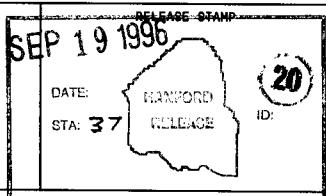
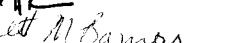
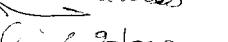
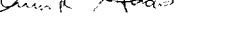


## ENGINEERING CHANGE NOTICE


Page 1 of 31. ECN 630806  
Proj. ECN




|                                                                                                                                                                                                                                                                                                         |                                                                                                                                                             |                                                                         |                                                                                  |                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| 2. ECN Category<br>(mark one)<br><br>Supplemental<br>Direct Revision <input checked="" type="checkbox"/><br>Change ECN <input type="checkbox"/><br>Temporary <input type="checkbox"/><br>Standby <input type="checkbox"/><br>Supersede <input type="checkbox"/><br>Cancel/Void <input type="checkbox"/> | 3. Originator's Name, Organization, MSIN,<br>and Telephone No.<br><br>Chris Haas, Acceptance,<br>Compliance, and Environmental<br>Services, T3-05, 372-0510 | 3a. USA Required?<br><br>[ ] Yes <input checked="" type="checkbox"/> No | 4. Date<br><br>September 5,<br>1996                                              |                                                                                                                       |
|                                                                                                                                                                                                                                                                                                         | 5. Project Title/No./Work Order No.<br><br>Low-Level Burial Grounds Waste<br>Analysis Plan                                                                  | 6. Bldg./Sys./Fac. No.<br><br>Low-Level Burial<br>Grounds               | 7. Approval Designator<br><br>E                                                  |                                                                                                                       |
|                                                                                                                                                                                                                                                                                                         | 8. Document Numbers Changed by this ECN<br>(includes sheet no. and rev.)<br><br>WHC-SD-EN-WAP-002, Rev. Q                                                   | 9. Related ECN No(s).<br><br>N/A                                        | 10. Related PO No.<br><br>N/A                                                    |                                                                                                                       |
|                                                                                                                                                                                                                                                                                                         | 11a. Modification Work<br><br>[ ] Yes (fill out Blk.<br>11b)<br>[X] No (NA Blks. 11b,<br>11c, 11d)                                                          | 11b. Work Package<br>No.<br><br>N/A                                     | 11c. Modification Work Complete<br><br>N/A<br><br>Cog. Engineer Signature & Date | 11d. Restored to Original Condi-<br>tion (Temp. or Standby ECN only)<br><br>N/A<br><br>Cog. Engineer Signature & Date |
|                                                                                                                                                                                                                                                                                                         | 12. Description of Change<br><br>Change document WHC-SD-EN-WAP-002, Rev. 0 to Rev. 1 (attached).                                                            |                                                                         |                                                                                  |                                                                                                                       |
|                                                                                                                                                                                                                                                                                                         |                                                                                                                                                             |                                                                         |                                                                                  |                                                                                                                       |

|                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13a. Justification (mark one)                                                                                                                                                                                                                                                                                                                                      |
| Criteria Change <input type="checkbox"/> Design Improvement <input type="checkbox"/> Environmental <input checked="" type="checkbox"/> Facility Deactivation <input type="checkbox"/><br>As-Found <input type="checkbox"/> Facilitate Const <input type="checkbox"/> Const. Error/Omission <input type="checkbox"/> Design Error/Omission <input type="checkbox"/> |

|                                                                                  |
|----------------------------------------------------------------------------------|
| 13b. Justification Details<br><br>Direct revision ECN, changes Rev. 0 to Rev. 1. |
|----------------------------------------------------------------------------------|

14. Distribution (include name, MSIN, and no. of copies)  
See distribution sheet attached. (EDT-619278)



| ENGINEERING CHANGE NOTICE                                                                                                                                                                                                       |                                                                                     |        |                                  |              |                                                                  | Page 2 of 3              |                               | 1. ECN (use no. from pg. 1)<br>630806 |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------|----------------------------------|--------------|------------------------------------------------------------------|--------------------------|-------------------------------|---------------------------------------|--|
| 15. Design Verification Required<br>[ ] Yes<br>[X] No                                                                                                                                                                           | 16. Cost Impact                                                                     |        |                                  | CONSTRUCTION |                                                                  |                          | 17. Schedule Impact (days)    |                                       |  |
|                                                                                                                                                                                                                                 | ENGINEERING                                                                         |        |                                  |              |                                                                  |                          | Improvement                   | N/A                                   |  |
| Additional                                                                                                                                                                                                                      | [ ]                                                                                 | \$ N/A | Additional                       | [ ]          | \$ N/A                                                           |                          |                               |                                       |  |
| Savings                                                                                                                                                                                                                         | [ ]                                                                                 | \$     | Savings                          | [ ]          | \$                                                               | Delay                    | [ ]                           | N/A                                   |  |
| 18. Change Impact Review: Indicate the related documents (other than the engineering documents identified on Side 1) that will be affected by the change described in Block 12. Enter the affected document number in Block 19. |                                                                                     |        |                                  |              |                                                                  |                          |                               |                                       |  |
| SDD/DD                                                                                                                                                                                                                          | N/A                                                                                 |        | Seismic/Stress Analysis          |              | [ ]                                                              |                          | Tank Calibration Manual       |                                       |  |
| Functional Design Criteria                                                                                                                                                                                                      | [ ]                                                                                 |        | Stress/Design Report             |              | [ ]                                                              |                          | Health Physics Procedure      |                                       |  |
| Operating Specification                                                                                                                                                                                                         | [ ]                                                                                 |        | Interface Control Drawing        |              | [ ]                                                              |                          | Spares Multiple Unit Listing  |                                       |  |
| Criticality Specification                                                                                                                                                                                                       | [ ]                                                                                 |        | Calibration Procedure            |              | [ ]                                                              |                          | Test Procedures/Specification |                                       |  |
| Conceptual Design Report                                                                                                                                                                                                        | [ ]                                                                                 |        | Installation Procedure           |              | [ ]                                                              |                          | Component Index               |                                       |  |
| Equipment Spec.                                                                                                                                                                                                                 | [ ]                                                                                 |        | Maintenance Procedure            |              | [ ]                                                              |                          | ASME Coded Item               |                                       |  |
| Const. Spec.                                                                                                                                                                                                                    | [ ]                                                                                 |        | Engineering Procedure            |              | [ ]                                                              |                          | Human Factor Consideration    |                                       |  |
| Procurement Spec.                                                                                                                                                                                                               | [ ]                                                                                 |        | Operating Instruction            |              | [ ]                                                              |                          | Computer Software             |                                       |  |
| Vendor Information                                                                                                                                                                                                              | [ ]                                                                                 |        | Operating Procedure              |              | [ ]                                                              |                          | Electric Circuit Schedule     |                                       |  |
| OM Manual                                                                                                                                                                                                                       | [ ]                                                                                 |        | Operational Safety Requirement   |              | [ ]                                                              |                          | ICRS Procedure                |                                       |  |
| FSAR/SAR                                                                                                                                                                                                                        | [ ]                                                                                 |        | IEFD Drawing                     |              | [ ]                                                              |                          | Process Control Manual/Plan   |                                       |  |
| Safety Equipment List                                                                                                                                                                                                           | [ ]                                                                                 |        | Cell Arrangement Drawing         |              | [ ]                                                              |                          | Process Flow Chart            |                                       |  |
| Radiation Work Permit                                                                                                                                                                                                           | [ ]                                                                                 |        | Essential Material Specification |              | [ ]                                                              |                          | Purchase Requisition          |                                       |  |
| Environmental Impact Statement                                                                                                                                                                                                  | [ ]                                                                                 |        | Fac. Proc. Samp. Schedule        |              | [ ]                                                              |                          | Tickler File                  |                                       |  |
| Environmental Report                                                                                                                                                                                                            | [ ]                                                                                 |        | Inspection Plan                  |              | [ ]                                                              |                          | [ ]                           |                                       |  |
| Environmental Permit                                                                                                                                                                                                            | [ ]                                                                                 |        | Inventory Adjustment Request     |              | [ ]                                                              |                          | [ ]                           |                                       |  |
| 19. Other Affected Documents: (NOTE: Documents listed below will not be revised by this ECN.) Signatures below indicate that the signing organization has been notified of other affected documents listed below.               |                                                                                     |        |                                  |              |                                                                  |                          |                               |                                       |  |
| Document Number/Revision                                                                                                                                                                                                        |                                                                                     |        | Document Number/Revision         |              |                                                                  | Document Number Revision |                               |                                       |  |
| N/A                                                                                                                                                                                                                             |                                                                                     |        |                                  |              |                                                                  |                          |                               |                                       |  |
| 20. Approvals                                                                                                                                                                                                                   |                                                                                     |        |                                  |              |                                                                  |                          |                               |                                       |  |
| Signature                                                                                                                                                                                                                       |                                                                                     |        | Date                             |              | Signature                                                        |                          |                               | Date                                  |  |
| OPERATIONS AND ENGINEERING                                                                                                                                                                                                      |                                                                                     |        | 9/12/96                          |              | ARCHITECT-ENGINEER                                               |                          |                               | 9/12/96                               |  |
| Cog. Eng. D. A. Pratt                                                                                                                                                                                                           |    |        | 9/12/96                          |              | PE                                                               |                          |                               |                                       |  |
| Cog. Mgr. D. B. Powell, Jr.                                                                                                                                                                                                     |    |        | 9/12/96                          |              | QA                                                               |                          |                               |                                       |  |
| QA N/A                                                                                                                                                                                                                          |                                                                                     |        |                                  |              | Safety                                                           |                          |                               |                                       |  |
| Safety N/A                                                                                                                                                                                                                      |                                                                                     |        |                                  |              | Design                                                           |                          |                               |                                       |  |
| Environ. K. M. McDonald                                                                                                                                                                                                         |    |        | 9/4/96                           |              | Environ.                                                         |                          |                               |                                       |  |
| P. L. Hapke                                                                                                                                                                                                                     |   |        | 9/19/96                          |              | Other                                                            |                          |                               |                                       |  |
| G. C. Triner                                                                                                                                                                                                                    |  |        | 9-5-96                           |              |                                                                  |                          |                               |                                       |  |
| P. J. Crane                                                                                                                                                                                                                     |  |        | 9/19/96                          |              |                                                                  |                          |                               |                                       |  |
| B. M. Barnes                                                                                                                                                                                                                    |  |        | 9-5-96                           |              | DEPARTMENT OF ENERGY                                             |                          |                               |                                       |  |
| R. D. Pierce                                                                                                                                                                                                                    |  |        | 9-6-96                           |              | Signature or a Control Number that tracks the Approval Signature |                          |                               |                                       |  |
| C. R. Haas                                                                                                                                                                                                                      |  |        | 9-5-96                           |              |                                                                  |                          |                               |                                       |  |
|                                                                                                                                                                                                                                 |                                                                                     |        |                                  |              | ADDITIONAL                                                       |                          |                               |                                       |  |

## ENGINEERING DATA TRANSMITTAL

|                                                            |  |                                                                                              |  |                                                        |  |
|------------------------------------------------------------|--|----------------------------------------------------------------------------------------------|--|--------------------------------------------------------|--|
| 2. To: (Receiving Organization)<br>Distribution            |  | 3. From: (Originating Organization)<br>Acceptance, Compliance, and<br>Environmental Services |  | 4. Related EDT No.:<br>N/A                             |  |
| 5. Proj./Prog./Dept./Div.:<br>Solid Waste Disposal - 87630 |  | 6. Cog. Engr.:<br>D. A. Pratt                                                                |  | 7. Purchase Order No.:<br>N/A                          |  |
| 8. Originator Remarks:<br>N/A                              |  |                                                                                              |  | 9. Equip./Component No.:<br>N/A                        |  |
|                                                            |  |                                                                                              |  | 10. System/Bldg./Facility:<br>Low-Level Burial Grounds |  |
| 11. Receiver Remarks:<br>N/A                               |  |                                                                                              |  | 12. Major Assm. Dwg. No.:<br>N/A                       |  |
|                                                            |  |                                                                                              |  | 13. Permit/Permit Application No.:<br>N/A              |  |
|                                                            |  |                                                                                              |  | 14. Required Response Date:<br>ASAP                    |  |

| 15. DATA TRANSMITTED |                          |                     |                    |                                                    | (F)                    | (G)                               | (H)                                 | (I)                               |
|----------------------|--------------------------|---------------------|--------------------|----------------------------------------------------|------------------------|-----------------------------------|-------------------------------------|-----------------------------------|
| (A)<br>Item<br>No.   | (B) Document/Drawing No. | (C)<br>Sheet<br>No. | (D)<br>Rev.<br>No. | (E) Title or Description of Data<br>Transmitted    | Approval<br>Designator | Reason<br>for<br>Trans-<br>mittal | Orig-<br>inator<br>Dispo-<br>sition | Receiv-<br>er<br>Dispo-<br>sition |
| 1                    | WHC-SD-EN-WAP-002        | N/A                 | 1                  | Low-Level Burial<br>Grounds Waste<br>Analysis Plan | E                      | 1                                 | 1                                   | 1                                 |
|                      |                          |                     |                    |                                                    |                        |                                   |                                     |                                   |
|                      |                          |                     |                    |                                                    |                        |                                   |                                     |                                   |
|                      |                          |                     |                    |                                                    |                        |                                   |                                     |                                   |
|                      |                          |                     |                    |                                                    |                        |                                   |                                     |                                   |
|                      |                          |                     |                    |                                                    |                        |                                   |                                     |                                   |
|                      |                          |                     |                    |                                                    |                        |                                   |                                     |                                   |

|                                                    |       |                                                                                 |                                                         |                          |                         |                   |                                                                                                                                      |          |          |                                |       |
|----------------------------------------------------|-------|---------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------|-------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------|----------|--------------------------------|-------|
| 16. KEY                                            |       |                                                                                 |                                                         |                          |                         |                   |                                                                                                                                      |          |          |                                |       |
| Approval Designator (F)                            |       | Reason for Transmittal (G)                                                      |                                                         |                          | Disposition (H) & (I)   |                   |                                                                                                                                      |          |          |                                |       |
| E, S, Q, D or N/A<br>(see WHC-CM-3-5,<br>Sec.12.7) |       | 1. Approval                                                                     | 4. Review                                               | 1. Approved              | 4. Reviewed no comment  |                   |                                                                                                                                      |          |          |                                |       |
|                                                    |       | 2. Release                                                                      | 5. Post-Review                                          | 2. Approved w/comment    | 5. Reviewed w/comment   |                   |                                                                                                                                      |          |          |                                |       |
|                                                    |       | 3. Information                                                                  | 6. Dist. (Receipt Acknow. Required)                     | 3. Disapproved w/comment | 6. Receipt acknowledged |                   |                                                                                                                                      |          |          |                                |       |
| (G)                                                | (H)   | 17. SIGNATURE/DISTRIBUTION<br>(See Approval Designator for required signatures) |                                                         |                          |                         |                   | (G)                                                                                                                                  | (H)      |          |                                |       |
| Reason                                             | Disp. | (J) Name                                                                        | (K) Signature                                           | (L) Date                 | (M) MSIN                | (J) Name          | (K) Signature                                                                                                                        | (L) Date | (M) MSIN | Reason                         | Disp. |
| 1                                                  | 1     | Cog. Eng. D. A. Pratt                                                           | <i>D. A. Pratt</i>                                      | T4-03                    |                         | P. J. Crane       | <i>P. J. Crane</i>                                                                                                                   | 9/11/96  | T4-03    | 3                              | 1     |
| 1                                                  | 1     | Cog. Mgr. D. B. Powell, Jr.                                                     | <i>D. B. Powell</i>                                     | T4-03                    |                         | B. M. Barnes      | <i>B. M. Barnes</i>                                                                                                                  | 9/11/96  | T4-03    | 1                              | 1     |
|                                                    |       | QA N/A                                                                          | <i>QA N/A</i>                                           | T4-03                    |                         | R. D. Pierce      | <i>R. D. Pierce</i>                                                                                                                  | 9/11/96  | T4-03    | 1                              | 1     |
|                                                    |       | Safety N/A                                                                      | <i>Safety N/A</i>                                       | T4-03                    |                         | C. R. Haas        | <i>C. R. Haas</i>                                                                                                                    | 9/11/96  | T4-03    | 1                              | 1     |
| 1                                                  | 2     | Env. K. M. McDonald                                                             | <i>K. M. McDonald</i>                                   | 9/17/96                  |                         | B. L. Oswald      | <i>B. L. Oswald</i>                                                                                                                  |          | T3-05    | 3                              |       |
| 1                                                  | 1     | P. L. Hapke                                                                     | <i>P. L. Hapke</i>                                      | T4-05                    | 9/19/96                 | K. L. Kirkpatrick | <i>K. L. Kirkpatrick</i>                                                                                                             |          | T3-05    | 3                              |       |
| 1                                                  | 1     | G. C. Triner                                                                    | <i>G. C. Triner</i>                                     | 9/15/96                  | T3-05                   | B. A. Mayancsik   | <i>B. A. Mayancsik</i>                                                                                                               |          | T3-05    | 3                              |       |
| 18.                                                |       | 19.                                                                             | T4-08                                                   | 20.                      |                         |                   |                                                                                                                                      |          |          | 21. DOE APPROVAL (if required) |       |
| Signature of EDT<br>Originator                     |       | Date                                                                            | Authorized Representative<br>for Receiving Organization | Cognizant Manager        |                         | Date              | <input type="checkbox"/> Approved<br><input type="checkbox"/> Approved w/comments<br><input type="checkbox"/> Disapproved w/comments |          |          |                                |       |

# Waste Analysis Plan for the Low-Level Burial Grounds

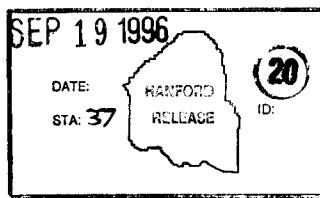
**Chris R. Haas**

Westinghouse Hanford Company, Richland, WA 99352  
U.S. Department of Energy Contract DE-AC06-87RL10930

EDT/ECN: 619278/630806 UC: 2000  
Org Code: 87600 Charge Code: A6W19  
B&R Code: EW3130020 Total Pages: 86

**Key Words:** Low-Level Burial Grounds, mixed waste, low-level waste, waste acceptance, waste designation, waste characterization, QA/QC, sampling and analysis, certification program summaries.

**Abstract:** This waste analysis plan (WAP) has been prepared for the Low-Level Burial Grounds (LLBG) which are located in the 200 East and West Areas of the Hanford Facility, Richland, Washington. This WAP documents the methods used to characterize, and obtain and analyze representative samples of waste managed at this unit.


---

**TRADEMARK DISCLAIMER.** Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.

Printed in the United States of America. To obtain copies of this document, contact: WHC/BCS Document Control Services, P.O. Box 1970, Mailstop H6-08, Richland WA 99352, Phone (509) 372-2420; Fax (509) 376-4989.

*Chris R. Bishop*  
Release Approval

9-19-96  
Date



Release Stamp

Approved for Public Release



This page intentionally left blank.

## CONTENTS

|    |                                                                   |      |
|----|-------------------------------------------------------------------|------|
| 1  | GLOSSARY . . . . .                                                | vii  |
| 2  | METRIC CONVERSION CHART . . . . .                                 | viii |
| 3  |                                                                   |      |
| 4  | 1.0 FACILITY DESCRIPTION . . . . .                                | 1-1  |
| 5  | 1.1 LOW-LEVEL BURIAL GROUNDS DESCRIPTION . . . . .                | 1-1  |
| 6  | 1.1.1 218-E-10 Burial Ground . . . . .                            | 1-1  |
| 7  | 1.1.2 218-W-12B Burial Ground . . . . .                           | 1-2  |
| 8  | 1.1.3 218-W-3A Burial Ground . . . . .                            | 1-2  |
| 9  | 1.1.4 218-W-3AE Burial Ground . . . . .                           | 1-2  |
| 10 | 1.1.5 218-W-4B Burial Ground . . . . .                            | 1-2  |
| 11 | 1.1.6 218-W-4C Burial Ground . . . . .                            | 1-2  |
| 12 | 1.1.7 218-W-5 Burial Ground . . . . .                             | 1-2  |
| 13 | 1.1.8 218-W-6 Burial Ground . . . . .                             | 1-3  |
| 14 | 1.1.9 Leachate Storage Tanks . . . . .                            | 1-3  |
| 15 | 1.2 DESCRIPTION OF THE LOW-LEVEL BURIAL GROUNDS PROCESS AND       |      |
| 16 | ACTIVITIES . . . . .                                              | 1-3  |
| 17 |                                                                   |      |
| 18 | 2.0 WASTE ACCEPTANCE PROGRAM . . . . .                            | 2-1  |
| 19 | 2.1 WASTE CERTIFICATION PROGRAM . . . . .                         | 2-1  |
| 20 | 2.1.1 Waste Certification Information . . . . .                   | 2-1  |
| 21 | 2.1.2 Waste Characterization . . . . .                            | 2-1  |
| 22 | 2.1.3 Process Knowledge . . . . .                                 | 2-3  |
| 23 | 2.1.4 Sampling and Analysis . . . . .                             | 2-3  |
| 24 | 2.1.5 Analytical Methodologies . . . . .                          | 2-3  |
| 25 | 2.2 PRE-SHIPMENT REVIEW . . . . .                                 | 2-4  |
| 26 | 2.2.1 Pre-Shipment Review Process . . . . .                       | 2-4  |
| 27 | 2.2.2 Methodology to Ensure Compliance with Land Disposal         |      |
| 28 | Restrictions Requirements . . . . .                               | 2-4  |
| 29 | 2.3 WASTE VERIFICATION . . . . .                                  | 2-5  |
| 30 | 2.4 CORRECTIVE ACTIONS . . . . .                                  | 2-7  |
| 31 | 2.4.1 Manifest Discrepancies . . . . .                            | 2-7  |
| 32 | 2.4.2 Nonconformances . . . . .                                   | 2-8  |
| 33 | 2.4.3 Resolution of Nonconformances . . . . .                     | 2-8  |
| 34 | 2.4.4 Corrective Actions to Meet Land Disposal Restriction        |      |
| 35 | Standards . . . . .                                               | 2-9  |
| 36 | 2.4.5 Periodic Evaluation of Nonconformances . . . . .            | 2-11 |
| 37 | 2.5 ACCEPTING THE WASTE . . . . .                                 | 2-11 |
| 38 | 2.6 MANIFEST SYSTEM . . . . .                                     | 2-12 |
| 39 | 2.7 TRACKING SYSTEM . . . . .                                     | 2-13 |
| 40 | 2.8 ADDITIONAL REQUIREMENTS FOR WASTE GENERATED OFFSITE . . . . . | 2-13 |
| 41 | 2.9 METHODOLOGY FOR IGNITABLE, REACTIVE, OR                       |      |
| 42 | INCOMPATIBLE WASTE . . . . .                                      | 2-13 |
| 43 |                                                                   |      |
| 44 | 3.0 SAMPLING METHODOLOGY . . . . .                                | 3-1  |
| 45 | 3.1 SAMPLING METHODOLOGY . . . . .                                | 3-1  |
| 46 | 3.2 SAMPLING STRATEGIES . . . . .                                 | 3-1  |
| 47 | 3.2.1 Container Sampling . . . . .                                | 3-1  |
| 48 | 3.2.2 Point of Generation Sampling (Bulk Loads) . . . . .         | 3-2  |

1                   **CONTENTS (cont)**  
2  
3

|                                                                                            |     |
|--------------------------------------------------------------------------------------------|-----|
| 4                   3.2.3 Collected Leachate Sampling . . . . .                            | 3-2 |
| 5                   3.3 LAND DISPOSAL RESTRICTED WASTE SAMPLING . . . . .                  | 3-2 |
| 6                                                                                          |     |
| 7                   4.0 QUALITY ASSURANCE AND QUALITY CONTROL PROGRAM . . . . .            | 4-1 |
| 8                    4.1 OBJECTIVES OF THE WASTE ANALYSIS PROGRAM . . . . .                | 4-1 |
| 9                    4.2 DATA QUALITY OBJECTIVES . . . . .                                 | 4-1 |
| 10                  4.3 FIELD QUALITY ASSURANCE AND QUALITY CONTROL . . . . .              | 4-1 |
| 11                  4.4 LABORATORY QUALITY ASSURANCE AND QUALITY CONTROL . . . . .         | 4-1 |
| 12                                                                                         |     |
| 13                  5.0 SPECIAL REQUIREMENTS FOR LAND DISPOSAL RESTRICTION WASTE . . . . . | 5-1 |
| 14                                                                                         |     |
| 15                  6.0 RECORDKEEPING . . . . .                                            | 6-1 |
| 16                                                                                         |     |
| 17                  7.0 REFERENCES . . . . .                                               | 7-1 |
| 18                                                                                         |     |
| 19                                                                                         |     |
| 20                                                                                         |     |
| 21                                                                                         |     |
| 22                                                                                         |     |
| 23                                                                                         |     |

**APPENDICES**

|                                                                                                                        |         |
|------------------------------------------------------------------------------------------------------------------------|---------|
| 24                  A ANALYTICAL PROCEDURES AND RATIONALE . . . . .                                                    | APP A-i |
| 25                                                                                                                     |         |
| 26                  B TOTAL ORGANIC HALIDES SCREENING FOR INCOMING WASTE<br>27                    ACCEPTANCE . . . . . | APP B-i |
| 28                                                                                                                     |         |
| 29                  C FINGERPRINT PARAMETER SELECTION . . . . .                                                        | APP C-i |
| 30                                                                                                                     |         |
| 31                                                                                                                     |         |
| 32                                                                                                                     |         |

**FIGURES**

|                                                                                                                                    |       |
|------------------------------------------------------------------------------------------------------------------------------------|-------|
| 33                  1-1. Locations of Low-Level Burial Grounds in the 200 East Area . . . . .                                      | F1-1  |
| 34                  1-2. Locations of Low-Level Burial Grounds in the 200 West Area . . . . .                                      | F1-2  |
| 35                  1-3. 218-E-10 Burial Ground . . . . .                                                                          | F1-3  |
| 36                  1-4. 218-E-12B Burial Ground . . . . .                                                                         | F1-4  |
| 37                  1-5. 218-W-3A Burial Ground . . . . .                                                                          | F1-5  |
| 38                  1-6. 218-W-3AE Burial Ground . . . . .                                                                         | F1-6  |
| 39                  1-7. 218-W-4B Burial Ground . . . . .                                                                          | F1-7  |
| 40                  1-8. 218-W-4C Burial Ground . . . . .                                                                          | F1-8  |
| 41                  1-9. 218-W-5 Burial Ground . . . . .                                                                           | F1-9  |
| 42                  1-10. Typical Resource Conservation and Recovery Act-Compliant<br>43                    Liner System . . . . . | F1-10 |
| 44                  1-11. 218-W-6 Burial Ground . . . . .                                                                          | F1-11 |
| 45                  1-12. Typical Leachate Storage Tank for Trenches 31 and 34 . . . . .                                           | F1-12 |
| 46                                                                                                                                 |       |
| 47                                                                                                                                 |       |
| 48                                                                                                                                 |       |
| 49                                                                                                                                 |       |

1  
2  
3  
4  
5  
6  
7

**TABLES**

|                                                                                           |      |
|-------------------------------------------------------------------------------------------|------|
| 3-1. Low-Level Burial Ground Sampling Methods . . . . .                                   | T3-1 |
| 4-1. Low-Level Burial Ground Data Quality Objectives for Waste Analysis Program . . . . . | T4-1 |

1  
2  
3  
4  
5

This page intentionally left blank.

## **GLOSSARY**

## ACRONYMS

|    |          |                                                                    |
|----|----------|--------------------------------------------------------------------|
| 6  | ALARA    | as low as reasonably achievable                                    |
| 7  | ASTM     | American Society for Testing and Materials                         |
| 8  |          |                                                                    |
| 9  | COLIWASA | composite liquid waste sampler                                     |
| 10 | CFR      | Code of Federal Regulations                                        |
| 11 |          |                                                                    |
| 12 | DD       | direct disposal                                                    |
| 13 | DOE-RL   | U.S. Department of Energy, Richland Operations Office              |
| 14 | DQO      | data quality objective                                             |
| 15 |          |                                                                    |
| 16 | Ecology  | Washington State Department of Ecology                             |
| 17 | EPA      | U.S. Environmental Protection Agency                               |
| 18 |          |                                                                    |
| 19 | FR       | Federal Register                                                   |
| 20 |          |                                                                    |
| 21 | HOC      | halogenated organic compound                                       |
| 22 |          |                                                                    |
| 23 | IH       | industrial hygienist                                               |
| 24 |          |                                                                    |
| 25 | LDR      | land disposal restriction                                          |
| 26 | LLBG     | Low-Level Burial Grounds                                           |
| 27 |          |                                                                    |
| 28 | mrem     | millirem (roentgen equivalent man)                                 |
| 29 | MSDS     | material safety data sheet                                         |
| 30 | MW       | mixed waste                                                        |
| 31 |          |                                                                    |
| 32 | OVA      | organic vapor analyzer                                             |
| 33 |          |                                                                    |
| 34 | PCB      | polychlorinated biphenyl                                           |
| 35 | pH       | negative concentration logarithm of the hydrogen-ion concentration |
| 36 |          |                                                                    |
| 37 |          |                                                                    |
| 38 | QA/QC    | quality assurance and quality control                              |
| 39 |          |                                                                    |
| 40 | RCRA     | Resource Conservation and Recovery Act of 1976                     |
| 41 |          |                                                                    |
| 42 | TCLP     | toxicity characteristics leaching procedure                        |
| 43 | TOX      | total organic halides                                              |
| 44 |          |                                                                    |
| 45 | VOC      | volatile organic compound                                          |
| 46 |          |                                                                    |
| 47 | WAC      | Washington Administrative Code                                     |
| 48 |          |                                                                    |
| 49 | °C       | degrees Celsius                                                    |
| 50 | °F       | degrees Fahrenheit                                                 |

1  
2  
3  
4  
5  
6  
7  
8  
9  
METRIC CONVERSION CHART10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
2 The following conversion chart is provided to the reader as a tool to aid  
in conversion.10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
2  
3  
4  
5  
6  
7  
8  
9  
Into metric units10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
2  
3  
4  
5  
6  
7  
8  
9  
Out of metric units

| If you know          | Multiply by                         | To get             | If you know        | Multiply by                     | To get        |
|----------------------|-------------------------------------|--------------------|--------------------|---------------------------------|---------------|
| <b>Length</b>        |                                     |                    |                    |                                 |               |
| inches               | 25.40                               | millimeters        | millimeters        | 0.0393                          | inches        |
| inches               | 2.54                                | centimeters        | centimeters        | 0.393                           | inches        |
| feet                 | 0.3048                              | meters             | meters             | 3.2808                          | feet          |
| yards                | 0.914                               | meters             | meters             | 1.09                            | yards         |
| miles                | 1.609                               | kilometers         | kilometers         | 0.62                            | miles         |
| <b>Area</b>          |                                     |                    |                    |                                 |               |
| square inches        | 6.4516                              | square centimeters | square centimeters | 0.155                           | square inches |
| square feet          | 0.092                               | square meters      | square meters      | 10.7639                         | square feet   |
| square yards         | 0.836                               | square meters      | square meters      | 1.20                            | square yards  |
| square miles         | 2.59                                | square kilometers  | square kilometers  | 0.39                            | square miles  |
| acres                | 0.404                               | hectares           | hectares           | 2.471                           | acres         |
| <b>Mass (weight)</b> |                                     |                    |                    |                                 |               |
| ounces               | 28.35                               | grams              | grams              | 0.0352                          | ounces        |
| pounds               | 0.453                               | kilograms          | kilograms          | 2.2046                          | pounds        |
| short ton            | 0.907                               | metric ton         | metric ton         | 1.10                            | short ton     |
| <b>Volume</b>        |                                     |                    |                    |                                 |               |
| fluid ounces         | 29.57                               | milliliters        | milliliters        | 0.03                            | fluid ounces  |
| quarts               | 0.95                                | liters             | liters             | 1.057                           | quarts        |
| gallons              | 3.79                                | liters             | liters             | 0.26                            | gallons       |
| cubic feet           | 0.03                                | cubic meters       | cubic meters       | 35.3147                         | cubic feet    |
| cubic yards          | 0.76                                | cubic meters       | cubic meters       | 1.308                           | cubic yards   |
| <b>Temperature</b>   |                                     |                    |                    |                                 |               |
| Fahrenheit           | subtract 32 then multiply by 5/9ths | Celsius            | Celsius            | multiply by 9/5ths, then add 32 | Fahrenheit    |

39  
40  
41  
Source: *Engineering Unit Conversions*, M. R. Lindeburg, PE., Second Ed.,  
1990, Professional Publications, Inc., Belmont, California.

1                   1.0 FACILITY DESCRIPTION  
2  
3  
4

5                   The purpose of this waste analysis plan (WAP) is to document the waste  
6                   acceptance process, sampling methodologies, analytical techniques, and overall  
7                   processes that are undertaken for waste accepted for disposal at the Low-Level  
8                   Burial Grounds (LLBG) which are located in the 200 East and 200 West Areas of  
9                   the Hanford Facility, Richland, Washington. Because dangerous waste does not  
10                   include the source, special nuclear, and by-product material components of  
11                   mixed waste, radionuclides are not within the scope of this documentation.  
12                   The information on radionuclides is provided only for general knowledge.  
13  
14

14                   1.1 LOW-LEVEL BURIAL GROUNDS DESCRIPTION  
15

16                   The LLBG are classified as a landfill and cover a total area of  
17                   approximately 225.0 hectares. The landfill is divided into eight burial  
18                   grounds. Two of the burial grounds are located in the 200 East Area and six  
19                   are located in the 200 West Area as follows (Figures 1-1 and 1-2):  
20

| <u>200 East Area</u> | <u>200 West Area</u> |
|----------------------|----------------------|
| 218-E-10             | 218-W-3A             |
| 218-E-12B            | 218-W-3AE            |
|                      | 218-W-4B             |
|                      | 218-W-4C             |
|                      | 218-W-5              |
|                      | 218-W-6              |

30                   Trench configuration within a burial ground is subject to change as  
31                   disposal techniques improve or as waste management needs dictate. Mixed waste  
32                   is disposed in lined trenches or in unlined trenches that are exempt from the  
33                   liner/leachate collection system requirements. The unlined trenches are used  
34                   for radioactive waste disposal and are not subject to *Resource Conservation*  
35                   and *Recovery Act* (RCRA) of 1976 or Washington Administrative Code  
36                   (WAC) 173-303 regulations.  
37

38                   The following sections provide a brief description of the individual  
39                   burial grounds as well as identifying the generic types of waste disposed in  
40                   the LLBG. The LLBG operating organization maintains an electronic database  
41                   that documents each waste receipt and the type and location of waste disposed  
42                   in the LLBG.  
43  
44

45                   1.1.1 218-E-10 Burial Ground  
46

47                   The 218-E-10 Burial Ground (Figure 1-3) began receiving waste in 1960,  
48                   and covers approximately 36.1 hectares. Examples of waste placed in this  
49                   burial ground include failed equipment, rags, paper, rubber gloves, disposable  
50                   supplies, and broken tools.  
51  
52

1   1.1.2 218-E-12B Burial Ground  
2

3       The 218-E-12B Burial Ground (Figure 1-4) is approximately 68 hectares in  
4       size and began receiving waste in 1967. Examples of waste placed in this  
5       burial ground includes reactor compartments (trench 94), low-level waste, and  
6       retrievable transuranic waste.

7  
8   1.1.3 218-W-3A Burial Ground  
9

10      The 218-W-3A Burial Ground (Figure 1-5) began receiving waste in 1970,  
11     and covers approximately 20.4 hectares. Examples of waste placed in this  
12     burial ground include ion exchange resins, failed equipment, tanks, pumps,  
13     ovens, agitators, heaters, hoods, jumpers, vehicles, accessories, retrievable  
14     transuranic waste, and post-November 23, 1987 RCRA and state-only designated  
15     mixed waste.

16  
17  
18   1.1.4 218-W-3AE Burial Ground  
19

20      The 218-W-3AE Burial Ground (Figure 1-6) began receiving waste in 1981,  
21     and covers approximately 20.0 hectares. Examples of waste placed in this  
22     burial ground include rags, paper, rubber gloves, disposable supplies, broken  
23     tools, and post-November 23, 1987 RCRA and state-only designated mixed waste.

24  
25  
26   1.1.5 218-W-4B Burial Ground  
27

28      The 218-W-4B Burial Ground (Figure 1-7) began receiving waste in 1968,  
29     and covers approximately 3.5 hectares. Examples of waste placed in this  
30     burial ground include rags, paper, rubber gloves, disposable supplies, broken  
31     tools, alpha caissons, and retrievable transuranic waste. This burial ground  
32     is no longer receiving waste for disposal.

33  
34  
35   1.1.6 218-W-4C Burial Ground  
36

37      The 218-W-4C Burial Ground (Figure 1-8) is approximately 20 hectares in  
38     size and began receiving waste in 1978. Examples of waste placed in this  
39     unlined burial ground include contaminated soil, decommissioned pumps,  
40     pressure vessels, transuranic waste, and post-November 23, 1987 RCRA and  
41     state-only designated mixed waste.

42  
43  
44   1.1.7 218-W-5 Burial Ground  
45

46      The 218-W-5 Burial Ground (Figure 1-9) began receiving waste in 1986 and  
47     covers approximately 37.2 hectares. Examples of waste placed in this burial  
48     ground include rags, paper, rubber gloves, disposable supplies, broken tools,  
49     and post-November 23, 1987 RCRA and state-only designated mixed waste. This  
50     burial ground currently contains double-lined mixed waste trenches  
51     (trenches 31 and 34) (Figure 1-10). Adjacent to the double-lined mixed waste

1 | trenches are leachate collection tanks. Examples of waste to be placed in the  
2 | double-lined mixed waste trenches include dangerous waste that has been  
3 | treated to meet LDR requirements (including bulk waste), macro-encapsulated  
4 | long-length contaminated equipment, etc.

5 |

6 |

#### 7 | 1.1.8 218-W-6 Burial Ground

8 |

9 | The 218-W-6 Burial Ground (Figure 1-11) is approximately 16 hectares in  
10 | size, has not received any waste, and is reserved for future mixed waste  
11 | disposal.

12 |

13 |

#### 14 | 1.1.9 Leachate Storage Tanks

15 |

16 | The LLBG mixed waste disposal trenches are supported by leachate  
17 | collection tanks (Figure 1-12). Typically, leachate collection tanks are  
18 | aboveground, carbon steel tanks, internally coated with an amine-cured epoxy.  
19 | The leachate collection tanks are located adjacent to the disposal trenches  
20 | and are provided with secondary containment (DOE/RL-88-20, Chapter 4.0,  
21 | Section 4.2.3.1). Secondary containment exists for all feed piping. The  
22 | leachate collection tanks are provided with a portable enclosure to protect  
23 | the tank and secondary containment from the elements (i.e., rain, snow, etc.).

24 |

25 | The leachate collection tanks have a current design capacity of  
26 | 37,850 liters; however, future leachate collection tank capacity might change  
27 | to accommodate various sized lined trenches. The precise dimensions of  
28 | leachate collection tanks for trenches 31 and 34 are provided in the  
29 | construction quality assurance reports identified in DOE/RL-88-20, Chapter  
30 | 4.0.

31 |

32 |

### 33 | 1.2 DESCRIPTION OF THE LOW-LEVEL BURIAL GROUNDS PROCESS AND ACTIVITIES

34 |

35 | The LLBG are classified as a landfill and will be permitted under  
36 | WAC 173-303. The LLBG currently accept radioactive waste and mixed waste  
37 | according to the characteristics of the waste. All mixed waste is disposed in  
38 | lined mixed waste trenches or other approved alternatives. Waste accepted can  
39 | be either containerized or bulk solids. Leachate from lined trenches is  
40 | transferred to leachate collection tanks located in proximity to the lined  
41 | trenches. The LLBG receive mixed waste from onsite generating units or  
42 | offsite generators. Typical onsite generating units include research  
43 | laboratories, chemical and nuclear reprocessing units, decommissioning of  
44 | structures, waste retrieval and cleanup, waste sampling, etc. Typical offsite  
45 | generators include research laboratories, chemical and nuclear processing  
46 | plants, test sites, etc.

47 |

48 | Low-level radioactive waste received at the LLBG is placed in trenches  
49 | and covered with soil for permanent disposal. Mixed waste that meets LDR  
50 | requirements, as specified in 40 Code of Federal Regulations (CFR) Part 268  
51 | and WAC 173-303-140, is disposed in lined trenches with leachate collection  
52 | and removal systems. The Hanford Facility is required to test such waste to

1 ensure that the waste or treatment residuals are in compliance with applicable  
2 treatment standards. Such testing is performed according to the frequency  
3 specified in this WAP.

4  
5 Containerized transuranic waste has been placed in various trenches of  
6 the LLBG since May 1970. Transuranic waste containers were placed on asphalt  
7 pads on the bottom of the trenches or placed on plywood-lined trenches. An  
8 earthen cover over the trenches provides radiological protection. This waste  
9 eventually will be retrieved, processed, and disposed of in accordance with  
10 current federal and state requirements. The low-level portion of the  
11 transuranic waste will be returned to the LLBG and disposed of as low-level  
12 waste. This disposal might take place in the trenches in which the  
13 transuranic waste was removed. The pre-1987 low-level mixed waste portion of  
14 the transuranic waste will be disposed in lined trenches. The transuranic  
15 portion will be processed and prepared for offsite disposal. It is assumed  
16 that the retrieval of transuranic waste will be conducted and completed during  
17 the operational phase of the LLBG. No transuranic mixed waste has been placed  
18 into the LLBG since November 23, 1987.

19  
20 Two types of mixed waste currently are disposed in the LLBG under  
21 exemption allowed by WAC 173-303-806: remote-handled mixed waste and special  
22 waste (DOE/RL-88-20, Supplement 1, Rev. 1 and DOE/RL-90-12, Rev. 2). Special  
23 waste refers to waste requiring special handling or unusual waste such as  
24 decommissioned reactor vessels.

25  
26 Hanford Facility waste generating activities are conducted under a common  
27 U.S. Environmental Protection Agency (EPA)/State identification number  
28 (WA7890008967). All waste management activities carried out under the  
29 assigned identification number are considered to be 'onsite' as defined in  
30 WAC 173-303.

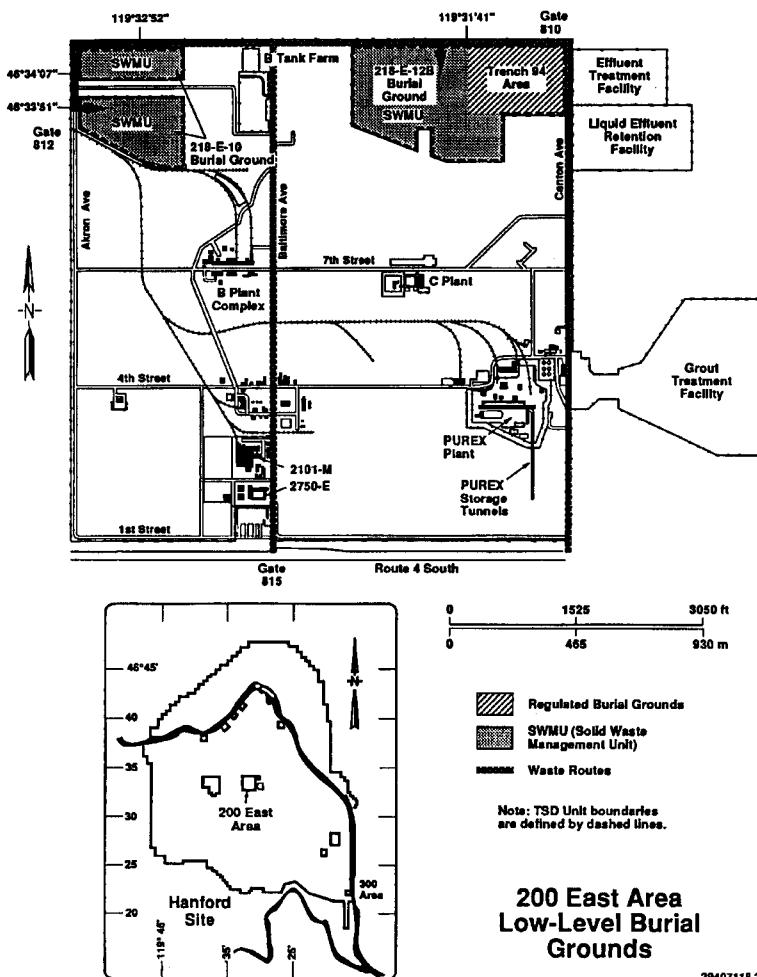



Figure 1-1. Locations of Low-Level Burial Grounds in the 200 East Area.

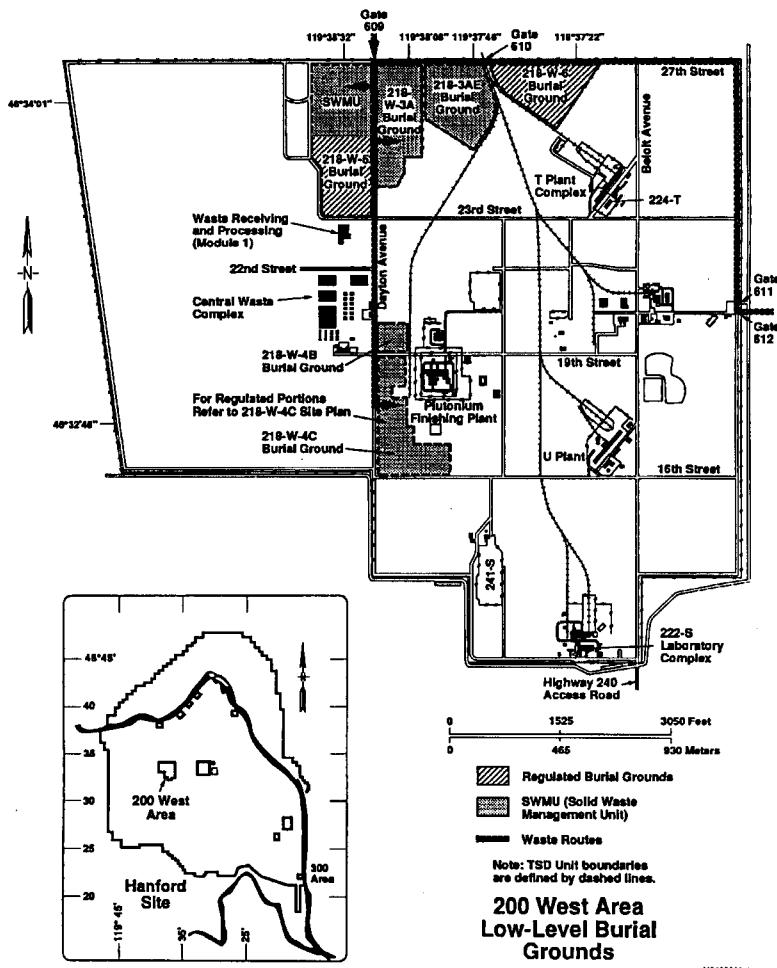



Figure 1-2. Locations of Low-Level Burial Grounds in the 200 West Area.

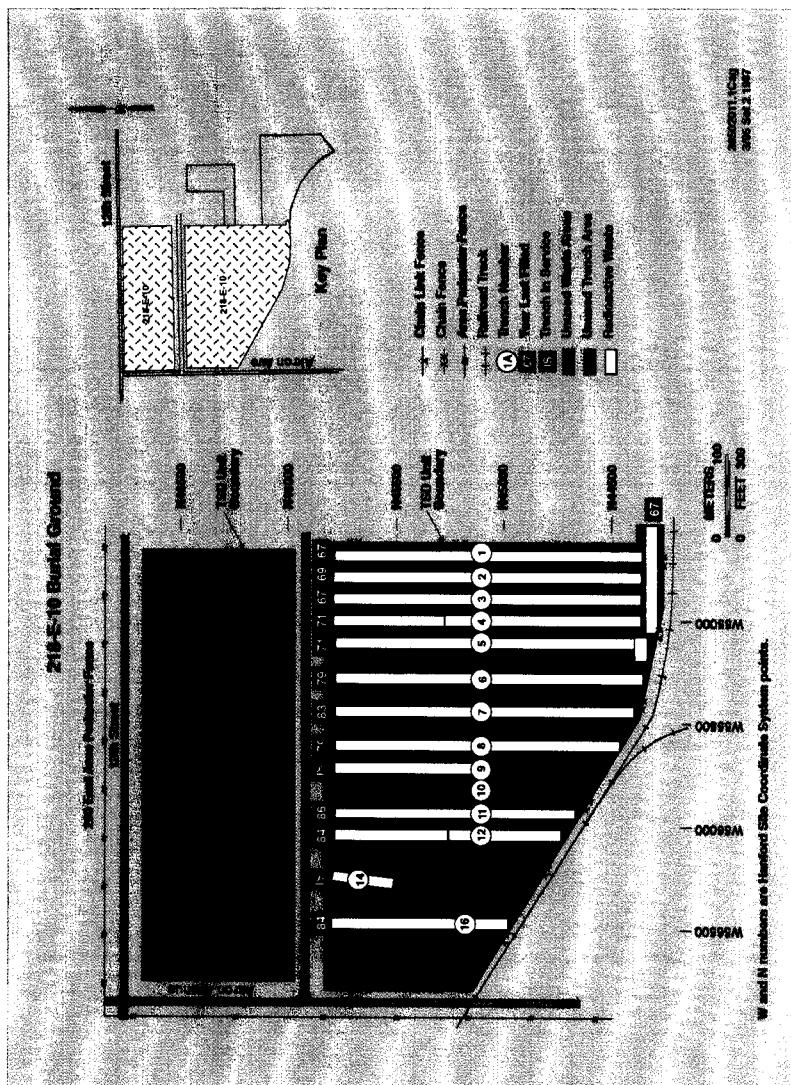



Figure 1-3. 218-E-10 Burial Ground.

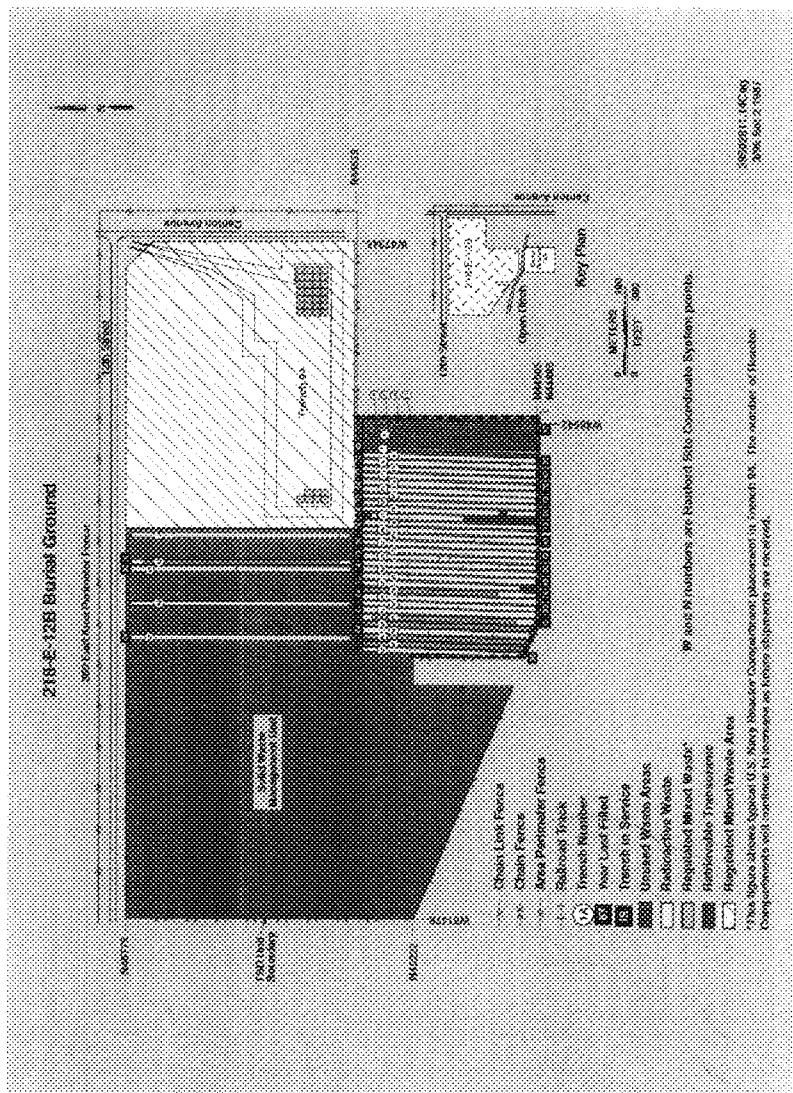



Figure 1-4. 218-6-128 Burial Ground.

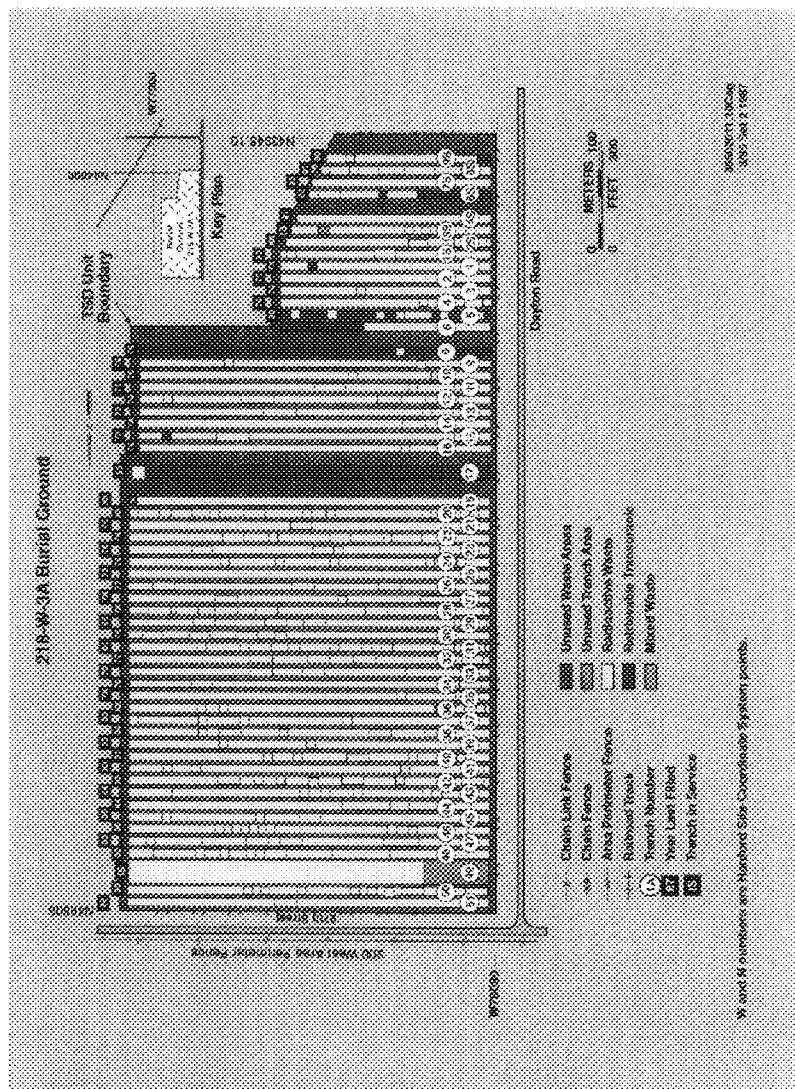



Figure 1-5. Z18-W-3A Burial Ground.

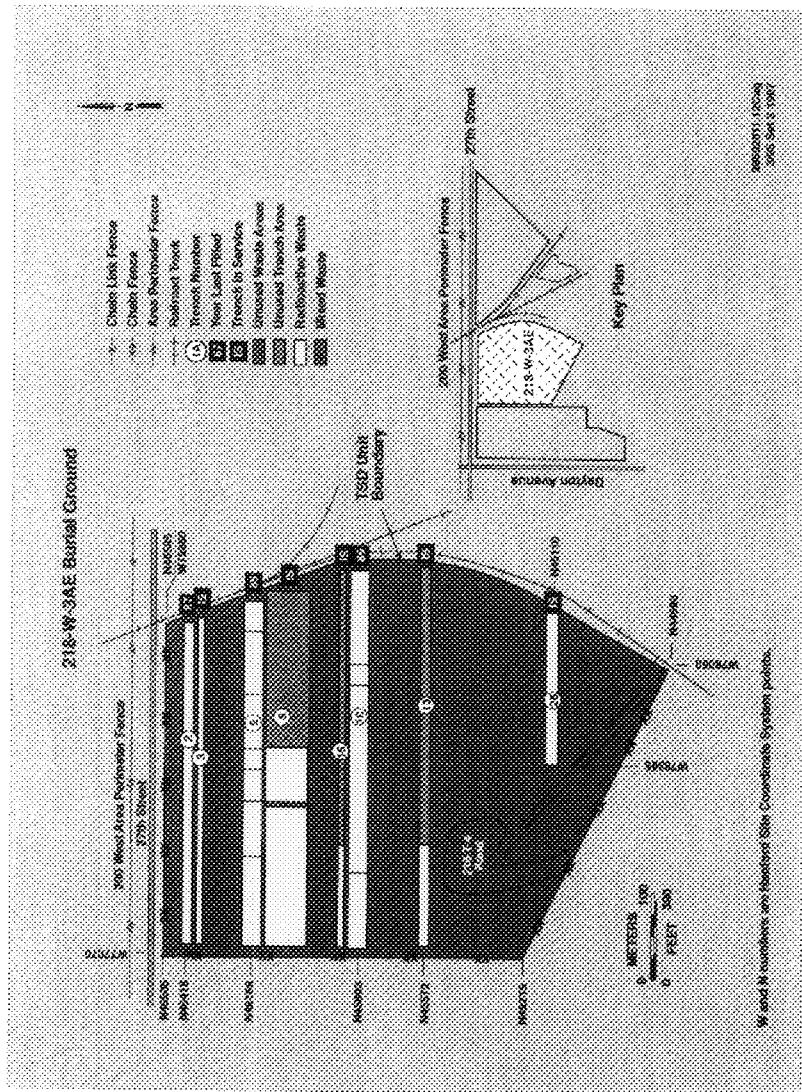



Figure 1-6. 218-W-3AE Burial Ground.

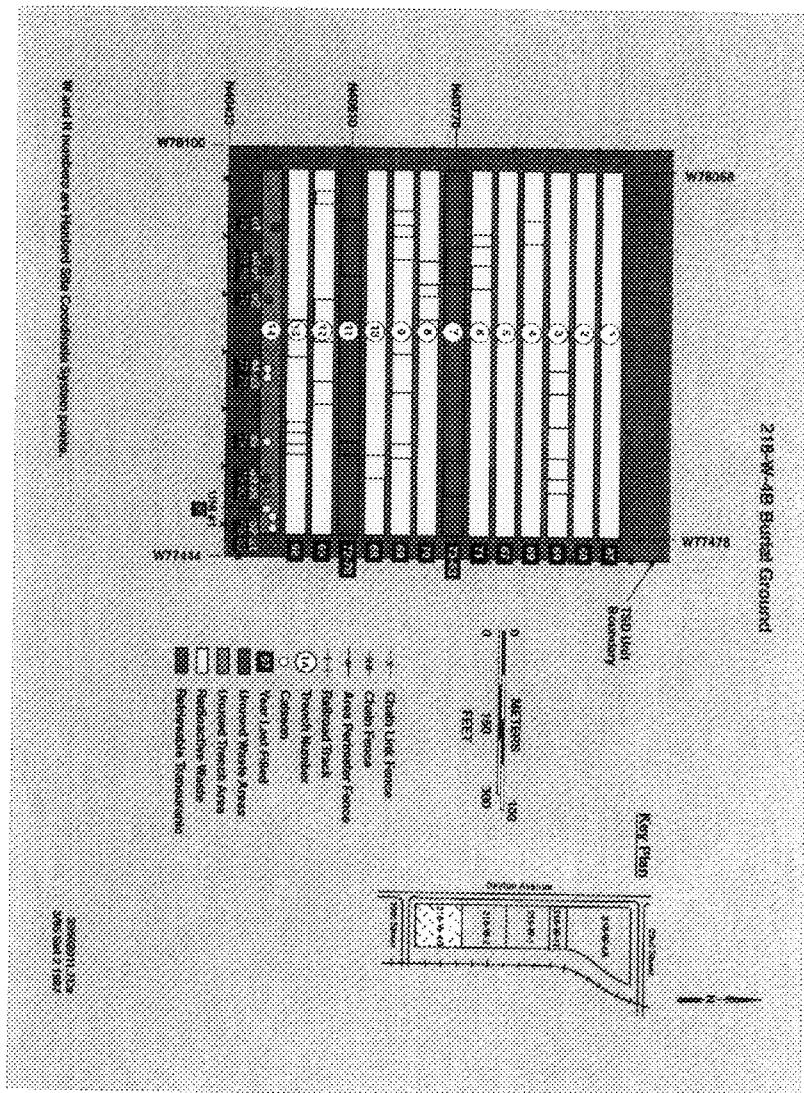



Figure 1-7. 218-W-48 Burial Ground.

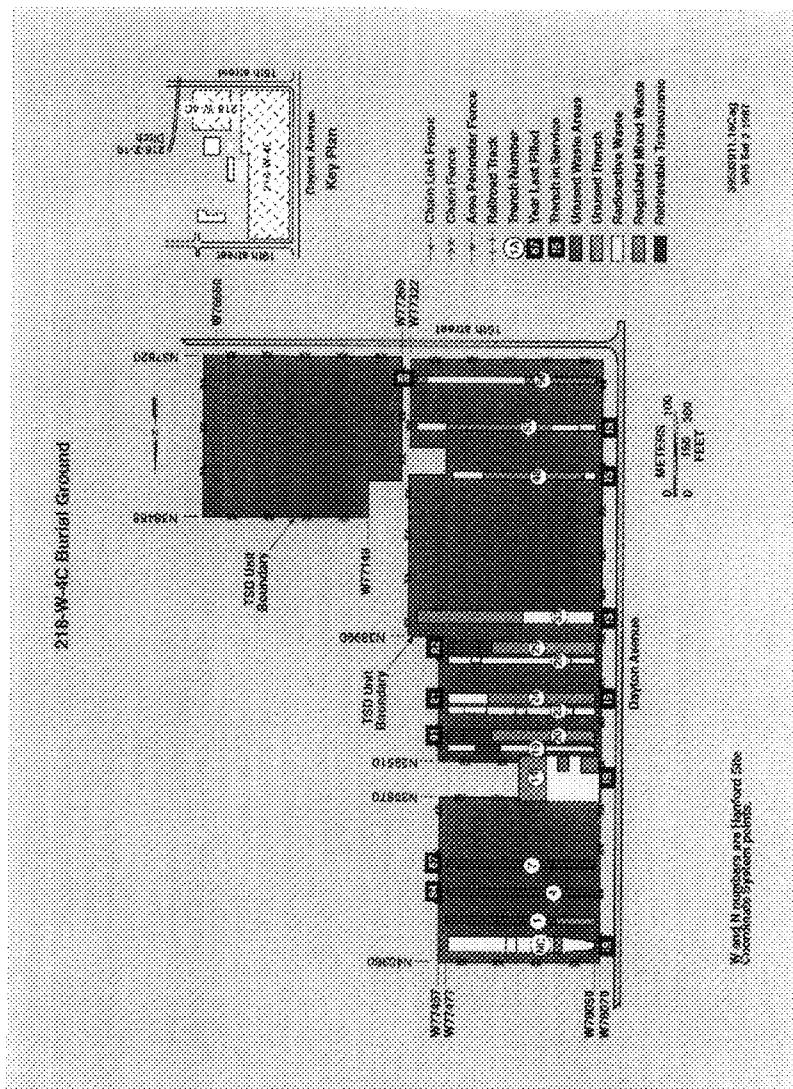



Figure 1-8. 218-W-4C Burial Ground.

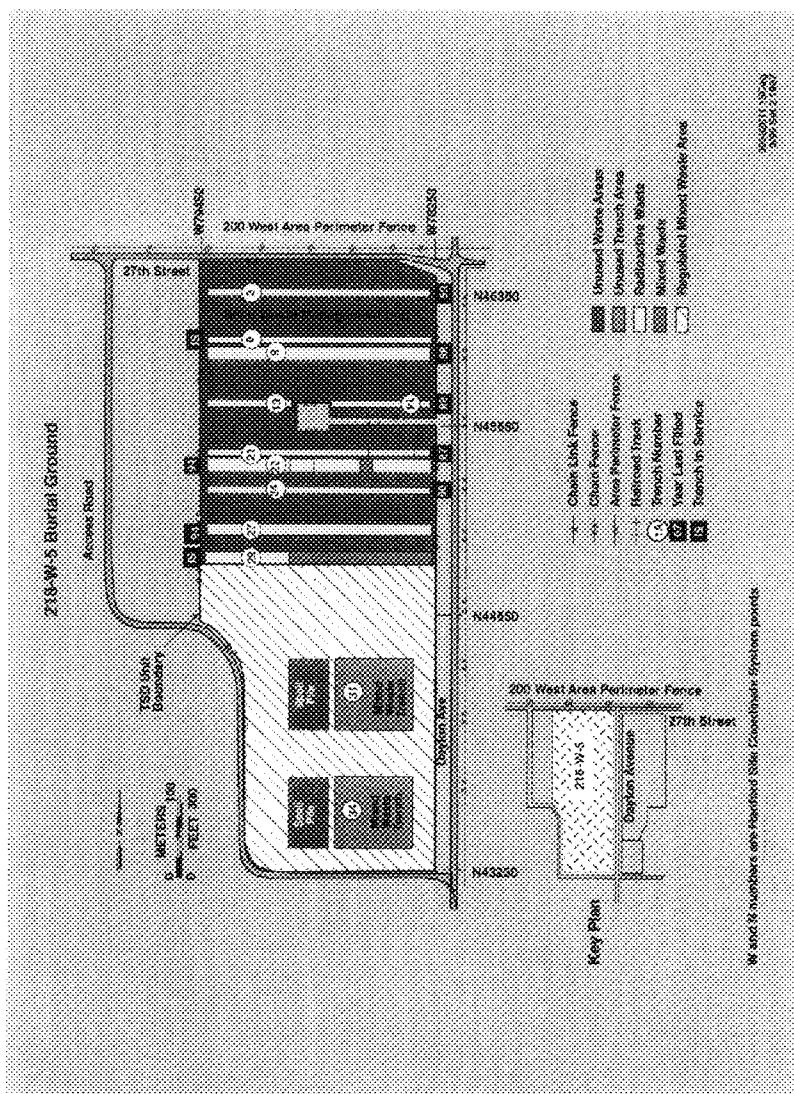



Figure 3-9. 238-W-5 Burial Ground.

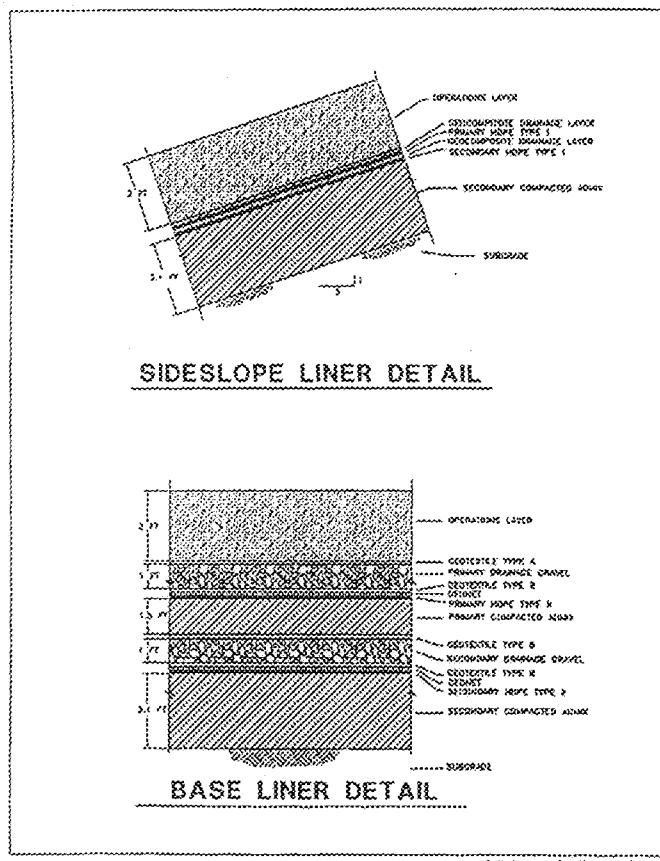



Figure J-10. Typical Resource Conservation and Recovery Act-Compliant Liner System.

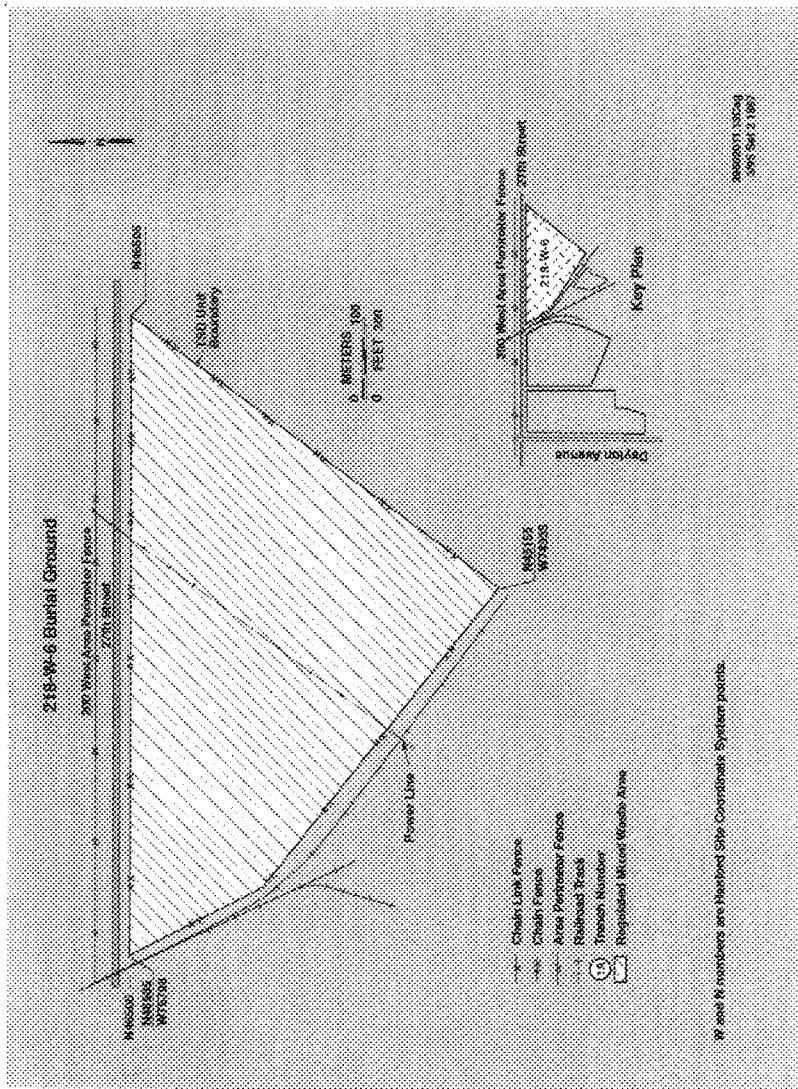



Figure 1-11. 213-W-6 Burial Ground.

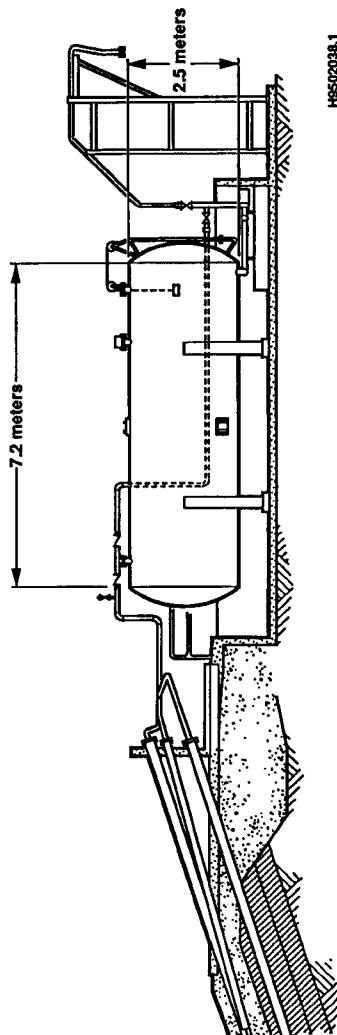



Figure 1-12. Typical Leachate Storage Tank for Trenches 31 and 34.

## 2.0 WASTE ACCEPTANCE PROGRAM

This section covers the waste acceptance process for the proper management of waste in the LLBG.

### 2.1 WASTE CERTIFICATION PROGRAM

The onsite generating unit or offsite generator (for the purposes of this WAP, permitted treatment and storage facilities are classified as either onsite generating units or offsite generators) must have a program to certify characterization of their waste. The onsite generating unit or offsite generator must document their waste certification program on a stream-by-stream basis in the form of waste certification summaries. Each waste certification summary must include a description of methods used for characterizing the applicable waste stream(s). Characterization efforts provide the data quality needed for management of the waste and ensure that waste is packaged properly. A description of the type of information that must be included in a waste certification summary is provided in the following sections.

#### 2.1.1 Waste Certification Information

The basic information required for each waste stream includes the following:

- General information on waste generating process
- Physical characteristics of the waste
- Chemical characteristics of the waste
- Radiological characteristics of the waste
- Packaging
- Supporting documentation (e.g., laboratory analysis, etc.)
- LDR certification (if applicable)

#### 2.1.2 Waste Characterization

Waste must be characterized sufficiently to ensure that the waste meets the acceptance criteria for disposal. It is the responsibility of the onsite generating units and offsite generators to completely and correctly identify and quantify the dangerous constituents of their waste. Characterization can occur using either process knowledge or detailed laboratory analysis or a combination of both. Adequate process knowledge and/or analysis must be available to accurately identify all existing dangerous waste numbers in accordance with WAC 173-303-070, as well as determine the LDR status of the waste. Specific characterization techniques depend on the waste generating process are as follows:

1     • Characterization of consistently-generated waste streams

2     If the waste is being generated through a continuing process, such  
3     that the composition of the waste is not expected to vary appreciably  
4     over time, waste characterization requirements can be met through  
5     administrative and engineering controls on the process. Initially,  
6     the waste stream must be characterized through a campaign of sampling  
7     and analysis. However, if it can be shown that certain parameters are  
8     expected to remain within known limits or where representative  
9     sampling is not possible because of the physical form of the waste,  
10    gross measurements (e.g., pH, radioactivity screening) and related  
11    process knowledge could be substituted for specific chemical sampling  
12    and analysis. For each waste stream the following information should  
13    be provided in the waste certification summary:

14    - Specific parameters expected to remain constant (metal content,  
15      radionuclide content, etc.)  
16    - Method of ensuring the waste stream characterization remains  
17      reliable between sampling campaigns, including an estimate of its  
18      reliability as an indicator of correct characterization. Depending  
19      on the process involved, gross measurements, process indicators, or  
20      other techniques might be appropriate.  
21    - Frequency of recharacterization - if sampling and analysis are  
22      required, these must be performed annually, at a minimum, and more  
23      frequently if the waste generating process is subject to changes.

24     • Characterization of Batch Waste Streams

25     If the waste is being generated through a short-term or infrequent  
26     operation, such that the composition of the waste is expected to vary  
27     appreciably over time, the waste could be characterized as a batch  
28     process. For such operations, the waste certification summary should  
29     describe the method for determining batch sizes and the mechanism for  
30     grouping waste into batches.

31     Batches can be defined by the specific waste generating operation with  
32     several similar operations grouped together (e.g., the applicable  
33     waste collected from several different chemistry laboratories), by the  
34     type of waste being generated (e.g., waste oils regardless of the  
35     point of origin), by point of origin (e.g., all applicable  
36     waste - either soil, liquid, or sludge, but not combinations of the  
37     three - from a given structure, regardless of the generating process),  
38     or by some other method appropriate to the specific onsite generating  
39     unit or offsite generator. For this type of waste stream, the  
40     following information should be included in the waste certification  
41     summary:

42     - Method of grouping waste into batches (e.g., by waste type, by point  
43       of origin)

- 1        - Size of batches characterized in this manner (e.g., the amount of
- 2            waste collected in 1 week, the number of containers)
- 3
- 4        - Waste characterization technique (e.g., sampling and analysis or
- 5            process knowledge).
- 6
- 7

8        **2.1.3 Process Knowledge**

9

10        If process knowledge is used in the characterization process, a complete  
11 description of the process generating the waste [e.g., original product  
12 material safety data sheets (MSDS)] and published characterization methodology  
13 on the specific waste stream and/or characterization methodology on similar  
14 waste streams must be provided. Field analysis can be used to confirm process  
15 knowledge.

16

17        If adequate process knowledge exists to ensure a particular constituent  
18 is not present in the waste, there is no requirement to analyze for that  
19 constituent. However, the waste certification summary must establish that  
20 there is no reason to suspect the constituent is in the waste. This can be  
21 accomplished by including a detailed process description and/or published data  
22 of the process.

23

24        **2.1.4 Sampling and Analysis**

25

26

27        In cases where process knowledge is unavailable or incomplete, the onsite  
28 generating units and/or offsite generators characterize the waste by sampling  
29 and analyzing the waste stream. Knowledge of the history and origin of the  
30 waste can be used to decide the analytical testing needed to determine the  
31 dangerous constituents of the waste (e.g., if no reason exists to suspect  
32 certain chemical compounds like pesticides, there is no reason to test for  
33 such parameters).

34

35        The onsite generating units and/or offsite generators determine the  
36 appropriate sampling method, conduct all field and sampling quality assurance  
37 and quality control (QA/QC), arrange for and coordinate with appropriate  
38 analytical laboratories, and document the sampling and analysis activities.  
39 The onsite generating units and/or offsite generators must certify that the  
40 waste analysis information is complete and accurate. For field activities,  
41 requirements will follow SW-846 (EPA 1986). Analytical laboratories will  
42 follow requirements stated in the *Hanford Analytical Services Quality*  
43 *Assurance Plan* (DOE/RL-94-55).

44

45        **2.1.5 Analytical Methodologies**

46

47

48        Specific analytical methodologies that should be used for each parameter  
49 should adhere to the guidance provided in SW-846 (EPA 1986), other pertinent  
50 references accepted by Ecology, the EPA, and/or the DOE-RL and other  
51 equivalent methods approved by Ecology, the EPA, and/or the DOE-RL.

1   **2.2 PRE-SHIPMENT REVIEW**

2       Pre-shipment review takes place before waste can be scheduled for  
3       transfer or shipment to the LLBG. The review focuses on whether the waste  
4       stream is accurately defined and the LDR status determined correctly. Only  
5       waste determined to be acceptable for disposal is scheduled. This  
6       determination is based on the information that the onsite generating unit or  
7       offsite generator provides. The following sections discuss the pre-shipment  
8       review process.

9

10

11   **2.2.1 Pre-Shipment Review Process**

12

13

14       For each waste transfer or shipment that is a candidate for disposal, the  
15       onsite generating unit or offsite generator provides (1) all pertinent  
16       chemical, radiological, and physical data requested on the shipping paper;  
17       (2) other supporting documentation such as MSDS, analytical data, etc.; (3) a  
18       description of the waste contents on the container inventory record; and  
19       (4) LDR notification/certification information or equivalent documentation  
20       (e.g., national capacity variance, contained-in determination variance, etc.,)  
21       as applicable. The pertinent information is entered into the Solid Waste  
22       Information Tracking System (SWITS).

23

24       Based on waste identification information provided, the waste designation  
25       is reviewed to ensure consistency with waste designations per WAC 173-303-070,  
26       as well as for technical accuracy to ensure the waste meets the waste  
27       acceptance criteria. If the transfer or shipment information is found to be  
28       acceptable, a final operations review is completed and the transfer or  
29       shipment is scheduled.

30

31       Where potential nonconformances exist in the information provided, waste  
32       characteristics do not match the waste certification summary, or additional  
33       constituents are expected to be present that do not appear on the  
34       documentation, the onsite generating unit or offsite generator is contacted by  
35       the LLBG operating organization or an approved designated organization for  
36       resolution.

37

38

39   **2.2.2 Methodology to Ensure Compliance with Land Disposal**  
40       **Restrictions Requirements**

41

42       Only mixed waste that meets the treatment standards of 40 CFR 268 and  
43       WAC 173-303-140 will be considered for disposal at the LLBG. Because waste  
44       treatment to meet LDR criteria does not occur at the LLBG, all onsite  
45       generating units and offsite generators are subject to LDR or any LDR-related  
46       variances and are required to submit all the notifications and certifications  
47       described in 40 CFR 268.7. The following are general requirements for  
48       notifications and supporting documentation.

49

50       • The waste is subject to LDR and the onsite generating unit and offsite  
51       generator or a permitted treatment unit has treated the waste.

- 1        - The onsite generating unit or offsite generator or a permitted  
2        treatment unit supplies the appropriate LDR certification  
3        information and the analytical data that demonstrate compliance with  
4        the LDR treatment standards of 40 CFR 268 and WAC 173-303-140.
- 5        • The waste is subject to LDR and the onsite generating unit or offsite  
6        generator has determined that the waste naturally meets the LDR  
7        treatment standard for disposal.
- 8        - The onsite generating unit or offsite generator supplies the  
9        appropriate LDR certification information and analytical data  
10       necessary to demonstrate compliance with the LDR treatment standards  
11       of 40 CFR 268 and WAC 173-303-140.
- 12       - If the onsite generating unit or offsite generator develops the  
13       certification based on process knowledge, analytical data also might  
14       be necessary to demonstrate compliance with the appropriate LDR  
15       treatment standard.
- 16       • The waste is subject to an exemption from a prohibition on landfill  
17       disposal.
- 18       - The onsite generating unit and offsite generator submits a notice  
19       stating the waste is not prohibited from land disposal as required  
20       by 40 CFR 268.7(a)(3).

21       A representative sample of the waste may be required to be submitted for  
22       analysis to ensure that LDR requirements are met. This sample could be  
23       submitted directly to a laboratory for analysis.

### 24       2.3 WASTE VERIFICATION

25       Waste verification, which includes LDR verification, consists of testing  
26       key physical and chemical properties. Waste verification parameters are  
27       selected based on the following criteria:

- 28       • The need to identify restricted waste
- 29       • Parameters important to the proper management of waste at the LLBG
- 30       • Parameters that can be used to corroborate that waste received matches  
31       the identity of waste specified on accompanying transfer or shipping  
32       papers
- 33       • The need to protect employees, the public, and the environment
- 34       • Verify waste received is LDR compliant as applicable.

35       Incoming waste verification is accomplished by reviewing applicable  
36       documentation and waste tracking forms or manifests against the waste.  
37       Selection of waste for verification is based on the following criteria.

- 1     • For radioactive only (non-mixed) waste containers that are disposed of  
2     in unlined trenches, an adequate verification rate based upon process  
3     knowledge must be used.
- 4
- 5     • Each bulk solid mixed waste load disposed in the lined trenches will  
6     be sampled and analyzed with the exception of large volumes of a  
7     single waste from the same process. In this case, five truck loads  
8     out of the first 10 truck loads are sampled. In addition, every truck  
9     load is inspected visually, any waste showing visible variations in  
10    color, texture, or wetness will be subject to sampling as described in  
11    Section 3.0.
- 12
- 13    • For containers disposed in the lined trenches, at least 5 percent or  
14    an alternative rate based on process knowledge and/or analytical data  
15    must be used.
- 16

17    Verification is performed using a combination of nondestructive  
18    examination, physical examination, and/or chemical screening. Verification is  
19    performed by the LLBG operating organization or a designated organization for  
20    waste acceptance process at the LLBG.

21    The following special materials might be excluded from verification by  
22    chemical sampling:

- 23     • Waste containers precluded from opening because of as low as  
24     reasonably achievable (ALARA)
- 25     • Empty product containers
- 26     • Single substance spill material
- 27     • Off-specification, contaminated, and/or outdated commercial products  
28     in the original product container
- 29     • Contaminated debris and asbestos (does not include liquids or soils)
- 30     • Other special-case situations handled on a case-by-case basis.

31    Special materials have been exempted from chemical screening because  
32    these materials potentially are hazardous materials (e.g., remote handled,  
33    asbestos); are well defined and nonvariable (e.g., single substance spill  
34    material or off-specification products); or are unusually difficult to sample  
35    and analyze (e.g., empty product containers, contaminated debris, or  
36    demolition materials). For these exceptions, the onsite generating unit or  
37    offsite generator supplies sufficient chemical and physical characteristics  
38    for proper disposal of the waste.

39    The following material cannot be verified by nondestructive examination:

- 40     • Container is shielded
- 41     • Container has classified waste

- 1     • Container is remote-handled waste
- 2
- 3     • Container cannot be received for nondestructive examination due to
- 4       safety, equipment or design limitations.
- 5

6     The following material cannot be verified by visual examination:

- 7
- 8     • Container would be damaged during opening
- 9
- 10    • Container has a surface dose rate of 20 millirem per hour or greater
- 11      (unshielded)
- 12    • Container alpha curie loading is greater than 10 nanocuries per gram
- 13
- 14    • Container has classified waste
- 15
- 16    • Container is remote-handled waste
- 17
- 18    • Container cannot be received due to safety, equipment, or design
- 19      limitations.
- 20

21           The methods for ensuring representative sampling are presented in  
22 Section 3.0. As practical, the sampling techniques used for specific types of  
23 waste correspond to those referenced in SW-846 and WAC 173-303. The  
24 analytical methods chosen for the verification parameters are described in  
25 Appendix A.

## 26           2.4 CORRECTIVE ACTIONS

27           Corrective action is necessary when significant discrepancies or  
28 nonconformances are identified. All applicable acceptance criteria must be  
29 met. Nonconformances must be resolved or addressed before accepting the waste  
30 for disposal at the LLBG. Depending on the severity of the nonconformance,  
31 the action for noncompliance could range from conditional acceptance to  
32 rejection of the entire waste transfer or shipment. The following sections  
33 describe nonconformances and the resolution process.

### 34           2.4.1 Manifest Discrepancies

35           Manifest and/or onsite waste tracking form discrepancies are significant  
36 discrepancies of quantity or type between the dangerous waste identified by  
37 documentation and the dangerous waste that the LLBG operating organization  
38 actually receives. Significant discrepancies are obvious physical or chemical  
39 differences in dangerous constituents that can be discovered through physical  
40 or chemical screening, which would cause the waste to be mismanaged.

1   **2.4.2 Nonconformances**

2       The following are examples of nonconformances that require corrective  
3       action:

4

5       • Items in a waste container not accounted for on documentation or items  
6        not in the container but documented

7

8       • Free liquids except condensate

9

10       • Extensively damaged, leaking, or open containers

11

12       • Waste with appearance discrepancies

13

14       • Prohibited items including ignitable, reactive, corrosive, or  
15        incompatible waste.

16

17

18   **2.4.3 Resolution of Nonconformances and Manifest Discrepancies**

19

20

21       The following activities are conducted when nonconformances and waste  
22       tracking form and/or manifest discrepancies are encountered.

23

24       • Incorrect or incomplete entries on the waste tracking forms or Uniform  
25        Hazardous Waste Manifest, or other shipping papers can be corrected or  
26        completed with concurrence of the onsite generating unit or offsite  
27        generator, and the LLBG operating organization. Corrections are made  
28        by drawing a single line through the incorrect entry. Corrected  
29        entries are initialed and dated by the individual making the  
30        correction.

31

32       • The waste packages can be held in an appropriate staging area and the  
33        onsite generating unit or offsite generator requested to provide  
34        written instructions for correcting the condition before the waste is  
35        accepted.

36

37       • Waste packages can be returned as unacceptable.

38

39       • The onsite generating unit or offsite generator could be requested to  
40        correct the condition on the Hanford Facility before the waste is  
41        accepted.

42

43       • If a noncompliant mixed waste package is received from an offsite  
44        generator, and the waste package is nonreturnable because of  
45        condition, packaging, etc., and if an agreement on disposition cannot  
46        be reached among the involved parties, the issue will be referred to  
47        the DOE-RL, Ecology, and other appropriate regulatory agencies for  
48        resolution.

49

50       • An evaluation will be performed to determine the need to sample  
51        previously accepted waste from the noncomplying onsite generating unit

1        or offsite generator to determine if any of the waste has the  
2        potential for similar nonconformances.

3  
4        For offsite generators, the DOE-RL provides notification to Ecology of  
5        unreconciled manifest discrepancies that are not resolved within 15 days.  
6        Discrepancies for onsite generating units are handled internally with no  
7        notification.

8  
9        **2.4.4 Corrective Actions to Meet Land Disposal Restriction Standards**

10        Waste within tolerances and limits of the LDR treatment standards can  
11        proceed to the LLBG lined trenches for disposal. Waste with one or more  
12        incoming parameters not within tolerances are considered to have an analytical  
13        discrepancy. Discrepancies could be rectified using the following strategy.

14  
15        • For purposes of evaluating analytical discrepancies, analytical  
16        results are classified into the following five classes.  
17  
18            - Class 1--The results show that the waste is within the applicable  
19        treatment standard. No additional constituents or characteristics  
20        are detected other than those addressed by the waste specification  
21        sheet, manifest, or waste tracking form.  
22  
23            - Class 2--The results show that the treatment standards are exceeded,  
24        but the standards are not applicable because the waste is subject to  
25        a statutory or regulatory variance, exemption, or extension.  
26  
27            - Class 3--The results show that the waste definitely has additional  
28        'new' WAC 173-303 dangerous waste numbers that were not addressed in  
29        the waste specification sheet, manifest, or waste tracking form.  
30  
31            - Class 4--The results show that the waste has the possibility of  
32        additional 'new' WAC 173-303 dangerous waste numbers that were not  
33        addressed in the waste specification sheet, the manifest, or waste  
34        tracking form.  
35  
36            - Class 5--Treatment standards are exceeded and the waste is not  
37        subject to any exemption.

38        For any waste with analytical results in Class 1 or 2, such waste can be  
39        disposed if the waste is otherwise acceptable for disposal.

40        For waste with analytical results in Classes 3 through 5, the following  
41        additional verification activities are required.

42  
43            • Class 3 Waste  
44  
45              - The LLBG operating organization checks to make sure the 'new'  
46              WAC 173-303 dangerous waste number is on the LLBG Part A, Form 3,  
47              permit application.

- The LLBG operating organization checks to see whether the new WAC 173-303 dangerous waste number is subject to any exemption, extension, variance, or other exclusion from the requirement of 40 CFR 268.
- If the waste is subject to additional treatment standards, the waste is analyzed for compliance with these additional treatment standards.
- If the waste is subject to treatment standards and the subsequent analysis shows the waste does not meet the standard, the waste will not be accepted for disposal at the LLBG. Conversely, if the waste meets the treatment standards or if the waste is not subject to the treatment standards and the 'new' WAC 173-303 dangerous waste numbers are on the LLBG Part A, Form 3, permit application and if the waste is otherwise acceptable, the waste can be accepted for disposal at the LLBG.

• Class 4 Waste. There are two subcategories of Class 4 waste: possibly characteristic (4A) and possibly listed (4B).

- For subcategory 4A, the LLBG operating organization requests analysis of the waste or an extract of the waste for the applicable constituents to determine if a 'new' WAC 173-303 dangerous waste number is applicable to the waste. If a new number is indicated, the LLBG operating organization notifies the onsite generating unit or offsite generator of the finding.
- If the waste is a subcategory 4B, the LLBG operating organization notifies the onsite generating unit or offsite generator of the finding. The LLBG operating organization discusses the finding with the onsite generating unit or offsite generator to determine if a 'new' WAC 173-303 dangerous waste number should be applied to the waste.
- The LLBG operating organization checks to make sure that the 'new' WAC 173-303 dangerous waste number is on the LLBG Part A, Form 3, permit application.
- The LLBG operating organization checks to see if the "new" number is subject to any exemption, extension, variance, or other exclusion from the requirements of 40 CFR 268.
- If the waste is subject to additional treatment standards, the LLBG operating organization analyzes the waste for compliance for these additional treatment standards.
- If the waste is subject to additional treatment standards and the subsequent analysis indicates the waste does not meet the standard, the waste is not accepted for disposal at the LLBG. Conversely, if the waste meets the treatment standard, or if the waste is not subject to the treatment standards and the 'new' WAC 173-303

1 dangerous number is on the LLBG Part A, Form 3, permit application  
2 and if the waste meets all other acceptance criteria, the LLBG  
3 operating organization accepts the waste for disposal.

4

- 5 Class 5 Waste. The LLBG operating organization rejects the waste and  
6 informs the onsite generating unit or offsite generator that the waste  
7 has not been accepted for disposal. If a manifest or waste tracking  
8 form discrepancy exists, the LLBG operating organization reports the  
9 discrepancy (Section 2.4).

10

#### 11 2.4.5 Periodic Evaluation of Nonconformances

12

13

14 All nonconformances from an onsite generating unit or offsite generator  
15 are reviewed periodically to determine if waste generation and management  
16 practices are satisfactory. Depending on the review, verification percentages  
17 could be adjusted for a given waste stream or other action, such as  
18 recharacterization of the waste stream, might be required.

19

#### 20 2.5 ACCEPTING THE WASTE

21

22

23 When the waste has been evaluated and when the incoming waste acceptance  
24 process has been completed, and nonconformances have been resolved or  
25 addressed, the following process is followed for receipt of waste.

26

- 27 The shipment is compared to the shipping paperwork to verify that the  
28 paperwork and shipment match
- 29 The containers are verified to ensure they are in acceptable condition  
30 for receipt (e.g., no bulging, corrosion, loose lids, punctures, etc.)
- 31 The manifest is examined and approved
- 32 The manifest is signed and dated
- 33 The waste can proceed as directed to the disposal areas of the LLBG.

34

35 Copies of the following records for each waste disposed in the LLBG, as  
36 applicable, are maintained by the LLBG operating organization.

37

- 38 All records providing a description of the waste
- 39 Documentation identifying the dangerous characteristics of the waste
- 40 Laboratory reports with chemical and physical analysis of samples
- 41 Manifests or onsite waste tracking forms.

42

43 The onsite generating units and offsite generators maintain copies of  
44 onsite waste tracking forms, manifests, and associated documentation  
45 identifying the waste characteristics and assigned waste designations.

1   **2.6 MANIFEST SYSTEM**

2  
3   The Hanford Facility has one EPA/State identification number as required  
4   by WAC 173-303-060, and all TSD units on the Hanford Facility are part of a  
5   single dangerous waste facility. Therefore, onsite transfers of dangerous or  
6   mixed waste are not subject to the manifesting requirements specified in  
7   WAC 173-303-370 and -180. However, all onsite waste transfers are conducted  
8   in a manner to ensure protection of human health and the environment. Onsite  
9   waste tracking systems voluntarily are used for transporting waste.

10  
11   For application in this document, the term "offsite waste" is defined as  
12   mixed waste shipped to the LLBG from:

13  
14   • Any generator or generating unit that is located in an area that is  
15    not part of the contiguous Hanford Facility and/or  
16  
17   • Any generator or generating unit from which the shipment of waste is  
18    transported over a public access roadway.

19  
20   Offsite waste shipments are not exempt from the requirements of  
21   WAC 173-303-370 and -180.

22   After scheduling the shipment, the following occurs:

23  
24   • An offsite generator completes a Uniform Hazardous Waste Manifest for  
25    each shipment. An onsite generating unit completes an onsite waste  
26    tracking form.  
27  
28   • The transporter receives the waste, and dates and signs the Uniform  
29    Hazardous Waste Manifest or onsite waste tracking form. The onsite  
30    generating unit or offsite generator dates, signs, and retains a copy  
31    of the manifest or the onsite waste tracking form.  
32  
33   • The waste is transported to the LLBG using onsite transportation  
34    personnel, or private carrier as applicable. Transporters of offsite  
35    mixed waste must have an EPA/State identification number.

36  
37   Offsite waste arriving at the Hanford Facility is received by receiving  
38    personnel. Receiving personnel inspect the waste containers for damage and  
39    proper labeling, and review the transportation documentation for completeness  
40    and accuracy. If discrepancies are identified, the shipment is not allowed on  
41    the Hanford Facility until the discrepancies are resolved. If the shipment  
42    passes inspection, the shipment proceeds to the LLBG or other approved TSD.

43  
44   Following receipt of the waste, the LLBG operating organization ensures  
45    the following:

46  
47   • Manifest discrepancies, if any, are noted on the Uniform Hazardous  
48    Waste Manifest or the onsite waste tracking form.  
49  
50   • The transporter is given a signed copy of the Uniform Hazardous Waste  
51    Manifest or the onsite waste tracking form, per WAC 173-303-370(2)(c).

1       • For offsite waste shipments, a LLBG operating organization transmits  
2       the original Uniform Hazardous Waste Manifest to the offsite generator  
3       within 30 days of waste receipt. For onsite waste transfers, the LLBG  
4       operating organization transmits a copy of the waste tracking form to  
5       the onsite generating unit.

6  
7       The Uniform Hazardous Waste Manifests and onsite waste tracking forms are  
8       maintained in the LLBG operating record.

9  
10       If a waste arrives at the LLBG in a condition (e.g., bulging, etc.) that  
11       could present a hazard to public health or the environment, the building  
12       emergency plan for the LLBG could be implemented.

13  
14       **2.7 TRACKING SYSTEM**

15  
16       The LLBG operating organization maintains a record of waste received, and  
17       rejected and returned, including names, waste tracking numbers, and the reason  
18       the waste was rejected.

19  
20       On approval for disposal, the waste is assigned a unique number used for  
21       tracking waste movement and final disposition. This number is written on the  
22       manifest or waste tracking form and is placed on a label for each container.  
23       The unique number for bulk waste will be tracked in the tracking system only.

24  
25       **2.8 ADDITIONAL REQUIREMENTS FOR WASTE GENERATED OFFSITE**

26  
27       There are no additional requirements for waste generated offsite.

28  
29       **2.9 METHODOLOGY FOR IGNITABLE, REACTIVE, OR INCOMPATIBLE WASTE**

30  
31       The LLBG does not accept ignitable, reactive, or incompatible waste. All  
32       mixed waste accepted for disposal at the lined trenches must meet  
33       LDR requirements.

1  
2  
3  
4  
5

This page intentionally left blank.

### 3.0 SAMPLING METHODOLOGY

Specific sampling processes depend on both the nature of the material and the type of packaging (Table 3-1). This section describes the sampling methodology.

#### 3.1 SAMPLING METHODOLOGY

As practical, the sampling methodology used for specific types of waste correspond to those referenced in SW-846 and WAC 173-303 (Table 3-1).

#### 3.2 SAMPLING STRATEGIES

The ALARA principle and other worker safety concerns impose a practical limit on the extent of verification evaluation that can be performed on a waste load. The current upper limit set on the surface dose rate for opening containers is 20 millirem per hour. Deviations from this limit can be allowed by a radiation work permit.

In addition to the 20 millirem per hour restriction, the extent of verification evaluation could be limited by an industrial hygienist, who could make a decision that a container not be opened because of the potential for chemical exposure. In both cases, the decision not to open a container is documented in the field files and signed and dated by the industrial hygienist or an authorized representative of radiological control as appropriate, and kept as part of the facility operating record. If a waste package is deemed to be hazardous to worker health, additional containers will be examined for sampling suitability.

Samples from individual containers or the point of generation can be composited providing the samples are: (1) from a single onsite generating unit or offsite generator, (2) related to one waste specification record, or (3) similar in appearance and composed of compatible material. If the sample material shows significant variation in moisture content, texture, or color, this material should not be composited to avoid masking potentially regulated constituents.

##### 3.2.1 Container Sampling

Sampling of small containers varies with the nature of the material, as well as the type of container. However, the appropriate SW-846 method or protocol will be followed with each sampling campaign. Solid material that cannot be penetrated to an appropriate depth with standard sampling equipment is sampled to the best extent possible with available equipment. Otherwise a representative sample will be taken by drawing a full vertical sample of the waste container.

1   **3.2.2 Point of Generation Sampling (Bulk Loads)**

2  
3   If an onsite generating unit or offsite generator produces a large volume  
4   of a single waste from the same process, 50 percent of the transfer or  
5   shipment is sampled during loading at the point of generation. In addition,  
6   every truck is inspected visually during loading and any load showing visible  
7   variations in color, texture, or wetness is subject to sampling. If there is  
8   no variation among the sampled material, the sampling regime is reduced. If  
9   the sampled materials do show variation, 50 percent sampling frequency could  
10   be reinstated for the next 10 loads. If these next 10 loads do not show any  
11   variation, the frequency will again be reduced.

12  
13   **3.2.3 Collected Leachate Sampling**

14  
15   To ensure compliance with LDR and to provide continuity of sampling  
16   between single-source and multi-source operations, any F039 (multi-source  
17   leachate) waste generated is analyzed by the LLBG operating organization to  
18   determine what constituents are present. The initial (baseline) analysis  
19   following disposal of mixed waste will check for all regulated constituents in  
20   F039. The LLBG operating organization is responsible for obtaining an initial  
21   analysis of constituents in the collected leachate. Based on the results of  
22   analysis, and any other information that should be considered, the LLBG  
23   operating organization develops a list of constituents to be analyzed on an  
24   established schedule. This testing schedule will be supplemented with perhaps  
25   less frequent, broader analysis to ensure that changes in the composition of  
26   the leachate are detected and noted. This approach alleviates Hanford  
27   Facility treatment, storage, and/or disposal units (e.g., Double-Shell Tank  
28   System, 200 Area Effluent Treatment Facility, etc.,) receiving the leachate  
29   from conducting duplicate F039 testing, as well as providing an accurate  
30   assessment of the waste constituents.

31  
32   **3.3 LAND DISPOSAL RESTRICTED WASTE SAMPLING**

33  
34   Waste material that is received at a lined landfill must meet LDR. This  
35   waste also must have a sample taken. Materials that have been set up in grout  
36   or concrete might not be sampled if ALARA concerns prohibit the sampling. One  
37   of three sampling scenarios could take place: (1) the onsite generating unit  
38   or offsite generator provides a small sample of grouted material in a  
39   pre-approved quantity and container for sampling, (2) the waste container is  
40   sampled at the point of generation, or (3) the waste container is sampled at  
41   the burial trench.

Table 3-1. Low-Level Burial Ground Sampling Methods.

| 3  | Waste type                          | 4  | Reference in SW-846 (EPA 1986)      | 5  | Sampling method                     | 6  | Waste type                    | 7  | Reference in MAC 173-303    |
|----|-------------------------------------|----|-------------------------------------|----|-------------------------------------|----|-------------------------------|----|-----------------------------|
| 4  | Liquids                             | 5  | Free-flowing liquids and slurries   | 6  | COLIWASA, SW-846, Chapter 9         | 7  | Extremely viscous liquid      | 8  | Sampling method             |
| 5  | Solidified liquids                  | 6  | Sludges                             | 7  | Trier, SW-846, Chapter 9            | 8  | Containerized liquids         | 9  | ASTM Standard D1450-70      |
| 6  | Sludges                             | 7  | Soils                               | 8  | Trier, SW-846, Chapter 9            | 9  | NA                            | 10 | COLIWASA, SW-846, Chapter 9 |
| 7  | Solids                              | 8  | Absorbents                          | 9  | Auger, SW-846, Chapter 9            | 10 | Soil-like material            | 11 | NA                          |
| 8  | Absorbents                          | 9  | Wet absorbents                      | 10 | Large trier, SW-846, Chapter 9      | 11 | Soil- and rock-like material  | 12 | ASTM Standard D1452-65      |
| 9  | Wet absorbents                      | 10 | Process solids and salts            | 11 | Trier, SW-846, Chapter 9            | 12 | Crushed or powdered materials | 13 | ASTM Standard D1452-69      |
| 10 | Process solids and salts            | 11 | Large grained solids                | 12 | Auger, SW-846, Chapter 9            | 13 | Soil-like material            | 14 | ASTM Standard D346-75       |
| 11 | Large grained solids                | 12 | Moist powders or granules           | 13 | Trier, SW-846, Chapter 9            | 14 | NA                            | 15 | ASTM Standard D1452-65      |
| 12 | Moist powders or granules           | 13 | Dry powders or granules             | 14 | Thief, SW-846, Chapter 9            | 15 | NA                            |    |                             |
| 13 | Dry powders or granules             | 14 | Sand or packed powders and granules | 15 | Sand or packed powders and granules |    |                               |    |                             |
| 14 | Sand or packed powders and granules | 15 |                                     |    |                                     |    |                               |    |                             |

COLIWASA = composite liquid waste sampler.  
NA = not applicable.

## 4.0 QUALITY ASSURANCE AND QUALITY CONTROL PROGRAM

The following sections discuss the overall objectives of the waste analysis program, as well as the specific data quality objectives (DQOs) (Table 4-1). Specific field and laboratory QA/QC requirements to meet these objectives also are addressed.

### 4.1 OBJECTIVES OF THE WASTE ANALYSIS PROGRAM

The primary objective of the waste analysis program is to ensure that the waste disposed at the LLBG is characterized adequately to demonstrate the disposal requirements are met. The waste analysis program is designed to meet this objective, and the general waste analysis requirements of WAC 173-303-300 and the disposal restrictions of WAC 173-303-140(4) and 40 CFR 268 if applicable.

### 4.2 DATA QUALITY OBJECTIVES

The data used to support the LLBG waste analysis program needs to be scientifically sound, of known quality, and thoroughly documented. In DQOs for the waste characterization and verification program, the standard parameters (precision, accuracy, compatibility, completeness, and representativeness) were considered (DOE/RL-94-55).

The field data for verification testing will meet EPA quality level I and II criteria. The laboratory data for chemical analyses will meet EPA quality level III criteria. Data from radiological analyses will meet EPA quality level V criteria (DOE/RL-94-55).

### 4.3 FIELD QUALITY ASSURANCE AND QUALITY CONTROL

Field blanks and replicates are required for samples analyzed in the field as part of verification testing as well as for samples submitted for laboratory analysis. The number of field QA samples is 10 percent of the total number of field samples taken. The 10 percent criterion commonly is accepted as a minimum number of QA/QC samples.

### 4.4 LABORATORY QUALITY ASSURANCE AND QUALITY CONTROL

The laboratory QA/QC requirements outlined in the following apply to laboratory analyses requested by the LLBG operating organization for residuals characterization or for recharacterization as part of a corrective action. Most laboratory analyses for waste characterization are conducted by the onsite generating units or offsite generators, who are required to specify in Section 2.0.

1        The daily quality of analytical data generated in the contracted  
2 analytical laboratories is controlled by the implementation of an analytical  
3 laboratory QA plan.

4  
5        Before commencement of the contract for analytical work, the laboratory  
6 submits its QA plan to the waste analysis project manager and the QA officer  
7 for approval. At a minimum, the plan documents the following:

8  
9            • Sample custody and management practices  
10           • Sample preparation and analytical procedures  
11           • Instrument maintenance and calibration procedures  
12           • Internal QA/QC measures, including the use of method blanks  
13           • Sample preservatives used  
14           • Analyses requested.

Table 4-1. Low-Level Burial Ground Data Quality Objectives for Waste Analysis Program.

| 1                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3 | 4 | 5 | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29                                | 30 | 31 | 32 | 33 | 34 |  |
|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|-----------------------------------|----|----|----|----|----|--|
| Objective                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |                                   |    |    |    |    |    |  |
| Waste analysis activity                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | Data quality/<br>analytical level |    |    |    |    |    |  |
| Level III for chemical analysis; Level V for radionuclide analysis                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |                                   |    |    |    |    |    |  |
| 5                                                                                                                                  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33                                | 34 |    |    |    |    |  |
| Obtain and document the information necessary to properly informate waste                                                          | <ul style="list-style-type: none"> <li>Specify parameters to be evaluated for waste characterization</li> <li>Require waste certification summaries for each waste stream</li> <li>Document in each waste certification summary</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |                                   |    |    |    |    |    |  |
| Confirm that the data collected for waste characterization are of sufficient quality to support waste management decisions         | <ul style="list-style-type: none"> <li>Specify information required to document process knowledge</li> <li>Specify sampling and analytical methods to be used</li> <li>Specify waste certification process</li> <li>Specify QA requirements</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |                                   |    |    |    |    |    |  |
| Confirm that waste characterization information is up to date                                                                      | <ul style="list-style-type: none"> <li>Implement for all new or nonroutine waste streams</li> <li>At a minimum, require annual recharacterization of routine waste streams if waste generating process changes</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |                                   |    |    |    |    |    |  |
| Identify and reject waste that does not meet LLW's acceptance criteria                                                             | <ul style="list-style-type: none"> <li>Implement pre-shipping review program</li> <li>Implement waste verification program</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |                                   |    |    |    |    |    |  |
| Tests for compliance with numerical treatment standards of 40 CFR 268                                                              | <ul style="list-style-type: none"> <li>Require concentrations for all LDR with numerical standards constituents</li> <li>Specify LDR documentation requirements</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |                                   |    |    |    |    |    |  |
| Waste verification                                                                                                                 | <ul style="list-style-type: none"> <li>Check completeness of shipping papers and screen all waste containers for surface dose and weight measurements to identify obvious discrepancies between the waste received, and the accompanying documentation</li> <li>Perform real-time radiography or visual inspection and fineprint analysis on a percentage of the containers received to confirm that the waste matches the waste tracking forms</li> <li>Review inventory for all waste containers received</li> <li>Perform nondestructive examination or visual inspection on a percentage of containers received</li> <li>Require regular, documented calibration and reagent checks for testing equipment and supplies</li> <li>Require field blanks and replicates</li> </ul> |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |                                   |    |    |    |    |    |  |
| Confirm that the waste received matches the accompanying documentation and is what was expected by LLW                             | <ul style="list-style-type: none"> <li>Check completeness of shipping papers and screen all waste containers for surface dose and weight measurements to identify obvious discrepancies between the waste received, and the accompanying documentation</li> <li>Perform real-time radiography or visual inspection and fineprint analysis on a percentage of the containers received to confirm that the waste matches the waste tracking forms</li> <li>Review inventory for all waste containers received</li> <li>Perform nondestructive examination or visual inspection on a percentage of containers received</li> <li>Require regular, documented calibration and reagent checks for testing equipment and supplies</li> <li>Require field blanks and replicates</li> </ul> |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |                                   |    |    |    |    |    |  |
| Confirm that no restricted waste forms are present                                                                                 | <ul style="list-style-type: none"> <li>Review inventory for all waste containers received</li> <li>Perform nondestructive examination or visual inspection on a percentage of containers received</li> <li>Require regular, documented calibration and reagent checks for testing equipment and supplies</li> <li>Require field blanks and replicates</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |                                   |    |    |    |    |    |  |
| Confirm that the data collected during the verification evaluation are of sufficient quality to support waste management decisions | <ul style="list-style-type: none"> <li>Review inventory for all waste containers received</li> <li>Perform nondestructive examination or visual inspection on a percentage of containers received</li> <li>Require regular, documented calibration and reagent checks for testing equipment and supplies</li> <li>Require field blanks and replicates</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |                                   |    |    |    |    |    |  |

## 5.0 SPECIAL REQUIREMENTS FOR LAND DISPOSAL RESTRICTION WASTE

The LLBG operating organization ensures that all mixed waste restricted from land disposal meets the treatment standards of WAC 173-303-140(4) and 40 CFR 268, Subpart D, before acceptance for disposal. The LLBG operating organization does not place in lined trenches any mixed waste restricted under 40 CFR 268, Subpart C, that does not meet the treatment standards of 40 CFR 268, Subpart D, unless:

- Such waste is subject to a national variance
- Contained-in petition is granted
- Equivalent treatment under 40 CFR 268.42(b) is granted
- A petition under 40 CFR 268.6 is granted
- An extension under 40 CFR 268.5 is given
- A treatment standard variance under 40 CFR 268.44 is granted.

Listed waste numbers F020, F021, F022, F023, F026, and F027 (dioxin-containing waste) are prohibited from land disposal; the LLBG operating organization does not accept waste containing these waste numbers.

Waste containing halogenated organic compounds (HOCs) in total concentration greater than or equal to 1,000 milligrams per kilogram are prohibited from land disposal and are not accepted for disposal. Specific methods for analyzing the HOCs (otherwise referred to as total organic halides (TOX) are described in Appendix B.

The LLBG operating organization performs detailed physical and chemical analysis in accordance with Section 2.0. This applies to waste that is both treated and that naturally meets the treatment standards specified in 40 CFR 268. At a minimum, corroborative testing will be conducted annually on a designated sample (e.g., the pre-acceptance sample). Waste characterization might be required more frequently under the following circumstances:

- A new waste stream is generated.
- A process generating the waste changes.
- The waste characteristics are highly variable from load to load.
- The LLBG operating organization has reason to suspect a change in the waste based on inconsistencies in manifesting, packaging, or labeling of the waste.

Each waste is analyzed for those LDR constituents contained in the listed and characteristic numbers identified by the onsite generating unit or offsite generator that cause the waste to be dangerous. Onsite generating units or offsite generators might test waste or use process knowledge to determine LDR status. Treatment standards to which the waste is subject use 40 CFR 268, Appendix I, SW-846, or EPA-600 methods. However, when it can be shown that a treatment standard has been met through an analysis other than for the

1 established analysis methods, the requirement for the analysis of the  
2 treatment standard may be waived by the LLBG operating organization.  
3

## 6.0 RECORDKEEPING

This WAP is maintained with the LLBG operating organization or other approved organizations manuals containing all documents referenced in this plan--except for laboratory documents, which are maintained at the laboratories. Records associated with this WAP and waste verification program are maintained by the LLBG operating organization.

A copy of the waste disposal record for each waste stream accepted at the LLBG also is maintained. Onsite generating units and offsite generators maintain their sampling and analysis records, and the LLBG operating organization could request copies of this information. All records and results of waste analysis are maintained in the LLBG operating record.

This WAP will be revised under the following circumstances.

- Whenever test methods are changed.
- Whenever changes occur in the waste acceptance criteria or the waste categories accepted for disposal that might require a change in the parameters to be tested.
- Whenever referenced personnel, organizations, or procedures are changed.
- Whenever regulation changes occur that affect the WAP.

The DOE-RL may implement any proposed change once Ecology is notified. However, if the change eventually is disapproved, the DOE-RL will be responsible for fulfilling any requirements that were not met because of implementation of the change.

This WAP is maintained as a controlled document under the existing guidelines for document control within the LLBG operating organization. Documents are maintained in the LLBG operating record and are forwarded to the onsite document control organization for permanent storage.

1  
2  
3  
4  
5

This page intentionally left blank.

## 7.0 REFERENCES

4 ASTM, 1982, *Annual Book of ASTM Standards*, Parts 15, 19, and 31, American  
5 Society for Testing and Materials, Philadelphia, Pennsylvania.

6

7 DOE/RL-88-20, *Low-Level Burial Grounds Dangerous Waste Permit Application*,  
8 *Request for Exemption from Lined Trench Requirements and from Land*  
9 *Disposal Restrictions for Residual Liquid at 218-E-12B Burial Ground*  
10 *Trench 94*, Supplement 1, U.S. Department of Energy, Richland Operations  
11 Office, Richland, Washington.

12

13 DOE/RL-90-12, *Request for Interim Approval to Operate Trench 94 of the*  
14 *218-E-12B Burial Ground as a Chemical Waste Landfill for Disposal of*  
15 *Polychlorinated Biphenyl Waste in Submarine Reactor Compartments*,  
16 Revision 2, U.S. Department of Energy, Richland Operations Office,  
17 Richland, Washington.

18

19 DOE/RL-94-55, *Hanford Analytical Services Quality Assurance Plan*, Rev. 0,  
20 U.S. Department of Energy, Richland Operations Office, Richland,  
21 Washington.

22

23 Ecology, 1980, *Biological Testing Methods*, DOE 80-12, revised July 1984,  
24 Washington State Department of Ecology, Olympia, Washington.

25

26 EPA, 1986, *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods*,  
27 SW-846, U.S. Environmental Protection Agency, Washington, D.C.

28

29 EPA, 1987, *Data Quality Objectives for Remedial Response Activities*,  
30 *Development Processes*, EPA/540-87-003, U.S. Environmental Protection  
31 Agency, Washington, D.C.

32

33 WHC, 1995, *Waste Specification System*, WHC-EP-0846, Westinghouse Hanford  
34 Company, Richland, Washington.

1  
2  
3  
4  
5

This page intentionally left blank.

1

**APPENDICES**

2

3

4

5

6

7

A ANALYTICAL PROCEDURES AND RATIONALE

8

9 B TOTAL ORGANIC HALIDES SCREENING FOR INCOMING WASTE ACCEPTANCE

10

11 C FINGERPRINT PARAMETER SELECTION

1  
2  
3  
4  
5

This page intentionally left blank.

1  
2  
3  
4

**APPENDIX A**

**ANALYTICAL PROCEDURES AND RATIONALE**

1  
2  
3  
4  
5

This page intentionally left blank.

1  
2  
3  
4 APPENDIX A  
5  
67 ANALYTICAL PROCEDURES AND RATIONALE  
8  
9

10 These analytical procedures are designed to identify or screen specific  
11 waste components. Because the characterization provides information  
12 concerning the distribution and nature of waste constituents within the waste  
13 material, and the LLBG operating organization is merely identifying that  
14 previously submitted information is correct rather than completely  
15 characterizing the waste, a less comprehensive sampling and analytical  
16 approach is appropriate.

17 The analytical screening parameters that could be used for waste received  
18 at the LLBG for disposal, associated rationale, and methods for these analyses  
19 are as follows:

20 • Physical description is used to determine the general characteristics  
21 of the waste. This facilitates subjective comparison of the sampled  
22 waste with previous waste descriptions or samples. Also, a physical  
23 description is used to verify the observational presence or absence of  
24 free liquids.

25 Methods--samples are inspected and the physical appearance of the  
26 waste is recorded. Real-time radiography and/or visual examination is  
27 used.

28 • Radioactivity screen is used to quantify radionuclides for  
29 verification of transuranic radionuclide content, non-transuranic  
30 radionuclide content, and the waste classification (i.e., low-level  
31 waste or transuranic)

32 Methods--a sample of the waste is passed by a geiger counter, survey  
33 meter, or a waste container is assayed using passive-active neutron or  
34 segmented gamma scanning techniques.

35 • Headspace volatile organic compound analysis is performed to determine  
36 the presence or absence of solvents or other volatile organic  
37 compounds in waste. This is one of the few methods available to  
38 evaluate the presence of volatile organic compounds that could be  
39 associated with heterogeneous materials.

40 Methods--a sample of the headspace gases in a container are analyzed  
41 by one or more of the following: Fourier transform infrared  
42 spectroscopy, gas chromatography/mass spectroscopy, HNU, organic vapor  
43 analyzer, and colorimetric tubes.

- 1     • Paint filter liquids test is used to verify the presence or absence of  
2     free liquid in solid or semisolid material to be landfilled.
- 3     Method--to a standard paint filter, 100 centimeters or 100 grams of  
4     waste are added and allowed to settle for 5 minutes. Any liquid  
5     passing through the filter signifies failure of the test (SW-846  
6     Method 9095).
- 7     • pH screen is used to identify the pH and corrosive nature of an  
8     aqueous or solid waste, aid in establishing compatibility strategies,  
9     and to indicate if the waste is acceptable for disposal in the LLBG.
- 10     Methods--full range pH is used for the initial screening. If the  
11     initial screen indicates a pH below 2 or above 12.5, a pH meter is  
12     used. The pH meter is used directly on liquid samples and on the free  
13     liquid portion of liquid/solid samples. For solid materials, the pH  
14     of the solution from a 1:1 slurry of water to waste is used (or ASTM  
15     Method D4980).
- 16     • Flammability potential screen is used to determine the fire-producing  
17     potential of the waste. This test can be applied to waste liquids,  
18     solids, and semisolids.
- 19     Methods--liquids are tested using the HAZCAT<sup>1</sup> combustibility, char  
20     and/or oxidizer tests; solids and semisolids are tested using the  
21     HAZCAT char and/or oxidizer tests.
- 22     • Water reactivity screen is used to determine if the waste has the  
23     potential to react vigorously with water to form gases or other  
24     reaction products.
- 25     Method--approximately 5 grams of solid or 5 milliliters of liquid  
26     waste are mixed with about 5 milliliters of water. For liquid waste,  
27     water is added to the waste. The solution is observed for evidence of  
28     fuming, bubbling, or spattering. These reactions are considered to be  
29     positive evidence that the waste is water reactive.
- 30     • Cyanide screen indicates whether the waste produces hydrogen cyanide  
31     upon acidification below pH 2.
- 32     Method--to a test tube or beaker containing approximately  
33     5 milliliters of sample, an equal amount of freshly prepared ferrous  
34     ammonium citrate is added. 3 Normal hydrochloric acid is then used to  
35     reduce the pH of the solution to about 2.0. A deep blue color  
36     indicates the presence of cyanide. The test can detect free cyanide  
37     and complex cyanides in concentrations above 200 parts per million.

---

48     <sup>1</sup> HAZCAT is a registered trademark of Haztech Systems Incorporated,  
49     San Francisco, California.

1     • Sulfide screen is used to indicate if the waste produces hydrogen  
2       sulfide upon acidification below pH 2.

3  
4     Methods--approximately 5 milliliters of sample is added to beaker or  
5       test tube and enough 3 Normal hydrochloric acid is added to bring the  
6       pH down to 2.0. A sulfide test strip is placed in the solution. If  
7       the paper turns brown or silvery black, the presence of sulfides in  
8       the sample is indicated. If there is no color change, the total  
9       sulfides are reported as nondetectable.

10     • Metals and elements screen is used to determine the presence of  
11       regulated quantities of heavy metals in the waste and confirm the  
12       presence or absence of other inorganic elements. This method is used  
13       as a confirmation of other test results.

14  
15     Method--waste samples are tested using an x-ray fluorescence  
16       spectrometer and/or the toxicity characteristics leaching procedure  
17       extraction method (SW-846 Method 1311). For the x-ray fluorescence  
18       spectrometry method, spectral data are obtained by putting a small  
19       sample of waste in special sample cups or by holding the detector up  
20       to the waste to be analyzed. The resulting spectra are analyzed for  
21       the presence of elements and heavy metals.

22  
23     • Volatile and semivolatile compounds screen is used to evaluate the  
24       presence or absence of volatile and/or semivolatile organic compounds  
25       in the waste, and to verify the treatment standards associated with  
26       organic chemical content.

27  
28     Methods--waste is tested using Fourier transform infrared spectroscopy,  
29       fourier transform raman spectroscopy, and/or gas chromatography/mass  
30       spectroscopy. Depending on the waste matrix, an experienced  
31       spectroscopist uses the testing method best suited for the waste and  
32       interprets the results.

33  
34     • PCB screen is used to indicate whether PCBs are present in oil-bearing  
35       waste and to determine if the waste needs to be managed in accordance  
36       with the regulations prescribed in the *Toxic Substance Control Act of*  
37       *1976*.

38  
39     Method--the tests to be conducted include the HAZCAT beilstein test,  
40       and/or the appropriate organic chlorine test.

1  
2  
3  
4  
5

**This page intentionally left blank.**

1  
2  
3  
4

**APPENDIX B**

**TOTAL ORGANIC HALIDES SCREENING FOR INCOMING WASTE ACCEPTANCE**

1  
2  
3  
4  
5

This page intentionally left blank.

## APPENDIX B

**TOTAL ORGANIC HALIDES SCREENING FOR INCOMING WASTE ACCEPTANCE**

This appendix addresses the guidelines and processes by which the LLBG operating organization determines the applicability and demonstrates compliance with the LDR regulations for waste with HOCs. The appropriate screening methods will be used for TOX.

**Pre-Shipment Characterization for Halogenated Organic Compounds or Total Organic Halides**

A determination as to the applicability of the HOCs is made during the pre-shipment acceptance testing. This determination is based on the results of TOX analysis or based on results of the individual compounds listed in Appendix III of 40 CFR 268. This determination is made by the onsite generating unit or offsite generator before shipment as part of the information to be submitted to the LLBG operating organization.

**Waste Verification for Total Organic Halides**

The LLBG operating organization samples and analyzes for TOX at least 20 percent of all incoming waste streams that have pre-shipment TOX readings above 500 milligrams per kilogram to ensure the incoming waste arrives with TOX levels below 1,000 milligrams per kilogram.

If the incoming waste contains less than 1,000 milligrams per kilogram of TOX, the material is considered for land disposal if all other waste acceptance criteria are met. If the TOX test indicates greater than 1,000 milligrams per kilogram of TOX is present, the waste is subjected to further analysis to determine if the HOC concentration exceeds 1,000 milligrams per kilogram as described in the next section.

**Land Disposal Prohibition for Shipments with Excessive Levels of Total Organic Halides**

The LLBG operating organization does not dispose of any mixed waste where waste analysis results for TOX exceeds 1,000 milligrams per kilogram of TOX unless the comprehensive analysis criteria are performed to demonstrate that the HOC level in such waste does not exceed 1,000 milligrams per kilogram. Laboratory analysis, in accordance with EPA approved methods, is performed to determine the concentration of each constituent listed in Appendix III of 40 CFR 268. If the laboratory results indicate the sum of the California List HOCs in the waste does not exceed 1,000 parts per million, the LLBG operating organization land disposes this waste stream after recording these data in the operating record.

1   **Annual Total Organic Halides Analysis and Re-characterization of Waste**  
2   **for High Total Organic Halides**

3  
4   Annually, the LLBG operating organization analyzes a sample of each  
5   non-high TOX waste stream for recharacterization of the high TOX  
6   classification. The TOX analysis is performed on a sample taken from an  
7   incoming shipment. Should the waste exceed 500 milligrams per kilogram of  
8   TOX, the waste is recharacterized as a high TOX waste and thereafter is  
9   analyzed for TOX at the high TOX frequency. High TOX waste remains high TOX  
10   waste thereafter. The annual high TOX recharacterization is not required for  
11   high TOX waste because waste already is sampled at the high TOX frequency.

12   **Additional Recordkeeping Requirements for High Total Organic Halides**  
13   **Analysis Results**

14  
15   The LLBG operating organization maintains the following additional  
16   records pertaining to TOX analysis in the operating record:

16  
17   • A list of high TOX waste streams that are accepted at the LLBG  
18  
19   • The results of the annual characterization analysis for high  
20   TOX/non-high TOX waste  
21  
22   • The results of the incoming shipment analyses for TOX for both high  
23   TOX and non-high TOX waste.

24   **Total Organic Halides Screening Protocol Sample Preparation and Analysis**

25  
26   Method 9020 or 9022 determines TOX as chloride in aqueous waste  
27   solutions. Using this method for analysis, the LLBG operating organization  
28   prepares and analyzes an extract for all waste that is nonaqueous in nature.  
29   The LLBG operating organization uses Method 3540 (soxhlet) or Method 3550  
30   (sonification), which are extraction procedures described in SW-846 to prepare  
31   this extract. The extract is referred to as 'solid waste extracts'.

32  
33   If significant stratification occurs in the waste, each layer might be  
34   composited in proportion to the estimated volume. These samples sufficiently  
35   are mixed to allow a representative sample of the waste to be analyzed.

1  
2  
3  
4

**APPENDIX C**

**FINGERPRINT PARAMETER SELECTION**

1  
2  
3  
4  
5

This page intentionally left blank.

1 APPENDIX C  
2  
3  
45 FINGERPRINT PARAMETER SELECTION  
6  
78 The following parameters have been selected for fingerprint analysis of  
9 waste materials being received at the LLBG10 • Flammability or Head Space VOC/SVOC - Flammability tests will be  
11 conducted when safety conditions exist that eliminate the spread of  
12 radioactive material to the worker or environment via open flame  
13 testing. Head space analysis, volatile organic compounds, or  
14 semivolatile organic compound analysis will be tested in place of open  
15 flame tests as needed using appropriate analytical equipment.  
16 Oxidizing materials that could contribute to the propagation of a fire  
17 also will be analyzed.  
18  
19 • Paint Filter Liquid Screening - When needed, this analysis will be  
20 used to determine if free liquids potentially are present in a waste  
21 shipment.  
22  
23 • pH - pH screening is conducted to identify waste that might mobilize  
24 toxic materials and corrode waste handling or storage containers.  
25  
26 • Organic Halogen - This screening is conducted to identify the presence  
27 of persistent or land ban materials; a precursor for PCB screening if  
28 the test is positive.  
29  
30 • PCBs - PCB waste is regulated specifically by federal and state  
31 regulations. These regulations must be met for disposal of PCB waste  
32 at the LLBG.  
33  
34 • H<sub>2</sub>O Reactivity - This test is conducted to determine if a waste  
35 material has the potential to react vigorously with water or form  
36 toxic gases.  
37  
38 • Sulfide - This test is conducted to determine if a waste material  
39 might produce hydrogen sulfide, a toxic gas formed below pH 2.  
40  
41 • Cyanide - This test is conducted to determine if a waste material  
42 might produce hydrogen cyanide below pH 2.  
43  
44 • Metals (as appropriate for trenches 31 and 34) - When needed, x-ray  
45 fluorescence or toxicity characteristic leaching procedure methods  
46 will be conducted.

1  
2  
3  
4  
5

This page intentionally left blank.