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ABSTRACT depend on the confidence with which the -

Engineering projects such as siting waste
facilities and performing remediation are often driven
by geological and hydrogeological uncertainties.
Geological understanding and hydrogeological
parameters such as hydraulic conductivity are needed
to achieve reliable engineering design. Information
form non-invasive and minimally invasive data sets
offers potential for reduction in uncertainty, but a
single data type does not usually meet all needs.
Data Fusion uses Bayesian statistics to update prior
knowledge with information from diverse data sets as
the data is acquired. Prior knowledge takes the form
of first principles models (e.g., groundwater flow) and

spatial continuity models for heterogeneous

properties. The variability of heterogeneous
properties is modeled in a form motivated by
statistical physics as a Markov random field. A
computer reconstruction of targets of interest is
produced within a quantified statistical uncertainty.
The computed uncertainty provides a rational basis
for identifying data gaps for assessing data worth to
optimize. data acquisition. Further, the computed
uncertainty provides a. .way to determine the

confidence of achieving adequate safety margins in’

engineering design. Beyond design, Data Fusion
provides the basis for real time computer monitoring
of remediation.

Working with the DOE Office of

Technology (OTD), we have developed and patented. -

a Data Fusion Workstation system that has been used
on jobs at the Hanford, Savannah River, Pantex and
Fernald DOE sites. Further, applications include an
army depot at Letterkenney, PA and commercial
industrial sites.

INTRODUCTION

Engineering projectsinvolving hydrogeology
are often driven by uncertainties. For activities such
as environmental remediation or location of waste
management facilities, cost effective solutions often

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITES

hydrogeology is known. For example, to create a
plume capture zone, answers are needed to questions
about the number, depth, location and pumping
schedules for purge wells. Computer simulation
based on hydrogeological models provides answers.
In theory, simulation can provide real-time
monitoring of remediation so a plume can be "seen"
as it is being cleaned up. But simulation is only as
good as its geological and parametric inputs. The
earth is very heterogeneous, and typical data sets are
fragmented and disparate so there are substantial
uncertainties.

Currently, environmental engineers do not
have adequate tools to quantify uncertainty so they
often rely solely on their judgement to build in
sufficient safety margins. This tends to lead to overly
conservative decisions that are often inordinately
expensive. Data Fusion has value added as an
engineering decision tool that quantifies uncertainty.
In order to quantify uncertainty, fusion uses models
in two different ways. First, models provide physical
and statistical relationships between fragmented and
disparate data sets, and fusion uses these relationships
to extract geological and parametric information.
Second, models are used in computer simulation of
remediation (e.g., to track plume movement) where
the simulation is based on geological and parametric
inputs. Data Fusion and modeling will become even
more important as new technology provides
additional data sources to describe the sites
subsurface materials and the pollutants that may be
passing through them. This has already happened in
numerical weather prediction and physical
oceanography.

With reduced cleanup budgets and ever
increasing movement towards more comprehensive
risk assessment with predictive models having
quantified uncertainties, Data Fusion and modeling
are technologies for the times. Using Data Fusion and -
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modeling, decision makers have a quantitative basis
for action so the following benefits can be realized:

. Enables remedial simulation to optimize
cleanup. Remediation solutions can be
exercised in the computer to match
quantified safety margins.

s Enables - real-time monitoring during
remediation. Contaminant plumes can be
continuously monitored while they are being

cleaned up.

. Provides quantitative basis for cost
reduction/avoidance.

. Establishes data worth, before expending

funds for field data acquisition, to determine
if reduction in uncertainty pays for the cost
of acquisition. B
J Derives the most out of existing data sets to
avoid cost of unnecessary acquisition.

Data Fusion and modeling have a solid
foundation in the hydrogeological community. Freeze
etal. published a framework for hydrogeological
decision analysis in references 1 to 4. A pragmatic
engineering approach to decision making is described
that balances benefits, costs, and uncertainties. We
have adopted the decision analysis viewpoint and
approach in our Data Fusion as shown in Figure 1.1.
Engineers face uncertainty in parameters (such as
hydraulic conductivity) and in the geometry of the
problem through the geology. Data Fusion quantifies
geological and parametric uncertainty. As shown in
Figure 1.1, hydrogeological simulation is performed
(e.g., to see plume movement) using geological and
parametric inputs. Fusion propagates geological and
parametric uncertainties through the simulation so the
confidence in plume movement is quantified.
Engineering reliability uncertainties in the engineered
components of remediation also enter into decisions,
but the hydrogeological uncertainties usually
dominate.
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Figure 1.1 Data Fusion Role in Decision Analysis

2. THEORY

A Data Fusion perspective is presented,
beginning with the hydrogeological foundation. Data
assimilation is described 4s a starting point for fusion.
Then the following fusion methods are described:
Markov Random Field (MRF) model, Square Root
Information Smoother (SRIS), and Generalized
Expectation Maximization (GEM) method.

The methodology of references 1 to 4 views
hydrogeology as a predictive science that must
incorporate the fundamental heterogeneity of the
subsurface. Consequently, hydraulic conductivity is
treated as an autocorrelated spatial stochastic process
so the variability and spatial continuity of the
conductivity is modeled.

Bayesian estimation is performed, but Freeze
et al. point out that a limitation of the Bayesian
approach is the application of inverse modeling. Data
assimilation methods incorporate inverse modeling in
a fundamental way, but they are too numerically
demanding for practical applications (see Ref. 5).
Consequently, it is not practical to combine all the
important data sets to reduce and quantify the
uncertainty in the subsurface. Data Fusion resolves
this limitation by building on data assimilation to
produce a full inverse modeling approach that is
numerically practical.

Data assimilation methods -are well
established in numerical weather prediction, have
moved into physical oceanography and are being
established in hydrogeology (see Refs. 5 to 8). The
methods take many forms from adjoint to variational
to Kalman filtering.

OurData Fusion approach provides Bayesian
inverse modeling as shown in Figure 2.1. It begins
with prior knowledge about the state variables to be ~




estimated in the form of first principles models,
spatial continuity models in the form of spatial
stochastic processes, and uncertain initial conditions.
Fusion performs Bayesian updates using measured
data and data models as the data is acquired.
Posterior state knowledge is produced in the form of
state estimates with quantified uncertainties. Residual
model fit errors are used as diagnostics to detect
discontinuities, perform data validation, and to tune
prior statistics such as spatial correlation distances
and standard deviations.

Our methods are mathematically equivalent

to the Kalman filter. However, we represent spatial

stochastic processes using a Markov Random Field
(MRF) borrowed from statistical physics (see Ref. 9).
By generalizing the Square Root Information
Smoother (SRIS) presented by Bierman (Ref. 10),
the MRF is incorporated to produce a numerically:
practical  solution. A complete theoretical
development of the Data Fusion theory with a
description of the Data Fusion System (DFS) software

architecture is found in Reference 11.
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Figure 2.1 Data Fusion Modeling Uses Bayesian
Statistics

Data Assimilation
McLaughlin points out in Reference 5 that

many of the data assimilation techniques can be .

viewed as special cases of the Kalman filter. The
Kalman filter provides Bayesian inverse modeling
viewing heterogeneities as spatial stochastic processes
as needed by the hydrogeological decision analysis
methodology. The Kalman filter also includes a
model error noise to account for approximation errors
in the first principles models used for inverse
modeling. Consequently, the Kalman filter produces
a solution that honors the data within measurement
error noise, the first principles models within model

error noise, and spatial continuity within the spatial
autocorrelation.

The inclusion of model noise is important to
achieve predictive modeling: with = quantified
unicertainty. Applicationsina variqty; of communities
have shown the necessity of recognizing that models
have noise just like data. For example, satellite orbit
determination - filters required ad hoc fix wup
procedures before model noise was used to account
for solar wind and gravity disturbances (see
Reference 10). Sensor mixing for inertial navigation
uses model noise for inertial instrument drift and
environmental disturbances like gravity errors and, in
marine applications, ocean current disturbances-(see
Reference 10).

The inverse problem can be formulated in a
geostatistical or indirect iterative manner as shown in
Reference 8. Once statistical correlations are
established between measurements and variables to be
estimated, the geostatistical approach computes the
best linear estimate in one step. The indirect iterative
approach iteratively minimizes a least squares penalty
function that penalizes data/model mismatches,
excessive model error and, excessive variability in
heterogeneous variables. Reference 8 shows that the
geostatistical approach is mathematically equivalent
to one step of the iterative approach. By iterating to
convergence, the iterative approach can provide better
estimates and better quantification of uncertainties
because it is a nonlinear estimator not subject to the
linear restriction of the geostatistical approach.

The difficulty with current data assimilation
methods is that they are too numerically demanding
for practical application. We have formulated the
Data Fusion to be numerically practical and to retain
the desirable features of the data assimilation
methods. - In fact, Data Fusion can be viewed as a
data assimilation method that is numefically practical -
in today's UNIX workstations or Pentium class PCs.

Data Fusion -

Our methods are mathematically equivalent
to the Kaiman filter, using the Square Root
Information Smoother (SRIS) to produce a
numerically practical solution. Model noise is
incorporated in order to provide a complete predictive
modeling capability. Data Fuston is formulated as an
indirect iterative method to achieve the best state
estimates and quantification of uncertainty.

The key to achieving a numerically practical
approach is to return to the basics of spatial
stochastic processes. The Kalman filter has difficulty ~




with spatial processing because it uses a causality
property to break large processing problems down
into a sequence of smaller problems. Causality means
that there is a past causing a future. Causality is.a

powerful property for processes that evolve in time .

where there is a past and a future. But causality does
not work in space.

-The Kalman filter was formulated as a
generalization of the Wiener filter to incorporate
physical models and to be in a form more suitable for
computer implementation. But the Wiener filter does
not require causality so causality is not an inherent
restriction. Wiener's original work and the field of

statistical physics are closely tied together. It is -

through statistical physics that we find the
replacement for causality in the concept of a Markov
Random Field (MRF) to make computations
practical. . .

Markov Random Field (MRF)

The connection between Bayesian estimation
and statistical physics MRF ideas was made in the

computer vision community in References 9, 12 and

13. The MRF provides a way to model large scale
statistical structure using only local computations.
This means that large unmanageable spatial
processing problems can be broken down into smaller
local problems that are practical to compute.

MRF models are used in statistical physics
for such problems as chemical annealing to determine
lowest energy states. This has a direct analogy to
Bayesian inverse modeling in- determining the
minimum value of a least squares penalty function for
the indirect iterative method. In computer vision,
MRF methods are used as the basis for Data Fusion
solutions for stereo vision, shape determination from
shading data, tracking object motion, and
tomographic image reconstruction. - - However,
computer vision uses the technique of stochastic
relaxation to do the actual computing, but we use the
SRIS technique.

Square Root Information Smoother (SRIS)

We start with the representation of an-MRF
as a spatial autoregression (see Reference 14). The
autoregression has a local computational form that
expresses the MRF as an interpolation of nearby
values plus an interpolation error that is uncorrelated
over space.

The autoregression puts the MRF in a form
compatible with the data equation idea used by
Bierman for the SRIS (in Reference 10). Bierman
used the data equation to express prior knowledge on

first principles models and statistical correlations as
pseudo-data as if it were just more data for doing
Bayesian estimation. Since the pseudo-data and data
models are.all local in space, the processing can be
broken down sequentially in space so it becomes
practical.

The SRIS has many possible forms
depending on the specific details of how data and
pseudo-data are represented. In fact, the SRIS is
actually a family of algorithms that can be designed
according to a set of information principles (see
Reference 15). The nonlinear iteration to produce the
indirect iterative solution is provided by the Trust
Region method for numerical optimization (see
Reference 16) with the option of a Gauss-Newton
step halving method.

Generalized Expectation Maximization (GEM)
Method

The GEM method provides a practical means
to tune statistical parameters in order to adjust prior
knowledge based on the data themselves as shown in
Figure 2.1. GEM is mathematically equivalent to the
likelihood approach for estimating statistical
parameters described in Reference 8. The approach
used to calibrate system noise for groundwater
simulations by Van Geer, et. al. in Reference 17 is
similar in concept to GEM. But GEM is much more
flexible and provides statistically optimal maximum
likelihood estimates for statistical parameters such as
spatial correlation distance and standard deviation.

GEM views the measured data as incomplete
data for the purpose of estimating the statistical
parameters (see Reference 18). A complete data set
is specified from which the parameters could easily

- have been estimated if the complete data had been -

measured. Then a sufficient statistic of the complete
data is estimated in an expectation step based on
starting values for the parameters being tuned. The
parameters are updated based on the sufficient

-statistic in a likelihood maximization step and the
_process is. iterated. GEM has desirable statistical

convergence properties, has been used in a host of
agricultural, economic and scientific applications (see
Reference 18), and used for military, scientific and
image processing applications (See Reference 19).

HANFORD APPLICATION i

Data Fusion modeling was applied at the
Hanford 200 West Area. The objective was to map a
thin caliche layer 30 to 40 meters below the surface.
Scattered well data with caliche picks was provided
by the Hanford site. In order to obtain a more”




detailed characterization, a geophysical survey was
conducted to obtain densely spaced non-intrusive
data, The survey -design consisted of four seismic
reflection and refraction lines which-are shown in
Figure 3.1. Figure 3.1 shows the Data Fusion results
using the seismic measurements and well picks in the
Hanford 200 West area. The top-of the caliche layer,
a possible barrier to contaminants, is shown at the
bottom of the chair cut. Top of caliche picks were
obtained from 25 welis. The individual interpretations
for seismic reflection data, without checkshot
information, provide almost no information on the
caliche. Using reflection data alone, inadequate
seismic velocity information was available to interpret
travel times as depths to-the caliche. The caliche did
not support a refraction so no depth information was
available from the refraction measurements. Data
Fusion by jointly processing all of the data uses
seismi¢ velocity information from the refraction
measurements to interpret the reflection travel times
as depths. This demonstrates the value added by the
ability of Data Fusion to produce a complete picture
from multiple sensors that md1v1dually have -only
partial visibility of a subsurface feature.

Seismic Reflection arid
Refraction Lines

1 Sigma
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Y
Figure 3.1 Hanford 200 West Sife Caliche
Delineation
4. PANTEX APPLICATION

A groundwater model was calibrated using
Data Fusion modeling for a perched aquifer under
Zone 12 at Pantex using hydraulic head data, slug
tests, and recharge information. A steady-state finite-
difference model was used that is similar to the
USGS MODFLOW model and is called MODLIKE.
A good model fit was achieved with an RMS head
residual of only .4 feet. Hydraulic conductivity
heterogeneity was estimated in order to provide flow
pathlines shown in figure 4.1 with confidence within
the region of data coverage.

As the conceptual model was modified to
improve results, fusion converged rapidly for each
conceptual model. Generally it-took 8 or 9 numerical
iterations at approximately 15 minutes of Indigo Il
time. This means that fusion modeling is fast enough
to be used for real time field model updating. This
provides a capability that has never before been
possible with conventional manual model calibration.

Egme 4.1 Head Contours (ff) And Pathlines
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