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Abstract.

Three initial campaigns to increase the fusion power in DT plasmas on the Tokamak
Fusion Test Reactor [TFTR] prior to July 1994 are described. The first campaign was
dedicated to obtaining >5 MW of fusion power while avoiding MHD events similar to
the JET X-event. The second was aimed at producing maximum fusion power
irrespective of proximity to MHD limits, and achieved 9 MW limited by a disruption.
The third campaign increased the energy confinement time using lithium pellet
conditioning with the hope of increasing the ratio of alpha heating to beam heating.

1. Introduction

TFTR commenced tritium operation in November 1993[1,2] and produced 182 plasmas
containing some amount of tritium by June 1994. A major element of this initial operational




period was to determine the DT fusion power level which can be achieved in TFTR. A fusion
power output of 6.2 MW was attained in December 1993 and 9.2 MW in May 1994. Similarly
prepared plasmas were subsequently replicated in reproducible scans to study tritium isotope
effects[3] and expected alpha-particle driven instabilities. Analysis of these effects are reported in
other papers at this conference and in future publications. The primary purpose of this paper will
be to describe the campaigns at raising the fusion power and the issues that are important for this
goal.

The main challenge to maximizing fusion power production is dealing with several important
problems in tokamak research simultaneously: the plasma must operate at high energy
confinement, with high neutral beam power, and low impurity influx from the limiter and walls. In
addition, the plasma cannot be too close to stability limits, otherwise variations in confinement
due to MHD might be inadvertently interpreted as alpha and tritium phenomena. Moreover, since
the expected alpha particle heating and isotope effects are modest in magnitude, high
reproducibility of plasma conditions is required to allow the isotope scaling and alpha heating to
be identified separately. This was accomplished by comparing performance in pure deuterium,
pure tritium and 50:50 DT plasmas. Of course, the desired plasma conditions must be obtained on
the specific (and still fairly rare) plasmas that tritium is used, so that the plasma performance must
be predictable. Finally, the highest fusion power is obtained with the highest beam power, highest
confinement, lowest impurity influx, and best stability, so that the most extreme conditions must
also be obtained in DT.

The most striking feature of the campaign to raise the fusion power has been that in the
course of optimizing the energy confinement time through lithium gettering[4], the confinement
rose so much that the supershot regime in TFTR is no longer confinement limited but is stability
limited. That is, TFTR cannot operate at maximum plasma current and toroidal magnetic field
with maximum beam power and the maximum achievable confinement time without encountering

high B disruptions.

2. Experiinental Campaigns

TFIR operated at R/a = 2.52m/0.87m, 5.1T toroidal magnetic field with neutral beam heating in
three different campaigns to produce high fusion power which are illustrated in Fig. 1. The three
campaigns were:

2.1. December 1993 Campaign

In December 1993, Ip=2.0MA, and PB = 29 MW was used in a campaign to obtain greater than 5
MW of fusion power. The machine parameters were selected to avoid a minor disruption which
on TFTR would appear similar to the JET X-event. Since the X-event had occurred on both JET
tritium plasmas[5], we wanted to be certain that our deuterium set-up plasmas had very little
probability of a minor disruption. We did not want an inadvertent minor disruption on a DT
plasma being attributed to either the presence of tritium or fusion-product alpha particles.
Essentially, this required operating the experiment at less than full beam power (29.5 MW out of a
potential 37 MW) and at less than the optimum energy confinement time. The confinement time
was kept low by not using lithium pellet conditioning. The result was that 42 deuterium



comparison plasmas were performed with only six having minor disruptions while none of the
trace tritium, 50:50 DT, or full tritium plasmas had a minor disruption.

A consequence of this experiment was that an excellent set of DD to DT comparison
plasmas was obtained in which the key parameters known to affect energy confinement and
neutron emission in supershot plasmas were held constant, including the beam power, the balance
of beam power in the co-direction, the plasma current, and the degree of wall conditioning (as
expressed empirically by the carbon influx at the beginning of the beam injection). The
parameters obtained in this campaign (Table 1) consistently indicated that the DT plasmas have
better performance than the DD plasmas. An analysis of these differences is being reported
elsewhere [3]. Of considerable interest is that in TFTR, ne(o) and Te(o) are about one-half of
those expected for an ignited ITER; Tj(o) is about twice that expected for ITER; the calculated
alpha density is about one-fifth of ITER; and the fraction of the electron density due to alphas is
about one-half that of ITER. This motivates our campaigns to increase fusion power on TFIR, to
make the beta alpha more relevant to an ignited plasma. Evidently, ignition as envisioned by the
ITER device is quite similar to the TFTR central plasma. The principal difference is that the
conduction losses (dependent on the gradient scale length) are much smaller in ITER than in
TFTR due to the large size of ITER.

Another interesting feature in Table 1 is that JET and TFTR had opposite trends in going

from DD comparison plasmas to DT plasmas. JET experienced reduced TE, Te(0), ne(0),
increased Zeff and constant Tj with the addition of tritium, while TFTR experienced increased

Te(0), Ti(0), and TE, while Zeff and ne(o) remaining about constant. The trend in the TFTR
variations has been consistent for all TFTR DT experiments with comparable limiter conditioning.

’

2.2. May 1994 Campaign

The second campaign occurred in May 1994 using Ip =2.5 MA, PB up to 33 MW, and up to two
lithium pellets (about 1 sec- before neutral beam injection) to improve the plasma confinement.
The plasma current was chosen as the maximum available (with a reasonable flattop time) in order

to maximize the Troyon B limit and allow the maximum energy content in the plasma. The
intention was to apply the.maximum neutral beam power; however, minor and major disruptions
occurred with about 33 MW of beam power (11 out of 12 sources). Effectively, the plasma
performance is limited by the disruptive behavior at the highest injected beam powers.

The campaign in May 1994 was remarkable for the effect that the lithium pellet
conditioning had upon the energy confinement time during the beam heating. The previous best
TFTR confinement time at 2.5 MW had been about 0.11 sec (at time of peak neutron emission)
(Fig. 2) which was modestly above L-mode. At the beginning of the campaign, even without
lithium pellet injection, the confinement time was about 0.15 sec. This increase is presently
interpreted as a conditioning effect from the proceeding experiment which featured heavy lithium
pellet conditioning. Sequentially, as first one lithium pellet was added prior to beam injection,
then two lithium pellets were added, and finally two lithium pellets were added as well as an ohmic
preconditioning plasma (at 1.6 MA with 4 Li pellets), the confinement time rose steadily to be
about 0.2 sec or nearly twice as high as in July 1993. With the DT plasma operation and 1 or 2 Li
pellets before the beam injection, the isotope effect brought the confinement time up to 0.24 sec or
nearly tripling the confinement over L-mode. The strong control that the lithium pellet




conditioning brings to the confinement time means that TFTR is effectively stability-limited rather
than confinement limited.

The May 1994 sequence of DD plasmas in Fig. 2 were all taken at 19.5 MW of beam
power and illustrate (Fig. 3) the pronounced effect that the lithium conditioning had upon the
density profile, and particle inflixes during the beam injection. At about 3.9 sec, the hydrogen
influx and carbon influxes were halved while the central density was about constant (or increased
by 10%); the density peakedness was increased by about 50% as the energy confinement time
increased about 30%. '

The general observations are consistent with previous measurements of the effects of
lithium pellets[4] except that they seem more pronounced at the higher plasma current (2.5 MA) of
this campaign. Higher plasma current also correlates with higher particles influxes from the walls,
especially during ohmic heating. Qualitatively, the lithium gettering seems to be effective at
reducing the higher particle influx at higher plasma current. Historically, improvements in
supershot performance in TFTR has involved a deterioration at higher plasma currents. Initially
(in 1986), supershots were most effective at low plasma current (~ 1.0 MA), and over the years
improvements over L-mode in performance meant considerable enhancements, were extended to
higher plasma currents. The maximum current that can sustain 1E > 1.8 tpl-mode has increased

(Fig. 4) from 1.0 MA in 1986 to 2.5 MA in 1994.

2.3. June 1994 Campaign

The third campaign occurred in June 1994 using Ip = 2.1 MA, PB ~ 20 MW and four Li
pellets at least 1 sec before neutral beam injection. In this campaign, the plasma current was
chosen as the maximum that allowed enough time for the four lithium pellets to be injected. The
beam power was reduced sufficiently to avoid approaching B limits. The consequence was that
approximately the same DT fusion power was produced as in December 1993 but with about two-
thirds of the beam heating power. The peak energy confinement time achieved was about 0.28 sec.

There are several significant features about the profiles (Fig. 5) produced at the highest
confinement times. Compared to the July 1993 plasma (Fig. 2), there are significant reductions in
De, Xe, and ¥j with associated increases in ne(0), Te(0), and Tj(0). At the time of the highest
confinement, the central Tj actually became flat over the inner r/a < 0.25 at a value of about 35
keV, and the ion energy balance became convection dominated (Fig. 6). The initial impression is
that the increases in T due to Li pellet conditioning are accompanied by a broadening flat Tj(r) as
the central region dominated by convective losses becomes broader. Similar observations have
been made previously on supershot behavior[6]; however, the June 1994 plasmas seem to have the
most extreme effect.

3. Fusion Power Production

Empirically, the D(d,n) 3He fusion neutron emission from TFTR supershots has scaled[7] as

S o E*/\I, (I



which can be seen with respect to the 1990 data as having a tight correlation (Fig. 7). Empirically,
the DT data in which the fraction of tritium beam power lies between 30% and 70% of the total
also follows a similar scaling relation with (Fig. 8)

spr < EX8/ [T, @)

The Iy variation is not over a wide range and represents only the difference between data at 1.8 —
2.1 versus data at 2.5 MA (Fig. 9). The scalings [Eq. (2)] of the DT plasmas is quite similar to
the scaling of the DD [Eq. (1)] plasmas indicating that optimization of the deuterium plasmas for
" DD neutron emission is a valid indicator of expected DT neutron performance. Further, the strong
dependence upon plasma energy content indicates that the relevant parameters for improving the
DT fusion power are the product of the energy confinement time and the applied neutral beam

heating power. Plotting the 1990 and 1992 DD supershot data (over 1,000 plasmas) in Tg, PB
space indicates (Fig. 10) that DD data tended to evenly fill a space below 32 MW and 160 msec
confinement time. The DT plasmas form bands of fusion power along contours of constant plasma
energy content irrespective of whether that energy content is obtained at high applied beam power
or high energy confinement time.

The DT neutron production plotted as a function of the percentage of the beam sources that
are used in tritium (Fig. 11) has a broad maximum around 50%. The plasmas with only tritium
beams injected have 40-60% of the DT neutron emission expected from Eq. (2). The fact that they
have any DT neutron emission is due to the deuterium influx from the walls where a large reservoir
has been established from many DD plasmas. Figure 11 indicates little further benefit exists to
operating slightly rich in tritium beyond the effect of maximizing the plasma energy content.
Since TFTR is now ultimately limited by stability, it is not clear which beam configuration nor

tritium configuration in the beams would allow the maximum f to be obtained without disruption.

4. Summary

The dramatic effect of lithium pellet conditioning and the tritium isotope effect upon energy
confinement time has changed the overall TFTR machine performance from being limited by
confinement to being limited by stability. In order to further increase the peak DT fusion power
and to extend the duration of high DT fusion power for alpha studies, it is proposed to increase the
toroidal magnetic field from 5.2 T to 6 T. Empirically, it has been observed that the maximum DD
neutron emission scales with the fourth power of the toroidal magnetic field (Fig. 12). This is
understandable from a scaling law like Eq. (1) where the maximum attainable energy content is
determined by a Troyon-like energy limit

ETroyon = 1B><B* 14, 3)

and somehow q is being held constant so that

SDDgax =5 @




The fact that g = constant may be a consequence of the high central pressures in TFTR supershots
suggesting that the q = 1 surface is important, or that the q on axis is important (i.e., central current
density). The empirical data in Fig. 12 indicates that an approximate doubling of the DT fusion
power may be possible by raising the toroidal magnetic field from 5 T to 6 T.
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Parameters for DD and DT comparison plasmas

Parameter Units JETDD JETDT TFTRDD TFIRD-T ITER
Central density ne(0) 10 9m3 51 3.6 7.7 7.6 16
Effective charge (Zeff) 1.8 24 24 23 15
Electron temperature keV 10.5 .‘ 9.9 9.2 10.8 18
Te(0)
Ion temperature T;(0) keV | 18.6 18.8 25.6 33.0 17
Energy replacement seconds 1.2 0.9 0.145 _ 0176 4.1
Time (1g)
Central alpha density 1019m-3 0 0.0029 © 0.013 0.08
RVBa, 0 0008 O 0.02 0.06
niTETi (102m3seckeV) 4.6 2.9 2.6 3.8 35
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Fig.1 Time evolution of the DT fusion power produced during the three campaigns to increase
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Fig.2. Time evolution of the energy confinement time for 2.5 MA beam heated TFTR plasmas.
The range of L-mode energy confinement is indicated in the shaded region and depends
upon the beam power. The bottom curve represents the best TFTR performance at 2.5
MA up to July 1993. The next four curves represent the effect of lithium pellet
conditioning of DD plasmas as part of the May 1994 campaign. The top two curves
represent the effect of lithium pellet conditioning of DT plasmas.
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