tasks among computational
studies of physical phenomena. Plasma behavior contains many oscillations of vastly different
time scales and length scales. Including all these disparate physics in a global simulation, e.g.,
of a large tokamak will remain difficult at least in the near future. Moreover, even if one could
include all the physics in the simulation, the simulation results will be very complex, and it will
be difficult to analyze and to acertain its validity.

Our approach is to build a multi-level of physics models, simple to more complete, in the code
so that results from levels of differing complexity can be compared to gain physics understanding.
This also facilitates a step by step path to a more and more comprehensive simulation code both
in development and benchmarking. A physics model of plasmas can be a (configuration space)
fiuid model which is the moment equations of the kinetic equation, a phase space fluid model
such as the Vlasov fluid, a discreet particle model, or a hybrid scheme of the previous three. In
general, a fluid model is more efficient computationally, but the closure question remains when
collisions are not dominant, which is usually the case in most applications. A phase space fluid
model can include all the correct physics, but is computationally very intensive due to the six or
five(gyrokinetic) dimensions required. The particle model is the most natural to include all the
correct physics with correct boundary conditions, but a very large number of particles is usually
required for a reasonable noise level. The 6 f method[11] for particle simulation is helpful in this
regard and is incorporated in the code. _

The lower physics levels of M3D are fluid models, and the upper levels consist of parti-
cle/fluid hybrid models, because in the medium term, electrons will have to be treated as a
fluid. (A particle or a phase space fluid electron model would be too computationally intensive
for the medium term, although in a long term these should be also included.) The fluid models
give simpler and approximate pictures, while the hybrid models give more complex and accurate
ion physics although more computationally intensive. Electron physics will likely remain ap-
proximate in the medium term, because no reasonable nonlinear Landau closure scheme exists
at present.

The lowest physics level in M3D is the single fluid MHD model which uses the collisional
closure and contains the MHD waves(Alfven, fast and slow magnetosonic). The next level is a
two-fluid model[4] where the gyroviscous and the neoclassical closures[12, 13] are approxima-
tions, e.g., in 2 banana regime of tokamaks. (We plan to have more accurate neoclassical effects
by using separate equations for P and P, with a collision term for both ions and electrons.)
The additional effects contained in this level are drift wave, whistler wave, neoclassical effects,
mirror modes, etc. The next hybrid Gyrokinetic Hot Particle/MHD level[s, 6] uses gyrokinetic
hot particle pressure to couple to the MHD equations, and contains the correct nonlinear hot
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particle interactions with waves. and can be used to study nonlinear saturation of TAE, EPM
and fishbone modes. The next bulk Ion Gyrokinetic Particle/Two-fluid hybrid level[8] uses
the diagonal pressure tensor obtained from gyrokinetic ion particles, and include the bulk ion
wave-particle interaction and the ion part of the bootstrap current accurately(when collision
is included). The gyroviscosity term is still calculated using a fluid closure. The next physics
level planned to be added is the Full-kinetic Ion Particle/Fluid Electron hybrid level, and will
be used where w.; ~ w4 such as in FRC.

The recent applications of the code include high-3 disruption[2], off-axis sawteeth[3], pellet
Injection using an unstructured mesh[9, 10], plasma and island rotation[4], nonlinear saturation
of TAE modes[6], and thermal ion particle effects on internal kink|8§].

3. Structure of the code package

M3D is designed as much as possible using an object oriented modular code design. The shell
is C++ which is an object oriented language, and the core Fortran77 which is more efficient in
execution. F90 may be also used in the future. For any large code which is used for cutting edge
applications, an object oriented design would be necessary, because what ultimately determines
the success of the code in a long run would be how easy it can incorporate newly devised
improvements, whether it be a physics model, a mesh scheme, or a numerical algorithm. A
modular design (whether object oriented or not) is also necessary for a code with complex multi-
level structures to minimize the overhead for carrying the flexible structure. M3D has multi-level
structures not only in physics levels, but also in geometry, mesh schemes, boundary conditions,
numerical schemes, etc., so that as much as possible modular design is highly desirable. A
complete encapsulation of a given module may not be possible at occasion, but efforts should
be made to encapsulate as much as possible.

One such example is how we added the unstructured mesh MHD level MH3D++(9, 10] from
the structured Fourier space MHD level MH3D. Low level routines which perform differential
operations and solution of PDEs such as Poisson’s equation are encapsulated in C++ objects
to isolate the finite element operations from higher level routines. In this way, the code can be
run either in unstructured or in structured mesh, which still holds advantages for some specific
problems.

Most of the M3D code is not changed by the use of a different discretization. This allows di-
rect benchmarking of the finite element unstructured mesh level of the code against the original
finite difference structured mesh level. The benchmarking tests show that the different levels
converge to the same results. The discretization package is in further development to make an
array of mesh objects, each with a different boundary shape, with a real space toroidal repre-

sentation. This is straightforward using the C++ objects, and will allow stellarator simulations
with a 3D grid.

4. Conclusion

The M3D (Multi-level 3D) project carries out simulation studies of plasmas of various regimes
using multi-levels of physics, geometry, and mesh schemes in one code package. The currently



available physics models of the M3D project are MHD, two-fluids, gyrokinetic hot particle/ MHD
hybrid, and gyrokinetic particle ion/two-fluid hybrid models. The code can be run with both
structured and unstructured meshes. A Full-kinetic Ion Particle/Fluid Electron hybrid level
will be added shortly.

Finally, we summarize the basic strategy of M3D project.
e Set a long term goal, but each stage of the development useful by itself.

e Object oriented modular code design: shell in C++, and core in Fortran77 and F90.

o Multi-levels of physics, mesh schemes, boundary conditions, etc., enabling the code for

general applications to various laboratory, space, and astro plasmas, for mutual benefit
of these fields. For fusion, the multi-level structure allows the testing of any confinement
schemes, thereby encouraging invention of better schemes.

e For the medium term, stay within the framework of particle-ion and fluid-electron hybrid
models. Particle electrons would be still difficult for most problems.
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Feedback Stabilization of Resistive and Neoclassical Magnetohydrodynamic Tearing
Modes in Tokamaks

T.A. Gianakon, X. Garbet, G. Giruzzi, M. Zabiego
CEA Cadarache
France
(March 20, 1998)

Neoclassical tearing modes [1-4] (NTM’s) have been projected to be problematic in terms of reduced 8 limits
for fusion reactor concepts that have signficicant bootstrap currents, e.g., ITER. The modes are characterized by
a nonlinear threshold for excitation, slow growth rates, and saturation at modest values of the minor radius. The
reduction in § is the direct result of quasilinear flattening of profiles within the island. This same feature, through
the perturbed bootstrap current, is directly responsible for the drive associated with the instability. Auxiliary current
drive from RF waves that is localized and appropriately phased at the resonant rational surface has been proposed as
one mechanism to stabilize offending tearing modes {5,6). The effect can be included in a standard island evolution
equation as a A,,,, which in general is a complicated function of island width and current localalization. One such
form for the evolution of the island width W is

dw ' WacW

W2 =L T iwy

+ AL, (1)
where Wy, is a coefficient that describes the local bootstrap current and Wy o (x./ x")l/“ describes the nonlinear
threshold for an NTM due to finite perpendicular and parallel transport.

A deceptively simple addition of an auxiliary current to the Ohm’s law can be made to model the physics of such
stabilization currents on NTM’s, but the evaluation of this current in principal requires the solution to a full time-
dependent kinetic expression in three dimensional geometry with an island present. Such simulations are beyond
the capabilities of the current generation of computers, so that a more simplified model is required. The simplfying
approach discussed in this paper extends nesfar, a neoclassical reduced MHD code [7,8], to include either a direct
specification of the RF current drive term in the Ohm’s law or an additional evolution equation for this term.

The computational model implemented in the neofar code is based in large part on a reduced MHD variant of its
parent code FAR [9]. As such, neofar is an initial value code that separates variables into equilibrium and fluctuation
contributions, where fluctuation terms can produce quasi-linear relaxation of equilibrium terms. Neofar Fourier
decomposes in the poloidal and toroidal directions (mf + n() and uses central differences in the radial direction. This
separation allows the linear portion (e.g., a set of poloidally coupled harmonics with the same toroidal mode number)
to be solved implicitly with a block tridiagonal solve and nonlinear terms to be dealt with explicitly. Originally,
neofar was limited to small time steps and long compute times due to the explicit nature of the dominant nonlinear
contributions to the parallel transport. Recently, neofar has been extensively modified to treat the pressure equation
separately from the MHD solve and also fully implicitly, with the effect that all all Fourier harmonics become coupled.
This facilitates parallel diffusivities several orders of magnitude larger than in prior simulations and thereby lower
thresholds for NTM simulations.

The equations in neofar [7] are a close derivative of reduced MHD [10,11] but with the inclusion of neoclassical
effects [12] and RF currents. As such, the neoclassical reduced MHD model consists of a parallel Ohm’s law, a vorticity
evolution equation, and a pressure evolution equation. The equations are presented elsewhere [8] except for details of
the pressure equation and the auxiliary current equation that are presented here.

The first modification to the original equation is that the transport phenomena is assumed to occur on a sufficiently
fast time scale relative to the growth of the tearing modes, so that the the full transient pressure equation can be
replaced with a diffusive pressure equation that can be solved exactly on each time step, eg,x1Vpp =V-(xLVp~
Oy = x1) [é%',vl] »). This assumption lends itself to implementation of a fully implicit solve for the pressure and
facilitates values of xj;/x1 = 10° with packed grids near the resonant surface. This value is nominally 100 times
larger than the explicit version of neofar, but still represents a value far short of the experimentally relevant values of
xj1/xL = 102 [4].

”The second modification is the addition of the auxiliary RF current source to the parallel Ohm’s law and a new
equation for it’s solution. The assumption will be made that the RF current source equilibrates on a sufficiently fast

time scale so that transients can be ignored. Further, the source term will be described as a diffusive process exactly
analagous to the pressure equation, e.g.,

a5 = B-vJ§
‘FRF =X_1_V2J}Cip +xyB-V (_B_zR_F') + SrF (2)



The source term for this auxiliary current equation is dealt with by Fourier expansion to describe the typical scenario
of spatial and temporal localization caused by the RF antenna. These set of Fourier coefficients describe a rotating
wedge in poloidal and toroidal space. In this case the auxiliary source term can be treated as rotating to overcome
difficulties implementing island roation in neofar. The souce term is

Spr = z A n cos(mf + n() + Z B n sin(mé + n(), (3)

m,n m,n

where the Fourier harmonics are given by

A = 259y ) ) g — ) Pt @

sin(mbp) sin(néo)
nbo (o

Bm,n = 2f (P) sin(n(‘”‘ = nﬂt)P (t) (5)

1; or -0t
P(t) = { 0; x&'m - Qt; z 3?%‘53 (6)

Here, f(p), is the radial localization and is typically taken as a triangle function localized about the resonant surface
with width Ap. The source term has a width of 26, in poloidal angle localized on the low-field side about § = 0
and a width of 2(p in toroidal angle. The auxliary source rotates with frequency 2 and when an appropriate wedge
in toroidal angle of width 2¢* intersects some angle ¢°", the source is turned on, e.g., phasing the current drive.
Finally, in the absence of an island, recognition should be made that this diffusive assumption leads to what may be
an erroneous result: off axis current drive extends uniformly into the magnetic axis.

For the simulations which follow, a circular cross-section of minor radius a = 0.80m, major radius of Ro = 2.4m,
toroidal magnetic field of (Jywant = 5.1T ), and central pressure of fp = 0.10 is assumed. The effects of island rotation
are neglected by setting Q = 0. Further, gross simplification of the full toroidal problem is made by neglecting the
effects of mode coupling by consideration of only the first 5 resonant harmonics at the q=2/1 surface plus the set of
equilibrium harmonics m/n=0/0 through m/n=10 /0. The effects of island rotation, RF phasing, and mode coupling
are recognized as being extremely important for characterization of the threshold dynamics on real experiments. A
radial mesh of 800 grid points is used with variations between a uniform mesh and 3/5 of the grid points localized

within 0.05 of the resonant surface. The equilibrium is stable to normal A’ type tearing modes as evidenced by
running the code in the absence of the neoclassical terms. Finally, the bootstrap current is enhanced by a factor of
100 to lower the threshold for the mode. In the absence of this factor of 100 the saturation values are already well in
excess of the machine size.

Typical simulation results are presented in Figures 2 and 3 for an NTM resonant at the g=2 surface. In Figure 2,
the results are based on an RF current that is simply specified as a single m/n = 2/1 harmonic with a trianglar radial
deposition factor relative to the resonant surface. In this case, stabilization is readily acheived even down to zero
island width with currents approximately 1% of the plasma current at which point the current becomes destabilizing.
While this procedure quantatively identifies the amount of current in a particular harmonic that is necessary for
stabilization, such a simulation does not address whether such a current perturbation is obtainable in practice. In
practice, at island widths on the order of the RF generated current channel, little stabilization is expected, since most
of the RF power ends up in the equilibrium harmonic.

In Figure 3, this weakness of direct specification of the current is rectified by considering that the RF depostion
must be modified by the island structure, hence the need for Eq. (2). In this case, the RF source term has been
optimized for an m/n=2/1 harmonic with parameters of §, = 0.03, 8y = 7/2, and (p = 7/4. The initial observation is
that the currents required for stablization appear to be very large. These values however must be rescaled by a factor
of 1/100 to account for the 100 times enhancement of the bootstrap current. Thus for an island with W = 0.06a,
an RF current of 2 to 3% of the plasma current is required to saturate the mode. An additional factor of 5 is also
justified, since the simulation is limited to the case of W < 0.2W,, where W3 ~ 0.25a for this simulation. Since the
largest growth rate for the instabilty occurs at W = Wy at least a factor of 5 increase in the stabilization current is
suggested. This would assume that in the real experiment one really begins stabilization after the mode has saturated.
The conclustion would then be that the RF current required for stabilization is about 10% of the plasma current.

Several additional observations can be made based on Figure 3 for the case the case when I./I, = 2.81. In this
case, the mode saturates at a width approximately the same as the current channel width, but then the stabilization
is lost. In this case, the stabilization is lost because a significant m/n = 0/0 harmonic of the equilibrium current
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is generated which modifies the g-profile. The localization of the RF current then shifts away from the appropiate
surface, which effectively reduces the amount of current available for stabilization, and has the added effect of putting
even more current into the 0/0 harmonic. This effect would probably be lessened if simulations could be conducted
at the experimentally relevant range, since then instead of putting 3 times the plasma current at the resonant surface
only about 0.1 the plasma current would be introduced.
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FIG. 1. Equilibrium profiles used in the study of NTM’s.
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MHD Simulations on an Unstructured Mesh

H.R. Strauss, NYU
W. Park, E. Belova, G.Y. Fu, PPPL
D. W. Longcope, University of Montana
L.E. Sugiyama, MIT

"T'wo reasons for using an unstructured computational mesh are adaptivity, and alignment with arbitrarily
shaped boundaries. Two codes which use finite element discretization on an unstructured mesh are described.
FEMB3D solves 2D and 3D RMHD using an adaptive grid. MH3D++, which incorporates methods of FEM3D
into the MH3D generalized MHD code, can be used with shaped boundaries, which might be 3D.

Adaptive Mesh MHD

Adaptive methods for MHD have used both unstructured [1, 3] and structured grids [2]. The main
computational difficulty with an unstructured, adaptive mesh is the accurate calculation of the current. The
most effective solution is to employ a current - vorticity advection formulation of the equations. Acceptable
results can also be obtained with a two - step calculation of the current from the vector potential. Mesh
operations are described to reconnect and refine the mesh adaptively in the vicinity of nearly singular
currents. Example computations of the coalescence instability, tilt mode and divertor tokamak equilibrium,
validating and illustrating the method, are presented. The simulations show the formation of current sheets,
with the current density increasing exponentially in time. During this increase, the grid of initially ~ 10*
points adapts to provide resolution comparable to a uniform grid of up to 5 x 10® grid points.

The equations can be discretized using piecewise linear, triangular finite elements. Three sparse matrices,
the mass matrix, stiffness matrix, and bracket tensor, arise in the discretization. Their construction and
assembly is discussed. The stiffness matrix can cause a convergence problem in computing the current, for
which we give two possible cures. The most effective cure is to use symmetrized MHD equations, in which
vorticity and current are time advanced, and the potentials are found by solving Poisson equations. The
other approach is to use a modified stiffness matrix with a wider stencil, having acceptable convergence
properties.

Adaptive gridding is done with two mesh operations: splitting pairs of triangles into four triangles; and
the inverse operation of combining four triangles into two.

As an example and test of the method, we first consider the periodic coalescence instability [4]. The initial
equilibrium Fig.1(a) consists of an array of cells with periodicity is built into the mesh by the connectivity
of the mesh triangles.

As the simulation evolves, the current density becomes concentrated into thin sheets located at the short
side of the pentagonal separatrix. A blowup of the plot of the current density at time ¢ = 0.21 is shown in
Fig.1(c). The current is well resolved and unremarkable in structure. A similar blowup of the mesh on which
the current is calculated is shown in Fig.1(d). The minimum length scale of the mesh is .022 the length of
the original mesh cells, which is equivalent to a mesh of 5,000,000 mesh points. In fact the mesh has only
10,400 mesh points.

The peak value of the current density grows exponentially in time, with a large growth rate more than
10 times the linear mode growth rate. Exponential growth is predicted theoretically [5]. As the current
density increases, so does the number N of mesh points.

The FEM3D code has also been applied to 3D RMHD, such as the calculation of nonlinear edge localized
pressure driven modes in divertor geometry, including a magnetic separatrix in the computational domain

[6].
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Figure 1: (a) A calculation of the coalescence instability. Contours of magnetic flux ¢ at time ¢ = 0. (b)
Contours of magnetic flux % at time ¢ = 0.21 (c) A blowup view of contours of current C' at time ¢ = 0.21
The view is centered on the separatrix, on short side of a flux pentagon. The horizontal scale is about 0.2
of the scale £ of the previous figure, while the vertical scale is about 0.04¢. (d) A blowup view of the mesh
around the the current sheet. The minimum scale length of the mesh is 0.022 the size of the initial mesh

separations.

MH3D++4 Unstructured Mesh Code

The most efficient way to represent general geometric effects is to use an unstructured numerical mesh.
MHE3D++ is the unstructured mesh finite element version of the MH3D code [?]. Low level routines which
perform differential operations and solution of PDEs such as Poisson’s equation are encapsulated in C++
objects to isolate the finite element operations from higher level routines. In this way, the code can be run
either in unstructured or in structured mesh versions, which still holds advantages for some specific problems.
The results of MH3D++ converge to MH3D results. The MH3D++ code has been given an option of a
finite difference discretization in the toroidal direction, replacing the spectral representation. This permits
efficient parallelization. The next step is to use an array of mesh objects to build a three dimensional mesh,
which will be used for resistive, nonlinear stellarator simulations.

MHD Effects on Pellet Injection

Recent ASDEX results [9] demonstrated that pellets injected on the inboard, low major radius edge, suf-
fered less loss, and were absorbed more completely into the plasma. Efficient pellet penetration is important
for very large size, long pulse tokamaks, such as ITER.



Nonlinear MHD simulation results of pellet injection [7] withthe MH3D++ code show that MHD forces
can accelerate large pellets, injected on the high field side of a tokamak, to the plasma center, reconnecting
the magnetic field into a reverse shear configuration. Ballooning instability caused by pellets is also reduced
by high field side injection. Studies are also reported of the current quench phase of disruptions, which
can cause 3D halo currents and runaway electrons. A scaling law is obtained for pellet displacement which
agrees well with the simulations.

The simulations are initialized with a two dimensional MHD equilibrium, to which a pellet is added. The
simulations assume that the pellet ionizes and ablates rapidly, compared to the Alfvén and sound wave time
scales. The pellet is the source of a plasma cloud, which has a non uniform density and pressure distribution
on magnetic surfaces. The pellet cloud contributes no energy to the plasma; the flux surface averaged
pressure profile is the same as without the pellet. The three dimensional perturbed non equilibrium plasma
relaxes by parallel streaming of heat and density, and major radius displacement akin to the Shafranov shift.
Driven magnetic reconnection imparts some non reversibility to the effect. This is shown particularly in the
case of inboard injection, where the pellet cloud penetration changes the q profile to a reverse shear profile.

MHD Disruptions caused by pellet injection

Further studies are being carried out on disruptions initiated by pellets. We start with a high £ equilib-
rium and insert a pellet perturbation. A pellet ablation cloud 3D pressure perturbation can trigger moderate
. pressure driven instabilities.

As with pellet injection, there are advantages to the high magnetic field side. Pellets on the inside
require a larger pressure perturbation to trigger an instability. The equilibrium pressure gradient adds to
the pellet pressure gradient for low field side instability, while the equilibrium pressure gradient subtracts
from the pellet pressure gradient for high field side instability. In addition, on the low field side, the
velocity perturbations resemble typical moderate wavelength ballooning modes. They produce disruptions
in nonlinear simulations. On the high field side, the velocity perturbations are much more localized. They
mlght simply cause the breakup and more rapid dispersion of the pellet cloud.

3D Disruptions, Halo Currents, and Runaways

Another category of work with MH3D++, which is relevant to ITER and other large tokamaks, concerns

halo currents and runaways generated during the current quench phase following major disruptions. Halo
currents caused by 3D kink modes in the latter phases of a disruption could cause serious mechanical load
problems. In addition, runaway electron currents could be channeled to the wall by the 3D magnetic field
perturbations, causing wall damage. Disruption simulations are being carried out which have both a self
consistent three dimensional resistivity proportional to the temperature to the —3/2 power, as well as a thin
resistive shell through which the plasma magnetic field is coupled to an external vacuum field. Preliminary
results indicate significant 3D peaking factors. Runaway generation by avalanching will be modeled [10].
Summary

Unstructured mesh methods are useful for adaptive MHD simulations, as illustrated by FEM3D. Use
of an unstructured mesh has extended the capability of the MH3D extended MHD code to computations
involving curvilinear geometry. MH3D-++ could be improved by extending the approach to 3D curvilinear
grids, for stellarator applications. MH3D++ could be further improved by adding adaptivity, which would
be useful for e.g. the pellet problem.
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Figure 2: Fig.2(a) shows pellet cloud density contours in the ¢ = 0 poloidal plane at ¢t = 12.7R/vas. The
pellet was inserted on the high field side, and was accelerated by toroidal curvature forces, causing it to move
to the magnetic axis. In the process it causes magnetic reconnection to a reverse shear profile. Fig.2(b)
shows pressure contours in the ¢ = 0 poloidal plane at ¢ = 13.1R/v4. In this case a pellet was inserted
on the low field side, increasing the local pressure gradient enough to cause an instability. The nonlinear
development of the instability is shown. Fig.2(c) shows pressure contours in the ¢ = 0 poloidal plane at
t = 17.5R/v4. This is a kink simulation of the current quench phase of a disruption.
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Resolving magnetic field line stochasticity and parallel thermal transport in

MHD simulations
Y. Nishimura. J. D. Cailen. and C. C. Hegna

Department of Engineering Physics,
University of Wisconsin-Madison, Wisconsin, 53706-1687

Heat transport along braided, or chaotic magnetic field lines is a key to understand the disruptive
phase of tokamak operations, both the major disruption and the internal disruption (sawtooth
oscillation). Recent sawtooth experimental results in the Tokamak Fusion Test Reactor (TFTR)
(1] have inferred that magnetic field line stochasticity in the vicinity of the ¢ = 1 inversion radius
plays an important role in rapid changes in the magnetic field structures and resultant thermal
transport.

In this study, the characteristic Lyapunov exponents and spatial correlation of field line
behaviors are calculated to extract the characteristic scale length of the microscopic magnetic
field structure (which is important for net radial global transport). These statistical values are
used to model the effect of finite thermal transport along magnetic field lines in a physically

7

consistent manner. stimate of the cross field diffusion we postulate a form given by

o 2 2
wi=[T- s S) ()« (1)
v
which includes the ¢ decorrelation effects of fast thermal streaming along the field lines
moderated by collisi te  is the toroidal angle, ¥, and X|| stand for perpendicular and
parallel heat condu fficient normalized by resistive time scale and the minor radius.
Note the value of , icrease linearly with X||-

Numerical simulavions nave been conducted by using the three dimensional nonlinear initial
value MHD code FAR[2]. Parameters used in the calculations shown here are: aspect ratio
€ = 0.25, Lundquist number S = 105. The safety factor was taken to be in the range of
0.81 < ¢ £ 2.7. Toroidal mode numbers were taken up to 1 < 7 < 10 (total of 151 modes). A
total of 500 equally spaced mesh points were used in the radial direction.

With higher 8 simulations, a sudden onset of Alfven time scale pressure driven mode[3]
is observed in the final stage of the sawtooth crash. Figures 1 shows pressure contours in a
poloidal cross section ¢ = 7 and ¢ = 0, in the absence of parallel conduction. Typical ballooning
type structure (a finger) on the bad curvature side can be seen starting from t = 1440¢,; the
m/n = 1/1 magnetic island evolution gave rise to convection of the pressure inside the inversion
radius and builds up steep pressure gradient across the island separatrix or the Y-ribbon[4], and
thereby trigger ballooning instabilities below the threshold at the equilibrium. Also indicated
was the strong coupling of the 1/1 mode to the 2/1 and the 0/1 modes, which is indicative of



dispersion of the current free energy inside g = 1 surface. In this specific case, a maximum £ of
5% was taken.

The resultant pressure evolution in response to the stochastic magnetic field lines has also
been investigated. From a simulation above, we found the maximum value of the stochasticity
induced thermal diffusion to be yess ~ 10 for the x; ~ 103 value employed here. In this work,
xL = 0.1 was taken so that the y.s; value described above dominates the pressure response
to the stochastic field lines. Figure 2 shows the pressure contour in the presence of finite x|
The differences with Fig. 1 suggest ergodization of pressure within the stochastic magnetic

field line regions. Qualitative investigation of the ballooning mode spectrum will be presented.

This research was supported by United States Department of Energy Grant No. DE-FG02-
86ER53218.
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Hybrid Fluid/Kinetic Model For Parallel Heat Conduction
J.D. Callen, C.C. Hegna, and E.D. Held
University of Wisconsin, Madison, WI 53706-1687

Abstract

It is argued that in order to use fluid-like equations to model low frequency (w < v) phe-
nomena such as neoclassical tearing modes in low collisionality (v < w;) tokamak plasmas, a
Chapman-Enskog-like approach is most appropriate for developing an equation for the kinetic
distortion (F) of the distribution function whose velocity-space moments lead to the needed fluid
moment closure relations. Further, parallel heat conduction in 2 long collision mean free path
regime can be described through a combination of a reduced phase space Chapman-Enskog-like
approach for the kinetics and a multiple-time-scale analysis for the fluid and kinetic equations.

The objective of hybrid fluid/kinetic descriptions of toroidal plasmas is to capture all of the essential
physics for particular phenomena of interest within a fluid moment (MHD-like) model. To do so,
one must determine and use appropriate closure moments in the fluid moment equations being
considered. For example, an appropriate stress tensor II is required to complete the specification
of a momentum balance equation while both the stress tensor and the heat flux q are required to
complete an energy balance equation. Once appropriate closures are employed, the full power of
fluid moment computational models can be employed to describe the inherently three dimensional
character of macroscopic, nonlinear phenomena in toroidal plasmas.

The needed closure moments are determined from particular velocity-space moments of the kinetic
distribution function and represent the effects of higher order (than the fluid moments that are
being kept) distortions F' of the distribution function away from the lowest order distribution
function which is typically taken to be Maxwellian. If the closure moments are exact, then the
fluid moment description provides an exact description of the plasma dynamics. However, in
practice approximations must be made to solve for the kinetic distortion F* and these lead to only
approximate closure moments — if the kinetic equation was exactly soluble one should just solve
it rather than try to develop a hybrid fluid/kinetic model! Further, a hybrid computational model
will be more efficient (faster) than a fully kinetic approach only if the appropriate kinetic distortion
F and hence the needed closure moments can be adequately determined in a reduced phase space
so that the computational effort required for determining F and the needed closure moments is
significantly less than what would be required for a complete computational kinetic solution.

The most widely used closure relations are those derived by Braginskii [1], which are applicable to
small gyroradius, collisional plasmas where the collision frequency is much less than the gyrofre-
quency (v < w;), and the gradient scale lengths perpendicular and parallel to the magnetic field are
long compared to the gyroradius (p;V1 < 1) and collision mean free path (AV) < 1), respectively.
While a small gyroradius approximation is usually appropriate for the perpendicular processes, the
collision mean free path in present tokamak and other toroidally confined “hot” plasmas is usually
long compared to the parallel gradient scale length — usually by two or more orders of magnitude!
Thus, an important challenge is to develop closure relations that take account of long collision mean
free path (“collisionless”) phenomena along magnetic field lines in toroidal plasmas.

Time scales are also important. In particular, in toroidal plasmas the phenomena of interest
usually take place on time scales long compared to those associated with the plasma frequency
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(1/wpe ~ 1072 s), jon gytofrequency (1/wei ~ 1078 s), compressional-Alfvén wave frequency
(1/krca ~ 10~7 s), and electron bounce motion (1/wpe ~ 3% 1077 s). Equilibrium on these various
time scales implies that we can adopt the following respective approximations and descriptions:
quasineutrality (V - J = 0), drift-kinetics or gyrokinetics (if k1 p; ~ 1), MHD force balance (Grad-
Shafranov) equilibrium and reduced MHD descriptions {2}, and distinguishing between trapped
versus untrapped electrons in an electron kinetic distortion F that is constant along magnetic field
lines to lowest order.

The frequencies of the phenomena that need to be included, say to describe the nonlinear evolution
of neoclassical MHD tearing modes [3], are: shear-Alfvén waves (1/kjca ~ 1076 s), electron colli-
sions (1/ve ~ 107° s), diamagnetic flow frequency (1/w, ~ 3 X 104 s), ion collisions (1/y; ~ 1072
s), and finally tearing mode growth in the Rutherford [4] regime [w/(A'n/po) ~ 1071 s]. The cor-
responding physical phenomena on these various time scales are, respectively: shear-Alfvén waves
and instabilities, a parallel Ohm’s law that includes the parallel electron viscous force and hence the
bootstrap current, drift waves, ion poloidal flow damping, and the nonlinear evolution of resistive
and neoclassical MHD tearing-mode-induced magnetic islands (hopefully to a benign saturation).
Note in particular that since in typical toroidal plasmas of interest the electron thermal speed
significantly exceeds the Alfvén speed (vre/ca = /Bemnifme > 1), electrons travel faster than
shear-Alfven waves along magnetic field lines. Thus, the (collisionless) free-streaming of untrapped
electrons over the magnetic mirrors and wave-particle resonances (where w ~ kj{v;)) along mag-
netic field lines should be taken into account in lowest order in the determination of the kinetic
distortion F. The higher order determination of the kinetic distortion F for the electrons needs
to simultaneously include the effects of shear-Alfvén waves, collisions, wave-particle resonances,
diamagnetic flow frequencies, and tearing mode evolution which all take place on longer time scales
where the distinction between trapped and untrapped electrons has already been established. In
particular, on the longer time scale, electron collisions act on the untrapped electrons to induce a
parallel viscous force (and viscous heat force in the heat flux equation) that acts to damp poloidal
electron flows (and heat fluxes) in the toroidal plasma and thereby leads to the bootstrap current
and other effects.

Because one is typically interested in phenomena whose temporal variations are slow compared
to the electron collision frequency (1/w > 1/ve ~ 1075 s), the lowest order electron distribution
function can be taken to be a “dynamic Maxwellian” — a Maxwellian whose parameters are the
density n(x, t), temperature T(x, t), and flow velocity V(x,t) in which the dependence on the time t
explicitly allows these “parameters” to be determined by the fluid moment equations (Onfot=---,
etc.). Using a dynamic Maxwellian (instead of the static Maxwellian on an equilibrium flux surface
as is commonly used in drift-wave instability studies) as the Ansatz for the lowest order distribution
function, one then uses a Chapman-Enskog-like approach [5,6] to develop an equation for the kinetic
distortion F. This approach provides [6] a rigorous procedure for including wave-particle resonance
(i.e., Landau damping [7]) processes, including nonlinear effects [8], within a fluid-like description.
It also provides a procedure for deductively determining [9] the neoclassical parallel viscous force
closure (B - V - TI) [10], including the variation [11] of the parallel viscous force within a magnetic
flux surface, B -V -IL

The neoclassical parallel viscous force closures currently used in neoclassical MHD [12] capture the
poloidal flow damping and bootstrap current effects in “low collisionality” (v < wp) plasmas. These
effects are caused by the drag effect of collisions with trapped particles on the untrapped particles,
which free-stream over the magnetic mirrors along field lines and carry the flow. However, a number
of approximations are used in their derivation: the plasma is assumed to be quasistatic or evolving



slowly (w < v); flows within a flux surface are assumed to be much larger than those across flux
surfaces (Vp >> V;); no potential variation is allowed for along magnetic field lines (kjRog < 1);
and finite banana width and gyroradius effects are neglected (1 > kj Ary > kyp). One would
like to remove these limitations to provide a comprehensive description of low frequency processes.

However, since further analytic progress seems difficult, a general Chapman-Enskog-like kinetic
equation should be developed that incorporates all these effects (or most, like in [13]). A numerical
procedure similar to that by Morris et al. [14] could then be used to solve the resultant kinetic
equation.

A major problem that has emerged in the simulation [15] of neoclassical tearing modes is the in-
corporation of parallel electron heat conduction effects. This effect causes the electron temperature
to be constant, at least to lowest order, along the magnetic field lines and in particular the helical
magnetic flux surfaces within a slowly evolving nonlinear magnetic island. The main problem with
a purely fluid description is that, because the parallel electron heat diffusivity is many orders of
magnitude greater than the perpendicular heat diffusivity (xy/xL > 108),. it severely limits the
maximum time step in the temperature (or pressure) evolution equation. Also, the nature of the
equilibration along field lines in low collisionality plasmas where the Braginskii closures are no
longer valid is not clear. In a kinetic description the problems are that the electron thermal speed
is typically greater than the Alfvén speed (vre > ca) so the electron free-streaming along field
lines becomes the shortest time scale process, and the irreversible collisional equilibration of the
electron temperature along field lines requires following the electrons over many magnetic mirrors
along field lines. In either description, the problem is that the time step is shortened considerably
for neoclassical tearing modes compared to regular tearing modes and hence the simulation time
becomes prohibitively long and/or numerical errors arise in the characterization of the magnetic
island structure [15].

What is needed to make comprehensive neoclassical tearing mode (and other low collisionality
magnetized plasma) simulations practicable is to develop a new, temporally efficient procedure for
incorporating electron parallel free-streaming and heat conduction in the simulations. We suggest
that to develop an efficient approach one needs to make simultaneous and similar orderings in
the fluid moment and kinetic (for F') equations. For the problematic electron free-streaming and
heat conduction effects, this would imply that for equilibrium on the electron bounce time scale
(~ 1/wpe ~ 3 x 10~7 s) in the fluid description the electron temperature is taken to be constant
along magnetic field lines (including those within a magnetic island), and in the kinetic description
the lowest order electron distribution function is taken to be constant along field lines. Further, on
this time scale the difference between untrapped and trapped particles becomes evident, and the
first-order electron distribution using a Chapman-Enskog-like approach exhibits the free-streaming
of electrons over the poloidal magnetic mirrors — F = (B — (v B)/fc) (Up + (2q9/5p)L§3/ 2))
(m/T)fum + h in which Uy and gy are the poloidal flow and heat fluxes, and h is the non-free-
streaming and hence nonadiabatic kinetic distortion. Then, in next order one would solve (probably
numerically) the residual bounce-averaged kinetic equation which would include collisional pitch-
angle scattering, wave-particle resonance, etc. effects. The parallel viscous force and heat stress
would then be obtained from the stress velocity-space moments of h. The parallel heat flux would
thus be determined on the first order (collisional) time scale. Further, on this same time scale
the slight departures of the electron temperature from constancy on magnetic field lines would be
determined. Then, these results would be incorporated into the numerical solutions of the reduced
MHD equations [2] whose time advance is effectively on the same time scale. Thus, the procedure
suggested would attempt to analytically incorporate the rapid electron free-streaming and constancy



of temperature along magnetic field lines in the lowest order description. and then only need to
advance the kinetic and fluid moment equations on the slower time scales that correspond to the
electron collisional, shear-Alfvén, and wave-particle resonance time scales.

In summary, we suggest that the most natural procedure for developing a hybrid fluid/kinetic
model for describing “slow” (w < v) processes in low collisionality (v < ws, banana-regime) toroidal
plasmas is via a Chapman-Enskog-like approach that provides a rigorous procedure for determining
the kinetic distortion F and corresponding closure moments that are consistent with the (nonlinear)

fluid moment equations. Because for toroidal, magnetized plasmas of interest vre > ca, the parallel
electron streaming over the magnetic mirrors along field lines needs to be accurately described before
proceeding to the shear-Alfvén time scale that underlies numerical solutions of the reduced MHD
equations [2]. We suggest that to develop an appropriate computational algorithm we will need
to simultaneously order and solve both the fluid moment and kinetic equations — first make the
electron temperature constant along magnetic field lines and bounce-average the kinetic equation,
then advance the resultant fluid moment and kinetic equations on the shear-Alfvén and collisional
time scales.
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3D HYBRID SIMULATIONS WITH GYROKINETIC PARTICLE
IONS AND FLUID ELECTRONS
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Introduction
The previous hybrid MHD/particle model (MH3D-K code) represented energetic ions
as gyrokinetic (or drift-kinetic) particles coupled to MHD equations using the pressure or

current coupling scheme [1-3]. A small energetic to bulk ion density ratio was assumed,

ni/ny < 1, allowing the neglect of the energetic ion perpendicular inertia in the momentum
equation and the use of MHD Ohm’s law E = —v; x B. A generalization of this model in
which all ions are treated as gyrokinetic/drift-kinetic particles and fluid description is used
for the electron dyna.ﬁﬁcs is considered in this paper. '

The standard approach in gyrokinetic particle simulations is to solve the gyrokinetic
Poisson equation, including the polarization term [4] (for the electrostatic case), and the
parallel Ampere law (when low 3 electromagnetic perturbations are considered [5]). In a
more general case of fully eléctromagnetic perturbations the gyrokinetic Poisson equation
should be modified to include contributions from both Aj and A, and the perpendicular
Ampere law has to be added to complete the system of equations. The alternative approach
is to use Ohm’s law (electron momentum equation) to find the electric field. In this method,
which is typical for hybrid simulation with fully kinetic particle ions and fluid electrons,
a calculation of the ion perpendicular velocity will be needed. Unlike the previous hybrid
model [1-3], where the bulk plasma provides most of the inertia and the gyrokinetic ions
contribute only to the plasma beta, it is important to include ion perpendicular inertia

(polarization current) when all ions are gyrokinetic particles.

In the pressure coupling scheme, discussed here, the ion perpendicular inertia is retained
by calculating the ion fluid velocity from momentum equation, in which the ion pressure
tensor is calculated using particle simulations. The nonlinear § f method [2] is employed to
reduce the numerical noise level. The model is applied to the study of the effect of thermal

particle ions on the stability of internal kink mode, andthe simulation results are compared



with 1-fluid and 2-fluid MHD simulations.
Gyrokinetic/2-fluid hybrid scheme

In the pressure coupling scheme the jon fluid velocity is calculated by solving momentum
equation, and the calculated ion fluid velocity is used in the Ohm’s law, which includes the

Hall term and the electron pressure gradient; quasineutrality is assumed:

6 ,'V,'
-(”Tl = -Vp.-V-P{' - V.M, +JI xB
0B/0t = -V xE, E=-——VexB—é-Vpe, n; = N,

Here the ion pressure is taken to be in CGL form and the gyroviscous part of the stress
tensor is calculated in order to take into account the diamagnetic effects. The ion pressure is
calculated from gyrokinetic particles, whereas the gyroviscous tensor, II,, can be calculated
from particles or taken into account in a fluid way [6,7].

The ions are pushed using the guiding center equations of motion:
) 1 .
X== [BU +b x (uWB-E)],

U=-3B" (42WB-E), i=0,

where (X, U, ,0) - gyro-center coordinates, and B* =B+ Ub x (b - Vh).
The equilibrium distribution function, Fy = Fo(ps, 1, €) is a function of the integrals of
motion: ps = Rp-A =+ U Rby (toroidal angular momentum) and € = uB + m;U?/2.
For the thermal ions: Fy = exp(—ps/1o — €/T) chosen.

Calculation of gyroviscous force

The gyroviscous terms appear naturally in the gyrokinetic description, when the transfor-
mation from the gyro-center to particle coordinates is made in the pressure integral; however,
this approach requires the ion Larmor radius to be resolved in the simulations. In order to
include the diamagnetic effects in the drift-kinetic formulation, the small ion Larmor radius
expansion can be made in the pressure tensor integral, which gives the expression for the

gyroviscous stress tensor in terms of the gyrofluid moments

PSCL = |[U?||bb + ||uB]|(I - bb)



V.-, = bxV(VllUl)
+ Vi (Villul/4 - 3x1/2+ V- Vi)
+ Yy (V2NU%ull/2B ~ xj - x1)

where

XL(p = -p}(")f) -VxVg, ||*]= / (¥)F;dv, F;=F(X,Up,t), b=B/B.

The above expressions were obtained by performing the transformation from particle vari-
ables to guiding-center coordinates in the stress tensor integral, and then expressing the
guiding-center distribution function in terms of the gyro-center distribution function F. Af-

ter the gyroaverages were calculated, the small (k1 p) expansion was made, using ordering:

pi _w Ky 2
L A < (k 1
i ek e < (kup)* <

Here PCPCL is zero order (in €) part of the ion stress tensor P, and gyroviscous tensor II, is
defined to include FLR corrections to P (up to O(k2 p?)) plus inertial term: II, = P—-PCCL,
The diagonal corrections, which represent the difference between the gyrofluid moments
(calculated in the code) and the particle-fluid moments are also taken into account in IL,.
The gyroviscous part of the stress tensor was derived assuming electrostatic perturbation

and uniform background magnetic field.
Comparison with fluid calculations

The FLR corrections to ion pressure tensor and; especially, the off-diagonal terms are
important for correct drift Alfven wave dispersion, the diamagnetic stabilization of resistive
1/1 mode, and the problem of plasma rotation in a tokamak. It is well known that the
inclusion of the gyroviscous force V-II, leads to the gyroviscous cancellations and corrections
in the momentum equation. In order to show that our results agree with the previous
fluid calculations [6,7], we find the relation between II, and the conventional definition of

gyroviscous stress tensor 7, = P — pCCL — pVV:

I, =7,+pVV + (p— || uB || —pVZ/2) (1-bb)
+ (o= 11 U” || —p¥) BB



Then calculating the difference between gyrofluid and particle-fluid moments, and truncating

higher order moments as follows: || pU ||~ p.Vj/B and ||u?|| ~ 2p2 /nB? , we obtain
V-my=—(nV.-V)V+V.%/24p.bx V (V)
where ¥ = —pb -V x V/B. This result agrees with calculations of gyroviscous force in [6,8].

Simulation of internal kink mode

The above gyrokinetic/2-fluid hybrid scheme has been applied to the study of an ideal
internal m=1/n=1 kink mode in toroidal geometry, assuming zero electron pressure, for
the following set of parameters: the aspect ratio R/a = 3.0, ¢(0) = 0.6, ¢(a) = 2.3, and
the ion beta # = 0.06 — 0.1. The linear growth rates and mode structure obtained in the
particle simulations were compared with the results of 1-fluid MHD and 2-fluid (including
gyroviscous force) MHD simulations with same equilibrium density and pressure profiles.
The ideal MHD growth rate for this beta range was: v (75*) =0.035 - 0.053, whereas the
growth rate, calculated in the particle simulations, was v =0.017 - 0.042. Thus, in agreement
with analytical estimates, the effect of particle ions on internal kink mode is stabilizing.
The obtained linear growth rate was approximately the same, when the gyroviscous effects
were also included, probably, because the diamagnetic frequency was small compared to «.

However, there was much better agreement in terms of the mode structure between particle

simulations and 2-fluid MHD simulations with the gyroviscous force included. The particle
simulations with smaller growth rates proved to be much more expensive, because better
resolution in particle poloidal grid, and therefore, larger number of particles and smaller

time steps were needed to resolve the mode structure.
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Comprehensive models for tokamak edge turbulence require at least two es-

sential ingredients, namely electron drift waves and toroidal ITG modes. Beyond
that one might need to include additional modes. The current work focuses
on kinetic drift wave turbulence, leaving the simultaneous kinetic treatment of
electron and warm ion dynamics to future work.

Tokamak H-mode edge turbulence can be characterized by two very important
properties. First, the electrons are only weakly collisional, i.e. the electron
thermal transit frequency v; = v;./qR exceeds the electron collision frequency v,

Vt > Ve,

such that Landau damping effects in the parallel electron dynamics need to be
retained. Second, the turbulent fluctuations are electromagnetic, i.e. the plasma
beta B, = 4np./B? is greater than the electron to ion mass ratio p. = m./M;,

Be > Ke-

Therefore the parallel component Ay of the vector potential has to be kept along
with the scalar potential ¢, and the drift waves become drift Alfvén waves.

We have carried out numerical simulations of drift wave turbulence in this
weakly collisional, electromagnetic regime using drift-kinetic electrons and cold
ions in three-dimensional sheared slab geometry. The model equations are

dfe ek 8f __ ve 2 afe
dt +v" V"fe me av" (v/v )3 ac(l C) = C[fcl (1)

for the electrons where C[f.] is a Lorentz collision operator and { = v /v,

du
nM;d—t" = neBy + nMip Viuy — / meu Clfe] v 2)
for momentum-conserving parallel ion dynamics, and
e
enp, Zt'vz (Teo) = V" (enu" - / e‘U”fe dsv) (3)

describing quasineutrality which is maintained by the ion polarization current,
so that V - J = 0 for the total current. This condition determines the time
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dependence of ¢ and hence the ExB drift velocity vg. The advective derivative

is given by
d 0

dt ot
and magnetic shear modifies the equations through the perpendicular Laplacian

a . 8\ (8\
vi-(Z+ig) + (2)

and the parallel boundary condition

+veg-Vy,

S(z,y, 2z +21) = S(z,y — 225, 2)

for any scalar quantity S where we have normalized the parallel coordinate z to
qR. The perpendicular boundary conditions are taken to be periodic.

Under drift ordering, we split the distribution function f, into a background
Maxwellian and a fluctuating part,

fe(2,4,2:(,v3t) = fm(zi0) + f(z, 9,2, v;8).
For B <« 1, the electromagnetic field fluctuations are given by
ﬁ_]_ = V./‘i"Xbo, E” =0

where by is the unit vector in the direction of the unperturbed magnetic field,
and

. - . - 10A
E; =-V 4, E=-vVg--=
L 19, B 9=~
supplemented by the parallel component of Ampére’s law,
~ c -
Iy =—1-Vidy.
The parallel derivatives are taken along the perturbed field lines,
0 B,
V= e + Fo -V,

retaining the effects of magnetic flutter.
The most important dimensionless parameters controlling the kinetic Alfvén
wave speeds are

R 3 2 - g 2
b= (37) = (3h)  ma h-w () = ()"

Other parameters are

Ve L,
v =

—Cs/LJ_, Tk:E:)

P

>
Il
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The gyro-Bohm normalized transport coefficients D and x are functions of these
dimensionless parameters, e.g. D = D(ﬁ s £y Uy Tey §).

The equations (1-3) are solved numerically using a Vlasov method, i.e. rep-
resenting all dynamic variables by their values on a grid in (phase) space and
replacing the differential operators by finite-difference approximations. Due to
the five-dimensional distribution function the code needs much memory and CPU
time. Therefore it has been parallelized and runs on a massively parallel distrib-
uted memory machine, a Cray T3E.

The resulting turbulence is driven by a collisionless version of the well-known
resistive nonlinear instability [1, 2] with ExB drift induced energy transfer in
space. Whereas linear electron Landau damping provides a free-energy sink for
the turbulent system (playing the same role as collisionality in resistive drift wave
models), nonlinear electron Landau damping - associated with parallel accelera-
tion through the velocity space nonlinearity E“ 0, f leads to parallel trapping
of electrons in wells of the electrostatic potential. Slmulatlon results in the elec-
trostatic limit (3 — 0) indicate that the transport level is reduced s1gmﬁca.ntly
for low shear (5 < 1), but for moderate or high shear (3 > 1) the suppression is
only about 10% or less, i.e. of the order of the statistical uncertainties observed
in the simulations [3]. Thus in a tokamak edge (r/a > 0.8), where generally
3 > 1, nonlinear electron Landau damping does not seriously affect collisionless
drift wave turbulence.

In the electromagnetic regime, one of the most interesting questions is the
scaling of particle and heat transport with 3. If one chooses £ =10 (which is a
typical tokamak edge value) and holds it fixed, one sees a decrease in transport
with rising 3 in the collisionless regime but the opposite trend in the collisional
regime. The latter finding is in agreement with results from an electromagnetic
Landau-fluid model [4]. As long as the magnetic flutter terms in the parallel
derivatives are switched off, both models yield 4 rise in transport with ﬁ in all
collisionality regimes. In this case, the magnetic induction term in E" is the only
electromagnetic effect present. Thus the magnetic flutter terms in the parallel
derivatives are crucial for computations of drift Alfvén turbulence, as they stabi-
lize the system and reduce the turbulent transport. In the collisionless limit they
can even override the destabilizing power of the magnetic induction. Whereas
magnetic flutter doesn’t contribute much to the cross-field transport directly, it
can still change the dynamic equilibrium of the turbulence and thus have an im-
pact on the observed ExB transport level. The fluid model has shown that in the
collisional regime the strong # dependence of the drift Alfvén turbulence carries
over to a system with warm ions and thus ITG modes [5]. Classical ITG modes
alone have only a relatively weak 8 dependence through the magnetic equilibrium
configuration. If the same is true in the weakly collisional case, there might be a
possible connection between the £ scaling of drift Alfvén turbulence and the L-H
transition which is surprisingly well described by the relation 8 = p. in several
machines [6].



As mentioned earlier, the tokamak H-mode edge is weakly collisional so that
Landau damping effects need to be retained. Besides the kinetic approach out-
lined in this paper, one can also try to conmstruct Landau fluid models which
extend the usual fluid models into the collisionless regime and allow for a descrip-
tion of the plasma which is much less costly both analytically and numerically.
Whereas there has been some success in recent years concerning electrostatic sys-
tems, the construction of electromagnetic Landau fluid models for tokamak edge
turbulence is a more difficult task. Unfortunately, magnetic flutter is in the way
of dealing with kj dependent dissipative terms like in the approaches of Hammett
and Perkins [7] or Chang and Callen [8]. Before making a Fourier transform to ky
space one would have to follow all quantities along the perturbed field lines from
one end of the flux tube to the other. As this process seems very hard to imple-
ment, alternative types of Landau fluid models are called for which circumvent
this problem. They are a necessary step on the way towards more comprehensive
tokamak edge transport models.
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MHD STABILITY OF THE MHH2 STELLARATOR

P.R. Garabedian
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The NSTAB code provides a computer implementation of the variational principle
of magnetohydrodynamics. Excellent resolution is obtained by combining a spectral
representation in the toroidal and poloidal angles with a low order, but exceptionally
accurate, finite difference scheme in the radial direction. Conservation form of the
magnetostatics equations is used to capture islands and current sheets effectively on

crude grids. This method enables one to discuss global stability by analyzing bifur-
cated solutions of the equilibrium problem. We apply it to investigate the physics of

the MHH? stellarator, whose magnetic structure has a remarkable property of quasi-
axial symmetry.

In our formulation of the problem the toroidal equilibria calculated by the varia-
tional principle lend themselves in a natural way to the representation

B = VsxV8 = Vé+ (Vs

of the magnetic field in terms of Clebsch potentials. It is convenient to choose the
toroidal flux s as a radial coordinate and to renormalize § and ¢ so they become
poloidal and toroidal angles on each flux surface s =const. In this invariant coordinate
system we can expand the magnetic field strength in a Fourier series

7;5 =Y By cos(ml — [n — em]4) ,

where ¢ is the rotational transform. The coefficients Bpn, which are functions of s
alone, comprise the magnetic spectrum of the equilibrium [ ]. The axial symmetry
property of the MHH2 stellarator simply states that the terms with n # 0 are relatively
small. More specifically, in practical cases they contribute little more than 1% to the
total field strength, which suffices to guarantee confinement times comparable to those

in standard tokamaks.
Formal integration yields the Fourier expansion

I B _ 5 mBun e
= B2 = p Zn_bmcos(mH [n —um]é) ,

provided that the relevant differentiations can be performed. The small denominators
that appear on the right exhibit dramatically the resonances that occur at rational
surfaces where ¢ = n/m. The resulting failure of convergence of the series is important
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in the KAM theory, which shows that smooth solutions of the equilibrium problem
cannot exist in three dimensions because the coefficients B, do not in general vanish.

The success of stellarator experiments makes it imperative to to find a formulation
of the toroidal equilibrium problem in three dimensions that overcomes the difficulty
about nonexistence of continuously differentiable solutions. The answer furnished by
the NSTAB code is to calculate weak solutions determined by equations in a conser-
vation form that is associated with the variational principle of magnetohydrodynamics
and requires less differentiation. Because the dependence of the magnetic field on the
poloidal and toroidal angles is relatively smooth, good resolution in those variables
can be obtained by the spectral method. However, in the radial coordinate s we use a
special finite difference scheme that captures islands accurately on grids with a mesh

size comparable to the island width. Detailed calculations have demonstrated that
this mathematical model simulates the physics of the plasma remarkably well.

Even for tokamaks with two-dimensional solutions we have been able to find a
variety of bifurcated equilibria that have islands breaking the axial symmetry. An
example is displayed in Fig. 1 for a spherical tokamak of aspect ratio A = 1.8
with rotational transform in the interval 1.1 > ¢ > 0.2. To draw correct physical
conclusions it is necessary to allow for this kind of complication in the structure of
the magnetic surfaces.

The NSTAB code solves the magnetostatic equations numerically by means of an
accelerated method of steepest descent. In significantly unstable cases the potential
energy has access to a lower level and a second bifurcated solution can be constructed.
Calculation of the bifurcated equilibrium is facilitated by introducing a perturbation
in the equations that is associated with some mode deemed to be dangerous. A valid
measure of instability is convergence to a bifurcated solution different from the original
equilibrium after the perturbation has been removed. That is a criterion relatively
free of details about the specific formulation of the variational principle that is used.

Our most successful analysis of stability for the MHH2 configuration has resulted
from performing perturbations that break the stellarator symmetry of the equilibrium
over a single period characterized by the appearance of exclusively cosine terms in the
Fourier series for 1/B%. A bifurcated solution found this way is displayed in Fig. 2 for
a mode triggered by trigonometric functions with m = 6, n = 2. The instability has
been induced by adding bootstrap current so that the rotational transform ¢ over one
field period falls from 0.32 at the magnetic axis down to 0.26 at the edge of the plasma.
Observe that the asymmetric ripple of the bifurcated flux surfaces is concentrated in a
region of bad curvature and has a ballooning structure that follows the magnetic lines.

Since the variational principle of magnetohydrodynamics furnishes an accepted
mathematical model of stability in plasma physics, the key issue in our approach be-
comes the numerical accuracy of the NSTAB code. Extensive comparisons with two-
dimensional theory and with laboratory measurements indicate that NSTAB compu-
tations of the kind we have described do have the necessary resolution, and the results
seem to provide a realistic simulation of the most essential phenomena. More specif-



Poincaré sections of the magnetic surfaces over one field period
of a bifurcated MHH2 equilibrium with bootstrap current at an
average (3 of 5.5 percent. The solution exhibits ripple without
the stellarator symmetry of the plasma boundary. This estab-
lishes instability of a ballooning mode localized in the region of
bad curvature, but extending globally along the radius.
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Poincaré sections over one field period of an optimized MHH2
equilibrium at an average B of 2.0 percent. The magnetic sur-
faces of the solution have no ripple after perturbations have de-
cayed, which establishes nonlinear stability in this case.
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ically, it has been found that recent estimates of 8 limits for the Compact Helical
System (CHS) experiment in Japan agree quite well with our prediction of nonlinear
stability for modes of moderately high order.

Not all of the methods that have been proposed to solve the three-dimensional
equilibrium problem are equally successful. In the PIES code the interface between
a region of nested surfaces and an island region of constant pressure ought to be a
flux surface, but the surface current there due to discontinuity of the magnetic field at
any sharp boundary is neglected. Many of the linearized stability calculations build
on runs of the VMEC code that are not fully converged. The VMEC method is
closely related to ours, but a compatibility condition associated with nonuniqueness
of the Clebsch representations of B is treated in a more complicated fashion that
makes it unclear whether the discrete system of equations in the code actually has an
exact solution. Also, a question of reliability arises about the evaluation of derivatives
occurring in the linearized problem whose existence is placed in doubt by the KAM
theorem.

The Mercier local stabiity criterion can be written in the form

Q= Cu” + Cp'V" + Cop + Cap™[( f AF)? — / dF / XdF] > 0,

where the coefficients Ci and the measure dF have been defined elsewhere, and — V" is
the magnetic well. Because of Schwarz’s inequality the contribution in square brackets
is always negative. The divergence of the Fourier series for the parallel current

in fully three-dimensional equilibria therefore signifies that the criterion will predict
instability if too many terms are included in the calculation. However, the series has
been truncated in the NSTAB code to arrive at a more practical version that turns
out to be well correlated for stellarators with our nonlinear analysis. In this context
a physically more realistic criterion for stability seems to be Q > — .01.

The ballooning mode algorithms that have been presented in the literature involve
a system of ordinary differential equations obtained from an asymptotic expansion
of perturbations in the neighborhood of some magnetic line. The Mercier criterion
emerges as a limiting case of the ballooning theory, so the latter may also predict
erroneous instability for stellarators if it is carried to an extreme. Of more concern,
however, are computations restricted to a shorter arc of the magnetic line. The answer
depends on the length of the arc, so results can become biased to reach a preconceived
conclusion. Moreover, the ordinary differential equations for ballooning modes have
features in common with linearized stability theory, which means that derivatives
have to be computed that may not exist. In our work we bypass these difficulties
by appealing in the last analysis to the nonlinear stability test based on an NSTAB
computation of bifurcated solutions, and we only rely on our truncated version of the
Mercier criterion for quick parameter searches. On the whole the Mercier results seem
to fit stellarator data well, while the ballooning theory is preferred for tokamaks.
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The tearing mode [1] is an important resistive magnetohydrodynamics (MHD) mode. It
perturbs the initial equilibrium magnetic flux surfaces through magnetic field line reconnec-

tion to form new flux surfaces with magnetic islands. In the study of the tearing mode,

usually the initial equilibria are one dimensional with two ignorable coordinates and the
perturbed equilibria are two dimensional with one ignorable coordinate. Therefore, mag-
netic flux surfaces exist for both the initial and the perturbed equilibria. The tearing mode
can be linearly unstable and its growth saturates at a finite amplitude [2]. The neoclassical
tearing mode theory [3] shows that the mode can be nonlinearly driven by the bootstrap
current even when it is linearly stable to the classical tearing mode. It is important to study
the nonlinear behavior of the tearing mode.

As an intrinsically nonlinear approach, the use of the “almost ideal MHD” constraint [4] is
suited to study the nonlinear properties of the tearing mode. In this paper, as a validation of
the method, we study two characteristics of the tearing mode using the “almost ideal i\/IHD”
constraint: 1) the linear stability condition for the initial one dimensional equilibrium; and
2) the final saturation level for the unstable case. In this work, we only consider the simplest
case where no gradient of pressure or current density exists at the mode resonant surface.

The tearing mode cannot exist under the ideal MHD constraint, which does not permit
changes in flux surface topology. On the other hand, it is well known that the ideal MHD
constraint is violated only in a narrow region near the mode resonant surface, where the
magnetic field is perpendicular to the wave vector of the mode. The “almost ideal MHD”
constraint-is a relaxation of the ideal MHD constraint to allow such local changes of the flux

surface topology [4].



In principle one can find many equilibria with islands which are associated with the
initial one dimensional equilibrium through the “almost ideal MHD” constraint. In general
these island equilibria have a singular current at the X-point of the islands. Depending on
the sign of this singular current, the equilibrium evolves, on the tearing mode time scale,
in the direction of either increasing or decreasing the island width. We are interested in an
equilibrium where the singular current is zero and therefore is a final stationary state. If such
a final equilibrium is found to include an island, then the initial equilibrium is presumed to
be tearing-mode unstable and the island width of the final state is the saturation width. If
no possible final state with an island is found, then the initial equilibrium is tearing-mode
stable. Because we do not use any small amplitude expansion, this approach is intrinsically
nonlinear.

We now use an example to illustrate the application of the “almost ideal MHD” constraint
to the problem of tearing mode stability and saturation. We consider a simple case where
there is no pressure gradient, Vp = 0. Then, the force-balance equation for the equilibrium is
just J x B = 0. We use Cartesian coordinates where 2 is an ignorable coordinate (0/8z = 0)

for both the initial and final equilibrium. The initial equilibrium is also independent of y.

The magnetic field B is expressed through functions B,(z, y) and ¥(z,y) as
B = B,z+ VY x &.
Then, the force-balance equation becomes

\ dB, _
Vi+ B =0 (1)

with B, = B,(¢). Equation (1) determines both the initial and final equilibrium, once
B.(¢) and the boundary conditions are given.
The ideal MHD constraint for this Vp = 0 case can be represented by requiring that the

B; flux enclosed by a flux surface 1 = 4,

Sr) = [ B.S[w(z,v) — ildzdy,



1 >0
Slu] =
0 u<0,

be a conserved function. For simplicity, we consider the limit where B, — oo, B, — 0 and
B, B, remains finite. Then, the conservation of ¢(?) is equivalent to the incompressibility

of the plasma. That is, the area enclosed by a flux surface remains constant; i.e.,

A() = [ Slw(z,y) — dildady

is a conserved function.
To relax this constraint to the “almost ideal MHD” constraint, we only require a finite

number of “moments” of A(¢) to be conserved. That is, the set of integrals,

gn = [Ga(¥)dd, n=1,2,...,N,

where G, is a set of base functions, are conserved. The base functions G, should be suf-
ficiently diverse in 1-space. The number of base functions is finite to allow magnetic field
line reconnection. When the number of base functions approaches infinity, the “almost ideal
MHD” constraint approaches the ideal MHD constraint. So, formally, the “almost ideal

MHD” constraint can be written as

Gnf = Onis Tl=1,2,...,N (2)

where g,y and g,; are the integrals of the nth base function over the final and initial state,
respectively. The set gy; can be calculated from the given initial equilibrium and is the only
information needed from it. Our goal is to find a final state 9(z,y) that satisfies both (1)
and (2), by choosing the right form of B,B..

Finding the exact solution of Eqs. (1) and (2) is difficult. Therefore, a numerical algo-
rithm is used to find an approximate solution. The function B,B!, is parameterized by a

set of parameters p,, m =1,2,..., M. The aim is to adjust pp’s to minimize the quantit
q y

Q=1 (9ns — gmi)*



Obviously, the initial island-free equilibrium itself is always a possible final state. A
successful algorithm must find a final state other than the initial one if the initial equilibrium
is unstable to the tearing mode. It can be proved that the Jacobi algorithm used to solve
Eq. (1) converges to the initial state only if the A’, the tearing mode stability parameter
[1], of the initial state is negative. So if the initial equilibrium is tearing-mode unstable
(A’ > 0), the algorithm moves the solution away from it towards a different equilibrium.

We will show that the stability criterion is the same as the linear “A’ theory” [1] and
give the saturation width for an unstable initial equilibrium. The saturation level is found
to be smaller than that estimated from A’ (Wsat) =0 [2].
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LINEAR AND NONLINEAR ASPECTS OF MHD USING A
TWO-FLUID, GLOBAL ELECTROMAGNETIC CODE- CUTIE

A. Thyagaraja
UKAEA, Fusion, Culham Science Centre, Abingdon, OX14 3DB, UK.
(UKAEA /Euratom Fusion Association)

1. INTRODUCTION AND SUMMARY

The CUTIE turbulence simulation code developed at Culham is a global code based
on an electromagnetic two-fluid plasma model. It has been used to study nonlinear
saturation of fast-particle driven Alfvén eigenmodes by the mode coupling mechanism
and shows that typical saturation amplitudes due to ‘nonlinear radiation damping’ are
comparable with those due to well-known velocity-space mechanisms. Other studies
involving global (ie low.m, n tearing or ballooning type) modes show that large-scale
coherent modes can exist in a saturated state. Although developed primarily to study
turbulent transport processes on a ‘mesoscale’, the code offers interesting numerical in-
sights into the nature of saturation mechanisms. Recent linear and nonlinear analytic
studies which may throw some light on nonlinear saturation and global mode structure
- will also be briefly described. Critical issues arising in global computational studies for
the ‘arithmetical tokamak physicist’ will be discussed with relevant examples.

2. THEORETICAL MODEL
The linear and nonlinear theory of TAE modes [1, 2, 3] has been studied extensively

in the literature using the ideal MHD model for the evolution of the electromagnetic
potentials as well as kinetic formulations (eg. the drift or gyrokinetic equation) to

obtain the alpha particle kinetic reponse. An electromagnetic turbulence code which
" was previously developed at Culham[4], has been adapted to study the problem of
the nonlinear evolution of TAE’s. In this paper, results of this work are briefly sum-
marized. The two-fluid model is used with a kinetic linear response for the alphas
but including both linear and nonlinear background plasma effects. This is similar in
spirit to the work of Vlad et al[7] in that we explore the consequences of the nonlinear
mode coupling as a possible saturation mechanism. In a recent analytical study based
on a compressible model, we showed[8] that, in principle, nonlinear coupling can be
effective in damping TAE modes if the amplitude of the drive is large enough, and
can be as significant as velocity-space effects previously discussed in the literature[9).
Here we show the effect of damped shear Alfvén waves coupled nonlinearly to the TAE
in an tncompressible model. For definiteness, the alpha-drive is kept fixed to distin-
guish the present mechanism from the usual one where the mode growth leads to alpha
re-distribution resulting in saturation(1, 9].

Although the CUTIE code solves the reduced two-fluid system[4, 5], in the present
work TAE’s are described in the MHD framework[6]. The diamagnetic terms of the
alphas and the curvature terms are of course retained, as are the kink and line-bending
terms of reduced MHD. The resulting equations are considerably simpler, although
still strongly nonlinear and involve both dissipation and toroidal coupling. Even with
these simplifications, the model contains visco-resistive tearing and ballooning modes
and possesses, in suitable limits, all the generic properties of shear Alfvén waves in a



tokamak. ’

The typical forms of the vorticity and Ohm’s law equations are:

66:,,,,, ] ) _ z.VA'lpm,n d, 1 d(Tzk") 2 s
B +ikgVaVitvma = j -~ dr (7‘ ar )+ PmVL¢m,n +bma (1)
_3%;. + ik"VAqb;n’n = Z?nvi"ﬁm,n + /\m,n (2)

In the above equations we use the usual definitions of vorticity etc; appropriate non-
dimensionalization is implied. We represent the drive due to alpha particles by a
term ori the RHS of the vorticity equation of the form[10] T'or, V3 6}, ., Where, Tom =

%g(gﬁm“l)(ﬂn+l+ﬁn—1),Cmﬂ;1 = w/Va | kjmz1 |, Rma = 72 exp(—C2 13 )oma1 (Chan +
(2., +1/2),V2 = 2T,/m,. The nonlinear, curvature and dissipation terms are

in the Kmp,Amn. A simple local dispersion relation gives the growth rate[l, 10],
= —(Ba/4k} R?) (1 — %2)(Rm11 + Rip—1) Since the R’s are positive, instability occurs

for w,q > wy.

A novel solution scheme has been developed wherein the equations are split into
" mean(je. flux-surface averaged) and fluctuating components interacting nonlinearly
with each other. The linear terms describing shear Alfvén waves, tearing and bal-
looning modes are written in a 3 x 3 matrix form for each m,n Fourier component
of 6¢, 01, ©. Nonlinear sources involving Jacobeans are finite-differenced using a con-
servative Arakawa scheme and evaluated in position-space and then transformed into
Fourier space. The resulting implicit, unconditionally stable, matrix tridiagonal system
is inverted by a Gaussian direct solver with provision for iterative improvement at a
time-step. Curvature and toroidal effects are included in the fluctuation dynamics. A
typical radial mesh size is Ar ~ a/200 (ie. 0.5p;); up to 16 poloidal and 4 toroidal
modes are employed. Time-steps resolve shear Alfvén frequencies (At ~ 1.25x10~2ps).

3. TAE NONLINEAR SATURATION RESULTS

Linear code results support the simple analytic theory and also lead to quantitative esti-
mates for the growth rate and linear eigenfunctions in agreement with the literature[1].
Typically, for T; ~ 10keV, V4 ~ 3000km/s, R = 3m, B ~ 2T, T, ~ 1MeV, and alpha
density scale-length, L,, ~ a/2, the instability condition is readily satisfied. For ex-
perimental 8, ~ 0.1% we expect y/wp ~ 10~3; in actual fact, we obtain a value around
3.5x10~2 for the n = 1,m = —1, —2 mode, corresponding to an e-folding time of about
100pus. It is interesting to note that in the strongest drive region there is evidence for
highly oscillatory radial modes associated with vanishing parallel wave number. These
appear to be closely related to those studied by Tsai and Chen[2]. We have contin-
ued the linear solution with the full nonlinear code using -8 < m < 8,-2<n < 2,
At = 12.5 nanosecs and Ar = a/200. As in the linear case, 8, = 0.003. The nonlinear
terms do not affect the solution until §B/B ~ 7.5 x 107 at around 2.5 ms. The mode
appears saturated at 3 ms with an amplitude level similar to observations in TFTR[3].
Figures 1,2 show the nonlinear evolution of the RMS vorticity and current density in
the final stages of the run. The electrostatic potential, e¢/T ~ 10~3 at this time. The
calculation uses a ‘sub-grid diffusivity’ dependent on the calculated turbulence level[4].
This is about 1.4% of Bohm diffusivity, showing that saturation is due to nonlinear



mode coupling of the driven modes with the stable ones in the system.

4. DISCUSSION AND CONCLUSIONS

We have presented results on the nonlinear saturation of driven TAE modes via the
mode coupling mechanism, keeping the linear alpha drive simple and fixed. The CUTIE
code simulations agree with linear theory at low amplitude and with the results of Vlad
et al[7] in the nonlinear phase, suggesting that this mechanism for mode saturation via
position-space nonlinear mode coupling to stable branches (essentially a form of nonlin-
ear radiation damping) is viable in existing devices such as JET. Saturation amplitudes
are in the same range as those observed under similar experimental conditions [3]. It
should therefore be considered in addition to the usual quasi-linear and velocity-space
saturation mechanisms.

Recently[11] we have found that the continuous spectrum of ideal MHD must include
the ‘magnetosonic’ branches which are stable but could profoundly modify both two-
fluid nonlinear behaviour due to two close sound resonances and a fast branch which
can have a global eigenfunction even in a cylinder. If a very small dissipation or
electron inertia is present, it can be shown by elementary considerations of hyperbolic
(ie advective systems with real characteristics) systems that the nonlinear excitation
of continua implies a rapid ‘cascade’ to high k¥ and consequent effective damping at
a rate, 7,1 o (v)/3(w})*/?, where ws ~ Vaipven/a and v is the (small) ‘background’
diffusivity. This damping rate is of course, far higher than that usually implied by the
small diffusivity, and could play a vital role in saturating plasma turbulence. CUTIE
has been used as a turbulent transport code and shows that finite 8 effects can be
both stabilizing (via electromagnetic processes such as the aforementioned continua)
and destabilizing (through the usual curvature/ballooning ‘drive’).

Some of the main problems facing the ‘arithmetical tokamak physicist’ in developing
and using models such as CUTIE are listed: 1. Resolution of scales somewhat smaller
than ¢/w,.,p; at reasonable computing cost. 2. Time-resolution: VajpenAt ~ Ar.
3. ‘Knudsen’ corrections or correct ‘gyrofluid’ terms with practical forms. 4. Simul-
taneous, global equilibrium evolution and determination of ‘quasi-linear’ saturation
5. Physically motivated ‘sub-grid turbulence’ model, or equivalently, a summability
method for the calculated Fourier series to avoid spurious Gibbs phenomena. 6. Need
calculations valid on macroscopic time-scales (ie how is the ‘chaos’ to be averaged?). 7.
Are the mesoscale coherent structures seen in the simulations ‘real’ or artefacts?

Results obtained thus far are encouraging, but many more careful studies and bench-
marking in the fully global, nonlinear, EMHD regime between codes and comparisons
of simulations with precision experiments are the way to further progress.
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Adaptive Mesh Refinement for Current Sheets
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I. Introduction

The dynamics of current sheet formation and magnetic reconnection are studied in the framework
of incompressible magnetohydrodynamics. Using Elséasser variables z¥ = u + B, the MHD
equations take the symmetric form

Oz + 27 - Vet = p, AzF + p_AzTF—Vp, V.25 =0

where p+ = (v £ 7)/2 and v is the viscosity, 7 the resistivity and p the sum of ordinary and
magnetic pressure.

In spite of their unphysical nature the singular structures of the inviscid, ideal equations, v = =
0, are not only of mathematical interest. They provide an effective mechanism for transport of
energy to small scales and as they determine the behavior of higher order structure functions they
play an important role in current attempts towards understanding fully developed turbulence,
e.g. [5]. Last but not least, for us the singular structures serve to put the adaptive numerics to
a stringent test for in the dynamics of the non-dissipative equations lacking spatial resolution is

easily detected.

II. Numerical method
There are a number of codes using adaptive unstructured mesh methods for magnetohydrody-

namic flows but only very few based on structured meshes.

Our adaptive mesh scheme for incompressible fluid and plasma flows consists of two parts which
are largely independent of each other, namely the integration scheme for each grid and the adap-
tive mesh refinement algorithm. Their independence makes it easy to exchange the equations
to be studied.

The single-grid integration scheme is a projection method with second order upwinding which
has already been used in former non-adaptive simulations [6]. The method is an adaption of
work for the Navier-Stokes equations [1] to magnetohydrodynamics. In the current context it
only is important to note that the upwind scheme is stable even in the presence of discontinuities
and locally introduces considerable numerical dissipation where underresolved steep gradients

occur.

Our strategy for adaptive mesh refinement was motivated by work on shock hydrodynamics [2].
Our algorithm [4] consists of two main parts of which one is the recursive integration of a given
hierarchy of grids and the other one is the regridding part which builds the grid hierarchy and
dynamically adjusts it to the requirements of the flow.

The integration of the grid hierarchy starts by advancing the coarsest level’s grid by a timestep
At. The single grid integration scheme calculates the new Elsdsser fields and the vorticities
wt = w =+ j with fluid vorticity w and current j. The potentials 9% are obtained by inversion



of Poisson’s equation Ay = w®. Now the next finer grids are integrated. Here, the spatial

discretization length and the time step are reduced by the refinement factor r, i.e. on these
grids 7 timesteps have to be performed before the coarser one will be advanced again. All
this is done recursively on the whole hierarchy down to the finest level. To be able to use the
standard integration scheme on each of the grids ghost cells are needed around the boundary.
The necessary data are either provided by neighboring grids of the same level or have to be
interpolated in space and time from the next coarser level. The vorticities being the highest
order derivatives are linearly interpolated and the stream functions are obtained as the solution
of Poisson’s equation. -

After a given number of timesteps it is checked whether the resolution is still sufficient on the
whole integrational domain. Reasonable choices for the refinement criterion are either the local
error based on the difference of the nonlinearity on a mesh with the actual and twice the dis-
cretization length or physically motivated criteria based on the absolute values of the vorticities
or the maximum’s norm of the gradient of the Elsisser fields. Independent of which criterion is
chosen it is essential to guarantee convergence by varying the threshold for marking points. All
marked points are appended to a list and in addition with each point some surrounding points
are included. The size of this neighborhood is proportional to the number of timesteps until the
next check for sufficient resolution will be done and the local velocity. The next step is the grid
generation in order to find a list of rectangles which cover the marked points. It starts on one
rectangle covering all and then recursively performs cuts. Evaluation of a function measuring
the costs for integrating on the actual list of rectangles leads to some optimal covering. The
rectangles are then filled with data either from already existing grids of the same or by inter-
polation from the next coarser level. Then it is checked whether this new level’s resolution is
sufficient. All this is done recursively.

Having in mind the recursive procedures and the various lists to be managed, it is obvious that
using an object oriented language as C++ is the most appropriate choice. Nevertheless for the
solution of Poisson’s equation standard Fortran code is used for its speed.

ITI. Simulations

We studied the dynamics of the ideal MHD equations starting with some generic cases as a
periodic box with Orszag-Tang or Biskamp—Welter initial conditions, the latter being made less
symmetric by introducing arbitrary phase shifts [3]. In either case current sheets are forming
and after a transitional phase the absolute maximum of current density is growing exponentially
and the diameter of the sheet decreases exponentially in time. Figure 1 shows vorticity and
current density at the end of the calculation in the Orszag—Tang case.

The simulations start on an initial grid with 2562 mesh points and whenever the resolution be-
comes insufficient refinements are done. The resulting hierarchy of finer and finer grids dynam-
ically adjusts to the flow and ensures sufficient resolution over the whole integrational domain.
Whereas former simulations of the ideal equations [9] with classical integration schemes soon ran
out of resolution, we can avoid any dissipation. Of course, as the current density continues to
increase the simulations have to end at some point either due to the limited amount of memory
available on the machine or because of becoming to expensive in computational time. In the
present simulations typically up to 7 refinements by a factor two could be carried out leading to
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Figure 1: Contour plots of vorticity with grid hierarchy (left) and current density (right).

a final resolution that compares to 327682 grid points with non-adaptive treatment.

The ratio of the number of grid points in the adaptive simulations to that in comparable non-
adaptive ones may serve as a measure of the efficiency of the code. In the case of ideal 2D MHD
it is typically about 2%. The efficiency of an adaptive treatment is obviously related to the
codimension of the structures to be resolved. In addition it increases with the number of refined
levels.

Recently, we studied the coalescence instability for a checkerboard-like pattern of magnetic
islands which is unstabie towards a small perturbation leading to the formation of current sheets
between two magnetic islands with the same sign. Note that for a symmetric initial perturbation
in the kinetic stream function the positions of current sheets are known in advance thus allowing
for simpler refinement methods to be successfully applied [8].

As in the previous examples the absolute value of current density is found to grow exponentially.
Whereas in the ideal case the length of the sheets remains small during the entire simulation
(with a final resolution corresponding to 327682 grid points on a non-adaptive mesh) they start
to broaden if a small resistivity is included leading to pentagon-like patterns.

In the absence of any viscosity higher and higher resolution is needed to resolve the vorticity
field which continues to grow exponentially. Therefore in the studies of reconnection we used
a fixed value for viscosity. Simulations of merging islands have been carried out for different
values of resistivity.

IV. Recent developments and outlook
The techniques used in two dimensions easily translate to higher dimensions. Therefore in the
implementation of the adaptive mesh refinement part the spatial dimension becomes merely a



parameter. A code for the integration of the incompressible three-dimensional Euler equations
was successfully applied in order to study singularity formation [7].

As already pointed out in the description of the numerical method the single-grid integration
scheme and the adaptive mesh refinement algorithm are largely independent of each other.
Thus implementing a three-dimensional MHD code was not a big effort. Studies of singularity
formation and work on reconnection phenomena in the full 3D case are currently done.

Future work on treating complicated shaped boundaries in Cartesian grid methods will open

an even wider range of applications. In addition it will enable us to investigate a lot of more
applied problems in fluid and plasma flows.
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