

ENGINEERING CHANGE NOTICE

1. ECN 639100

Page 1 of 3Proj.
ECN

<p>2. ECN Category (mark one)</p> <p>Supplemental <input type="checkbox"/> Direct Revision <input checked="" type="checkbox"/> Change ECN <input type="checkbox"/> Temporary <input type="checkbox"/> Standby <input type="checkbox"/> Supersedure <input type="checkbox"/> Cancel/Void <input type="checkbox"/></p>				<p>3. Originator's Name, Organization, MSIN, and Telephone No.</p> <p>D. A. Pratt, Solid Waste Management, T4-03, 373-2464</p>	<p>4. USQ Required?</p> <p><i>Object</i> <input checked="" type="checkbox"/> Yes <input type="checkbox"/> No</p>	<p>5. Date</p> <p>May 20, 1997</p>	
<p>6. Project Title/No./Work Order No.</p> <p>Waste Analysis Plan for the Low-Level Burial Grounds</p>		<p>7. Bldg./Sys./Fac. No.</p> <p>Low-Level Burial Grounds</p>		<p>8. Approval Designator</p> <p>EQ</p>			
<p>9. Document Numbers Changed by this ECN (includes sheet no. and rev.)</p> <p>HNF-SD-EN-WAP-002, Rev. <u>2</u></p>		<p>10. Related ECN No(s).</p> <p>N/A</p>		<p>11. Related PO No.</p> <p>N/A</p>			
<p>12a. Modification Work</p> <p><input type="checkbox"/> Yes (fill out Blk. 12b) <input checked="" type="checkbox"/> No (NA Blks. 12b, 12c, 12d)</p>		<p>12b. Work Package No.</p> <p>N/A</p>		<p>12c. Modification Work Complete</p> <p>N/A</p>		<p>12d. Restored to Original Condition (Temp. or Standby ECN only)</p> <p>N/A</p>	
				<p>Design Authority/Cog. Engineer Signature & Date</p>		<p>Design Authority/Cog. Engineer Signature & Date</p>	
<p>13a. Description of Change</p> <p>Change document WHC-SD-EN-WAP-002, Rev. 1 to HNF-SD-EN-WAP-002, Rev. 2 (attached).</p> <p><i>This document was revised based upon the DCO process between RL, Ecology, FOH, and RFSH.</i></p>				<p>13b. Design Baseline Document? <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No</p>			
<p>14a. Justification (mark one)</p> <p>Criteria Change <input type="checkbox"/> Design Improvement <input type="checkbox"/> Environmental <input checked="" type="checkbox"/> Facility Deactivation <input type="checkbox"/> As-Found <input type="checkbox"/> Facilitate Const <input type="checkbox"/> Const. Error/Omission <input type="checkbox"/> Design Error/Omission <input type="checkbox"/></p>							
<p>14b. Justification Details</p> <p>Direct revision ECN, changes Rev. 1 to Rev. 2.</p>							
<p>15. Distribution (include name, MSIN, and no. of copies)</p> <p>See distribution sheet attached.</p>				<p>RELEASE STAMP</p> <div style="border: 1px solid black; padding: 5px; text-align: center;"> <p><i>JUN 09 1997</i></p> <p>DATE: <u>JUN 09 1997</u></p> <p>STA: <u>37</u></p> <p>RANBORG RELEASE</p> <p>ID: <u>37</u></p> </div>			

ENGINEERING CHANGE NOTICE

Page 2 of 3

1. ECN (use no. from pg. 1)

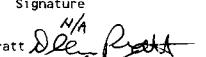
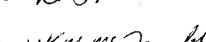
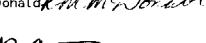
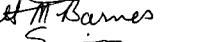
639100

16. Design Verification Required [] Yes [X] No	17. Cost Impact			18. Schedule Impact (days)		
	ENGINEERING	CONSTRUCTION		Improvement		N/A
	Additional Savings	\$ N/A	Additional Savings	\$ N/A	Delay	[] N/A

19. Change Impact Review: Indicate the related documents (other than the engineering documents identified on Side 1) that will be affected by the change described in Block 13. Enter the affected document number in Block 20.

SDD/DD N/A	[]	Seismic/Stress Analysis	[]	Tank Calibration Manual	[]
Functional Design Criteria	[]	Stress/Design Report	[]	Health Physics Procedure	[]
Operating Specification	[]	Interface Control Drawing	[]	Spares Multiple Unit Listing	[]
Criticality Specification	[]	Calibration Procedure	[]	Test Procedures/Specification	[]
Conceptual Design Report	[]	Installation Procedure	[]	Component Index	[]
Equipment Spec.	[]	Maintenance Procedure	[]	ASME Coded Item	[]
Const. Spec.	[]	Engineering Procedure	[]	Human Factor Consideration	[]
Procurement Spec.	[]	Operating Instruction	[]	Computer Software	[]
Vendor Information	[]	Operating Procedure	[]	Electric Circuit Schedule	[]
OM Manual	[]	Operational Safety Requirement	[]	ICRS Procedure	[]
FSAR/SAR	[]	IEFD Drawing	[]	Process Control Manual/Plan	[]
Safety Equipment List	[]	Cell Arrangement Drawing	[]	Process Flow Chart	[]
Radiation Work Permit	[]	Essential Material Specification	[]	Purchase Requisition	[]
Environmental Impact Statement	[]	Fac. Proc. Samp. Schedule	[]	Tickler File	[]
Environmental Report	[]	Inspection Plan	[]		[]
Environmental Permit	[]	Inventory Adjustment Request	[]		[]

20. Other Affected Documents: (NOTE: Documents listed below will not be revised by this ECN.) Signatures below indicate that the signing organization has been notified of other affected documents listed below.





Document Number/Revision

Document Number/Revision

Document Number Revision

N/A

21. Approvals

	Signature	Date	Design Agent	Signature	Date
Design Authority Cog. Eng. D. A. Pratt		5/21/97	PE		
Cog. Mgr. R. M. Irwin		5/28/97	QA		
QA N/A D. L. Vance		5/27/97	Safety		
Safety N/A			Design		
Environ. K. M. McDonald		5/21/97	Environ.		
Other			Other		
G. C. Triner		5/30/97			
P. J. Crane		6/5/97			
B. M. Barnes		5/20/97	DEPARTMENT OF ENERGY		
D. G. Saueressig		5/26/97	Signature or a Control Number that tracks the Approval Signature		
			ADDITIONAL		

UNREVIEWED SAFETY QUESTION (USQ)
SCREENING AND EVALUATION

ECN-639100

1. Identification Number: SWMFE-USQ-
97-034

USQ SCREENING

Page 3 of 3

2. Title: Waste Analysis Plan for the Low-Level Burial Grounds

INSTRUCTIONS: Respond to each question and provide justification for each response. A restatement of the question does not constitute a satisfactory justification or basis. An adequate justification provides sufficient explanation such that an independent reviewer could reach the same conclusion based on the information provided (DOE 5480.21, 10.e.1).

QUESTIONS

1. Does the proposed change or occurrence represent a change to the facility or procedures as described in the Authorization Basis?
[] N/A No [] Yes/Maybe

BASIS: The proposed change is to a Waste Analysis Plan which documents methods used to characterize and sample mixed waste disposed in the LLBG. This type of activity is described in WHC-SD-WM-SARR-028 Rev 2 section 3.2.1.

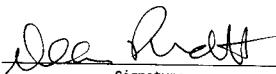
2. Does the proposed change or occurrence represent conditions that have not been analyzed in the Authorization Basis?
[] N/A No [] Yes/Maybe

BASIS: SWBG Waste characterization and analysis activities are assumed for all wastes shipped to the SWBG facilities. A narrative description of the general process is given in 3.1.1.

3. Does the proposed change represent a test or experiment NOT described in the Authorization Basis that may affect the safe operation of the facility?
 N/A [] No [] Yes/Maybe

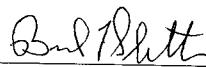
BASIS:

4. Does the proposed change or occurrence represent a change to the Technical Safety Requirements or a reduction in the margin of safety defined in the Technical Safety Requirements?
[] N/A No [] Yes/Maybe


BASIS: This Waste Analysis Plan helps to ensure that requirements listed in WHC-SD-WM-TRSR-001 Rev 1 Section 5.4.1 are implemented. No changes to TSRs are required.

USQE #1 D. A. Pratt

USQE #2 J. R. Rossen BSL SLHeme


(Print Name)

(Print Name)

Signature

Date: 5/21/97

Signature

Date: 5/21/97

If there is a YES/MAYBE response to questions 1, 2, 3, or 4, then a USQ Evaluation must be completed.

The following guidance should be considered when completing this screening. This guidance should not be considered all-inclusive; additional factors may need to be considered depending on the nature of the proposed change.

Does the proposed change:

- 1) Modify, add, or delete a safety class function of a structure, system or component stated in the authorization basis?
- 2) Alter the design of a structure, system or component as described in the authorization basis?
- 3) Modify, add, or delete the description of operation, operating environment, or analyses of any system or component described in the authorization basis?
- 4) Modify, add, delete or conflict with any of the design bases stated in the authorization basis?
- 5) Conflict with the principle or general design criteria stated in the authorization basis?
- 6) Modify, add, or delete any plant design features described in the authorization basis?
- 7) Modify, add, or delete a flow diagram or facility drawing provided in the authorization basis?
- 8) Create the potential for new system or component interactions (e.g., seismic, electrical breaker coordination)?

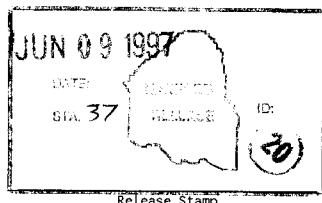
Waste Analysis Plan for the Low-Level Burial Grounds

Dean A. Pratt

Rust Federal Services of Hanford Inc., Richland, WA 99352
U.S. Department of Energy Contract DE-AC06-96RL13200

EDT/ECN: ~~MA~~639100 UC: 2000
Org Code: 32540 Charge Code: A6Y01
B&R Code: EW3130020 Total Pages: -56-⁵³

Key Words: Low-Level Burial Grounds, mixed waste, waste acceptance, waste designation, waste characterization, QA/QC, sampling and analysis.


Abstract: This waste analysis plan (WAP) has been prepared for the Low-Level Burial Grounds (LLBG) which are located in the 200 East and West Areas of the Hanford Facility, Richland, Washington. This WAP documents the methods used to characterize, and obtain and analyze representative samples of waste managed at this unit.

TRADEMARK DISCLAIMER. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.

Printed in the United States of America. To obtain copies of this document, contact: Document Control Services, P.O. Box 950, Mailstop H6-08, Richland WA 99352, Phone (509) 372-2420; Fax (509) 376-4989.

Janis Bishop 6-9-97
Release Approval Date

Release Stamp

Approved for Public Release

CONTENTS

4	GLOSSARY	v
5	METRIC CONVERSION CHART	vi
8	1.0 UNIT DESCRIPTION	1-1
9	1.1 DESCRIPTION OF PROCESSES AND ACTIVITIES	1-1
10	1.1.1 How Waste is Accepted, Moved, Processed, and 11 Managed	1-3
12	1.1.1.1 Narrative Process Descriptions	1-3
13	1.1.1.2 Types of Acceptable Knowledge	1-3
14	1.1.1.3 Description of Waste Profile System	1-4
15	1.1.2 Process for Reducing the Physical Screening 16 Frequency	1-5
17	1.1.3 Process Flow Diagram	1-6
18	1.1.4 Operating Conditions and Process Constraints	1-6
19	1.1.4.1 Operating Conditions	1-6
20	1.1.4.2 Process Constraints	1-7
21	1.2 IDENTIFICATION AND CLASSIFICATION OF WASTE	1-7
22	1.2.1 Dangerous Waste Numbers, Quantities, and Design 23 Capacity	1-8
24	1.2.2 Unit-Specific Information	1-9
26	2.0 DESCRIPTION OF CONFIRMATION PROCESS	2-1
27	2.1 PRE-SHIPMENT REVIEW	2-1
28	2.1.1 Pre-Shipment Review Process	2-1
29	2.1.2 Methodology to Ensure Compliance with Land Disposal 30 Restrictions Requirements	2-2
31	2.2 WASTE VERIFICATION	2-3
32	2.2.1 Container Receipt Inspection	2-4
33	2.2.2 Physical Screening Process Guidance	2-4
34	2.2.2.1 Physical Screening Methods	2-4
35	2.2.2.2 Physical Screening Frequency	2-4
36	2.2.2.3 Physical Screening Exceptions	2-5
37	2.2.3 Chemical Screening Process Methods	2-6
38	2.2.3.1 Chemical Screening Frequency	2-6
39	2.2.3.2 Chemical Screening Exceptions	2-7
41	3.0 SELECTING WASTE ANALYSIS PARAMETERS	3-1
43	4.0 SELECTING SAMPLING PROCEDURES	4-1
44	4.1 SAMPLING STRATEGIES	4-1
45	4.2 SELECTING SAMPLING EQUIPMENT	4-1
46	4.3 SAMPLE PRESERVATION	4-1
47	4.4 ESTABLISHING QUALITY ASSURANCE/QUALITY CONTROL PROCEDURES 48 FOR SAMPLING	4-1

1 CONTENTS (cont)

4 5.0	SELECTING A LABORATORY, LABORATORY TESTING, AND ANALYTICAL	
5 METHODS		5-1
6 5.1	SELECTING A LABORATORY	5-1
7 5.2	SELECTING TESTING AND ANALYTICAL METHODS	5-1
8 6.0	SELECTING WASTE RE-EVALUATION FREQUENCIES	6-1
9 7.0	SPECIAL PROCEDURAL REQUIREMENTS	7-1
10 7.1	PROCEDURES FOR RECEIVING WASTE GENERATED ONSITE	7-1
11 7.2	PROCEDURES FOR RECEIVING WASTE GENERATED OFFSITE	7-1
12 7.3	PROCEDURES FOR IGNITABLE, REACTIVE, AND INCOMPATIBLE	7-1
13 WASTE		7-1
14 7.4	PROVISIONS FOR COMPLYING WITH FEDERAL AND STATE LAND	7-1
15 DISPOSAL RESTRICTION REQUIREMENTS		7-1
16 8.0	RECORDKEEPING	8-1
17 9.0	REFERENCES	9-1

23 FIGURES

27 1-1.	Locations of Low-Level Burial Grounds in the 200 East Area	F1-1
28 1-2.	Locations of Low-Level Burial Grounds in the 200 West Area	F1-2
29 1-3.	218-E-10 Burial Ground	F1-3
30 1-4.	218-E-12B Burial Ground	F1-4
31 1-5.	218-W-3A Burial Ground	F1-5
32 1-6.	218-W-3AE Burial Ground	F1-6
33 1-7.	218-W-4B Burial Ground	F1-7
34 1-8.	218-W-4C Burial Ground	F1-8
35 1-9.	218-W-5 Burial Ground	F1-9
36 1-10.	Typical Resource Conservation and Recovery Act-Compliant	
37 Liner System		F1-10
38 1-11.	218-W-6 Burial Ground	F1-11
39 1-12.	Example Generator Evaluation Worksheet	F1-12
40 1-13.	Low-Level Burial Grounds Waste Analysis Plan Flowchart	F1-13

42 TABLES

46 1-1.	Incompatible Chemicals	T1-1
47 4-1.	Low-Level Burial Ground Chemical Screening Sampling Results	T4-1

GLOSSARY

4	ALAR	as low as reasonably achievable
5	AWMP	alternative waste management plan
6		
7	CAP	corrective action plan
8	COLIWASA	composite liquid waste sampler
9	CFR	Code of Federal Regulations
10	CWC	Central Waste Complex
11		
12	DOE-RL	U.S. Department of Energy, Richland Operations Office
13		
14	Ecology	Washington State Department of Ecology
15		
16	HF	Hanford Facility
17		
18	LDR	land disposal restriction
19	LLBG	Low-Level Burial Grounds
20		
21	MSDS	material safety data sheet
22		
23	PCB	polychlorinated biphenyl
24	PES	performance evaluation system
25	pH	negative concentration logarithm of the hydrogen-ion concentration
26		
27	QA/QC	quality assurance and quality control
28		
29	RCRA	<i>Resource Conservation and Recovery Act of 1976</i>
30		
31	RCW	Revised Code of Washington
32	RTR	real-time radiography
33		
34	SWITS	solid waste information tracking system
35	SWMU	solid waste management unit
36		
37	TRU	transuranic
38		
39	WAC	Washington Administrative Code
40	WAP	waste analysis plan
41	WRAP 1	Waste Receiving and Processing 1
42	WSRd	waste specification record
43		
44	°C	degrees Celsius
45		

METRIC CONVERSION CHART

The following conversion chart is provided to the reader as a tool to aid in conversion.

Into metric units

Out of metric units

If you know	Multiply by	To get	If you know	Multiply by	To get
Length					
inches	25.40	millimeters	millimeters	0.0393	inches
inches	2.54	centimeters	centimeters	0.393	inches
feet	0.3048	meters	meters	3.2808	feet
yards	0.914	meters	meters	1.09	yards
miles	1.609	kilometers	kilometers	0.62	miles
Area					
square inches	6.4516	square centimeters	square centimeters	0.155	square inches
square feet	0.092	square meters	square meters	10.7639	square feet
square yards	0.836	square meters	square meters	1.20	square yards
square miles	2.59	square kilometers	square kilometers	0.39	square miles
acres	0.404	hectares	hectares	2.471	acres
Mass (weight)					
ounces	28.35	grams	grams	0.0352	ounces
pounds	0.453	kilograms	kilograms	2.2046	pounds
short ton	0.907	metric ton	metric ton	1.10	short ton
Volume					
fluid ounces	29.57	milliliters	milliliters	0.03	fluid ounces
quarts	0.95	liters	liters	1.057	quarts
gallons	3.79	liters	liters	0.26	gallons
cubic feet	0.03	cubic meters	cubic meters	35.3147	cubic feet
cubic yards	0.76	cubic meters	cubic meters	1.308	cubic yards
Temperature					
Fahrenheit	subtract 32 then multiply by 5/9ths	Celsius	Celsius	multiply by 9/5ths, then add 32	Fahrenheit

Source: *Engineering Unit Conversions*, M. R. Lindeburg, PE., Second Ed., 1990, Professional Publications, Inc., Belmont, California.

1.0 UNIT DESCRIPTION

1 The purpose of this waste analysis plan (WAP) is to document the waste
2 acceptance process, sampling methodologies, analytical techniques, and overall
3 processes that are undertaken for waste accepted for disposal at the Low-Level
4 Burial Grounds (LLBG), which are located in the 200 East and 200 West Areas of
5 the Hanford Facility, Richland, Washington. Because dangerous waste does not
6 include the source, special nuclear, and by-product material components of
7 mixed waste, radionuclides are not within the scope of this documentation.
8 The information on radionuclides is provided only for general knowledge. The
9 LLBG also receive low-level radioactive waste for disposal. The requirements
10 of this WAP are not applicable to this low-level waste.

1.1 DESCRIPTION OF PROCESSES AND ACTIVITIES

18 The LLBG are a land-based unit consisting of eight burial grounds located
19 in the 200 East Area and 200 West Area. Seven of the eight burial grounds
20 (218-E-10, 218-E-12B, 218-W-3A, 218-W-3AE, 218-W-4C, 218-W-5, and 218-W-6)
21 are, or will be, used for the disposal of mixed waste and are subject to
22 *Dangerous Waste Regulations*, Washington Administrative Code (WAC) 173-303.
23 One burial ground (218-W-4B) is designated as a solid waste management unit
24 (SWMU) (Figures 1-1 and 1-2).

26 The 218-E-10, 218-E-12B, 218-W-3A, 218-W-3AE, 218-W-4C, and
27 218-W-6 Burial Grounds are classified as landfills and the 218-W-5 Burial
28 Ground is classified as a landfill and for greater-than-90-day container
29 storage. The regulated portions of the LLBG cover a total area of
30 approximately 49 hectares.

32 The 218-E-10 and 218-E-12B Burial Grounds are located in the 200 East
33 Area. The 218-W-3A, 218-W-3AE, 218-W-4B, 218-W-4C, 218-W-5, and 218-W-6
34 Burial Grounds are located in the 200 West Area. The LLBG consist of various
35 sizes and depths of lined and unlined disposal trenches. All mixed waste
36 destined for disposal will meet land disposal restriction (LDR) requirements
37 [WAC 173-303-140 and 40 Code of Federal Regulations (CFR) 268] or other
38 regulatory alternatives. The lined trenches have leachate collection and
39 removal systems. The less-than-90-day leachate collection tanks are operated
40 in accordance with the generator provisions of WAC 173-303-200 and are not
41 subject to this WAP.

43 Future trench development and configuration within a burial ground are
44 subject to change as disposal techniques improve or as waste management needs
45 dictate and will be subject to an approved permit modification in accordance
46 with the Hanford Facility (HF) *Resource Conservation and Recovery Act* (RCRA)
47 of 1976 Permit (Ecology 1994). Mixed waste is disposed in lined or in unlined
48 trenches in accordance with applicable LDR requirements.

50 The following provides a brief description and identifies the generic
51 types of waste disposed in the LLBG. An electronic database, which can be

1 found within the LLBG operating organization, is maintained that documents
2 each waste receipt, type of waste, and disposal location.

- 3
- 4 • The 218-E-10 Burial Ground (Figure 1-3) is approximately 36.1 hectares
5 in size and began receiving waste in 1960. Examples of waste placed
6 in this burial ground include failed equipment, rags, paper, rubber
7 gloves, disposable supplies, broken tools, and post-August 19, 1987
8 RCRA and state-only designated mixed waste.
 - 9
 - 10 • The 218-E-12B Burial Ground (Figure 1-4) is approximately 68 hectares
11 in size and began receiving waste in 1967. Examples of waste placed
12 in this burial ground include defueled reactor compartments
13 (trench 94), low-level waste, and retrievable transuranic waste.
 - 14
 - 15 • The 218-W-3A Burial Ground (Figure 1-5) is approximately 20.4 hectares
16 in size and began receiving waste in 1970. Examples of waste placed
17 in this burial ground include ion exchange resins, failed equipment,
18 tanks, pumps, ovens, agitators, heaters, hoods, jumpers, vehicles,
19 accessories and post-August 19, 1987 RCRA and state-only designated
20 mixed waste, and retrievable transuranic waste.
 - 21
 - 22 • The 218-W-3AE Burial Ground (Figure 1-6) is approximately 20 hectares
23 in size and began receiving waste in 1981. Examples of waste placed
24 in this burial ground include rags, paper, rubber gloves, disposable
25 supplies, broken tools, and post-August 19, 1987 RCRA and state-only
26 designated mixed waste.
 - 27
 - 28 • The 218-W-4B Burial Ground (Figure 1-7) is approximately 3.5 hectares
29 in size and began receiving waste in 1968. Examples of waste placed
30 in this burial ground include rags, paper, rubber gloves, disposable
31 supplies, broken tools, alpha caissons, and retrievable transuranic
32 waste.
 - 33
 - 34 • The 218-W-4C Burial Ground (Figure 1-8) is approximately 20 hectares
35 in size and began receiving waste in 1978. Examples of waste placed
36 in this burial ground include contaminated soil, decommissioned pumps,
37 pressure vessels, and post-August 19, 1987 RCRA and state-only
38 designated mixed waste, and retrievable transuranic waste.
 - 39
 - 40 • The 218-W-5 Burial Ground (Figure 1-9) is approximately 37.2 hectares
41 in size and began receiving waste in 1986. Examples of waste placed
42 in this burial ground include rags, paper, rubber gloves, disposable
43 supplies, broken tools, and post-August 19, 1987 RCRA and state-only
44 designated mixed waste. This burial ground currently contains
45 double-lined mixed waste trenches (trenches 31 and 34) (Figure 1-10).
46 Trenches 31 and 34 also are designated as greater-than-90-day
47 container storage. Waste placed in trenches 31 and 34 for storage
48 purposes and eventual disposal predominately is macro-encapsulated
49 long-length contaminated equipment and other containerized waste
50 treated to meet LDR requirements. Adjacent to the double-lined mixed
51 waste trenches are leachate collection tanks operated in accordance
52 with the generator provisions of WAC 173-303-200. Examples of waste

1 to be placed in the double-lined mixed waste trenches include mixed
2 waste that has been treated to meet LDR requirements (including
3 containerized bulk waste), macro-encapsulated long-length contaminated
4 equipment, etc.

- 5
- 6 The 218-W-6 Burial Ground (Figure 1-11) is approximately 16 hectares
7 in size, has not received any waste, and is reserved for future mixed
8 waste disposal.

9

10 1.1.1 How Waste is Accepted, Moved, Processed, and Managed

11

12 The following sections describe the different types of information and
13 knowledge for waste acceptance. The movement, processing, and management of
14 waste at the LLBG is described in Chapter 4.0 of the *Hanford Facility*
15 *Dangerous Waste Permit Application, Low-Level Burial Grounds* (DOE/RL-88-20).

16

17 **1.1.1.1 Narrative Process Descriptions.** The LLBG currently accepts mixed
18 waste. All mixed waste is disposed in lined mixed waste trenches or other
19 approved alternatives. Waste accepted either can be containerized or bulk
20 solids. Typical onsite generating units include research laboratories, and
21 chemical and nuclear reprocessing units. Waste also is accepted from
22 decommissioning of structures, waste retrieval and cleanup, waste sampling,
23 etc. Typical offsite generators include research laboratories, chemical and
24 nuclear processing plants, test sites, etc. The onsite generating unit,
25 offsite generator, treatment, storage, and/or disposal unit transferring waste
26 to the LLBG will be hereafter referred to as the 'generator'.

27

28 Mixed waste that meets LDR requirements, as specified in 40 CFR 268 and
29 WAC 173-303-140, is disposed in lined trenches with leachate collection and
30 removal systems. The Hanford Facility is required to test certain mixed waste
31 depending on the type of treatment standard to ensure that the waste or
32 treatment residuals are in compliance with applicable LDR. Such testing is
33 performed according to the frequency specified in this WAP.

34

35 Two types of mixed waste are disposed in the LLBG under exemption allowed
36 by WAC 173-303-806: remote-handled mixed waste and other waste (e.g., defueled
37 reactor compartments; refer to DOE/RL-88-20, Appendix 4D).

38

39 **1.1.1.2 Types of Acceptable Knowledge.** When collecting documentation on a
40 waste stream or container, the LLBG operating organization must determine if
41 the information provided by the generator is acceptable knowledge. Acceptable
42 knowledge requirements could be met using the following types of information:

- 43
- 44 • Mass balance from a controlled process
 - 45 • Material safety data sheet (MSDS) on unused chemical products
 - 46 • Test data from a surrogate sample
 - 47 • Analytical data on the waste or a waste from a similar process

- 1 • A combination of two or more of the following:
 - 2 - Interview information
 - 3 - Logbooks
 - 4 - Procurement records
 - 5 - Validated analytical data
 - 6 - Radiation dose rate profiles
 - 7 - Procedures and/or methods
 - 8 - Process flow charts
 - 9 - Inventory sheets
 - 10 - Vendor information
 - 11 - Mass balance from an uncontrolled process (e.g., spill cleanup)
 - 12 - Mass balance from a process with variable inputs and outputs (e.g., washing/cleaning methods).

13
14 If the information is sufficient to quantify constituents and/or
15 characteristics as required by the regulations and unit specific acceptance
16 criteria, the information is acceptable knowledge.

17
18 **1.1.1.3 Description of Waste Profile System.** The performance evaluation
19 system (PES) is used to determine initial physical screening frequency of the
20 generator. The PES provides a periodic status of an individual generator's
21 performance for waste received. Also, the PES provides a mechanism for
22 determining corrective actions and physical screening frequency adjustments
23 when a problem has been discovered after waste has arrived at the LLBG.

24
25 **1.1.1.3.1 Initial Physical Screening Frequency Determination.** The
26 initial physical screening frequency determination is based on the following
27 general process.

- 28
- 29 • The LLBG operating organization reviews the waste profile information
30 to determine if there is any misdesignated or inappropriately
31 segregated waste. Based on this review, the LLBG operating
32 organization identifies any concerns associated with the following:
 - 33 - documented waste management program
 - 34 - waste stream characterization information
 - 35 - potential for inappropriate segregation.
 - 36 • Based on the identification of concerns during the review, the LLBG
37 operating organization establishes an initial physical screening
38 frequency for the new waste stream(s).

39
40 **1.1.1.3.2 Monthly Performance Evaluation.** The monthly performance
41 evaluation is used to trend generator performance on a programmatic basis and
42 is used to adjust the overall physical screening frequency. However, only a
43 portion of the general waste streams could be affected by the monthly
44 performance evaluation if substantial documentation can be provided to
45 demonstrate that one or more general waste streams will not exhibit similar
46 problems.

47
48 Conformance issues are documented during the pre-shipment review and/or
49 verification. These conformance issues are tracked on a conformance report.
50 The conformance report is used to complete the generator evaluation worksheet

1 (Figure 1-12). A generator receiving a score of 10 or greater has
2 demonstrated less than satisfactory performance, and must be evaluated for
3 corrective action determination.

4 1.1.1.3.3 Conformance Issue Resolution. Conformance issues identified
5 during verification might result in a waste container that does not meet the
6 LLBG waste acceptance criteria. If a possible conformance issue is
7 identified, the following steps are taken to resolve the issue.

- 8
- 10 • LLBG operating organization personnel compile all information
11 concerning the possible conformance issue(s).
 - 13 • The generator is notified and requested to supply additional
14 information to assist in the resolution of the issue(s). If the
15 generator-supplied information resolves the issue(s), no further
16 action is required.
 - 18 • On resolution of the initial conformance issue, the generator provides
19 a corrective action plan (CAP) that clearly states the reason for the
20 failure and describes the actions to be completed to prevent a
21 reoccurrence.
 - 23 • The LLBG operating organization reviews the CAP and waste stream
24 justification for adequacy.
 - 26 • If a CAP is determined to be inadequate, the generator remains at a
27 physical screening rate set by the LLBG operating organization.

29 1.1.2 Process for Reducing the Physical Screening Frequency

32 After a generator's frequency has been adjusted (e.g., poor performance
33 or following initial frequency) the physical screening frequency can be
34 reduced in accordance with the following criteria:

- 35
- 36 • The physical screening frequency is stepped down in a minimum of two
37 steps based on the ability of the generator to quickly implement their
38 CAP or demonstrate their ability to appropriately manage waste (as
39 applicable)
 - 41 • The reduction is determined during the monthly evaluation process;
42 however, the following minimum criteria must be met before the
43 reduction of the frequency:
 - 45 - Five containers from the streams in question must pass verification
 - 47 - The LLBG operating organization believes that there is adequate
48 evidence that the CAP or new generator's waste management program
49 has been implemented and is effective.

51 *NOTE: The LLBG operating organization could perform a generator visit
52 to obtain documentation that the CAP has been fully implemented.*

1 If the frequency was adjusted based on conformance issues, the CAP must
2 be fully implemented before the generator is allowed to return to the minimum
3 physical screening frequency.

4

5 **1.1.3 Process Flow Diagram**

6

7 Refer to Figure 1-13 for LLBG waste analysis plan flowchart.

8

9

10 **1.1.4 Operating Conditions and Process Constraints**

11 The following sections discuss the operating conditions and process
12 constraints for the LLBG.

13 **1.1.4.1 Operating Conditions.** For information determined to be 'acceptable
14 knowledge', the LLBG operating organization must determine if the information
15 is adequate for management of the waste at the LLBG. Adequate acceptable
16 knowledge is based on (1) general waste knowledge requirements, (2) LDR waste
17 knowledge requirements, and (3) waste knowledge exceptions.

18 **1.1.4.1.1 General Waste Knowledge Requirements.** At a minimum, the
19 generator must supply enough information for the waste to be managed at the
20 LLBG. The minimum level of acceptable knowledge consists of designation data
21 where the toxic constituents causing a waste number to be assigned are
22 quantified and data are provided to address any operational parameters
23 necessary for proper management of the waste in the LLBG.

24 **1.1.4.1.2 Land Disposal Restriction Information Requirements.** Waste can
25 be placed in the LLBG only if the waste meets all applicable treatment
26 standards. The LLBG operating record contains all information required to
27 document that the appropriate treatment standards have been met. For waste
28 that does not meet all applicable treatment standards, the waste is
29 transferred to another TSD unit for proper disposition.

30 For the purposes of this WAP, only one representative sample is required
31 to demonstrate compliance with a concentration-based treatment standard and
32 the corroborative testing for the sample could be accomplished in the
33 following manner.

- 34
- 35 • Generators could use onsite laboratories or offsite contract
36 laboratories and must certify that the waste meets LDR requirements.
37 The LLBG operating organization will use these analytical data to meet
38 the requirements found in 40 CFR 268.7 and WAC 173-303-140(4).
- 39
- 40 • Generators could use an independent laboratory (independent meaning
41 not part of the generator's management structure; contract
42 laboratories are acceptable), or send a sample to the Hanford Site for
43 laboratory testing. The generator must certify the waste meets LDR
44 requirements.
- 45
- 46
- 47
- 48
- 49
- 50
- 51

1 1.1.4.1.3 **Waste Knowledge Exceptions.** The following waste knowledge
2 exceptions have been developed to account for those instances when the
3 generator cannot meet the general waste knowledge and LDR waste knowledge
4 requirements of this WAP.

- 5
- 6 • Hazardous debris, as defined in WAC 173-303-040, that is managed in
7 accordance with 40 CFR 268.45 (Debris Rule) is not required to be
8 sampled. Management of debris in this manner does not depend on the
9 quantification of constituents to meet federal and state-only LDR
10 regulations. Hazardous debris meeting treatment standards in
11 accordance with 40 CFR 268.45 also meets any state-only LDR in
12 WAC 173-303-140(4).
 - 13 • Waste that is retrieved from the LLBG could be transferred to an
14 onsite TSD storage unit with only the necessary information to
15 properly manage the waste at the unit.

16

17 Other exceptions should be brought to the attention of the LLBG operating
18 organization for appropriate disposition.

19

20 1.1.4.2 **Process Constraints.** The process constraints for the LLBG consist of
21 the following:

- 22
- 23 • Defining whether there is acceptable knowledge
 - 24 • Acceptable knowledge is adequate for disposal
 - 25 • Waste meets LLBG safety criteria [e.g., as low as reasonably
26 achievable (ALARA) concerns, etc.].

27

28 1.2 IDENTIFICATION AND CLASSIFICATION OF WASTE

29

30 Mixed waste is acceptable for disposal in the LLBG except for the
31 following waste types.

- 32
- 33 • Waste is not accepted for disposal when the waste contains
34 free-standing liquid unless all free-standing liquid:
 - 35 - Has been removed by decanting, or other methods
 - 36 - Has been mixed with sorbent or stabilized (solidified) so that
37 free-standing liquid is no longer observed
 - 38 - Has been otherwise eliminated
 - 39 - Container is very small, such as an ampule
 - 40 - Container is a labpack and is disposed in accordance with
41 WAC 173-303-161 or 40 CFR 264.316
 - 42 - Is less than 1 percent of the volume of the waste or if the sorbent
43 to potential liquid waste ratio is greater than 2 to 1.

44

45 Free liquid is determined by SW-846, Method 9095 (Paint Filter Liquids
46 Test) [WAC 173-303-140(4)(b) and 40 CFR 264.314(d)] only for waste
47 that has the potential for free liquid formation.

- 1 • Gaseous waste is not accepted for disposal if the waste is packaged at
2 a pressure in excess of 1.5 atmospheres at 20°C.
- 3 • Pyrophoric waste is not accepted for disposal. Waste containing less
4 than 1 weight percent pyrophoric material partially or completely
5 dispersed in each package is not considered pyrophoric for the
6 purposes of this requirement.
- 7 • Solid acid waste is not accepted for disposal (WAC 173-303-140(4)(c)).
- 8 • Untreated mixed waste with greater than 10 percent dangerous
9 organic/carbonaceous constituents is not accepted for disposal
10 [WAC 173-303-140(4)(d)]. Paper, sawdust, wood, and other similar
11 carbon-to-carbon bonded debris matrix items are not considered
12 organic/carbonaceous constituents.
- 13 • Waste not meeting the applicable treatment standards is not accepted
14 for disposal [40 CFR 268 and WAC 173-303-140(4)].

19 Untreated extremely hazardous waste is not accepted for disposal.
20 Extremely hazardous waste that has been treated could be disposed in
21 accordance with the Revised Code of Washington (RCW) 70.105.050(2). Mixed
22 waste with constituents that could result in loss of liner integrity is not
23 accepted in the LLBG. Table 1-1 provides a list of chemicals that have been
24 shown to be incompatible with the liner (DOE/RL-88-20). Mixed waste with
25 chemical constituents other than heavy metals, heavy metal salts, or those
26 listed in Table 1-1 are evaluated on a case-by-case basis.

30 1.2.1 Dangerous Waste Numbers, Quantities, and Design Capacity

31 The Part A, Form 3, permit application for the LLBG identifies dangerous
32 waste numbers, quantities, and the design capacity and is located in
33 Chapter 1.0 of the LLBG dangerous waste permit application documentation
34 (DOE/RL-88-20).

35 For waste that cannot be managed in accordance with the requirements set
36 forth in this WAP, an alternative waste management plan (AWMP) could be
37 submitted to the Washington State Department of Ecology (Ecology) for review.
38 Because many activities associated with or necessary to support waste
39 management projects readily would not be predictable, some flexibility in
40 timeframes for submitting, reviewing, and completing waste management plans
41 would be necessary. In general, the following schedules could be observed.

- 42 • Submit the AWMP to the Ecology Project Manager at least 120 days
43 before the project is expected to begin. The cover letter must state
44 that "no reply within 45 days constitutes approval".
- 45 • Ecology reviews and provides comments (if any) within 45 days after
46 receiving the AWMP.

- 1 • If comments are received, comments will be resolved through project
2 manager meetings or other workshops as agreed to by the
3 U.S. Department of Energy, Richland Operations Office (DOE-RL) and
4 Ecology. When the plan is resubmitted on resolution of Ecology's
5 comments, the same review timeframes are applicable.
6
- 7 • If no comments are received from Ecology within 45 days after the AWMP
8 is submitted, the plan is denoted as being approved.
9

10 These timeframes could be adjusted by mutual agreement to account for
11 project-specific needs and priorities. The AWMP is reviewed to ensure the
12 following.

- 13 • The project does not endanger human health and the environment.
14
- 15 • The course of action chosen is well justified.
16

17 On gaining written or automatic approval, the DOE-RL proceeds as
18 described in the AWMP. Should the plan require revision due to unforeseen
19 circumstances, the DOE-RL will resubmit the plan before continuing. On
20 conclusion of the project, the DOE-RL will supply Ecology with a report
21 outlining the activities performed and the results of these activities.
22 A determination also will be made if the WAP requires revision. Under most
23 circumstances, it is expected that the AWMP will not result in the need to
24 amend the WAP.
25

26 1.2.2 Unit-Specific Information 27

28 For a detailed description on processes, operations, and physical
29 dimensions, refer to Chapter 4.0 of the Hanford Facility dangerous waste
30 permit application LLBG documentation (DOE/RL-88-20).
31

1
2
3
4
5

This page intentionally left blank.

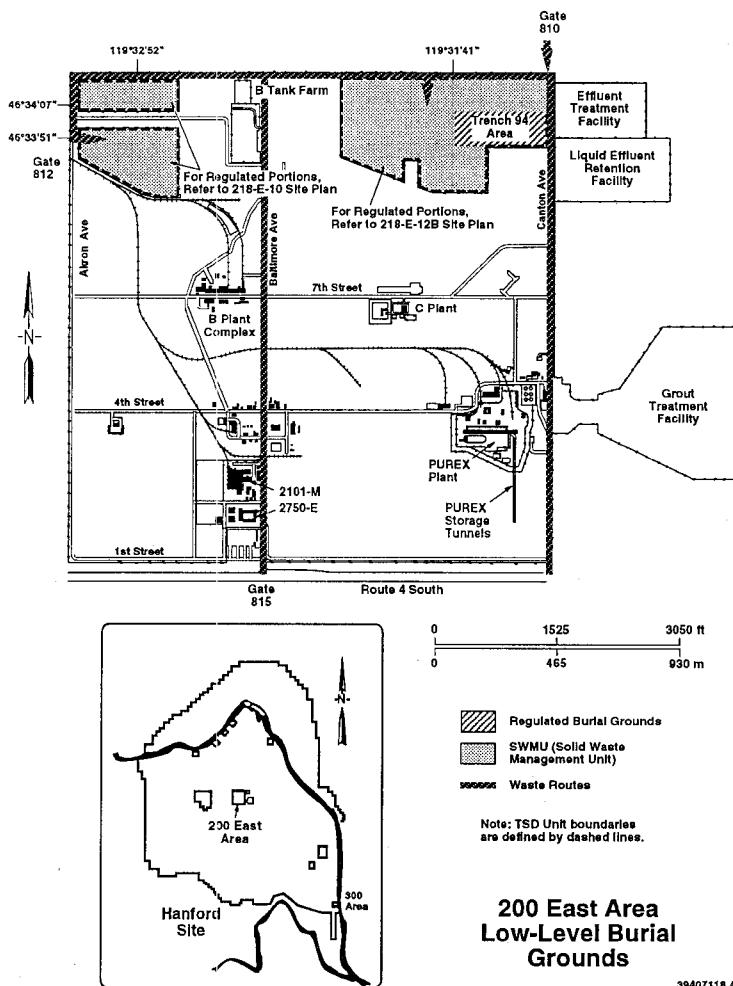


Figure 1-1. Locations of Low-Level Burial Grounds in the 200 East Area.

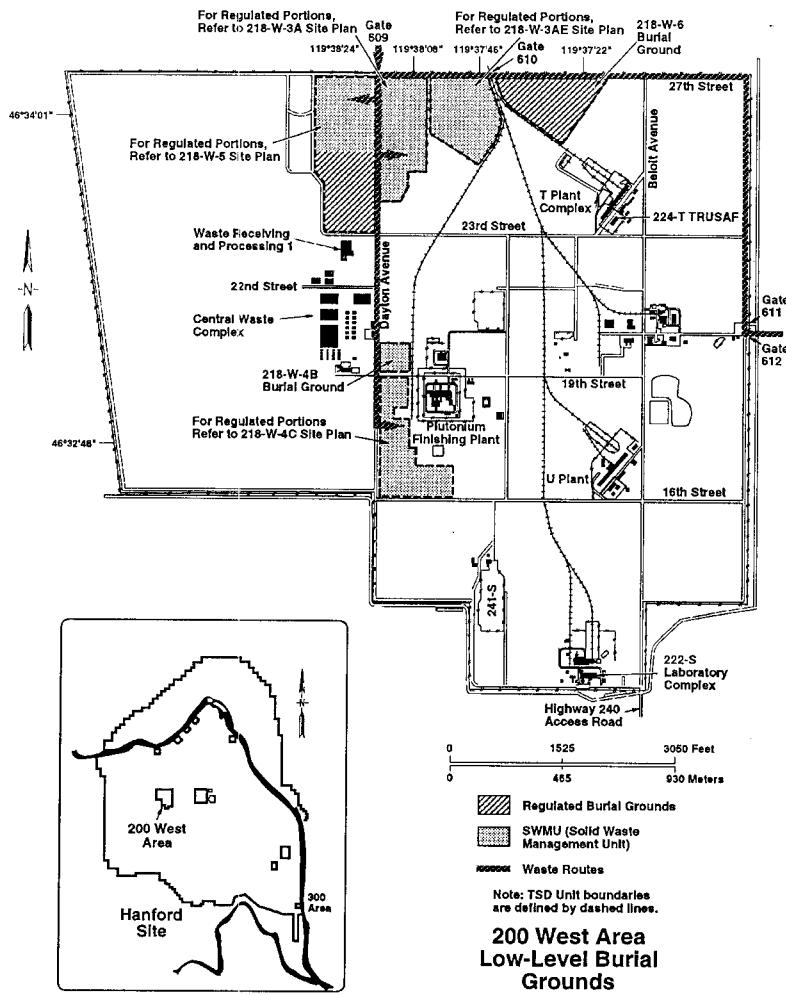


Figure 1-2. Locations of Low-Level Burial Grounds in the 200 West Area.

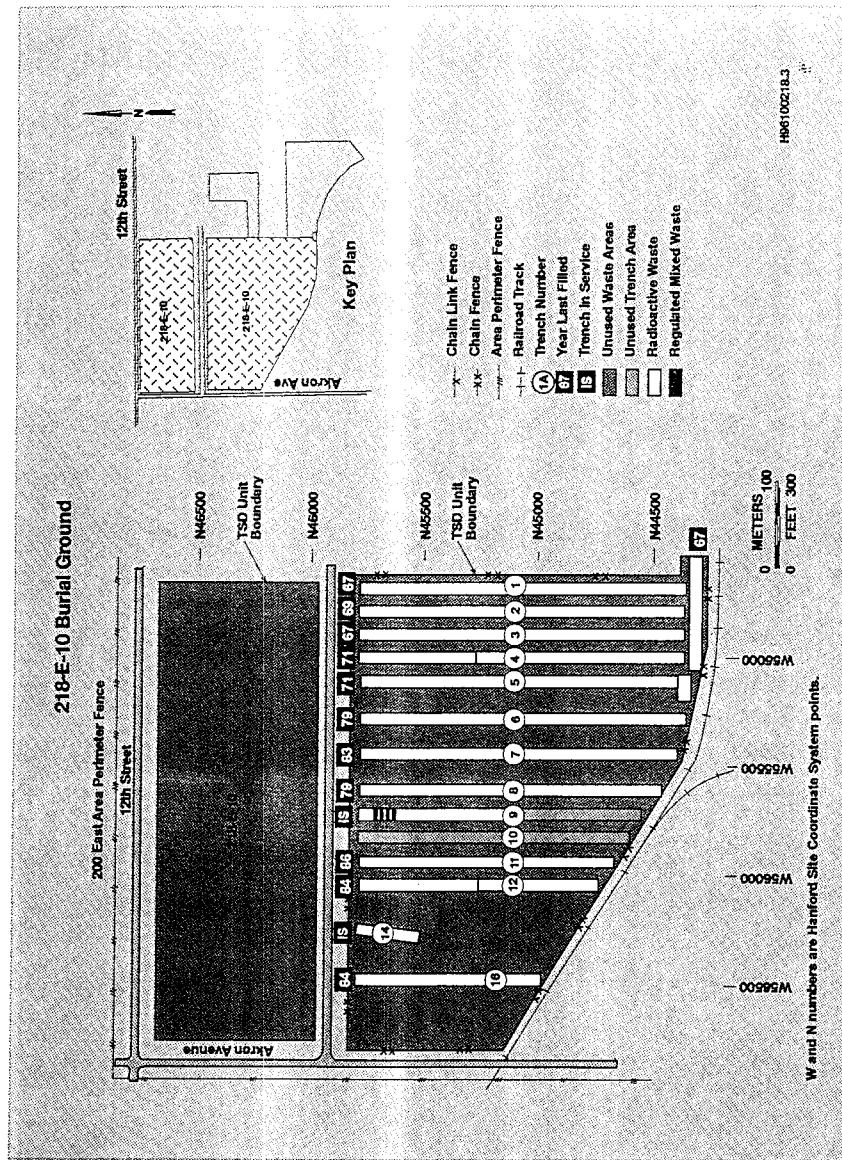


Figure 1-3. 218-E-10 Burial Ground.

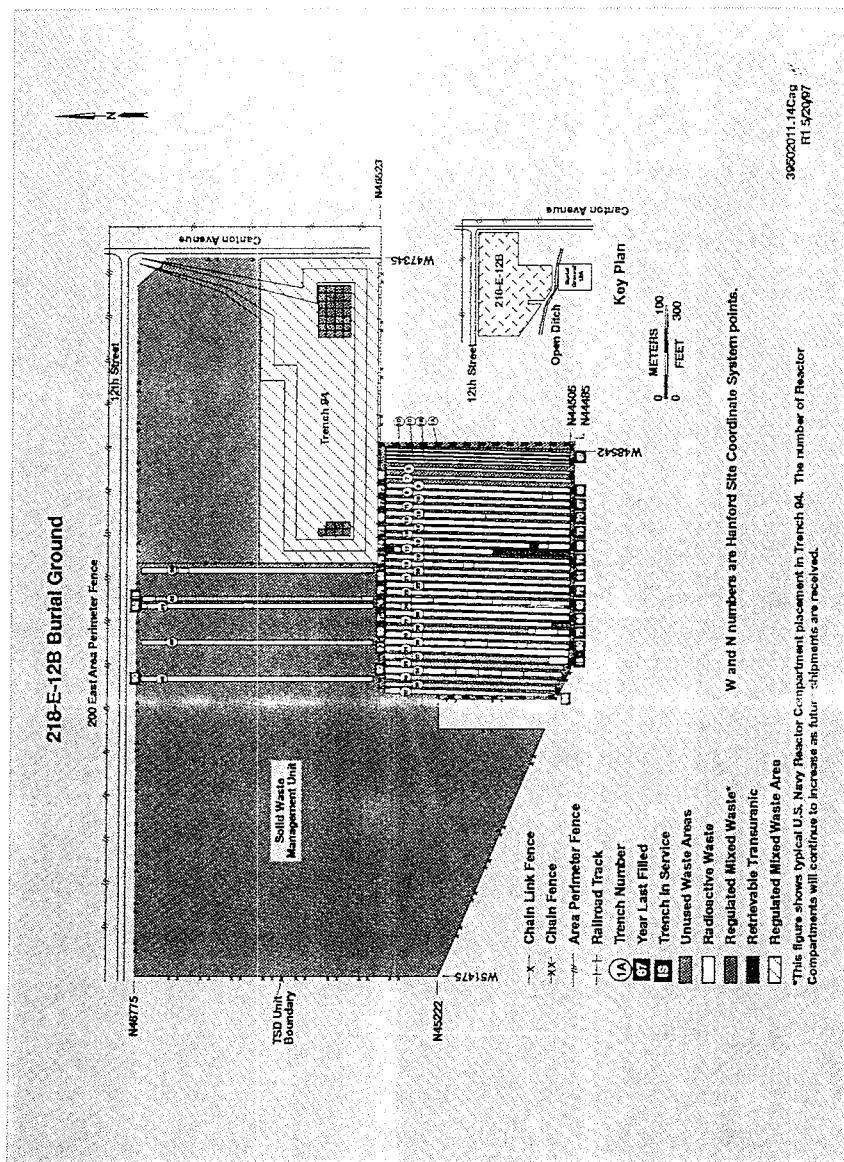


Figure 1-4. 218-E-12B Burial Ground.

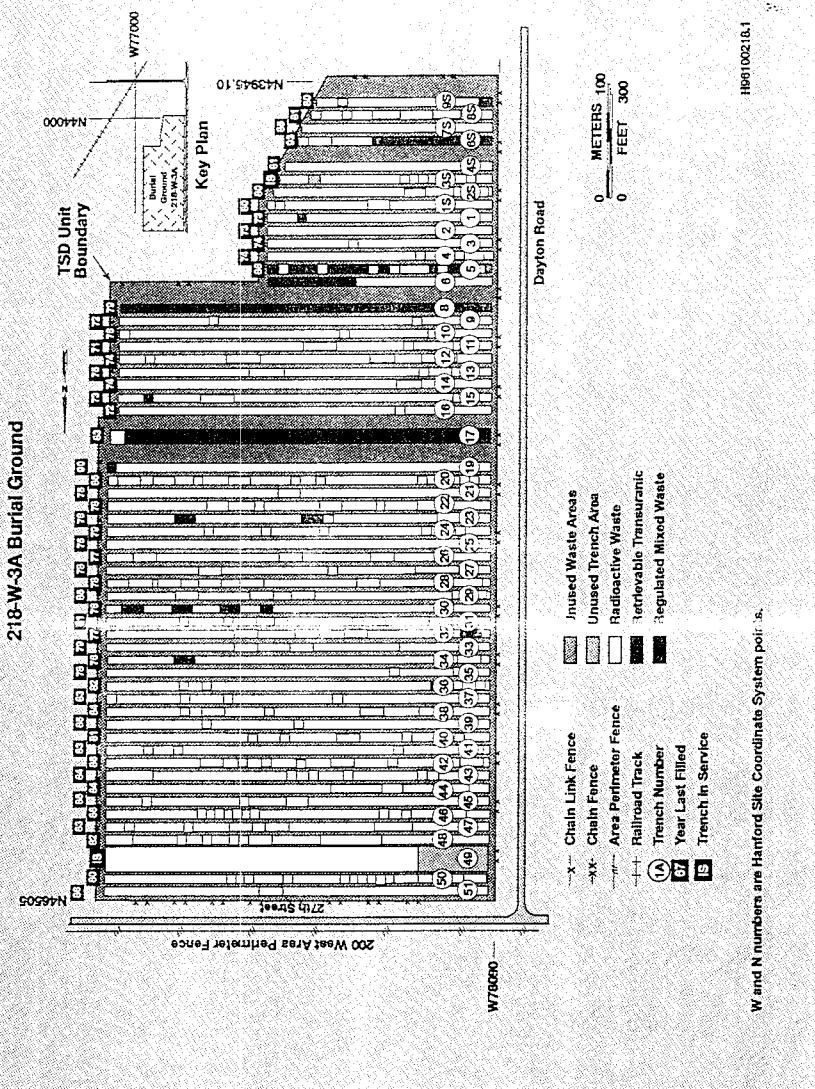


Figure 1-5. 218-W-3A Burial Ground.

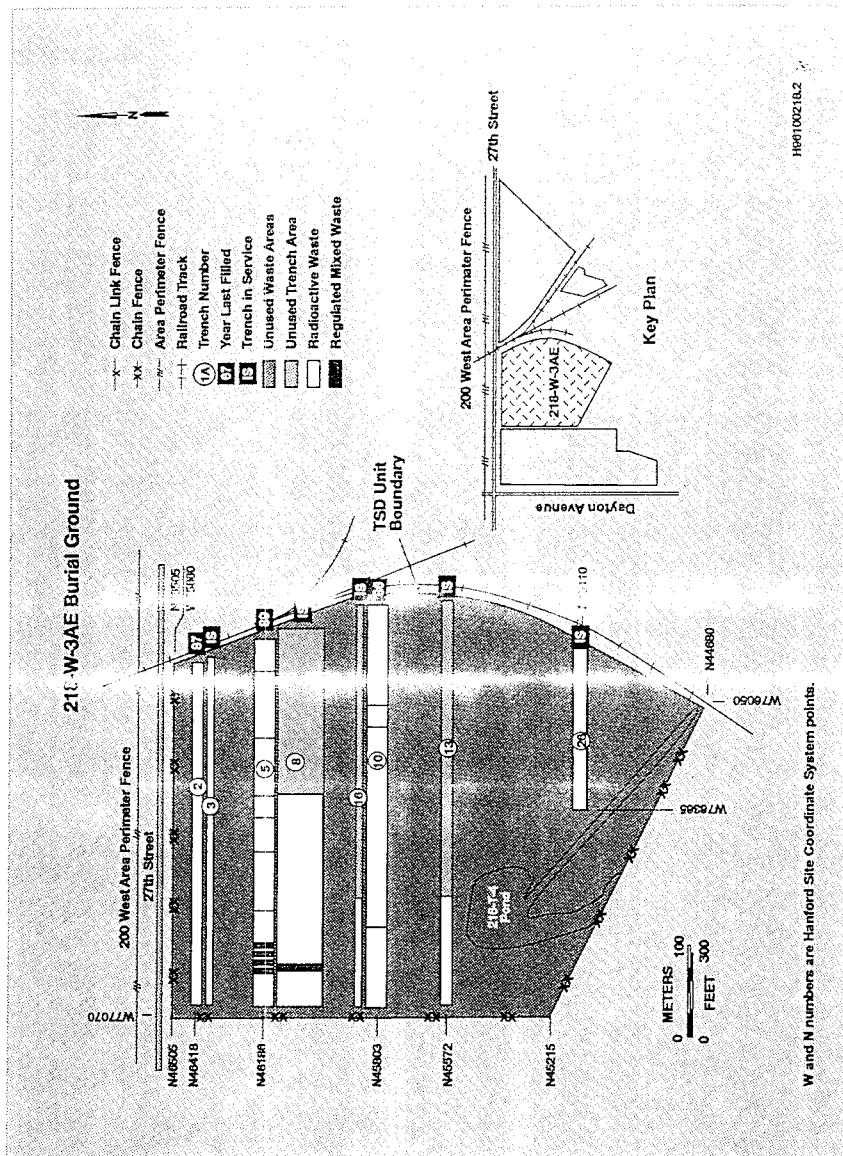


Figure 1-6. 218-W-3AE Burial Ground.

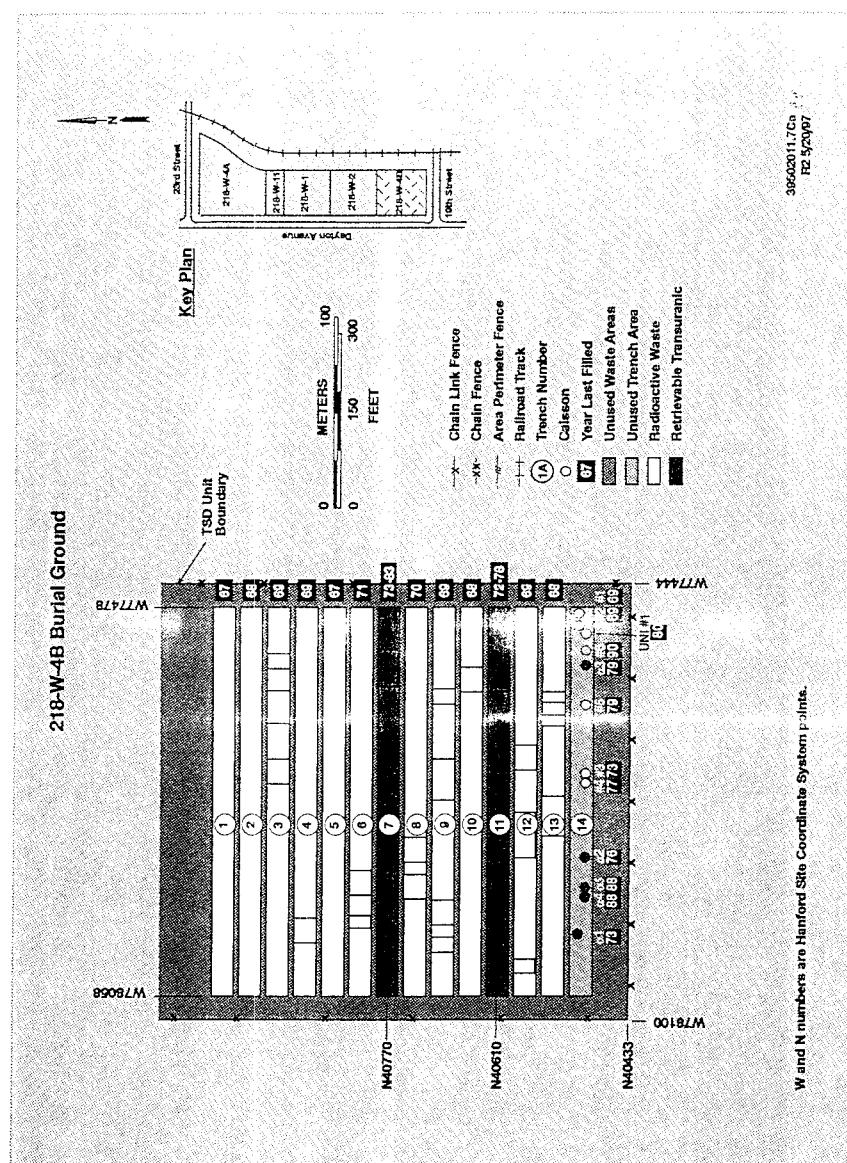


Figure 1-7. 218-W-4B Burial Ground.

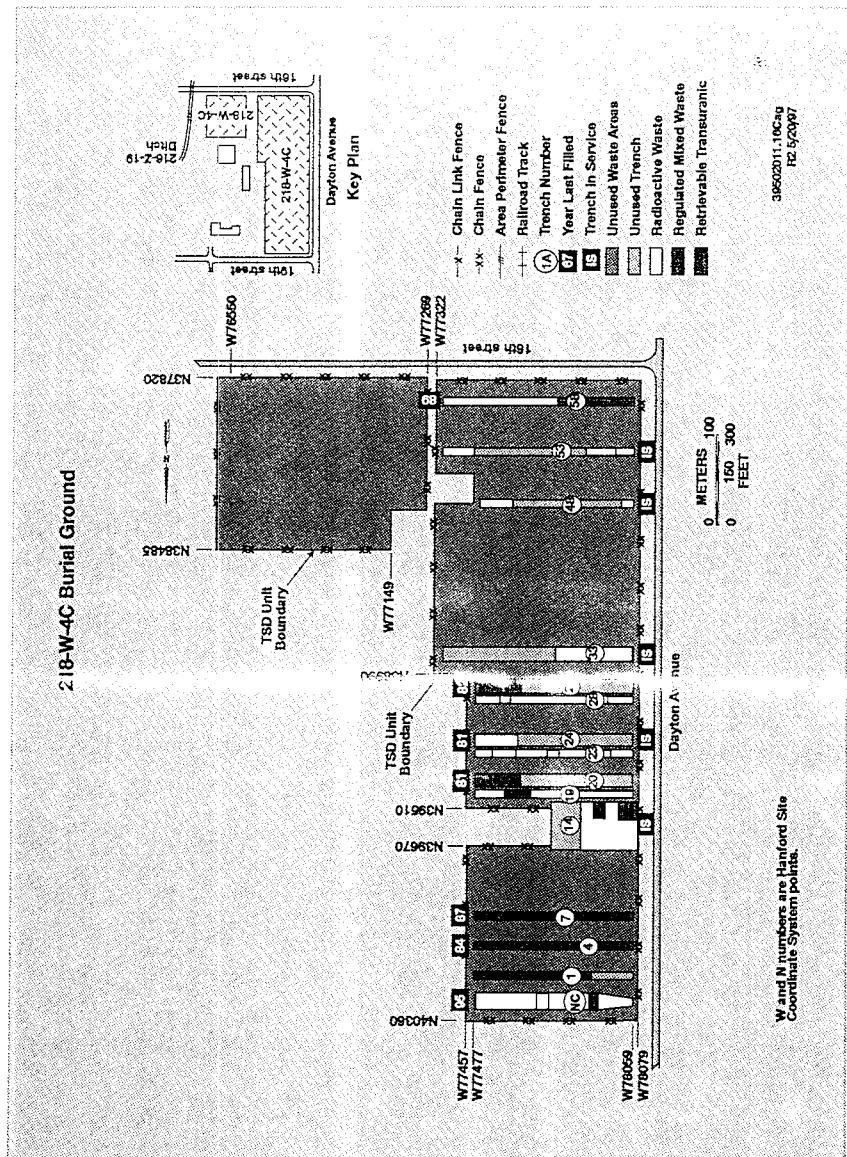


Figure 1-8. 218-W-4C Burial Ground.

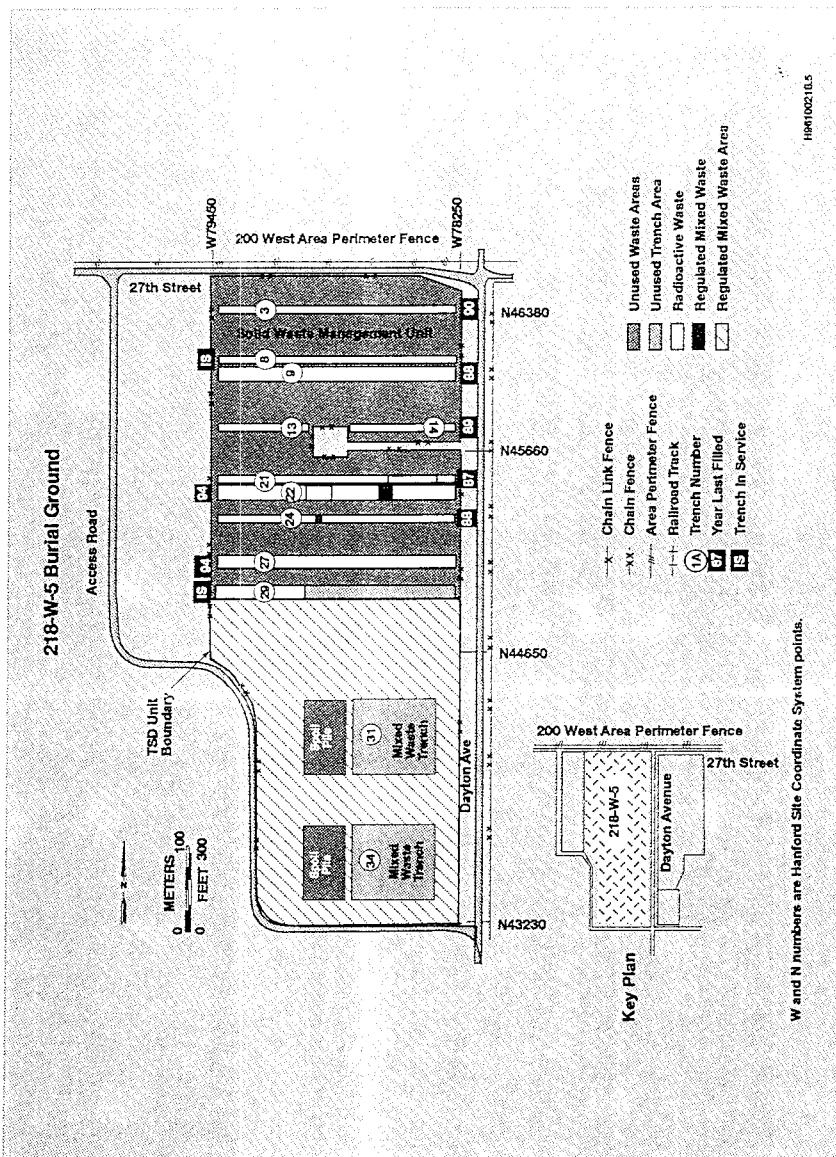
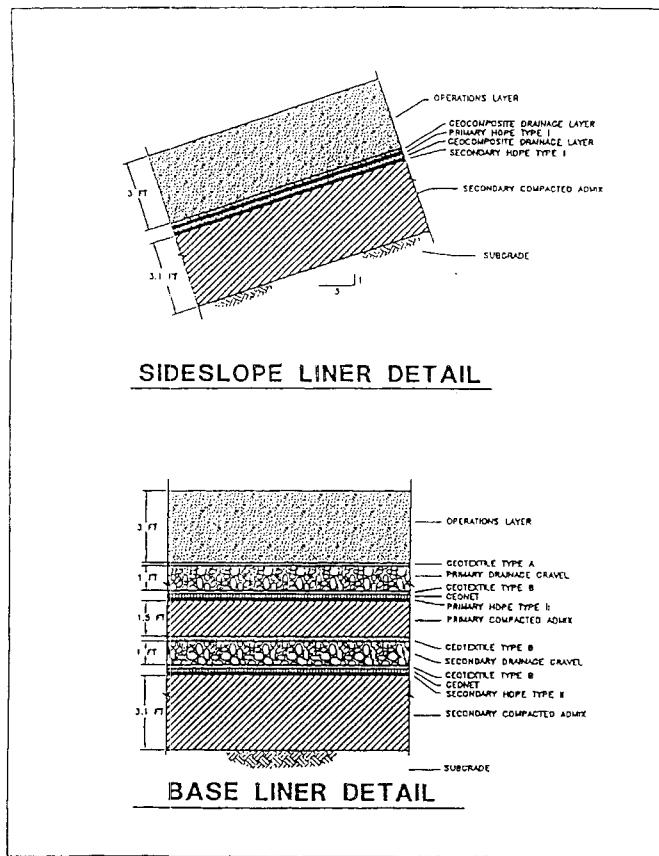



Figure 1-9. 218-W-5 Burial Ground.

3-3-94 3:44 \CAD\9331214\+2666

Figure 1-10. Typical Resource Conservation and Recovery Act-Compliant Liner System.

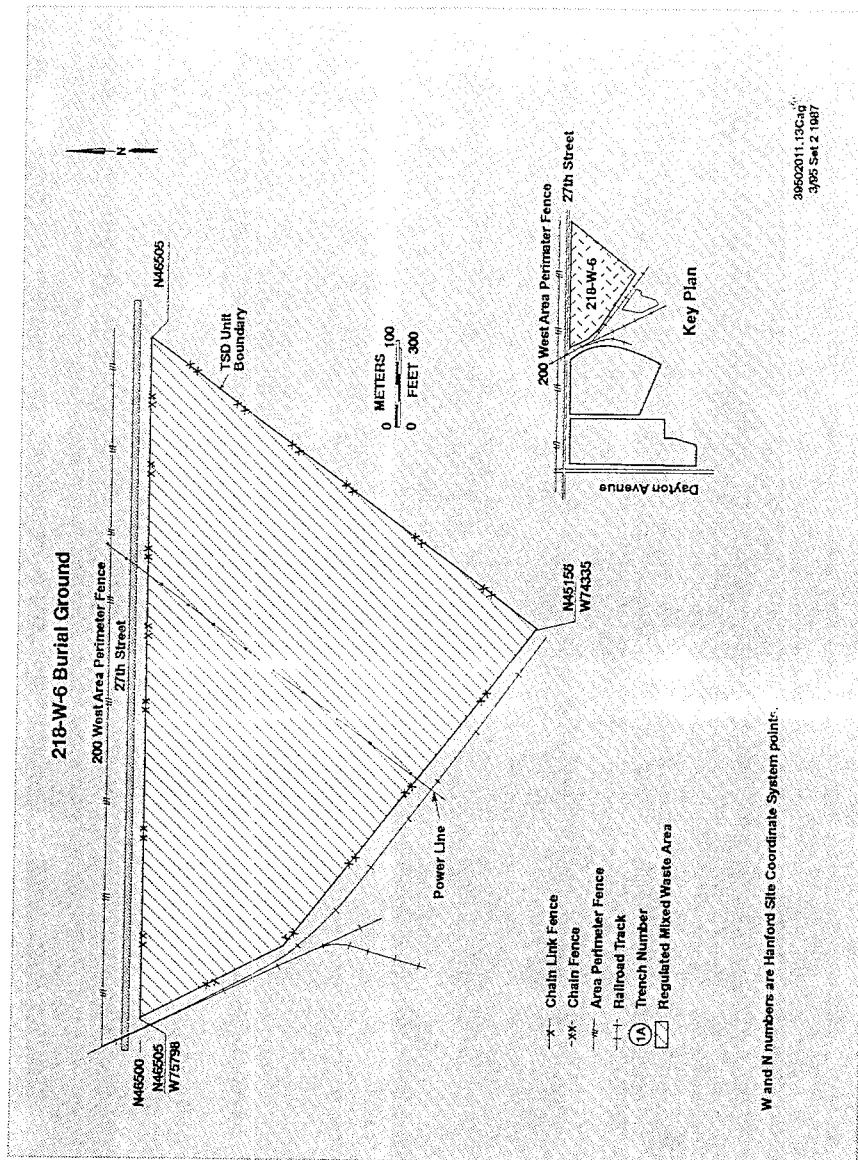


Figure 1-11. 218-W-6 Burial Ground.

Generator : _____

Month _____ Year _____

Generator:	Range	Score -include justification
------------	-------	------------------------------

Designation Conformance Issue(s)		
regulatory violation	7-10	
mismangement of waste	4-6	
no mismanagement of waste	1-3	

Characterization Conformance Issue(s)		
safety issue	7-10	
mismangement of waste	4-6	
no mismanagement of waste	1-3	

Paperwork Inconsistencies		
LDR form	1-3	
shipping papers or waste tracking forms	1-3	
profile discrepancies	1-3	
incomplete shipment/transfer information	1-3	

Screening Conformance Issue(s)		
regulatory violation and/or a safety issue	7-10	
mismangement of waste	4-6	
no mismanagement of waste	1-3	

Receipt Conformance Issue(s)		
regulatory violation and/or a safety issue	7-10	
mismangement of waste	4-6	
no mismanagement of waste	1-3	

SCORE:

Number of containers received: _____

Number of containers screened (including date of activity): _____

Additional Comments:

Initial Evaluation completed by: _____

Note - a score of 10 or more requires input from the performance evaluation system team.

Figure 1-12. Example Generator Evaluation Worksheet.

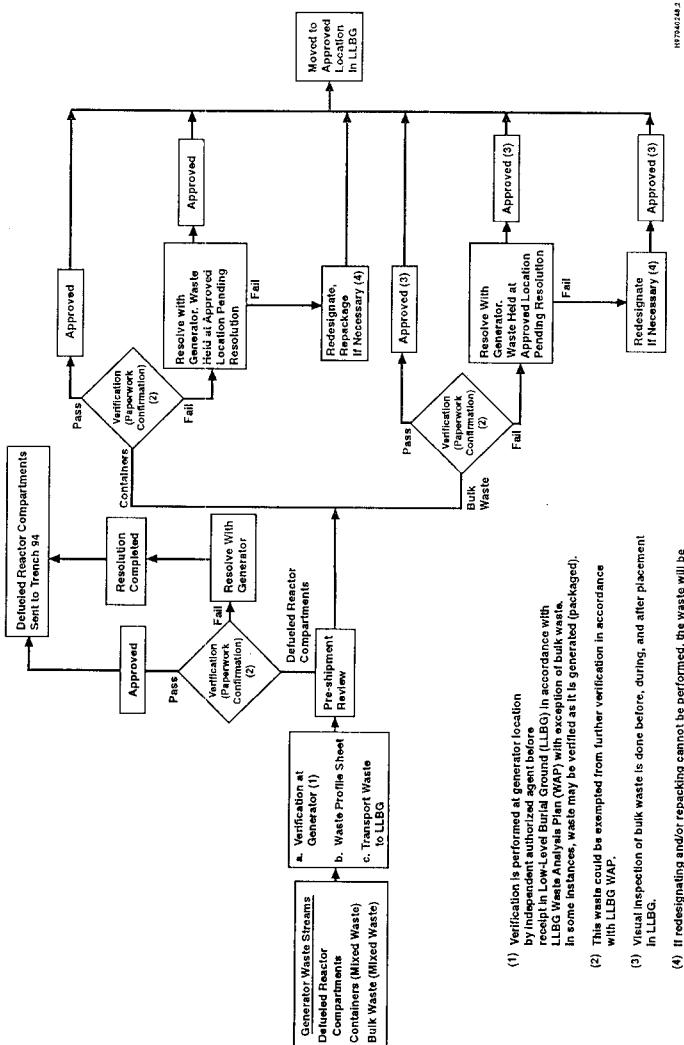


Figure 1-13. Low-Level Burial Grounds Waste Analysis Plan Flowchart.

1 Table 1-1. Incompatible Chemicals.
2
3
4

5 Amyl chloride	6 Diethyl benzene	7 Nitrobenzene
6 Aqua regia	7 Diethyl ether	8 Perchlorobenzene
7 Bromic acid	8 Elemental bromine	9 Propylene dichloride
8 Bromobenzene	9 Elemental chlorine	10 Sulfur trioxide
9 Bromoform	10 Elemental fluorine	11 Sulfuric acid (fuming)
10 Calcium bisulfite	11 Ethyl chloride	12 Thionyl chloride
11 Calcium sulfide	12 Ethylene trichloride	13 Vinylidene chloride.

2.0 DESCRIPTION OF CONFIRMATION PROCESS

This section covers the confirmation process and includes the appropriate pre-shipment review and/or verification steps and/or parameters. Confirmation process requirements appear twice in WAC 173-303-300 and apply to two different scenarios [refer to process flowchart (Section 1.0, Figure 1-13) for confirmation process].

Scenario 1: The process that an owner or operator uses to confirm knowledge supplied by the generator is acceptable knowledge to ensure that the waste is managed properly. [WAC 173-303-300(1)].

Scenario 2: The process that the LLBG operating organization uses to determine, by analysis if necessary, that each offsite waste received at the LLBG matches the identity of the waste specified on the accompanying manifest or shipping paper. [WAC 173-303-300(3)].

2.1 PRE-SHIPMENT REVIEW

Pre-shipment review takes place before waste can be scheduled for transfer or shipment to the LLBG. The review focuses on whether the waste stream is defined accurately and the LDR status determined correctly. Only waste determined to be acceptable for disposal is scheduled. This determination is based on the information that the generator provides. The following sections discuss the pre-shipment review process.

2.1.1 Pre-Shipment Review Process

The pre-shipment review ensures the waste has been characterized and the data provided qualify as 'acceptable knowledge' (Section 1.1.4.1). The information obtained from the generator during the pre-shipment review, at a minimum, includes all information detailed in Section 1.1.4.2.

Waste could be characterized on a waste stream basis. Individual container data must be compared to the waste profile data to ensure the information is accurate. Every transfer or shipment must be reviewed to ensure the waste meets the acceptance criteria for the LLBG. The repeat and review frequency for generators to review profile information will be yearly or as the waste generation process changes.

For each waste transfer or shipment that is a candidate for disposal, the generator provides (1) all pertinent chemical, radiological, and physical data requested on the waste tracking form/shipping paper; (2) other supporting documentation such as MSDS, analytical data, etc.; (3) a description of the waste contents on the container inventory record; and (4) LDR notification/certification information or equivalent documentation (e.g., national capacity variance, contained-in determination variance, etc.,) as applicable. The pertinent information is entered into a solid waste information tracking system (SWITS).

1 Based on waste identification information provided, the waste designation
2 is reviewed to ensure consistency with waste designations per WAC 173-303-070,
3 as well as for technical accuracy to ensure the waste meets the waste
4 acceptance criteria. If the transfer or shipment information is found to be
5 acceptable, a final operations review is completed and the transfer or
6 shipment is scheduled. For bulk waste, every truck load is inspected
7 visually; any waste showing visible variations in color, texture, or wetness
8 is subject to sampling per this WAP.
9

10 Where potential nonconformances exist in the information provided, waste
11 characteristics do not match the waste certification summary, or additional
12 constituents are expected to be present that do not appear on the
13 documentation, the generator is contacted by the LLBG operating organization
14 or an approved designated organization for resolution.
15
16

17 2.1.2 Methodology to Ensure Compliance with Land Disposal 18 Restrictions Requirements 19

20 Only mixed waste that meets the treatment standards of 40 CFR 268 and
21 WAC 173-303-140 is considered for disposal. Because waste treatment to meet
22 LDR criteria does not occur at the LLBG, all generators are subject to LDR or
23 any LDR-related variances and are required to submit all the notifications and
24 certifications described in 40 CFR 268.7. The following are general
25 requirements for notifications and supporting documentation.
26

- 27 • The waste is subject to LDR and the generator has treated the waste.
28
- 29 - The generator supplies the appropriate LDR certification information
30 (40 CFR 268 and WAC 173-303-140).
- 31 • The waste is subject to LDR and the generator has determined that the
32 waste naturally meets the LDR treatment standard for disposal.
33
- 34 - The generator develops the certification based on process knowledge,
35 analytical data, and supplies the appropriate LDR certification
36 information necessary to demonstrate compliance with the LDR
37 treatment standards of 40 CFR 268 and WAC 173-303-140.
- 38 • The waste is subject to an exemption from a prohibition on landfill
39 disposal.
40
- 41 - The generator submits a notice stating the waste is not prohibited
42 from land disposal as required by 40 CFR 268.7(a)(3) and
43 WAC 173-303-140(6).

44 A representative sample of the waste could be required to be submitted
45 for analysis to ensure that contamination-based LDR requirements are met. The
46 frequency of corroborative testing for the purpose of confirming compliance
47 with LDR standards (concentration based and underlying hazardous constituents)
48 is (1) a minimum of one test for the case where the variability of the waste
49 constituents of concern(s) is determined and (2) a minimum of three tests for
50
51
52

1 the case where the variability of the waste constituents of concern(s) is not
2 determined. In both cases, if the test results are less than the standard or
3 underlying hazardous constituent threshold or if above the threshold but not
4 statistically different than the data on which the certification of LDR
5 compliance was made, the waste is corroborated as being compliant with LDR
6 standards.

7

8 **2.2 WASTE VERIFICATION**

9 Verification consists of container receipt inspection, physical
10 screening, and chemical screening as required by the criteria set forth in
11 this WAP. Waste verification consists of testing key physical and chemical
12 properties. Waste verification parameters are selected based on the following
13 criteria:

- 14
- 15 • The need to identify restricted waste
16 • Parameters important to the proper management of waste at the LLBG
17 • Parameters that can be used to corroborate that waste received matches
18 the identity of waste specified on accompanying transfer or shipping
19 papers
20 • The need to protect human health and the environment.

21

22 Incoming waste verification is accomplished by reviewing applicable
23 documentation and waste tracking forms or shipping papers against the waste.
24 The physical/chemical screening frequencies are applied for verification
25 purposes only. A waste stream is defined as having similar physical and
26 chemical characteristics and dangerous waste numbers and the same LDR
27 treatment requirements and waste management requirements.

28

29 For containers disposed in the lined trenches, the following verification
30 rates apply:

- 31
- 32 • Offsite--the minimum physical verification rate is 10 percent of each
33 waste stream applied per generator, per shipment
34 • Onsite--for verification purposes only, waste streams generated by
35 each Hanford Site contractor and each of their subcontractors is
36 verified at 5 percent per year.

37

38 Verification is performed using a combination of container receipt
39 inspection, physical screening, and/or chemical screening. Verification is
40 performed at an approved location [e.g., Central Waste Complex (CWC), Waste
41 Receiving and Processing 1 (WRAP 1), etc.] as determined by the LLBG operating
42 organization.

1 A bulk waste stream could be verified by screening the allowable rate of
2 the total number of loads throughout the waste stream*.
3
4
5 **2.2.1 Container Receipt Inspection**
6

7 The container receipt inspection is a mandatory element of the
8 confirmation process. Therefore, 100 percent of the containers/shipments are
9 inspected for damage and to ensure the waste containers shipped are those
10 denoted in the documentation. This activity is a mechanism for identifying
11 containers that have not been subject to a pre-shipment review, identifying
12 any paperwork issues, or identifying damaged containers before receipt of the
13 container.
14
15

16 **2.2.2 Physical Screening Process Guidance**
17

18 Physical screening is considered an additional verification element.
19 This section provides guidance on the methods and frequency concerning the use
20 of physical screening as a verification activity.
21

22 Waste received before the establishment of a verification program must be
23 verified when initially transferred to the LLBG. However, waste stored in the
24 CWC, WRAP 1, etc., that has been processed through a physical screening
25 program does not require additional physical screening [e.g., transuranic
26 (TRU) certification program, current waste specification program, and backlog
27 confirmation program, 183-H Solar Evaporation Basins sampling program].
28

29 **2.2.2.1 Physical Screening Methods.** Each of the following physical screening
30 methods identified complies with the requirement to verify a waste and are
31 listed in order of preference. The verifier must document the reasoning
32 behind the method chosen when using a method other than #1 or #2.
33

- 34 1. Visual inspection (opening the container)
35 2. Nondestructive examination [real-time radiography (RTR)]
36 3. Nondestructive assay
37 4. Dose rate profile.
38

39 **2.2.2.2 Physical Screening Frequency.** The minimum physical screening
40 frequency is in accordance with Section 2.2. The LLBG operating organization
41 adjusts the physical screening frequency for generators based on objective
42 performance criteria (refer to Section 1.1.2).
43

44 Containers that comprise the verification sample set are chosen using the
45 following bias sampling methodology:
46

- 47 • Choose any and all containers for which concerns were identified
48 during pre-shipment review

49 * Note: A bulk waste stream is defined as large volumes of waste from a
50 single generating event (e.g., soil remediation from a single location).

- 1 • Choose containers from separate locations and containing waste from
2 different waste specification records (WSRds) to ensure that the
3 verification program accurately tests for variability within programs
4 and waste types
- 5 • If one and two are not applicable, randomly choose containers from the
6 'General Waste Stream'* as required to meet the applicable physical
7 screening frequency.
- 8
- 9

10 If one container out of a verification sample set fails, another sample
11 set or 3 additional containers (whichever is larger) must be chosen for
12 physical screening (i.e., if the initial verification sample set equals three
13 containers and one fails, then three more containers must be chosen). If two
14 containers fail, the entire shipment fails.

15 If RTR is used to meet the physical screening requirements, 5 percent per
16 year of the containers that have been nondestructively examined must be opened
17 to ensure the equipment is functioning appropriately. Containers opened for
18 other reasons, such as chemical screening or to investigate inconsistencies,
19 could be used to meet this requirement. This requirement is based on the
20 total number of containers reviewed not on a shipment or general waste stream
21 basis. The generator is required, at a minimum, to meet this requirement over
22 a 3 month average with a minimum of one container being opened every month the
23 RTR is used for physical screening.

24 **2.2.2.3 Physical Screening Exceptions.** There are cases in which physical
25 screening is not required. Therefore, the following exceptions have been
26 developed to account for these instances.

- 27 • Shielded, classified, and remote-handled mixed waste is not required
28 to be physically screened; however, the generator must perform a more
29 rigorous documentation review and obtain the raw data used to
30 characterize the waste. Ecology will be notified and have the
31 opportunity to review information on this waste type before shipment.
32 For classified waste, it is necessary to have an appropriate DOE
33 security clearance and a need-to-know the information as defined by
34 the classifying organization or agency.
- 35 • Mixed waste that cannot be physically screened at the LLBG or
36 associated verification facility by acceptable physical screening
37 methods must be physically screened at the generator location (e.g.,
38 large components, containers that cannot be opened, greater than
39 20 millirem per hour at 30 centimeters, contain greater than
40 10 nanocuries per gram of transuranic radionuclides, or will not fit
41 into the nondestructive examination unit). Physical screening at the
42 generator location consists of observing the packaging of the waste.

47 * Note: 'General Waste Stream' is defined as a waste from a single
48 generator in the same waste management group.

- 1 If no location can be found to perform the physical screening, no
2 screening is required.
3
4 • Mixed waste that is packaged by an independent authorized agent for
5 the LLBG operating organization is considered to have met the physical
6 screening requirements denoted in this WAP.
7
8 • A bulk mixed waste stream could be verified by an applicable screening
9 frequency identified in Section 2.2.

10
11 2.2.3 Chemical Screening Process Methods
12

13
14 Chemical screening is considered an additional verification element.
15 This section provides guidance on the methods and frequency concerning the use
16 of chemical screening as a verification activity.
17

18 The LLBG operating organization must describe the appropriate parameters
19 for the waste accepted into the LLBG. At a minimum, at least three of the
20 following methods must be used to complete the chemical screening process for
21 mixed waste subject to physical screening. However, if only three methods are
22 used, the generator must document the reasoning used to determine the chemical
23 screening methods chosen (at a minimum, pH will be one of the three methods
24 chosen):
25

- 26 • pH
27
28 • HH (Chlor-n-oil/water/soil)
29
30 • Ignitability and/or headspace testing (e.g., lower explosive limit,
31 portable gas chromatograph, flame ionization detector, photoionization
32 detector, high-voltage adapter. Instrument must be appropriate for
33 conditions)
34
35 • Peroxide
36
37 • Oxidizer
38
39 • Sulfide
40
41 • Cyanide
42
43 • Paint Filter
44
45 • Water Reactivity.

46
47 2.2.3.1 Chemical Screening Frequency. At a minimum, 10 percent of the mixed
48 waste verified by physical screening (Section 2.2.2.2) must be screened
49 chemically. Chemical screening is not required to use SW-846 methodology.
50 Although grab samples are acceptable, the LLBG operating organization must
51 obtain a representative sample.
52

1 Laboratory hood waste packaged in accordance with 40 CFR 264.316/
2 40 CFR 265.316, and WAC 173-303-161 must be screened chemically. Inner
3 containers are segregated by physical appearance. At least one container from
4 each group (or three containers if all similar) will be screened chemically.
5 Solids require no chemical screening.
6

7 **2.2.3.2 Chemical Screening Exceptions.** There are cases in which chemical
8 screening is not required. Therefore, the following exceptions have been
9 developed to account for these instances:
10

- 11 • Waste that is exempted from the physical screening requirements
12 (Section 2.2.2.3) is exempted from chemical screening
13
- 14 • Commercial chemical products (mixed waste) in the original product
15 container(s) (i.e., off-specification, outdated, or unused products)
16
- 17 • Chemical containing equipment (mixed waste) removed from service,
18 (i.e., ballasts, batteries, etc.)
19
- 20 • Hazardous debris (mixed waste) as defined in WAC 173-303-040
21
- 22 • Mixed waste containing asbestos
23
- 24 • Mixed waste, environmental media, and/or debris from the cleanup of
25 spills or release of single substance or commercial product or
26 otherwise known material (i.e., material for which an MSDS can be
27 provided)
28
- 29 • Confirmed noninfectious mixed waste (i.e., xylene, acetone, ethyl
30 alcohol, isopropyl alcohol) generated from laboratory tissue
31 preparation, slide staining, or fixing processes
32
- 33 • Containers with an external dose rate of >20 millirem per hour at
34 30 centimeter and/or contain >10 nanocuries per gram of transuranic
35 radionuclides
36
- 37 • Other special-case situations handled on a case-by-case basis.

1
2
3
4
5

This page intentionally left blank.

1 3.0 SELECTING WASTE ANALYSIS PARAMETERS
2
34 The following discusses selecting waste analysis parameters, associated
5 rationale, and methods for these analyses. The analytical screening
6 parameters that could be used for waste received at the LLBG are as follows.
7

- 8 • Physical description--used to determine the general characteristics of
-
- 9 the waste. This facilitates subjective comparison of the sampled
-
- 10 waste with previous waste descriptions or samples. Also, a physical
-
- 11 description is used to verify the observational presence or absence of
-
- 12 free liquids.
-
- 13

14 Methods--samples are inspected and the physical appearance of the
15 waste is recorded. RTR and/or visual examination is used.
16

- 17 • Radioactivity screen--used to quantify radionuclides for verification
-
- 18 of transuranic radionuclide content, nontransuranic radionuclide
-
- 19 content, and the waste classification (i.e., low-level waste or
-
- 20 transuranic).
-
- 21

22 Methods--a sample of the waste is passed by a geiger counter, survey
23 meter, or a waste container is assayed using passive-active neutron or
24 segmented gamma scanning techniques.
25

- 26 • Ignitability and/or headspace volatile organic compound analysis--
-
- 27 performed to determine the ignitability and the presence or absence of
-
- 28 solvents or other volatile organic compounds in waste. The headspace
-
- 29 volatile organic compound analysis is one of the few methods available
-
- 30 to evaluate the presence of volatile organic compounds that could be
-
- 31 associated with heterogeneous materials.
-
- 32

33 Methods--for headspace volatile organic compounds, a sample of the
34 headspace gases in a container is analyzed by one or more of the
35 following: Fourier transform infrared spectroscopy, gas
36 chromatography/mass spectroscopy, HNU, organic vapor analyzer, and
37 colorimetric tubes.
38

- 39 • Paint filter liquids test--used to verify the presence or absence of
-
- 40 free liquid in solid or semisolid material to be landfilled.
-
- 41

42 Method--to a standard paint filter, 100 centimeters or 100 grams of
43 waste are added and allowed to settle for 5 minutes. Any liquid
44 passing through the filter signifies failure of the test (SW-846
45 Method 9095).
46

- 47 • pH screen--used to identify the pH and corrosive nature of an aqueous
-
- 48 or solid waste, to aid in establishing compatibility strategies, and
-
- 49 to indicate if the waste is acceptable for disposal in the LLBG.
-
- 50

51 Methods--full range pH paper is used for the initial screening. If
52 the initial screen indicates a pH below 4 or above 10, a pH meter is

1 used. Procedures for preparing and extracting the solution and liquid
2 are described in the test procedures of WAC 173-303-110(3)(a).

- 3
- 4 • Oxidizer potential screen--used to determine the fire-producing
5 potential of the waste. This test can be applied to waste liquids,
6 solids, and semisolids.

7 Methods--all waste forms are tested using oxidizer tests.

- 8
- 9 • Water reactivity screen--used to determine if the waste has the
10 potential to react vigorously with water to form gases or other
11 reaction products.

12

13 Method--for liquid waste, water is added to the waste. The solution
14 is observed for evidence of fuming, bubbling, or spattering. These
15 reactions are considered to be positive evidence that the waste is
16 water reactive.

- 17
- 18 • Cyanide screen--used to indicate whether the waste produces hydrogen
19 cyanide upon acidification below pH 2.

20

21 Method--to a test tube or beaker containing approximately
22 5 milliliters of sample, an equal amount of freshly prepared ferrous
23 ammonium citrate is added. 3 Normal hydrochloric acid is used to
24 reduce the pH of the solution to about 2.0. A deep blue color
25 indicates the presence of cyanide. The test can detect free cyanide
26 and complex cyanides in concentrations above 200 parts per million.

- 27
- 28 • Sulfide screen--used to indicate if the waste produces hydrogen
29 sulfide upon acidification below pH 2.

30

31 Methods--sample is added to beaker or test tube and enough 3 Normal
32 hydrochloric acid is added to bring the pH down to 2.0. A sulfide
33 test strip is placed in the solution. If the paper turns brown or
34 silvery black, the presence of sulfides in the sample is indicated.
35 If there is no color change, the total sulfides are reported as
36 nondetectable.

- 37
- 38 • HH screen--used to indicate whether polychlorinated biphenyls (PCBs)
39 are present in oil-bearing waste and to determine if the waste needs
40 to be managed in accordance with the regulations prescribed in the
41 *Toxic Substance Control Act of 1976*.

42

43 Method--the tests to be conducted include the HAZCAT* beilstein test,
44 and/or the appropriate organic chlorine test.

45

46

* HAZCAT is a registered trademark of Haztech Systems Incorporated,
San Francisco, California.

4.0 SELECTING SAMPLING PROCEDURES

Specific sampling processes depend on both the nature of the material and the type of packaging. This section describes the sampling methodology.

4.1 SAMPLING STRATEGIES

Chemical screening is done in accordance with Table 4-1. Refer to Section 2.0 for discussion on sampling limitations, criteria for frequency, numbers and types of samples, and exceptions of waste categories and/or waste streams that cannot be sampled. Chemical screening might be performed in the trench, at the generator, or at another location approved for the waste to be sampled.

4.2 SELECTING SAMPLING EQUIPMENT

Sampling equipment selection is detailed in Table 4-1. Sampling equipment needed to sample waste is maintained and decontaminated by the LLBG operating organization.

4.3 SAMPLE PRESERVATION

Chemical screening methods referenced or described in Section 3.0 do not require any preservation methods.

4.4 ESTABLISHING QUALITY ASSURANCE/QUALITY CONTROL PROCEDURES FOR SAMPLING

The following quality assurance/quality control (QA/QC) elements are used by LLBG operating organization, before transferring or shipping waste to the LLBG, to ensure sampling activities result in acceptable laboratory data:

- Using representative sampling methods as defined by WAC 173-303-110(2), 40 CFR 261 Appendix I, and/or SW-846 Chapter 9, whenever possible
- Using appropriate sample containers and equipment
- Numbering samples properly
- Using a standard labeling procedure
- Using field QA/QC samples
 - 1 in 20 to laboratory
 - 1 duplicate per event
 - 1 in 20 blank.

- 1 • Expiration date not expired
- 2 • Equipment calibration current.
- 3
- 4

Table 4-1. Low-Level Burial Ground Chemical Screening Sampling Results.

Waste type	Waste type	Reference in SW-846 (EPA 1986)	Equipment
4 Liquids	Free-flowing liquids and slurries	COLIWASA, SW-846, Chapter 9, glass thief or pipet	
5 Solidified liquids	Sludges	Trier, SW-846, Chapter 9, scoops and shovels	
6 Sludges	Sand or packed powders and granules	Trier, SW-846, Chapter 9, scoops and shovels	
7 Soils	Large-grained solids	Auger, SW-846, Chapter 9, scoops and shovels	
8 Absorbents	Moist powders or granules	Large trier, SW-846, Chapter 9, scoops and shovels	
9 Wet absorbents	Moist powders or granules	Trier, SW-846, Chapter 9, scoops and shovels	
	Dry powders or granules	Trier, SW-846, Chapter 9, scoops and shovels	
	Sand or packed powders and granules	Thief, SW-846, Chapter 9, scoops and shovels	
10 Process solids and salts	Large-grained solids	Auger, SW-846, Chapter 9, scoops and shovels	
	Moist powders or granules	Large trier, SW-846, Chapter 9, scoops and shovels	
11 Ion exchange resins	Dry powders or granules	Trier, SW-846, Chapter 9, scoops and shovels	
	Sand or packed powders and granules	Thief, SW-846, Chapter 9, scoops and shovels	
12	COLIWASA = composite liquid waste sampler.		
13	NA = not applicable.		

1 **5.0 SELECTING A LABORATORY, LABORATORY TESTING, AND ANALYTICAL METHODS**

2
3
4 The following sections discuss selecting a laboratory for analyzing
5 samples for QA/QC elements.

6
7 **5.1 SELECTING A LABORATORY**

8
9 The following laboratory QA/QC requirements apply to laboratory analyses
10 of generator waste.

- 11
12 • The daily quality of analytical data generated in the contracted
13 analytical laboratories is controlled by the implementation of an
14 analytical laboratory QA plan.
- 15
16 • Before commencement of the contract for analytical work, the
17 laboratory submits their QA plan for approval. At a minimum, the plan
18 documents the following:
- 19
20 - Sample custody and management practices
21 - Sample preparation and analytical procedures
22 - Instrument maintenance and calibration procedures
23 - Internal QA/QC measures, including the use of method blanks
24 - Sample preservatives used
25 - Analyses requested.

26
27 When required, replicate testing usually is accomplished by analyzing two
28 samples, one by the generator and another by the LLBG operating organization.

29
30 **5.2 SELECTING TESTING AND ANALYTICAL METHODS**

31
32
33 The generator describes and identifies the analytical methods to be used
34 to analyze for the physical and chemical screening parameters identified in
35 Section 3.0 for the mixed waste categories. If more than one testing and/or
36 analytical method is used for a given physical and chemical screening
37 parameter, the LLBG operating organization identifies all methods and
38 applications.

39
40 The generator identifies the type of testing and analytical method to be
41 used at the laboratory (e.g., for metals analysis state which type of
42 determination procedure will be used such as inductively coupled plasma metals
43 by atomic absorption).

44
45 The generator identifies the decision level necessary for each analytical
46 parameter. If the decision level is found in a regulation, the generator
47 references the regulation. Section 3.0 identifies the applicable decision
48 levels, operational parameter(s), and analytical methods necessary to ensure
49 that the waste is within the LLBG acceptance criteria.

1
2
3
4
5

This page intentionally left blank.

1 **6.0 SELECTING WASTE RE-EVALUATION FREQUENCIES**

2
3
4 This section is not applicable to the LLBG for waste that is placed in a
5 disposal configuration. Newly generated waste is re-evaluated annually as
6 necessary to ensure the waste stream has not changed.

1
2
3
4
5

This page intentionally left blank.

1 **7.0 SPECIAL PROCEDURAL REQUIREMENTS**

2

3 This section discusses any special process requirements for receiving

4 mixed waste at the LLBG.

5

6 **7.1 PROCEDURES FOR RECEIVING WASTE GENERATED ONSITE**

7

8 Mixed waste received from onsite generators is detailed in Sections 2.2

9 and 3.0 and a flowchart is provided (Figure 1-13).

10

11 **7.2 PROCEDURES FOR RECEIVING WASTE GENERATED OFFSITE**

12

13 Mixed waste received from offsite is handled in the same manner as mixed

14 waste received from onsite, with the exception of defueled reactor

15 compartments disposed in trench 94 of the 218-E-12B Burial Ground, which are

16 transported directly from the generator to trench 94.

17

18 **7.3 PROCEDURES FOR IGNITABLE, REACTIVE, AND INCOMPATIBLE WASTE**

19

20 The LLBG does not accept ignitable, reactive, or incompatible waste

21 (refer to Section 1.2). The following is how the LLBG operating organization

22 ensures that ignitable, reactive, or incompatible waste is not accepted at the

23 LLBG.

24

- 25 • Pre-shipment review and chemical screening ensures ignitable and
- 26 reactive waste are not accepted.
- 27 • Pre-shipment review alone ensures waste incompatible with the liner in
- 28 the lined trenches are not accepted.

29 **7.4 PROVISIONS FOR COMPLYING WITH FEDERAL AND STATE LAND DISPOSAL**

30 **RESTRICTION REQUIREMENTS**

31

32 Sections 1.1.4.1.2 and 2.1.2 describe compliance with federal and state

33 LDR requirements.

34

1
2
3
4
5

This page intentionally left blank.

8.0 RECORDKEEPING

4 Recordkeeping requirements that are applicable to this WAP are described
5 in Chapter 12.0, Table 12-1, of the General Information Portion
6 (DOE/RL-91-28).

1
2
3
4
5

This page intentionally left blank.

9.0 REFERENCES

- 3 DOE/RL-88-20, *Hanford Facility Dangerous Waste Permit Application, Low-Level*
4 *Burial Grounds*, U.S. Department of Energy, Richland Operations Office,
5 Richland, Washington.

6

7 DOE/RL-91-28, *Hanford Facility Dangerous Waste Permit Application, General*
8 *Information Portion*, U.S. Department of Energy, Richland Operations
9 Office, Richland, Washington, revised periodically.

10

11 EPA, 1986, *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods*,
12 *SW-846*, Third Edition, as amended, U.S. Environmental Protection Agency,
13 Washington, D.C.

14

1
2
3
4
5

This page intentionally left blank.

DISTRIBUTION SHEET

To Distribution	From D. A. Pratt, RFSH	Page 1 of 1 Date 05/01/97
Project Title/Work Order		EDT No. NA
Waste Analysis Plan for the Low-Level Burial Grounds		ECN No. 639100

Name	MSIN	Text With All Attach.	Text Only	Attach./ Appendix Only	EDT/ECN Only
S. M. Addleman	T4-04				X
B. M. Barnes	T4-04				X
R. C. Bowman	H6-24				X
P. J. Crane	T4-04				X
R. M. Irwin	T4-03				X
K. M. McDonald	T4-04				X
D. A. Pratt	T4-03				X
J. R. Rosser	T4-03				X
D. G. Saueressig	H6-24				X
R. W. Whitlock	T4-04				X
Central Files	A3-88		X		