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Abstract: The traditional process for developing large-scale simulations is cumbersome, time consuming,
costly, and in some cases, inadequate. The topics of software components and component-based
software engineering are being explored by software professionals in academic and industrial settings. A
component is a well-delineated, relatively independent, and replaceable part of a software system that
performs a specific function. Many researchers have addressed the potential to derive a component-
based approach to simulations in general, and a few have focused on military simulations in particular. In
a component-based approach, functional or logical blocks of the simulation entities are represented as
coherent collections of components satisfying explicitly defined interface requirements. A simulation is a
top-lfevel aggregate comprised of a collection of components that interact with each other in the context
of a simulated environment. A component may represent a simulation artifact, an agent, or any entity
that can generate events affecting itself, other simulated entities, or the state of the system. The
component-based approach promotes code reuse, contributes to reducing time spent validating or
verifying models, and promises to reduce the cost of development while still delivering tailored
simulations specific to analysis questions. The Integrated Virtual Environment for Simulation (IVES) is a
composition-centered framework to achieve this potential. IVES is a Java implementation of simulation
composition concepts developed at Los Alamos National Laboratory for use in several application
domains. In this paper, its use in the mifitary domain is demonstrated via the simulation of dismounted
infantry in an urban environment.

simulated entities, or the state of the system.

1.0 Introduction Every component must satisfy a published

The Integrated Virtual Environment for Simulation ~ interface that specifies its supported functions.
(IVES) is a Java implementation of simulation The aggregate-component view of a simulation
composition concepts developed at Los Alamos entity is a representation of an entity in a
National Laboratory for application in the simulation which asserts that the entity is an
simulation-based study of a variety of domains. aggregate of discrete software components which
IVES is a composition-centered framework satisfy the interface declaration of the aggregate.
supporting the development of discrete-event One advantage of this method is that the
simulations based on an aggregate-component - components are relatively easy to verify and

view of simulation. A simulation is viewed as a validate, as they typically represent significantly
top-level aggregate comprised of a collection of smaller functional areas compared to the
components, i.e., simulation entities, that interact aggregate. The verification and validation of the
with each other in the context of a simulated aggregation poses additional technical challenges.
environment. At this level, a component may Because components can be expr essed in many
represent a simulation artifact (e.g., run-time data ~ Ways to achieve the published interface, the user,
collectors), a software agent, or any entity that or composer of the aggregate, has many choices

can generate events affecting itself, other in how to satisfy representational requirements of




the aggregate by selecting appropriate
components, or by constructing new components.

In this paper, the authors discuss the potential
impact component reuse can have on the
development of simulations, review general
requirements for a component-based approach,
describe an infrastructure framework developed
by the authors, and discuss an application of the
framework to a military simulation.

1.1 Paradigm

In traditional monolithic simulations, modifying
the simulation code was time-consuming and
often difficult. Thus, when new capabilities were
required in the simulation, a common approach
was to re-parameterize existing entities to enable
them to approximate the new capabilities. While
unsatisfying, this was expedient. There is an
apocryphal story of an Army simulation that was
required to represent the effect of a battleship
providing naval fire support of an Army attack.
The modelers, not having a battleship
representation, merely placed an armored
battalion in the “ocean” and overrode the
constraint that an Army unit could not be in a
water obstacle. This story is representative of how
legacy codes have enduring staying power, even
when confronted with obvious shortcomings and
inadequacies. This has been and continues to be
a source of frustration for analysts who must
explore new concepts in equipment, organization,
doctrine, tactics, and deployment. The High Level
Architecture [1] (HLA) attempts to address this
issue by allowing federations of models of
differing resolution and capability to interact. In
this setting it is possible to augment a model with
a weak representation of a given feature with a
more suitable model which has the requisite
capabilities. In such a federation, the weaker
model would subscribe to the capabilities
computed by the relatively stronger model.

From the IVES perspective, this type of problem
would be addressed by replacing the components
responsible for the weak representation with
components that adequately address the analysis
requirements. Because the functionality of the
model is modularized into components, each of
which must satisfy known interface requirements,
the implementation details can be hidden. This
enables interoperability among components that
satisfy the common interface. It becomes possible

to create a new component which can satisfy an
alternate implementation, which in many cases,
can address either representational, resolution, or
fidelity deficiencies compared to another
component.

1.2 Software Reuse

Components are desighed to be replaceable parts
within a software program. Once developed,
components can be stored in repositories and
maintained for reuse in other simulation
compositions. When a component is selected for
use from a repository, a copy of the component is
supplied, thus maintaining the integrity of the
repository. Both partial and full compositions can
be stored in the repository and can be edited.
Since the component modules are typically small,
verification and validation are expected to be
comparatively easier than in a large simulation
code. The issue of aggregate verification and
validation has yet to be fully explored.

1.3 Potential Applications

Currently, IVES has been applied to the military
modeling domain to create constructive
simulations of soldier agents in a simplified urban
environment. Soldiers select paths through the
urban environment and use the sensors assigned
to them, e.g., human eyeball or thermal sights.
Based on the perceptions from the sensors,
soldiers may react to threats by firing their
assigned weaponry. Although current capabilities
are primitive, the extensibility of IVES will allow
investigations of future concepts, new tactics, and
analysis of alternatives. Other potential
application domains include manufacturing,
transportation, electronic commerce, and
organizational dynamics.

1.4 Exploration of Output Space

Simulations are almost always developed to
perform analysis on a domain of interest. Since
analysis is closely tied to simulation development,
it is natural to include analysis tools as simulation
artifacts, i.e., components that aid in monitoring
or analyzing simulation outputs. A current interest
in constructive simulations is to study the output
space of the simulation for “interesting” regions
[2, 3]. The simulation can be thought of as a
mapping, S, from the space of all inputs, 7, to the

space of all outputs, O, e.g., S:I-0.




Characterizations of the output space are useful
to determine which subset of inputs are
important, to assess regions of attraction, and
possibly identify ridges which separate adjacent
regions. The latter are of interest because they
may lead to investigation of what sort of changes
in the input, what “nudges,” are required to send
the process into an adjacent region of attraction.
This type of study is of great interest to military
analysts.

2.0 Components

A component is an evolving concept without a
concise widely accepted defintion. In this paper a
component is defined as a reusable unit of
composition for a larger architecture that
conforms to contractually specified interfaces and
reflects explicit context dependencies [4, 5].
Components are based on a simple nesting
scheme: any component may contain zero or
more components. More complex components can
be deeply nested, as shown in Figure 1. In a
consistent architecture, a component must satisfy
a fundamental interface defined for components,
i.e., the component model. Such an interface
would specify that a new component can be
added to another only through a well defined
function that has the responsibility to accept
components of user-defined types and reject all
others. A component which is composed of other
components is an aggregate. The interface should
also support a function that returns an
enumeration of the components of the
aggregate. Components can be instance-based or
class-based, although the former may be a more
prudent choice. Since a component represents
some concept or real world item, a label,
representative of the domain type of the modeled
concept or item, is attached to the component. It
is then convenient to refer to the component by
its domain type.

2.1 Context

The concept of components is not fully realized
without the notion of context. Context is the
collection of facts, state, functionality, and user
perspective supported by the component. In
addition the component reflects the interface of
the component model.
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2.2 Challenges

The first challenge in using a components-based
framework is to generate a view (design) of an
application using a proper combination of /s-a
(inheritance) and Aas-a (component)
relationships. This view is driven by the degree
and level of interoperability desired. The process
of achieving interoperability begins by defining the
interface for a component, which must reflect the
component model. The interface is extended as
needed to address the functional needs of the
domain type represented by the component. The
interface must be rich enough to express the
functional needs of all types of planned
interactions, yet parsimonious to reflect an
efficient design. For example, if a vehicle is
defined by its components of propulsion and
steering, then the vehicle interface must be rich
enough to have domain types representing an
automobile, a submarine, and an airplane while
sharing the same interface. Dive would make
sense for the airplane and submarine, but not for
an automobile. One possible compromise would
be to use a Move interface based on acceleration,
velocity, and location. This would allow
interoperability yet still provide appropriate
mechanisms for dive-like or takeoff-like
functionality.




2.3 Infrastructure

The component infrastructure must be tightly
linked to the architecture [5]. In general,
infrastructure services can be partitioned into
many categories; however two types of services
are needed at a minimum for a simulation
framework: one for composition and one for
simulation. The composition package provides the
basic functions to support composition and
defines the fundamental component interface.
The simulation package provides support for
discrete event simulation. A simulation is viewed
as a composition of a simulation object containing
simulation entities (often agents) and optionally a
simulated environment. It should provide a
definition for event objects as well as a discrete
event simulation scheduler that can sequence
events based on time and optionally event

priority.

3.0 IVES

The IVES framework is designed with the intent of
supporting the construction of simulations in
many different domains. A simulation composed

in this system is made up of elements that are in
part specific to a particular problem domain. In
the military simulation described later, the
components represent infantry, buildings, roads,
weapons, and sensors. A suite of components
designed to simulate financial environments would
have a very different set of components,

messages and representations. Components are

designed and implemented in suites to
interoperate along contract lines that make sense
in a particular domain. These objects might
respond to a common set of event messages and
share notions about the representation of state
and response to those messages.

In addition to this specialized and stylized
interaction within a domain specific area there is
another layer of objects that are domain
independent. This is called the IVES framework.
The framework cares about functions that are
common to all systems regardless of the domain.
They provide such things as an abstract
simulation object, object repository services
necessary for composition, editing and
visualization services as well as the basic
composition functionality that can be utilized by
objects in many different domains.

The framework imposes a contract that is both
syntactical and intentional. The syntactic aspects
of the contracts are imposed by the classes and
interfaces that make up the IVES framework.
Essential to satisfying the contracts is the notion
of component-centered autonomy. The
responsibility of complying with the contract in the
context of certain actions and events falls to the
components. This distribution of responsibility is
essential to many aspects of the IVES
architecture. When an object is added as a
component to a composition, the composition
could be a simulation or agent or other simulation
artifact, both the composition and the component
must respond responsibly and comprehensively to
the event.

The components that enable the abstract view
and capabilities of simulations are in the package
sim. Compatibility is supported and enabled by
the package comp. The Java interface
I_IvesPrimitive that is in sim must be
implemented by any class which is to be part of a
composition, stored in a repository and function
within the scope of a simulation.
I_IvesPrimitive imposes a contract requiring
the implementation of several functions and
enables the runtime identification as an IVES
object. The functions imposed by
I_IvesPrimitive require that the object support
such things as the ability to copy itself completely
deepCopy(), to be named and to report it's name
getName() and setName() and to initialize it's self
and run time, runTimelnit(). For a component
(object) to be composable in an IVES sense it
must be derived from the interface
I_Composable. I_Composable in part
requires that an object implement
addComponent() and removeComponent(). There
are several classes in comp that enable the
functionality of composition to be easily added to
a class by delegation.

Implicit is the assumption that the object will
respond responsibly and comprehensively to a
message. When an object is added to another as
a component i.e. a sensor is added to an agents
sensor system, the sensor must be added to the
SensorSystems collection of sensors and
connected and initialized appropriately as required
by the parent component. There is no external
agent or functionality that does this work for the
component. It must be self-configuring in this




sense. This has the side effect of allowing the
design to be individualized as needed for the
requirements imposed by each component.

4.0 JIVES

JIVES is an application of IVES in a simplified in a
military simulation domain ("J” stands for “joint”
as in joint military operations). JIVES uses the
discrete event simulation defined in the IVES
framework. The protocols for the composition and
simulation packages are observed and domain
specific information is placed in a separate
software package. Currently, JIVES simulates the
activities of individual military infantry in a two
dimensional environment which represents
buildings, roads, and other infantry.

4.1 JIVES Architecture

The architecture for an agent in the simulation is
a specialization of a general agent architecture as
shown in Figure 2, where an agent is composed
of a system for perception, a system of effectors
that allow the agent to interact with the
environment, and a collection of cognitive
processes which govern the activities of the
agent.

Agent
Perception Effectors Cognition
Sensor-1 Effector-1 Process-1
Sensor-2 Effector -2 Process -2
Sensor-3 Effector -3 Process -3
Figure 2: Notional agent structure
using components

4.2 Demonstration Goals

A primary goal of JIVES is to represent combat of
infantry in the complexity of the urban
environment. Using this capability, JIVES would
then be used to run computer-based experiments
on the utility of alternate tactics for urban
operations. A longer term goal is to use
evolutionary computation [8,9] as a means of

evolving new tactics over a set of specific
scenarios. Similarly, new concepts in weapons or
platforms could be evaluated and possibly evolved
to assess utility in a fixed scenario space.
However useful these experiments, there is no
assumption that such evolutions would be
applicable in the real world. Rather it is hoped
that the changes would be suggestive of
directions for warfighting research and
experiments. Other objectives include
experimenting with the modeling of soft factors
with respect to combat results and developing a
more robust cognitive capability for military
agents.

4.3 JIVES Agents

The military entities of interest in JIVES are
modeled as agents [7] and are termed
JIVESAgents. They share a structure similar to
the agent architecture of Figure 2. The actual
structure is shown in Figure 3. The agent is
composed of five systems: cognitive, weapon,
propulsion, sensor, and communications (commo)
based on the requirements to represent
movement, attrition, communication, perception,
and rational behavior. There is no inherent limit
of the agent to five component systems. Other
potential systems have been proposed, such as
logistics.

— JIVESAgent
Cognitor-1
— CognitiveSystem < Coﬁtor-k
1
W -1
— WeaponSystem < szzz K
R2
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— PropulsionSystem < Prolguulls%on 11(
opulsion-k,

Sensor-1
— SensorSystem < :
Sensor-k,

Commo-1
— CommoSystem —=—___
Comimo-K;

Systems are containers for appropriate
components, and have the responsibility for
managing the components over which it has
purview. The cognitive system is a container for
components that support decision-making. For




weapon systems, the proper components are
Weapons and Munitions; for sensor systems,
the components are sensors, and so on. As
examples of management functions, the weapon
system can determine the best weapon and
munition combination for a specified target. The

" propulsion system can recommend the most
appropriate propulsion mode given the current
conditions. Similarly, the sensor system can
recommend the most appropriate sensor suite for
specified classes of targets and environmental
conditions. In each case, the system examines its
components and recommends the components, if
any, which maximize the evaluation criteria.. Other
management functions can readily be imposed if
needed. The sensor system in JIVES is expected
to monitor threat contacts, create tracks (data
structures for modeling the motion of the
contact), and classify tracks into threat categories.

The cognitive system contains zero or more
decision-making components called Cognitors.
A Cognitor is a component that implements the
I_Cognitor interface that mandates two
functions: think and updatePerceptions.
The interface definition is deliberately slim, as it is
not well known what functions the interface
should require. A MilRap class is derived from
Cognitor in which a partial implementation of
the InterRap architecture [6] is functional.
Currently in JIVES, all agents use the MilRap
component as the sole component in their
cognitive system.

Although the compositional nature of the agents
allows for many cognitive structures, the primary
one under development for the initial phase of
JIVES is Muller's InterRap (integrated reaction and
planning) architecture. This architecture specifies
three layers of increasingly complex cognitive
capabilities. The first layer is the Behavior Based
Layer in which agents recognize situations and
respond in a programmed way using patterns of
behavior. This is the current level of capability for
a JIVESAgent. Another way to invoke
programmed behavior is to send the agent a
message "commanding” the agent to invoke a
specific behavior. Most often primitive behaviors
are desired so that a commander can dictate
arbitrary sequences of behavior and thus generate
complex scripts describing desired actions. This
capability is termed command-driven behavior.

The utility is to allow a user or a command agent
in the simulation to give orders to "subordinate”
agents who will then execute those commands.

The second layer in the InterRap architecture is
the Local Planning Layer which enables the agent
to exhibit goal-driven behavior. In this layer, an
agent performs means-ends reasoning on its
capabilities and assets in order to derive a plan to
achieve a set of goals. Goals can simply represent
a desired state of the world. Actions that the
agent can invoke are already expressed as
patterns of behavior, used in the reactive layer.
By augmenting the patterns of behavior with pre-
and post-condition attributes, they can be used in
a means-end reasoner to develop plans.

The architecture also supports second order
planning, which matches goals to pre-defined
plans which are stored in a plan library. A pre-
defined plan can be incomplete in that certain
planning variables need to be assigned in the
course of fulfilling the plan. In this respect, partial
plans resemble low-level tactics. Since partial
plans consist of sequences of patterns of behavior
with some planning variables, it should be
possible to begin to evolve tactics in an
evolutionary computation paradigm.

Future task goals would be to develop a means-
end planner based on patterns of behavior and to
create the infrastructure for a plan library. Initially
the plan library will be a repository for command-
driven execution. Eventually, the plan library will
be accessed by an indexing function based on the
goals provided to the Local Planning Layer. JIVES
does not yet implement this layer.

A command agent is possible using this layer of
the architecture under the strong assumptions of
agent cooperation in subordinates and well-
understood threat tactics. In other words, the
command agent would consider the subordinates
to be resources under its control and has implicit
knowledge of threat responses.

The third layer of the InterRap architecture is the
strategic planning layer. Muller terms this the
“cooperative” planning layer, but in a military
combat simulation, it seems appropriate to
include both cooperative and adversarial planning.
In either case, the agent uses a model of other
agents in order to derive plans based on its own
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goals and goals imputed to modeled agents.
JIVES does not yet implement this layer.

Agents maintain a set of PatternsOfBehavior
(PoB) as components within the MilRap
component. A PoB represents a routine task the
agent can perform, based on the agent’s primitive
actions. A PoB includes an activation condition, a
method to assess when the preconditions for the
PoB are satisfied, and methods to assess whether
the behavior, once invoked, was a success,
failure, or encountered an exception condition
requiring special processing. MoveTo is an
example of a PoB in a JIVES agent, and is based
on the primitive activity of “moving one step.” To
move from one location to another, the agent
executes a sequence of “moving one step” until
the destination is encountered or there is a failure
in the movement capability as represented in the
propulsion system.

The perceptions object of a cognitor acts as a
storage facility for knowledge acquired about the
environment. Actions of agents are based on
perceptions acquired by using sensors assigned to
the agent. Perceived information about the
simulated environment is saved in the agent's
perceptions. One element of perceptions is the
perception map which makes a map-like copy of
the environment the agent has perceived,
including buildings, roads, and other agents.

4.4 Simulated Environment

While not every IVES simulation requires an
environment, in JIVES, a simulated environment is
needed to support the interaction of agents. The
environment component represents surface and
cultural features, e.g., surface type, vegetation,
roads, buildings, bridges, etc., as well as terrain
elevations. Functionally, the environment supports
line of sight calculation, occupancy determination,
access to feature attributes, and other utility
functions. Agent components such as sensors and
propulsion frequently interact with the
environment to update the perceptions of the
agent and to constrain movement.

4.5 Arbitrators

For some actions, agents interact with the
simulation environment and update their own
state or change the state of the environment. For
other actions, such as attrition, where one agent

uses a weapon to faunch a munition at another
agent, the damage received by the victim is
determined by a neutral arbitrator. In combat
simulations, there is a concern for fair play. If, for
example, the attacker computes the damage to
be assigned to the victim, the worry is that the
attacker may be programmed to be biased
towards imposing greater damage. Conversely, if
the victim assesses the damage received, the
worty is that the bias may be towards computing
lesser damage. The approach taken in JIVES is to
use an arbitrator mechanism to calculate the
damage and impose it upon the victim. This is a
pattern which can be used in other situations,
such as sensing, where there is concern for
fairness in determining an outcome. Like other
simulation elements, the arbitrator is a component
of the simulation and can be manipulated as any

. other component.

4.6 Results

The initial scenario examined in JIVES is the
movement of individual infantry to an objective.
Threat forces are arrayed within the urban
environment and when encountered, lethal force
is employed against the threat, if possible. Agents
are provided only with patterns of behavior to
enable moving and shooting. Agents are given a
destination to move to and the simulation begins.
Figure 4 shows the initial locations for a typical
run.




During the simulation, agents begin moving
towards the assigned destination and employ
sensors to examine the environment. When a
possible threat contact is detected, it is tracked
until classification exceeds a specified confidence
level. If the contact is classified a threat, the
agent attempts to engage it with appropriate
weapons. Figure 5 shows an agent sensing
(dashed line) an opposing agent and another
agent shooting at an opponent.

Analysis of simulation output can be accomplished
in many ways. For demonstration purposes, 100
runs of JIVES were performed using various
combinations of sensor range and weapon range
with results shown in Figure 6. This figure depicts
the notional relationship between sensor and

Figure 6. Mission success as a function of weapon
range and sensor range (Notional)

weapon range with respect to mission success.

5.0 Conclusion

The promise of composable simulations is that
they will replace large cumbersome models that
deeply embed assumptions about the domain that
may no longer be valid. Instead, a simulation can
be constructed from appropriate components and
specifically focused on the analysis issues of
importance. IVES has been demonstrated to be a
viable framework and is one approach to
developing component-based simulations. A prime
requirement for successful use of IVES is a well-
understood application domain leading to the
definition of component interfaces. The JIVES
simulation is an example of how to apply IVES
within the rich and complex domain of military
modeling.
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