

LA-UR- 99-328

Approved for public release;
distribution is unlimited.

CONF-990303 --

Title: DELINEATING THE MAJOR KREEP-BEARING TERRANES
ON THE MOON WITH GLOBAL MEASUREMENTS OF
ABSOLUTE THORIUM ABUNDANCES

Author(s): D. J. Lawrence, Los Alamos National Laboratory
W. C. Feldman, Los Alamos National Laboratory
B. L. Barraclough, Los Alamos National Laboratory
A. B. Binder, Lunar Research Institute
R. C. Elphic, Los Alamos National Laboratory
S. Maurice, Observatoire Midi-Pyrenees
M. C. Miller, Lawrence Livermore National Laboratory
T. H. Prettymann, Los Alamos National Laboratory

Submitted to: Lunar and Planetary Science Conference
Houston, TX
March 15-19, 1999

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED *ph*

MASTER

Los Alamos NATIONAL LABORATORY

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

DELINEATING THE MAJOR KREEP-BEARING TERRANES ON THE MOON WITH GLOBAL MEASUREMENTS OF ABSOLUTE THORIUM ABUNDANCES. D. J. Lawrence¹, W. C. Feldman¹, B. L. Barraclough¹, A. B. Binder², R. C. Elphic¹, S. Maurice³, M. C. Miller⁴ and T. H. Prettyman⁵, Los Alamos National Laboratory, Group NIS-1, MS D466, Los Alamos, NM 87545 (djlawrence@lanl.gov), ²Lunar Research Institute, 1180 Sunrise Dr., Gilroy, CA 95020 USA, ³Observatoire Midi-Pyrénées, Toulouse, FRANCE, ⁴Lawrence Livermore National Laboratory, Livermore, CA 94551 USA, ⁵Los Alamos National Laboratory, Group NIS-5, Los Alamos, NM 87545 USA.

Introduction: The Lunar Prospector (LP) Gamma-Ray Spectrometer (GRS) has been used to map the global composition of thorium on the lunar surface. Previous LP results of relative thorium abundances demonstrated that thorium is highly concentrated in and around the nearside western maria and less so in the South Pole Aitken (SPA) basin. Using new detector modeling results and a larger data set, we present here a global map of absolute thorium abundances on a 2° by 2° equal-area pixel scale. Because thorium is a tracer of KREEP-rich material, these data provide fundamental information regarding the locations and importance of terranes that are rich in KREEP bearing materials.

Approach: Thorium abundance measurements are obtained from the GRS data by measuring the counting rate of the 2.6 MeV line produced by the radioactive decay of thorium atoms. For this study, we have used counting rate data taken over 9-1/2 months from 16 Jan 1998 to 29 Oct 1998. Before these counting rates can be used, various corrections need to be made to the data as outlined in [1]. These include corrections for detector dead time, detector gain, galactic cosmic ray variations and detector response due to latitude variations. Since the publication of [1], we have also made corrections (on the order of ~5%) for variations of the Moon's solid angle as seen by the GRS. These solid angle variations arise because the spacecraft distance from the Moon varies from 80 to 120 km.

A rigorous determination of absolute thorium abundances required a series of detector modeling and spectral fitting procedures to be carried out. However, because the 2.6 MeV thorium line has a large flux, has few competing γ -ray lines, and has large variations over the lunar surface, we can obtain an estimate of the absolute thorium abundance, A_{Th} , using the following relation:

$$A_{Th} = C_{Th} A \varepsilon_{2.6} F_{Th}. \quad (1)$$

Here, C_{Th} is the measured thorium counting rate per 32 seconds above background, A is the GRS area for γ -rays measured at the lunar equator (the area of the GRS bismuth-germanate crystal is 54 cm²), $\varepsilon_{2.6}$ is the GRS detector efficiency at 2.6 MeV, and F_{Th} is the

expected flux of thorium γ -rays per $\mu\text{g/g}$ of thorium. In order for equation 1 to be valid, we have to make the following assumptions: 1) the background counts under the thorium line are constant over the Moon; 2) the minimum counting rate in a given 2° by 2° equal area pixel is defined at the background counting rate, i.e. the pixel with the minimum counting rate is defined to have a thorium abundance of 0 $\mu\text{g/g}$. The full-energy peak efficiency in equation 1 has recently been calculated for the LP GRS to be 0.4 counts per incident γ -ray at 2.6 MeV. The flux F_{Th} is taken from Reedy [2] to be 1.154 $\gamma/\text{cm}^2 \cdot 32\text{s} \cdot (\mu\text{g/g})$.

Results: Figure 1 shows the map of absolute thorium abundances derived using equation 1. This map shows lunar nearside and farside orthographic projections centered on Mare Imbrium and the antipode to Mare Imbrium. Contours of albedo data taken from Clementine data [3] are shown for latitude between 70° S and 70° N.

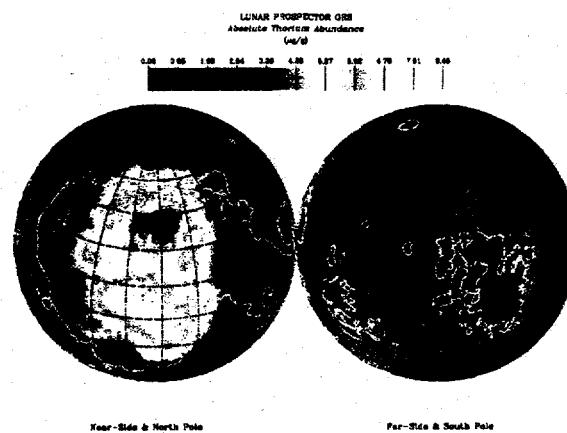
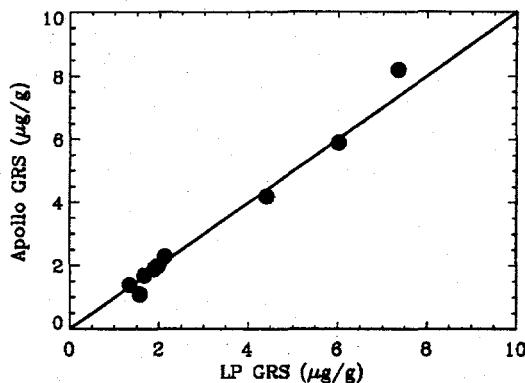



Figure 1: Map of absolute thorium abundances in $\mu\text{g/g}$ for the lunar nearside and farside.

To check the validity of our assumptions, we have compared our data to measurements made using the Apollo GRS [4] for various Apollo and Luna landing sites as seen in figure 2. The LP measurements in figure 2 are the mean value abundances for the 2° by 2° pixel containing each landing site. The error bars show the standard deviation within each pixel and

generally represent the systematic of the data. These uncertainties are on the order of 10-15%. It is possible that there may be other systematic errors, but we do not expect them to be greater than 15-20%.

Figure 2: Comparison of the absolute thorium abundance measured by the LP GRS to the absolute thorium abundance measured by the Apollo 15 and 16 GRS for various Apollo and Luna landing sites.

As seen, the comparison between the LP and Apollo GRS measurements is quite good. In fact, only two sites, Apollo 14 and Luna 20, have measurements that differ significantly from the slope 1 line. From this comparison, we believe these global measurements give a reasonably good representation of the absolute thorium abundance on the Moon.

Regional Abundances: With these measurements, we can make a survey of the degree to which various regions or terranes contain KREEP bearing minerals. Table 1 lists the mean abundances of various regions that can be delineated from figure 1.

The entire nearside high-thorium region, or "Great Lunar Hot Spot" [5], has a mean thorium abundance of 4 $\mu\text{g/g}$. Within this area, the highest thorium abundance region can be defined as the Copernicus/Fra Mauro region with a mean abundance of 7 $\mu\text{g/g}$. With this new 2° by 2° map, we can also delineate three other regions of high thorium abundance, namely: the Jura Mountains northwest of Mare Imbrium and south of Mare Frigoris (# $\mu\text{g/g}$), the Aristarchus crater west of Mare Imbrium (# $\mu\text{g/g}$), and the Appenines highlands region east of Mare Imbrium (# $\mu\text{g/g}$). Interestingly, the area within the nearside high-thorium region with the lowest thorium abundance is the center of Mare Imbrium. However, the local minimum of # $\mu\text{g/g}$ is located not at the center of Mare Imbrium at 18°W , 33°N , but 7° north at 18°W and 40°N .

Apart from the high abundances of the nearside, the only other region of elevated thorium abundances is in the South Pole Aitken (SPA) basin. The SPA region, as defined from the Clementine topography data has an average thorium abundance of 2 $\mu\text{g/g}$. This contrasts to the highlands thorium abundance of 0.7 $\mu\text{g/g}$.

References: [1] Lawrence, D. J., et al. (1998) *Science*, **281**, 1484. [2] Reedy, R. C. (1978) *Proc. Lunar Planet. Sci. Conf.*, **9**, 2961. [3] Smith, D. E., et al., (1997) *J. Geophys. Res.*, **102** 1591; Lucey, P. G., et al. (1995) *Science*, **266**, 1855. [4] Metzger, A. E., in *Remote Geochemical Analysis: Elemental and Mineralogical Composition*, C. M. Pieters and P. A. J. Englert, Eds. (Cambridge Univ. Press, 1993), pp. 341-363. [5] from R. L. Korotov.

Region	Approximate Location	Mean thorium abundance ($\mu\text{g/g}$)
"Great Lunar Hot Spot"		4
Copernicus/Fra Mauro		7
Jura Mountains		5
Aristarchus		5
Appenines Mts.		5
Imbrium Basin		4
South Pole Aitken Basin		2
Lunar highlands		0.5

Table 1: Mean thorium abundance for various lunar locations.