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Abstract

In this paper we evaluate the design of the hybrid EAs that are currently used to perform
flexible ligand binding in the Autodock docking software. Hybrid evolutionary algorithms (EAs)
incorporate specialized operators that exploit domain-specific features to accelerate an EA’s
search. We consider hybrid EAs that use an integrated local search operator to refine individuals
within each iteration of the search. We evaluate several factors that impact the efficacy of a
hybrid EA, and we propose new hybrid EAs that provide more robust convergence to low-energy
docking configurations than the methods currently available in Autodock.

Keywords: drug docking, ligand binding, hybrid evolutionary algorithms, global optimization,
local optimization.
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1 Introduction

Computational methods for molecular docking are valuable tools for structure-based drug discovery.
Methods for antomated docking fall into two' broad categories: matching methods and conforma-
tional search methods. Matching methods attempt to find a good docking based on the geometry
of the docking molecule and receptor site. The DOCK program [12] was one of the first matching
methods developed, and current versions of it are still used. Conformational search methods typ-
ically model the ligand in greater detail, and they often allow conformational flexibility in either
the ligand or receptor site, or both. These methods employ a simulation or optimization method to
search through the space of ligand-receptor configurations.

Autodock {7, 15] is an example of this approach to molecular docking. It uses a physically detailed
model that allows for a fixed receptor site and flexible ligand. Autodock employs a rapid grid-
based method for energy evaluation and precalculates ligand-proteih pairwise interaction energies
so that they may be used as a look-up table during the conformational search. Autodock has been
successfully applied to a variety of applications [6] using a simulated annealing search method.

More recently, evolutionary algorithms (EAs) have been incorporated into Autodock and applied
to standard test problems (17, 14]. EAs have become a popular choice for heuristic search in docking
applications [1, 24], and in our evaluation of EAs with Autodock they consistently perform better
than simulated annealing. The molecular docking problem solved by Autodock is a challenging global
optimization problem, and the EAs perform a better global search across the range of positional,
orientational and conformational parameters for flexible ligands. Two forms of EAs can currently
be used with Autodock: a genetic algorithm [5] and a hybrid EA that uses local search. The hybrid
EAs apply local search in each iteration to refine points. Rosin et al. [17] and Morris et al. [14] show
that this local refinement can significantly improve the performance of the EA.

In this paper we reconsider the design of these hybrid EAs. Specifically, we evaluate several
factors that may impact the efficacy of these methods. First, we describe a new local search method
that has more robust convergence properties than the method previously used with Autodock. Next
we consider the length of local search, which impacts the balance between global sampling and
local refinement in a hybrid EA. Finally, we consider the initial step length used by the local search
method, which can be dynamically initialized using population statistics from the EA. We empirically
evaluate the effects of these factors on the performance of hybrid EAs using standard test problems.
Our results incdicate that hybrid EAs using the more robust local search are usually better, and
that running the local search method longer improved the search. Initializing the local search step
length did not appear to be an important factor, although using this approach can avoid certain
worst-case scenarios where the fixed initial step length is poorly initialized.

2 Autodock

Autodock docks small flexible substrate molecules to large rigid macromolecules like proteins [13).
A candidate docking gives specific positions and orientations for the protein and a small molecule.
Autodock uses an approximate physical model to compute the energy of a candidate docking, and
uses a heuristic search to minimize this energy. This method makes most sense when there is a
single docked configuration that is at a much lower energy than other configurations, so that we
expect this low-energy configuration to be the consistent result of physical interaction between the
two molecules. If the prediction of this configuration is to be accurate, the energy function must
have its global minimum at or near this physical configuration.

Heuristic search operates on the configuration of the small molecule, assuming (without loss of
generality) a fixed position for the protein. The small molecule can take any position around the
protein, and can have any orientation. Global orientation is expressed as a quaternion, which can
be thought of as a vector giving an axis of rotation, along with an angle of rotation about this axis.
The small molecule may also have several internal rotatable bonds so that its shape is somewhat




flexible. The representation of a candidate docking consists of 3 coordinates giving the position of
the small molecule, followed by the 4 components of the quaternion specifying the overall orientation
of the small molecule, followed by one angle for each of the rotatable bonds.

The docking potential used in Autodock 30isan empirical free energy potential. This energy
potential is composed of five terms (see Morris et al. [14] for further details). The first three are
pairwise interatomic potentials that account for short-range electrostatic repulsive forces and long-
range weak van der Waals attractive forces. The standard Lennard-Jones 12-6 potential is used for
the van der Waals forces, and a 12-10 potential is used for hydrogen bonds. The next term measures
the unfavorable entropy of a ligand binding due to the restriction of conformational degrees of
freedom, using a measure that is proportional to the number of sp® bonds in the ligand. The last
term uses a desolvation measure adapted from Stouten et al. citeStoFroNakSan93 which works well
with the precalculated grid formulation used by Autodock. '

To account for internal energy in a flexible small molecule with internal rotatable bonds, we
calculate the same energy contributions summed over all pairs of atoms within the small molecule.
This sum is added to the total energy evaluation. This penalizes conformations of the small molecule
that are energetically unfavorable independent of their interaction with the macromolecule.

To save time when computing energy of interaction with the macromolecule, 3-D potential grids
are computed for each atom type before optimization begins. Interaction energy is computed as
described above at each point in the grid. Then, when calculating total energy during optimization,
the energy contribution of an atom is obtained via trilinear interpolation of its position within the
erid specific to its atom type, based on the values at the nearest 8 points in the grid. Calculation of
the energy due to pairwise interactions within the small molecule does not make use of these grids.

Computation of the grids for energy evaluation requires knowledge of the (assumed fixed) 3-D
positions of each atom in the protein; these positions are usually obtained by X-ray crystallography.
We also require the structure of the small molecule, along with the locations of internal rotatable
bonds. Small molecules tend to be chemically simple, so that we can determine their structure
(at least up to the degrees of freedom represented by the rotatable bonds) from their chemical
composition alone. Partial charges are required to calculate electrostatic interaction potentials, but
these partial charges can be computed from the structure with molecular modelling software such as
MOPAC. So, it is possible to use Autodock to test many candidate small molecules against a single
target protein, after obtaining the structure of this protein experimentally. This makes Autodock
an important computational tool in the initial stages of drug design.

3 Optimization Methods

Docking is a difficult global optimization problem, and a variety of different optimization strategies
have been proposed to solve docking problems (e.g. see [24, 1]). Simulated annealing [11, 23] is
the first optimization method that was used to perform docking with Autodock [7, 15]. Simulated
annealing borrows from the natural metaphor of cooling metal in an attempt to globally minimize
functions. Simulated annealing operates much like a steepest descent algorithm, but where a steepest
descent algorithm rejects all inferior points, simulated annealing may accept an inferoir point with
probability p. This probability p is based on the inferiority of the alternate point and a temperature
parameter:
p= e’%

where AFE is the size of the energy gain, and & is the Boltzmann constant. A cooling schedule lowers
temperature during the course of optimization. Simulated annealing does a more global search
in early iterations, when high temperature allows transitions over energy barriers from one valley
to another. In later iterations, the temperature becomes low, which places more focus on a local
optimization within the current basin of attraction.
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Subsequently, genetic algorithms [5, 2] have been used by Hart {8], Rosin et al. {17} and Morris et
al. [14] to perform docking with Autodock. Genetic algorithms are evolutionary algorithms (EAs),
which perform a multi-point search based on the mechanisms of natural evolution. Specifically,
EAs utilize stochastic competition and multi-point recombination, which reflect the mechanisms of
natural selection and sexual recombination. Figure 1 provides a basic overview of the main steps of an
EA. In each iteration, an EA uses stochastic competition to select a subset of points from its current
population of points. This subset is used to generate new points using evolutionary operators like
recombination and mutation. Recombination generates a new point from two points, often forming
a point that represents a convex combination of these two points. Mutation generates a point by
varying a subset of the point’s parameters. The set of new points generated by the evolutionary
operators are typically used to form the population for the next iteration of EA. Although the
stochastic competition tends to focus an EA’s search, these methods often perform a robust global
search because they sample across multiple points in a search domain.

Uniformly generate B
Fort=1,2,...
Stochastic competition generates P, from P;_,
Apply recombination and mutation to points in P, to generate P/
Apply local search to points in P, to generate P,
Compose P, from P}’ and P,
EndFor

Figure 1: High-level description of the major steps in an EA. Local search is not used in
a canonical EA,| but it is used in a hybrid EA.

Hart [8], Rosin et al. [17] and Morris et al. {14] also consider hybrid EAs that use local search.
These EAs apply local search to a subset of the points generated by the evolutionary operators in
an EA in each iteration. The motivation for these hybrids is that these methods could decompose
the search by allowing the EA to globally sample across the range of possible docking configurations
while the local search method quickly minimizes points to find locally optimal configurations. Hart,
Kammeyer and Belew (8, 10] argue that these types of hybrid EAs are better global optimizers than
either EAs or local search separately, and Torn and Zilinskas [22] note that most successful global
optimization methods also apply the same principle of distinguishing the mechanisms for global and
local search.

Global-local search hybrids may be especially effective for docking. We believe that there are
multiple locations on the surface of the macromolecule where the small molecule could dock, and
multiple orientations of the small molecule that are energetically plausible. Local search can reveal
which of these locations and orientations is best by fitting the small molecule as closely as possible
to the macromolecule within a small local neighborhood of a coarse location and orientation. But
we do not expect smooth hills in energy from one location and orientation to a very different one,
so that global search is required to choose among these. A global-local search hybrid can effectively
sample distant locations and orientations with global search, and get accurate evaluations of each
using local search.

The particular hybrid EAs that we have applied to docking are Lamarckian hybrid EAs. In
Lamarckian hybrid EAs, the points used to start a local search are replaced by the final point
generated by the local search. This is in contrast to a Darwinian hybrid EA, which simply gives
the starting point the value of the final point (which generally increases the probability of selecting
the point in the subsequent stochastic competition). Although Darwinian hybrid EAs are more
biologically plausible, our previous work {10] leads us to use Lamarckian GA-LS hybrids here.

The method used to perform local search in these hybrid EAs is Algorithm 1 from Solis and




Wets {19]. The Solis-Wets method is a direct search method that performs a randomized local
minimization. Each step starts with a current point z. A deviate § is chosen from a normal
distribution whose standard deviation is given by a parameter A;. If either £ + § or £ — § is better,
a move is made to the better point and a “success” is recorded. Otherwise a “failure” is recorded.
After several successes in a row, A, is increased to move more quickly. After several failures in a
row, A, is decreased to focus the search. Additionally, a bias term is included to give the search
momentum in directions that yield success. This method is typically terminated if A, falls below a
given threshold Aj.

An important feature of this type of local search is that it doesn’t rely on gradient information.
This is particularly important for docking with Autodock because the docking potential is not
differentiable throughout the entire search domain. Autodock’s grid-based intermolecular energy
has a gradient that is undefined whenever an atom is on a grid boundary, and has discontinuities as

atoms move across grid boundaries. This would make gradient-based local search a poor choice for
Autodock.

4 Hybridization Issues

Although hybrid EAs using local search have been successfully applied to a range of applications,
basic principles have not been formulated to guide the development of effective hybrids. This is
particularly true for hybrid EAs applied to continuous search domains like the docking problem in
Autodock. In this section we discuss three hybridization issues that may affect the performance of
the hybrid EAs used in our docking experiments.

Local Search Robustness Since direct search methods do not explicitly employ derivative in-
formation, it is not possible for a direct search method to terminate with a guarantee that the final
point is near a stationary point (where the gradient is zero). However, a basic expectation of a
local search method for a hybrid EA is that it robustly converges to a stationary point. Solis and
Wets [19] note that their algorithm will converge to a global minimizer if the step scale parameter
is not adapted. However, in Algorithm A the step scale is adapted, and they argue that “a proof of
convergence is unlikely.”

A class of direct search methods that do have robust convergence properties are pattern search
methods. Pattern search methods have been analyzed by Torczon and Lewis [21, 13], and they
provide a general framework for describing a wide variety of direct search methods. In a general
sense, pattern search methods sample the objective function from a given pattern of points that
represent offsets from the current best point. If there is a better point in this pattern, then it
is accepted as the new iterate and the sampling is repeated about it. If not, then the scale of the
pattern is reduced (e.g. by halving it), and the function is again sampled about the best point. Lewis
and Torczon’s analysis provides a set of conditions which, if satisfied, guarantee a weak stationary
point convergence. For unconstrained pattern search methods, they show that

liminf | 7 £z}l =0,

where 7 f is the gradient of f.

A formal description of the pattern search algorithm used in our experiments is given in Figure 2.
The pattern used in this algorithm is a set of offsets that form a positive basis [13]. Specifically,
this method uses offsets generated by the n + 1 directions from the centroid of a regular simplex to
each corner of the simplex [20]. These offsets lie at the corners of a triangle in two dimensions, the
corners of a tetrahedron in three dimensions, and so on. Our implementation of pattern search uses
a shuffle method to randomly select the order in which these offsets are considered.




Given zg and A

Let {v1,...,Un+1} be the canonical minimal positive basis
Fori=1,...,n+1 o,

=1 ;
Fort=1,2,...

shuffle(r)

8y = {O}n
Fori=1,...,n+1
5=y,
If(f(Ig + ALS) < f(Ig))
8¢ = AgS
Break
EndIf
EndFor
Ti+1 =T+ 8¢
If (f(ze) == f(z¢ +351))
Ac-:-l = At/2
Else
At+l = 2At
EndIf
If (Ag_’-l < Alb)
Break
EndFor

Figure 2: Pseudo-code for the pattern search algorithm.

Local Search Length When local search is used in a hybrid EA, the local search is typically
truncated before the termination criteria stop the local search (e.g. when the step length becomes
too small). Thus the maximum length of local search is a parameter that can fundamentally impact
the dynamics of the hybrid EA. An EA hybrid with long local searches will execute fewer iterations
of the EA than an EA hybrid with short local searches (if both terminate after the same number
of function evaluations). Consequently, the length of local search affects the balance between the
amount of global sampling and local refinement performed by the hybrid EA.

In previous work, we have used both short and long local search lengths for docking in Autodock {17,
14]. We previously experimented with very short and very long local search lengths in Autodock,
and found them to yield similar performance [17]. However subsequent experiments with the new
energy potential in Autodock suggest that this may be an important factor, particularly if the local
search is only terminated when it exceeds the local search length.

Initial Search Scale A fundamental feature of optimization problems on continuous domains is
that the scale of changes in the objective function can vary dramatically in different regions of the
domain. Consequently, a basic requirement of an optimization method is that it dynamically adapt
the scale of its search in order to match the scale of changes in the objective function. This implies
that hybrid EAs using local search need to dynamically adapt the initial scale of the local search
method. If the initial scale of the local search is not adapted, then the scale of the entire hybrid
is limited by how quickly the local search method adapts its scale. This limits the utility of local
search, and in cases where the local search is truncated it can even prevent the local search method
from productively refining a point.

Thus hybrid EAs that use direct search methods for local search need to adapt the initial local




search scale to reflect the characteristics of the current search. To our knowledge, Miihlenbein,
Schomisch and Born [16] are the only authors to have reported an initialization strategy for hybrid
EAs using a direct search method. Their initialization strategy uses a statistic of the population
spread to initialize all local searches with the same value. The spread of the population reflects the
degree to which the EA’s search has focused on a particular region of the search domain. If we
assume that the local search should be as focused as the EA’s search, then this represents a natural
parameter for the initial local search step scale. Their method initializes Ag to

_ [T — Zm)
ﬁ ?

where z; is the point with the best fitness in the population and z,, is the point with the median
fitness.

Ay

5 Methods and Experiments
5.1 Search Algorithms

Our experiments compare the empirical performance of hybrid EAs on a set of standard docking
problems. The hybrid EAs that we evaluate are the hybrid GA using SW that is provided in
Autodock [14] and hybrid GAs using the Solis-Wets method (SW) or pattern search method (PS)
that are provided by the SGOPT optimization library [9], which was integrated into Autodock 3.0
for this study. In all cases, the experimental parameters for the hybrid GAs were the same as
those used by Morris et al. [14]. The GAs used a population of 50 points, applied a two-point
crossover with a probability of 80% and applied a Cauchy mutation operator with a probability of
2%. When the Cauchy mutation operator is applied to a dimension of a point, it adds a Cauchy
random variable with parameters @ = 0 and § = 1. The hybrid EAs provided by SGOPT scale
the mutation steps to 0.01 times the range of the dimension. Stochastic competition was performed
using proportional selection, where the baseline for computing the proportions was the worst point
in the last 10 iterations [14]. Elitism was also used to keep the best point found so far.

Local search was performed on randomly chosen points in each iteration with a probability of
6%. Using local search infrequently is motivated by our preliminary work with this application
where we varied the probability of local search [8]. The local search operator was either SW or PS.
The SW method used in Autodock implicitly scales the search in each dimension to a value that is
approximately 0.01 times the range of the dimension. The lower bound on 4, is effectively zero for
this method due to an incorrect implementation of SW in Autodock; SGOPT correctly implements
this lower bound. SW performs contraction after four consecutive failures and it performs expansion
after four consecutive successes. The SW and PS methods provided by SGOPT also scale the search
in each dimension. The initial search scale is 0.1 times the range of each dimension, and the SW
and PS methods were terminated when the search scale fell below 0.001.

In each experiment, 20 trials were done with different random seeds. The hybrid EAs were
terminated after 1.5 million function evaluations; this enables a comparison with previous work [17,
14]. Using a fixed number of function evaluations provides a reasonable basis of comparison for
this problem because the calculation of the docking potential is the most expensive step in this
optimization problem.

For notational convenience, we refer to the different hybrid EAs using the notation [ea]-{ls|. The
values for ea are AD, the GA provided by Autodock, GAQ, the GA provided by SGOPT with fixed
initial step length and GA1, the GA provided by SGOPT using the initialization of Miihlenbein et
al. {16]. The value of Is is SW300, SW3000, PS300 or PS3000, which refer to the choice of local
search method and the maximum length of local search.




5.2 Experiments

A test suite of six cases was used in all of the experiments. Each test case consists of a macromolecule
and a small substrate molecule. The salient features of the six test cases are summarized in Table 1.
The different test cases were selected to test various aspects of the energy function {13].

Ligand /Protein PDB Number of | Number of
Complex Shorthand | Torsions Dimensions
G-Trypsin/Benzamidine 3ptb 0 7
Cytochrome P-450cam/Camphor 2cpp 0 7
McPC-603/Phosphocholine 2mep 4 11
Streptavidin/Biotin Istp 5 12
HIV-1 protease/XK263 lhvr 10 17
Influenza Hemagglutinin/sialic acid 4hmg 11 18

Table 1: Summary of test cases.

The number of torsion angles is an important feature of these test cases because it determines
the dimensionality of the search space. The representation used in each experiment consisted of a
triple of Cartesian coordinates, a four dimensional quaternion, and the torsion angles. Thus, the
dimensionality of the search space is 7+(number of torsion angles). The range of the coordinates
defines a cube that is 23 angstroms long in each dimension. The quarternion parameters lie within
[-1,1]3 x [0, 27], and each torsion angle lies within [—=, 7|; the points in the initial population have
each parameter generated randomly in its range.

For each method on each test case, we consider the minimum energy produced by the search.
Because we have crystallographic structures of the true docked complex for each test case, we
also measure the absolute accuracy of the final docked configuration. This is done by taking the
square root of the average squared deviation of the atoms in the predicted configuration from the
crystallographic configuration.

6 Results

Figures 3, 4 and 5 show boxplots of the final docking energies for each of the optimization experiments
for each test case. Boxplots are a convenient method of summarizing data that provide a visual
indication of the spread and skewness of the data. The dark bar in the boxplots show range between
the first and third quartile; one quarter of the data is below the first quartile, and three quarters of
the data is below the third quartile. The white line inside the dark bar represents the median. The
whiskers at the top and bottom of each boxplot indicate the spread of the data up to 1.3 times the
range of the first and third quartile.

We applied the nonparametric Kruskal-Wallis test [4] to identify significant differences between
the hybrid EAs (at the 5% level). This test is appropriate because the data does not appear to be
normally distributed, and because we are making multiple pairwise comparisons among more than
2 samples. These statistics are discussed in the following sections, which evaluate the effects of the
hybridization issues that we discussed in Section 4.

6.1 Autodock vs SGOPT

We can make a direct comparison between the hybrid EAs using SW provided by Autodock and
SGOPT. Figure 6 shows boxplots for the hybrid EAs using SW for all six test cases. For each
test case, the trials for the hybrid EAs are ranked, and the boxplots show the distribution of ranks




GAO GA0D GA0D GA0 GA1 GA1 GA1 GA1
SwW SwW PS PS SW SW PS PS SW SW
300 3000 300 3000 300 3000 300 3000 300 3000

< .
[~ : —
T .
w H
Q :
= :
- H
. H
= :
o .
> :
c =4 )
w V-: At
o —
pd
f
H
7o) H
— H
g [}
(=) - . H
A R ;
i

AD AD GAD GA0O GA0 GA0 GA1 GA1 GAt GAl
SW sSw PsS PS SW sw PS PS SW  sw
300 3000 300 3000 300 3000 300 3000 300 3000

(b)

Figure 3: Final docking potentials for hybrid EAs: (a) lhvr and (b) Istp.
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Figure 4: Final docking potentials for hybrid EAs: (a) 2cpp and (b) 2mcp.
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Figure 5: Final docking potentials for hybrid EAs: (a) 3ptb and (b) 4hmg.
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Figure 6: Comparison of rankings for Autodock hybrid EAs and SGOPT hybrid EAs using SW.

within each test case. This data has two distinct trends. First, the hybrid EAs from SGOPT
find better solutions. Second, the hybrid EAs from Autodock find better solutions when the local
search is short, while the EAs from SGOPT find better solutions when the local search is long. Our
statistical analysis shows that the Autodock hybrid EAs are significantly different from almost all
of the SGOPT hybrid EAs.

We believe that these differences may be explained by two factors. First, the initial step scale
used by the Autodock hybrid EAs is smaller than the initial step scale of the SGOPT hybrid EAs.
Although a smaller initial step scale focuses the local search about the starting point, in early
iterations of the hybrid EA the local searches are not simply refining to a local minimum, but they
are also helping guide the EAs search (through the Lamarckian return of the final point into the
EA’s population).

A second factor concerns Autodock’s incorrect implementation of the lower bound on step scale.
When the local search converges about a local minima, it will waste time refining the minima beyond
the point where it is physically relevant. This effect will be particularly evident when the local search

length is long, which accounts for the worse performance for the Autodock hybrid EAs with long
local search.

6.2 SW vs PS

These experiments generally support the use of the more robust PS method over SW for local search.
Here, robustness takes into account both the ability to find the lowest energy conformations as well as
the consistency at which the hybrid EA can find low energy conformations. The statistical analysis
shows many significant differences between hybrid EAs using PS and SW local search, particularly
when long local searches were used.

Figure 7 summarizes the relative ranks of each hybrid EA with SW and PS local search, grouped
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Figure 7: Comparison of rankings for SGOPT hybrid EAs using SW and PS local search.

by the test case. The trend is particularly strong for lhvr, lstp and 3ptb. For 2cpp the EAs using
PS are consistently better than the EAs using SW, but the EAs using SW can find better solutions
often enough to balance the overall ranking. For thmg, the EAs using PS are better when long local
searches are used, but worse when short local searches are used, which again balances the ranking.
For 2mcp, the hybrid EAs using PS are generally worse than the EAs using SW. However, if the
termination threshold for PS is reduced to 0.0001 then the hybrids using PS are generally better,
which again provides evidence that longer local searches with PS are better.

6.3 Length of Local Search

In the significance test, the hybrid EAs using SW do not consistently exhibit significant differences.
However, the significance test shows a consistent significant difference between the hybrid EAs
using short PS and long PS for test cases lstp, lhvr and 4hmg. These are the most difficult
test problems, which suggests that hybrid EAs using long local searches will be most effective for
nontrivial problems.

6.4 Step Length Initialization

The experimental results indicate that adaptive methods for initializing the step length of local
search do not have a substantial impact on the performance of the hybrid EAs. In fact, there are
many cases where initializing the local search length leads to worse performance. The adaptive
hybrids have better performance with SW local search in several of the test cases, but in others
they have worse performance. The adaptive hybrids with PS are generally indistinguishable from
the nonadaptive hybrids. We also tried an alternative initialization strategy for local search, but it
had similar results.
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We investigated possible causes of this, and we discovered that the initialization methods often
generate initial step lengths that are larger than the fixed value used by the GAO hybrids. Also, we
noted that the initial step lengths do not seem to converge to zero as we had anticipated. Instead,
the variations in the population remain large énough to keep the adaptively determined initial step
lengths rather large. This suggests that the dynamics of the EA have a significant impact on the
utility of these adaptive mechanisms. For example, the linear rank selection used by Miihlenbein et
al. [16] may be an important feature of the GA for the success of the adaptive methods.

Finally, it is possible that we were “lucky” and selected a good default value for the initial step
lengths. In preliminary experiments, we confirmed that as the initial step lengths are raised the
performance of the hybrid EAs using the fixed initial step length degrades. This was particularly
true for the hybrid EAs using short LS, which is expected since they have fewer iterations to adapt
their search scale.

7 Conclusions

Our experimental results demonstrate that the new hybrid EAs we have defined can perform signif-
icantly better than the methods currently available in Autodock. In particular, the hybrids using
the PS method with long local search were significantly better than other hybrids in most cases.
The dynamic initialization of the local search step was not a signficant factor in our experiments.
However, it is clear that this is an important algorithmic factor that needs to be developed to make
hybrid EAs with direct search methods more robust.

Table 2 summarizes the performance of the GAG-PS3000 methods for the six test cases. In five
of the six test cases, the best value found by the hybrid EA is better then the best value found by all
of the methods reported by Morris et al. {14]. Furthermore, the mean rmsd of the solutions found
is lower for all test cases than the results in Morris et al. In all cases the hybrid EA found solutions
below or about 1 angstrom, which is very reasonable. This confirms that these hybrid EAs not only
perform a more effective search, but they are also finding better solutions to the docking problem.

Energy RMSD

Minimum Mean Minimum Mean
lhvr 2142 -21.40 0.65 0.70
Istp -10.17 -10.15 0.49 0.51
2cpp -7.36 -7.36 0.90 091
2mcep -3.35  -5.32 0.89 0.98
3ptb -8.19 -8.16 0.29 0.29
4hmg -7.91  -7.85 0.97 1.03

Table 2: Performance statistics for GAO0-PS3000: final energy and rmsd from known crystal struc-
ture.

Qur experiments in this paper have focused on the factors that affect the utility of local search
in a hybrid EA. Consequently, we have used the same problem formulation and type of GA that
we have applied in previous studies with Autodock [17, 14]. However, there are several ways that
these methods could probably be improved. For continuous domains, the scale of mutation is often
adapted [18] and recombination operators can be applied that do not impose a coordinate bias to
the search [3]. Finally, the boundary constraints and the equality constraint on the quaternion’s
direction of rotation should be handled explicitly.
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