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Abstract

A response surface methodology-based technique is
presented for treating discretization error in nondeter-
ministic analysis. The response surface, or metamodel, is
estimated from computer experiments which vary both
uncertain physical parameters and the fidelity of the
computational mesh. The resultant metamodel is then
used to propagate the variabilities in the continuous input
parameters, while the mesh size is taken to zero, its as-
ymptotic limit. With respect to mesh size, the metamodel
is equivalent to Richardson extrapolation, in which solu-
tions on coarser and finer meshes are used to estimate
discretization error. The method is demonstrated on a
one dimensional prismatic bar, in which uncertainty in
the third vibration frequency is estimated by propagating
variations in material modulus, density, and bar length.
The results demonstrate the efficiency of the method for
combining nondeterministic analysis with error estima-
tion to obtain estimates of total simulation uncertainty.
The results also show the relative sensitivity of failure es-
timates to solution bias errors in a reliability analysis,
particularly when the physical variability of the system is
low.
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L. Introduction

Nondeterministic analysis methods are applied to
simulations of physical systems in order to quantify the
effects of random variations in system parameters and in-
puts on the predicted output of the simulation. Typically,
nondeterministic methods are used to propagate proba-
bility or frequency distributions of continuous “physical”
variables through a deterministic mapping, such as the
discretized numerical solution of a system of partial dif-
ferential equations (PDEs), plus boundary and initial
conditions and auxiliary submodels. In this case, it is im-
portant to have a verified and validated model structure
through which to propagate these continuous variabili-
ties. However, all finite discretized models possess some
degree of discretization error, and often little or no at-
tempt is made to estimate the magnitude of discretization
error in the model. Furthermore, even when some error
estimate is available, it is unclear how to apply that esti-
mate to the ensemble of results computed during a non-
deterministic analysis. Thus, the effect of discretization
error in nondeterministic analysis is practically never
treated at the present time.

There has, however, been a significant amount of at-
tention devoted to the problem of estimating errors in nu-
merical methods for solving deterministic partial
differential equations. Among these methods are a poste-
riori error estimators!+2, as well as such classical methods
as Richardson extrapolation®3. Of particular interest in
this study is Richardson extrapolation, in which discreti-
zation errors are estimated from the numerical solution.
Richardson extrapolation is extremely general in that it
can be applied to any output of the model, as well as
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functionals of the solution. Its primary drawback is that
it depends on knowledge of the formal convergence rate
of the numerical method and requires that the mesh size
used is fine enough that the higher-order terms of the er-
ror are negligible compared to the lowest-order term. For
this reason, it often requires more that two mesh spacings
on the same model to verify the convergence order and
thus establish the validity of the extrapolation.

A conservative approach to accounting for discreti-
zation error in a nondeterministic analysis (which relies
on the numerical solution of PDEs) would be to use Ri-
chardson extrapolation (or some other error estimator)
for every combination of input values to the model. For
example, we might perform a structural dynamics simu-
Jation in which the elastic modulus of some material in
the design model has some inherent variability. Then, for
each particular value of that parameter we could compute
the response on two or more spatial discretizations and
use these results in some to-be-determined way in our
nondeterministic analysis. This approach would then in-
crease the number of analyses to be performed by a factor
of two to three. On the other hand, we might consider
performing error estimation for only one particular value
of the variable parameter (such as its mean value) and
then apply that error estimate in a relative or absolute
sense to the analyses performed for other values of the in-
put. This approach would require only a modest increase
in computational cost compared to the cost of the nonde-
terministic analysis itself, but cannot account for the de-
pendence of the error estimate on the values of the
parameters of the model. It should be noted that the in-
vestment in generating multiple discrete models with dif-
ferent mesh spacings might be much more significant
than the cost of computing solutions on each of the mesh-
€s.

In the present study, an alternative approach is con-
sidered in which solutions are computed on different
mesh sizes, but not for every parameter value in the non-
deterministic analysis. Instead, both mesh size and pa-
rameter values are varied for the purpose of building a
surrogate model, or metamodel, for interpolation. Once
solutions are computed to build the metamodel, a regres-
sion is performed to obtain the coefficients of the meta-
model. The metamodel can then be used in the
nondeterministic analysis in place of the complex full-or-
der model. For example, frequency distributions on input
variables can be easily propagated through the metamod-
el via Monte Carlo analysis, since the cost of computing
a response based on the metamodel is negligible. The
treatment of discretization error is accomplished by ex-
tending traditional response surface methods (RSM) for
determining metamodels to include mesh size as a vari-
able input parameter. Then the nondeterministic analysis

can be performed for a mesh size of zero, which con-
forms to a higher-order accurate solution of the govern-
ing PDEs.

In this study, it has been found that including mesh
size in the metamodel can be an efficient way to mini-
mize discretization error while performing nondetermin-
istic analysis. For example, a traditional metamodel with
3 continuous input variables might require 13 evalua-
tions of the complex simulation with different parameter
values to determine the parameters of the metamodel. If
we wished 1o minimize discretization error, we would
perform those 13 evaluations on a fine mesh (i.e. with
small element edge lengths). By extending that model to
include element edge length as an input variable of the
metamodel, we must now perform 25 evaluations of the
complex simulation. However, only 6 of those evalua-
tions are performed on the fine mesh model, while the
other evaluations are performed on coarser meshes
which require much less time to solve. Therefore, it is
possible to determine the extended metamodel with less
overall computational effort. Furthermore, the extended
metamodel can be used to estimate the converged contin-
uum solution, while the traditional metamodel deter-
mined strictly from evaluations of the fine mesh model
still suffers some overall unquantified error due to the
discretization.

The remainder of the study is organized as follows.
First, the technique for using response surface methodol-
ogy for nondeterministic analysis is presented. Then, this
methodology is extended to include the dependence of
the simulation on mesh size. Finally, results are present-
ed for linear dynamics of a prismatic bar with 3 uncertain
input parameters. The results demonstrate the impor-
tance of treating discretization error when estimating
system reliability measures such as probability of failure.
In the example, discretization error on the order of 1% of
the response quantity results in a probability of failure es-
timate which is more than one order of magnitude small-
er than the exact solution, an error of more than 90%.
Thus, the bias caused by small discretization errors re-
sults in a significant overprediction of the reliability. The
technique developed herein reduced the error in proba-
bility of failure to below 5%.

II. Response Surface Methodology for
Nondeterministic Analysis

Montgomery® notes that

Response surface methodology, or RSM, is a
collection of mathematical and statistical
techniques that are useful for the modeling and
analysis of problems in which a response of interest
is influenced by several variables and the objective
is to optimize the response....




The process yield is a function of the levels..., say
y = flxpxy)te

where e represents the noise observed in the
response y . If we denote the expected response by
Ely] = f(x},x,) = h, then the surface
represented by

h = f(x, x,)

is called the response surface.

In the present context, we will use RSM as a surro-
gate or metamodel for the complex physics model of in-
terest, and we will estimate the parameters of the
response surface by performing a limited number of anal-
yses of the complex model. Our goal is to use the re-
sponse surface to propagate uncertainties in the variables
to determine a distribution of the response quantity.
From this distribution we can make estimates of failure
probability or other statistics of interest.

The use of RSM is logically coupled to Design of
Experiments (DOE). In order to apply RSM we must de-
termine a selection of input vectors for the complex sim-
ulation. Designing the input vectors for the suite of
simulations to be run is the objective of experiment de-
sign. A logical goal of DOE is to minimize the variance
of the error between the response surface and the discrete
responses of the complex model. It is important, howev-
er, to also consider the frequency distributions of the in-
put parameters, as well as the type of statistic to be
computed from the distribution of the output. Finally, as
noted by Sacks’ there are fundamental differences be-
tween physical experiments and computer experiments
which influence the issue of experiment design.

In this study, we focus on a simple global surface
model which includes second-order terms in the parame-
ters. The model response is given by

y = B()"‘ZB;P,""ZEBUP,'PJ' (1)
i i

where B, B, Bij are parameters of the metamodel to be
estimated from analyses performed on the complex mod-
el. It should be noted that this metamodel form is just one
possibility; other functions could be considered as well
as the finite element lattice sampling approach of
Romero?.

To this standard metamodel form we will apply the
well-known Box-Behnken experiment design®, which
dictates a set of input vectors for which the parameters
p; take on nominal, high, or low values. It is suggested
that these levels be taken as the mean and the mean plus

or minus one to two standard deviations, respectively.
Furthermore, the number of simulation runs is somewhat
greater than the number of parameters being estimated,
so that a least-squares estimate for the metamodel param-
eters is obtained. The Box-Behnken designs for 3 and 4
input variables are given in Table 1 and Table 2, where
0, +1, -1 represent the nominal, high and low values, re-
spectively.

Other possible designs are Central composite and
sub-optimal iterate selection algorithms such as Effec-
tive Independence!? and Subset selection!l.

Once an experiment design has been determined,
and the computer experiments are performed, the param-
eters B‘.j of the meta-model are estimated, typically us-
ing a least-squares method.

III. _Extension of RSM to include Mesh Size

The typical model for spatial discretization error is
given as

1
Y = y, .+ ek + 0w )

where £ is the characteristic mesh spacing or element
length, y(h) is the numerical solution resuiting from the
mesh, y,, .., is the exact solution of the corresponding
continuum model, ¢ is the formal order of the method,
and o is some unknown factor. Assuming the validity of
this error model and knowledge of method order g, we
could easily construct a metarnodel from a small number
of simulation runs with different values of & . Since the
only unknowns are & and y,_ .. , we require only two
different mesh spacings. With three different mesh spac-
ings, we could also confirm the method order g . This ap-
proach of estimating the terms of the error model using
the results from different mesh spacings is in fact just the
classical Richardson extrapolation method.

Thus, given the similarity between RSM and Rich-
ardson extrapolation, it is reasonable to combine the two
methods into a larger metamodel form in order to treat
discretization error within the context of nondeterminis-
tic analysis. The form of the extended metamodel is tak-
en to be

Y. by = Bo+ Y o+ > D Bypipj+ )
i i j
agh?+ Y oph?
i

which allows for the metamodel to account for the cou-
pling between the constant and linear terms of the nomi-
nal metamodel and the discretization error, but neglects
the terms of O(p hq) and above.




A. Experiment Design for Extended Metamodel

For experiment design purposes, we will again use
the Box-Behnken design, where the number of input
variables is increased by one for input value 4. This re-
quires that we develop discretized models with 3 differ-
ent mesh spacings. As with Richardson extrapolation, it
is usually desirable to perform mesh doubling. The val-
ues-1,0, +1 withrespect to A are strictly qualitative and
correspond to coarse, nominal and fine mesh models, re-
spectively. For example, re-interpreting Table 2 for the
case of 3 input parameters plus variation in mesh fidelity,
we have the experiment design given in Table 3. The val-
ue h/h, . implicitly assumes the use of mesh doubling,
but this is not specifically required.

The efficiency of the present method can be seen in
examining Tables 1 and 3. When the metamodel is ex-
tended by one input variable in order to include the mesh
size parameter h, the total number of analyses increases,
but the number performed with a fine mesh is only a
small fraction of the total and less than the total number
of runs of the non-extended metamodel. Thus, a tradi-
tional response surface (without % ) estimated by analy-
ses performed using the fine mesh can actually be less
efficient than extending the model to include &, since the
total computational effort is dictated by the number of
fine mesh analyses performed. This comparison is sum-
marized in Table 4 for different numbers of continuous
input variables. Note that as the number of input param-
eters increase, the efficiency gains become dramatic.

B. Verification of Formal Order of Convergence

In a real sense, the nominal mesh model, together
with the coarse mesh model, is being used to infer or in-
terpolate the effects of the parameter variations which
would seen at the fine mesh level. The mechanism for
performing this inference is the form of the response sur-
face, which is grounded in the error model Eqn. (2). This
error model is valid, however, only in the asymptotic
range and thus imposes a restriction on the fidelity of the
meshes considered. In a sobering demonstration of the
limitations of Richardson’s method, Oberkampf and
Blottner!2 showed that for a particular system of nonlin-
ear equations with large local gradients, reaching the as-
ymptotic range for Richardson’s method required very
fine grids with relative errors on the order of 0:.1%.
Therefore, computational meshes which simply meet an
analyst’s subjective criteria for “goodness” cannot be im-
mediately assumed to meet the asymptotic range require-
ments of Richardson’s method and the present extended
response surface technique. It is important to assess the
convergence characteristics for the range of meshes con-

sidered and demonstrate the formal convergence of the
method before proceeding with extrapolative proce-
dures.

There are two approaches to verifying the conver-
gence order using the experiment design procedure dis-
cussed above. Examining Table 3 for the particular case
of 3 metamodel input parameters, there are 6 points in the
design space where solutions are computed using both
the coarse and fine meshes of the model. Two mesh sizes
are not sufficient, however, to independently estimate
both the mesh error and the convergence order ¢ . In or-
der to independently estimate g we also require a solu-
tion at these design points for the nominal mesh. These
can be obtained by performing additional computer ex-
periments using the nominal mesh at these design points
(corresponding to extreme values of each parameter). Al-
ternatively, we could use the results from the runs on the
nominal mesh to build a traditional metamodel with re-
spect to the input parameters conditioned on the nominal
mesh, and then use that metamodel to interpolate the re-
sponse for the nominal mesh at the design points where
coarse and fine mesh runs have been performed.

IV. Nondeterministic Analysis with
Extended Metamodel

The final stage of the nondeterministic analysis in-
volves the use of the metamodel to propagate the para-
metric uncertainties through to the simulation output.
From the distribution of the output, probabilistic or sta-
tistical quantities such as probability of failure, expected
output value and variance can be estimated. One straight-
forward approach is what Romero terms decoupled Mon-
te Carlo (DMC) analysis. Decoupled refers to the fact
that the building of the response surface from complex
simulation runs and the Monte Carlo analysis using the
response surface are separate activities. For the Monte
Carlo analysis, we would generate a very large number of
samples from the joint distribution function of the uncer-
tain variables and compute the metamodel response for
each sample to build the output distribution. The only
modification required for the extended metamodel is de-
termining how to sample the mesh spacing parameter 4 .

Given that we are attempting to approximate the
continuum problem, a mesh size of & = 0 should be
used for all evaluations of the metamodel. The only ca-
veat on this specification is that this is equivalent to ex-
trapolation of the metamodel, a practice which is usually
avoided in RSM. However, extrapolation is exactly what
the Richardson method uses for discretization error esti-
mation, and is why care must be taken in verifying the
formal order of convergence. Hence, if a similar level of
care is taken with the extended metamodel, it should be
possible to use the mesh size # = 0 with confidence. Fi-




nally, if there is still concern with using the metamodel
to extrapolate, it is possible to simply use the fine mesh
size value h fine for all evaluations of the metamodel.
This will minimize discretization error without extrapo-
lation outside the boundaries of the complex model eval-
uations.

Y._Example: 1-D Prismatic Bar

The first example is a uniform prismatic bar with
fixed-free boundary conditions as shown in Figure 1. The
objective of the analysis is to estimate the probability of
failure of the bar, where failure is defined by the condi-
tion f3 < 16,000 Hz, where f, is the frequency of the
third mode of vibration. The physical parameters defin-
ing the system are given in Table 5, where the coefficient
of variation is equal to the standard deviation of the dis-
tribution divided by the mean. The mesh chosen for the
nominal model is also shown in Figure 1. Note that the
mesh was chosen to be non-uniform. There are two rea-
sons for this. First, in most complex problems it is diffi-
cult or impossible to achieve a uniform grid, and often
the mesh is refined in some areas to enhance accuracy for
some output of the model. Secondly, it is understood that
numerical methods tend to behave better in a theoretical
sense on uniform grids, thus the non-uniform grid in this
problem is intended to make a very simple problem
somewhat more difficult. From the fixed end to the free
end, the element lengths are: 4 elements @ 1.25 in, 4 el-
ements @ 1.00 in, 4 elements @ 0.75 in, 4 elements @
0.50 in, 4 elements @ 0.25 in. Thus there is a total of 20
elements and 20 degrees of freedom (d.o.f.) in the nomi-
nal model. The coarse and fine meshes for this problem
are related to the nominal mesh by doubling and halving
the element lengths, respectively. Therefore, the coarse
mesh has 10 d.o.f. and the fine mesh has 40 d.o.f.

The experiment design given in Table 3 was used for
estimating the extended metamodel, with the interpola-
tion function given by Eqn. (3) and ¢ = 2 as the formal
order of the method. Then the decoupled Monte Carlo
analysis was performed with 100,000 samples of the
joint density function of E, p, and L. All samples were
evaluated at A = 0. For comparison, a direct Monte
Carlo analysis was performed using the exact continuum
solution!?:

fo = 222 @

Also for comparison, two approximate solutions are
treated. First, a direct Monte Carlo analysis was per-
formed using the nominal mesh model. Second, a decou-
pled Monte Carlo analysis was performed for the fine
mesh model, where the response surface was estimated

with respect to the 3 physical variables E, p, and L us-
ing Eqn. (1) and the experiment design given in Table 1.
Finally, histograms of each of the 4 Monte Carlo analy-
ses were computed using 1000 bins, and the results input
to a kernel density estimator to arrive at estimates of the
output probability density functions. These final results
are shown in Figure 2.

YI1._ Discussion of Results

The results from this example are summarized in Ta-
ble 6. For each of the methods, the total number of finite
element analyses are given, as well as the number of
analyses using the fine resolution grid of discretization.
Then the total number of computations required6for the
nondeterministic analysis are given in Mflop ( 10™ float-
ing point operations). Finally, the error in the estimated
mean of the distribution, as well as the estimated proba-
bility of failure, which is the statistic of interest in the
problem.

Note first of all that the continuum solution is the ex-
act result, subject to Monte Carlo sampling errors (which
are small because of the number of samples). The rest of
the methods are given down the table in order of their ac-
curacy. Interestingly, the extended RSM method is not
only the most accurate approximation, but is also the
most efficient. The more traditional RSM based on the
fine mesh is still a reasonable result, although it requires
more computations and is somewhat less accurate than
the extended RSM. Finally, the direct Monte Carlo meth-
od based on the nominal mesh is not only very ineffi-
cient, but also leads to a significant error in the
probability of failure estimate.

Apart from the comparison of methods, one of the
most interesting aspects of these results is the effect the
prediction error, as measured by the error in the estimat-
ed mean of the distribution, has on the relative error in
the probability of failure estimate. In the case of the di-
rect Monte Carlo analysis based on the nominal mesh,
the discretization error results in a prediction error of
about 1% of the exact solution. This would normally be
considered more than adequate for engineering purposes.
However, this error leads to a probability of failure esti-
mate which is over one order of magnitude smaller than
the exact solution. Thus, the reliability of the system
might be judged to be more than 10 times higher than its
actual reliability. The heightened sensitivity is a function
of the probability of failure magnitude we are trying to
estimate, as well as the coefficient of variation (the ratio
of the standard deviation of the distribution to the mean
value) of the simulation output used in the failure calcu-
lation.




This can be seen in Figures 3 and 4, which show the
relative error in the estimated probability of failure as a
function of the failure threshold and as a function of the
true failure probability. The jumps in the curves at the
left hand side of the figures is due to finite sample errors
in the “exact” solution. From Figure 3, it can be seen that
as the failure threshold is increased beyond 16 kHz, all of
the failure probability estimates increase towards 1.0,
and the error relative to the exact failure probability re-
duces gradually. When these relative errors are plotted as
a function of the true failure probability as in Figure 4,
the problem appears even worse. Unfortunately, when
performing reliability analyses on high consequence sys-
tems, we are typically computing very small magnitude
failure estimates. This analysis not only confirms the hy-
pothesis that far higher computational accuracy is re-
quired for modeling and simulation based life cycle
engineering (MSBLCE) than for traditional engineering
analysis, but also suggests that even the most conserva-
tive estimates of accuracy requirements for MSBLCE
may be inadequate for reliability computations. Howev-
er, the methodology presented herein appears to be a rea-
sonable approach to treating and correcting
discretization errors in the context of nondeterministic
analyses.

VII._ Summary and Conclusions

A technique has been presented for treating discret-
ization error in nondeterministic analysis. The technique
involves the use of response surface methodology
(RSM), in which a metamodel representation of a com-
plex simulation model is estimated from a limited num-
ber of computer experiments on the complex model. The
metamodel is then extended to include the characteristic
element edge length as an model input parameter. The
extended metamodel is used to propagate the variabilities
in the continuous input parameters, while the mesh size
is taken to zero, its asymptotic limit. The technique is
demonstrated on a one dimensional prismatic bar, in
which the uncertainty in the frequency of the third mode
of vibration is estimated by propagating variations in the
elastic modulus and mass density of the material, togeth-
er with variation in the total length of the bar. Results are
compared to the closed-form solution, a direct Monte
Carlo analysis using a nominal mesh size, and a tradition-
al response surface without a mesh size parameter built
from computer experiments using a fine mesh size. The
results demonstrate the importance of treating discretiza-
tion error when estimating system reliability measures
such as probability of failure, and the efficiency of the
present technique for combining nondeterministic analy-
sis with error estimation to obtain more accurate esti-
mates of total simulation uncertainty.
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Table 5: Parameter Information for 1-D Bar

Parameter Distribution Mean Value Coefﬁcx;nt‘ of

Variation

Elastic E Normal 6 1.0%
Modulus 10x10 X
psi

Mass p Normal 0.000259 1.0%
Density 1b-s2fin?

Total L Normal 15.01in 1.0%

Length

Table 6: Nondeterministic Analysis Results for 1-D Bar Example

Total# # Fine Grid

i Error i Estimate of
Method FEM FEM C°’"P3“‘[aﬂuz"§ %m:af,;’; P a
Analyses Analyses P 3 failure

Continuum Solution n/a n/a n/a 0.00% 2.75%

RSM w/mesh size 25 6 59 0.01% 2.69%

RSM on fine mesh 13 13 94 0.27% 1.61%

Direct MC on 100,000 0 90,000 (est) 1.09% 0.23%
nominal mesh

a.Pfa”ure = P(f3< 16,000 Hz)
Ep

T BRSNS ROREE NI SR
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Figure 1: 1-D Prismatic Bar Model with Nominal Mesh
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Figure 3: Errorin P faiture 352 function of Failure Threshold
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Figure 4: Error in Pfailure as a function of Pfai,u,e
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