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Electron-deuteron scattering in a relativistic
theory of hadrons

Daniel Phillips

Department of Physics,
University of Maryland,
College Park, MD, 20742-4111

Abstract. We review a three-dimensional formalism that provides a systematic
way to include relativistic effects including relativistic kinematics, the effects of
negative-energy states, and the boosts of the two-body system in calculations of
two-body bound-states. We then explain how to construct a conserved current
within this relativistic three-dimensional approach. This general theoretical frame-
work is specifically applied to electron-deuteron scattering both in impulse approxi-
mation and when the p7y meson-exchange current is included. The experimentally-
measured quantities A, B, and Ty are calculated over the kinematic range that is
probed in Jefferson Lab experiments. The role of both negative-energy states and
meson retardation appears to be small in the region of interest.

1 Introduction

A number of the experiments being performed at the Thomas Jefferson Na-
tional Accelerator Facility (TINAF) involve the elastic and inelastic scat-
tering of electrons off the deuteron at space-like momentum transfers of the
order of the nucleon mass. In building theoretical models of these processes,
relativistic kinematics and dynamics would seem to be called for. Much theo-
retical effort has been spent constructing relativistic formalisms for the two-
nucleon bound state that are based on an effective quantum field theory
lagrangian. If the usual hadronic degrees of freedom appear in the lagrangian
then this strategy is essentially a logical extension of the standard nonrela-
tivistic treatment of the two-nucleon system.

Furthermore, regardless of the momentum transfer involved, it is crucial
that a description of the deuteron be used which incorporates the conse-
quences of electromagnetic gauge invariance. Minimally this means that the
electromagnetic current constructed for the deuteron must be conserved.

Of course, the two-nucleon bound state can be calculated and a corre-
sponding conserved deuteron current constructed using non-relativistic NNV
potentials which are fit to the NN scattering data. This approach has met
with considerable success. (For some examples of this program see Refs. [1,
2].) Our goal here is to imitate such calculations—and, we hope, their success!—
in a relativistic framework. To do this we construct an NN interaction, place
it in a relativistic scattering equation, and then fit the parameters of our in-
teraction to the NN scattering data. We then calculate the electromagnetic
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form factors of the deuteron predicted by this NN model. By proceeding in
this way we hope to gain understanding of the deuteron electromagnetic form
factors in a model in which relativistic effects, such as relativistic kinematics,
negative-energy states, boost effects, and relativistic pieces of the electromag-
netic current, are explicitly included at all stages of the calculation.

This program could be pursued using a four-dimensional formalism based
on the Bethe-Salpeter equation. Indeed, pioneering calculations of electron-
deuteron scattering using Bethe-Salpeter amplitudes were performed by Zuil-
hof and Tjon almost twenty years ago [3, 4]. However, despite increases in
computer power since this early work the four-dimensional problem is still
a difficult one to solve. Since the NN interaction is somewhat phenomeno-
logical ultimately it is not clear that one gains greatly in either dynamics or
understanding by treating the problem four-dimensionally. Therefore, instead
we will employ a three-dimensional formalism that incorporates what we be-
lieve are the important dynamical effects due to relativity at the momentum
transfers of interest. '

We will use a three-dimensional (3D) formalism that, in principle, is equiv-
alent to the four-dimensional Bethe-Salpeter formalism. This approach has
been developed and applied in Refs. [5, 6, 7]. In this paper we will focus on
the calculation of elastic electron-deuteron scattering. Here we review the
formalism for relativistic bound states and show how to construct the cor-
responding electromagnetic current. Calculations of elastic electron-deuteron
scattering are performed both in the impulse approximation and with some
meson-exchange currents included. The results for the observables A, B and
T5g are presented.

Many other 3D relativistic treatments of the deuteron dynamics which are
similar in spirit to that pursued here exist (see for instance Refs. [8, 9]). Of
these, our work is closest to that of Hummel and Tjon {10, 11, 12]. However,
in that work approximations were employed for ingredients of the analysis,
such as the use of wave functions based on the 3D quasipotential propaga-
tor of Blankenbecler-Sugar [13] and Logunov-Tavkhelidze [14], approximate
boost operators, and an electromagnetic current which only approximately
satisfies current conservation. Calculations of elastic electron-deuteron scat-
tering also were performed by Devine and Wallace using a similar approach
to that pursued here [15]. Here we extend these previous analyses by use of
our systematic 3D formalism. In this way we can incorporate retardations
into the interaction and also use a deuteron electromagnetic current that is
specifically constructed to maintain the Ward-Takahashi identites.

The paper is organized as follows. In Section 2 we explain our reduction
from four to three dimensions. In Section 3 we present a four-dimensional
equation which is a modified version of the ladder Bethe-Salpeter equation.
This modified equation has the virtue that it, unlike the ladder BSE, in-
corporates the correct one-body limit. By applying our three-dimensional
reduction technique to this four-dimensional equation we produce an equa-
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tion which has the correct one-body limit and contains the correct physics of
negative-energy states. In Section 4 we explain the various potentials that are
used in calculations of deuteron wave functions. These can be divided into
two classes: instant potentials, and potentials that include meson retardation.
Within either of these classes versions of the potentials are constructed that
do and do not include the effects of negative-energy states, in order to display
the role played by such components of the deuteron wave function. Section 5
discusses our 3D reduction of the electromagnetic current that maintains
current conservation. This completes the laying out of a consistent formalism
that includes the effects of relativity systematically, has the correct one-body
limits, and maintains current conservation. In Section 6 we apply this ma-
chinery to the calculation of electron-deuteron scattering both in the impulse
approximation and when corrections due to some meson-exchange currents
are included. Finally, discussion and conclusions are presented in Section 7.

2 The reduction to three dimensions

The Bethe-Salpeter equation,
T = K + KGoT, (1)

for the four-dimensional NN amplitude 7" provides a theoretical description
of the deuteron which incorporates relativity. Here K is the Bethe-Salpeter
kernel, and Gy is the free two-nucleon propagator. In a strict quantum-field-
theory treatment, the kernel K includes the infinite set of two-particle irre-
ducible NN — NN Feynman graphs.

For the two-nucleon system an application of the full effective quantum
field theory of nucleons and mesons is impractical and perhaps, since hadronic
degrees of freedom are not fundamental, inappropriate. In other words, the
Bethe-Salpeter formalism may serve as a theoretical framework within which
some relativistic effective interaction may be developed. But, if the NV inter-
action is only an effective one, then it would seem to be equally appropriate
to develop the relativistic effective interaction within an equivalent three-
dimensional formalism which is obtained from the four-dimensional Bethe-
Salpeter formalism via some systematic reduction technique.

One straightforward way to reduce the Bethe-Salpeter equation to three
dimensions is to approximate the kernel X by an instantaneous interaction
Kins:. For example, if ¢ = (go,q) is the relative four-momentum of the two
nucleons then

1 1
K@) =57 - K(Q)=—m-

Z — 12 (2)

This, admittedly uncontrolled, approximation, yields from the Bethe-Salpeter
equation the Salpeter equation:
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Tinst = Kinst + Kinst<G0>Tinst, (3)

where the three-dimensional Salpeter propagator (Gy) is obtained by inte-
grating over the time-component of relative momentum,

(Goh = [ E2Galp: P). (@

Throughout this paper we denote the integration over the zeroth component
of relative momenta, which is equivalent to consideration of an equal-time
Green’s function, by angled brackets. We shall consider only spin-half parti-
cles, and so

Af AT AT AT

Go) = ;
< 0> E—€ —¢ E+e +e

()

where A* are related to projection operators onto positive and negative-
energy states of the Dirac equation, E is the total energy, and ¢; = (p? +
m?)}/2. Note that for spin-half particles, this propagator (Gg) is not invert-
ible.

In order to systematize this kind of 3D reduction one must split the 4D
kernel K into two parts. One of these, K1, is to be understood as a three-
dimensional interaction in the sense that it does not depend on the zeroth
component of relative four momentum 1. We then seek to choose this K such
that the 3D amplitude 7T} defined by

Ty = K1 + Ki(Go)T1, (6)
has the property that
(Go)T1(Go) = (GoT Go). (7)

It is straightforward to demonstrate that such a K, is defined by the
coupled equations:

K1 = {Go) " GoKGYGo) ™1, (8)
which is three-dimensional, and
G =Go+ Go(K ~ K1)G, (9)
which is four dimensional. The K of Eq. (8) does this by ensuring that
(9) = (Go). (10)

The formalism is systematic in the sense that, given a perturbative expansion
for the 4D kernel, K, a perturbative expansion for the 3D kernel, K, can be
developed. At second order in the coupling this gives:

! Of course, this is not a covariant reduction, but covariance can be maintained by
a suitable generalization of this idea [6].
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K = (Go) ™M GoK P Go)(Go) ™. (11)

In +4+ — ++ states this is just the usual energy-dependent one-particle-
exchange interaction of time-ordered perturbation theory, but with relativis-
tic kinematics, i.e. ignoring spin and isospin:

ko _ g 1

= 2 12 2
! 2w E+~61—6'2——(4)+(H | (12)

where w is the on-shell energy of the exchanged particle. Note that (Gp)
must be invertible in order for the 3D reduction to be consistent. (Similar
connections between three and four-dimensional approaches are discussed in
Refs. [14, 16, 17, 18, 19].)

Equation (6) leads to an equation for the bound-state vertex function:

I = Ki{Go) I, (13)

where [ is the vertex function in the three-dimensional theory. The 4D
vertex function, I', and the corresponding 3D one, [, are related via

Gol = GI3. (14)

3 The one-body limit

As mentioned above, and discussed many years ago by Klein [16], the prop-
agator {Gy) is not invertible and therefore the above reduction is not con-
sistent. We shall show in this section that this difficulty is connected to the
behavior of the three-dimensional equation in the one-body limit. In this limit
we allow one particle’s mass to tend to infinity. We expect that the ampli-
tude 77 then reduces to that given by the Dirac equation for a light particle
moving in the static field of the heavy particle. In fact, this does not happen
unless we include an infinite number of graphs in the kernel of the integral
equation Eq. (3).

In fact, if a scattering equation with a kernel which contains only a finite
number of graphs is to possess the correct one-body limit, two distinct crite-
ria must be satisfied. First the 3D propagator should limit to the one-body
propagator for one particle (the Dirac propagator in this case) as the other
particle’s mass tends to infinity. Second, as either particle’s mass tends to in-
finity, the equation should become equivalent to one in which the interaction,
K, is static.

Equation (3)’s lack of either of these properties stems from Eq. (1) not
having the correct one-body limit if any kernel which does not include the
infinite set of crossed-ladder graphs is chosen [20]. Solution of Eq. (1) with
such a kernel is impractical in the NN system. Nevertheless, the contributions
of crossed-ladder graphs to the kernel may be included in an integral equation
for 7 by using a 4D integral equation for K, the kernel of Eq. {1)
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K =U+UGcK. (15)

Once G¢ is defined this equation defines a reduced kernel U in terms of the
original kernel K. The propagator G is chosen so as to separate the parts
of the kernel K that are necessary to obtain the one-body limit from the
parts that are not. U may then be truncated at any desired order without
losing the one-body limits. The following 4D equation for the t-matrix is thus
equivalent to Egs. (1) and (15),

T =U+U(Go + Gc)T. (16)

We can now remedy the defects of our previous 3D reduction. Applying
the same 3D reduction used above to Eq. (16) gives:

T7=U,+U1 <G0 + GC)TI, (17)
where the 3D propagator is
AFAF AT A7
Go+Ger) = 172 _ 1472
(Go ¢ POt e — e 2Eg—P0++61+62
AT AT AT AT

— - — s (18)
POT -2k 4+e1+es P 4e+e

and 9 is a parameter that enters through the construction of G¢. This three-
dimensional propagator was derived by Mandelzweig and Wallace with the
choice k3 = P°/2 — (m? — m3)/(2P°) [21, 22]). With &5 chosen in this way
{Go + G¢) has the correct one-body limits as either particle’s mass tends to
infinity and has an invertible form. The kernel U; is defined by Eqgs. (8) and
(10) with the replacements Gg — Go + G¢, K = U, and Ky —» U;.

Here we are interested in the scattering of particles of equal mass and so
we make a different choice for k3. Specifically,

P0—€1+62
5 .

This form avoids the appearance of unphysical singularities when electron-
deuteron scattering is calculated [7]. It yields a two-body propagator:

ATAT ATAT ATAT L ATAT
POt e ey 2ep 2¢ P74 e1 + €

(19)

K=

(Go +Gc) = . (20)

which is consistent with that required by low-energy theorems for Dirac par-
ticles in scalar and vector fields [23]. Another way of saying this is to realize
that if we compare the the ++ — ++ piece of the amplitude

Vi(Go + Gy (21)

to the amplitude obtained at fourth order in the full 4D field theory then the
contribution of negative-energy states agrees at leading order in 1/M [7].
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For bound states the argument of the previous section leads to the 3D
equation:
I = Ui (Go + Ge)In. (22)
Equation (22) is a bound-state equation which incorporates relativistic effects
and the physics of negative-energy states. For instance, fig. 1 is one example
of a graph which is included if Eq. (22), even if only the lowest-order kernel
Ul(z) is used, because of our careful treatment of the one-body limit.

Fig. 1. One example of a Z-graph which is included in our 3D equation (22).

4 Results for the deuteron

To calculate observables in the deuteron we now consider two types of ker-
nels Uy, both of which are calculated within the framework of a one-boson
exchange model for the NN interaction:

1. U; = Ujnst, the instantaneous interaction.
2. A kernel UI(Q) which is a retarded interaction. This is obtained from
Eq. (11) by the substitutions Kl(z) — Ul(z) and Gy — Go + Ge.

These interactions are used in a two-body equation with the full ET Green’s
function given by Eq. (22), and also in an equation in which only the ++
sector is retained. For the instant interaction, we follow the practice of Devine
and Wallace [15] and switch off couplings between the ++ and —— sectors,
and between the +— and —+ sectors. A partial justification of this rule follows
from an analysis of the static limit of our 3D retarded interaction.

The mesons in our one-boson exchange model are the 7(138), the ¢(530),
the n(549), the p(769), the w(782), and the §(983). All the parameters of
the model, except for the ¢ coupling, are taken directly from the Bonn-B
fit to the NN phase shifts [24]—which is a fit performed using a relativistic
wave equation and relativistic propagators for the mesons. The o coupling
is varied so as to achieve the correct deuteron binding energy for each in-
teraction considered. Of course, we should refit the parameters of our NN
interaction using our different scattering equations. However, for a first esti-
mate of the importance of negative-energy states and retardation we adopt
this simpler approach to constructing the interaction. Work on improving the
NN interaction model is in progress [25].
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Once a particular interaction is chosen, the integral equation (22) is solved
for the bound-state energy. In each calculation, the o coupling is adjusted
to get the correct deuteron binding energy, producing the results (accurate
to three significant figures) given in Table 1. The value given for the instant
calculation with positive-energy states alone is that found in the original
Bonn-B fit. In all other cases the o coupling must be adjusted to compensate
for the inclusion of retardation, the effects of negative-energy states, etc. We
believe that this adjustment of the scalar coupling strength is sufficient to get
a reasonable deuteron wave function. The static properties of this deuteron
are very similar to those of a deuteron calculated with the usual Bonn-B
interaction.

With the bound-state wave function in the center-of-mass frame has been
determined in this fashion, it is a simple matter to solve the integral equation
(22) in any other frame. We choose to calculate electron-deuteron scattering
in the Breit frame. The interaction is recalculated in the Breit frame for
a given @?, and then the integral equation is solved with this new interac-
tion. Because the formalism we use for reducing the four-dimensional integral
equation to three dimensions is not Lorentz invariant there is a violation of
Lorentz invariance in this calculation. Estimations of the degree to which
Lorentz invariance is violated are displayed in Ref. [7].

Table 1. Sigma coupling required to produce the correct deuteron binding energy
in the four different models under consideration here.

Interaction|States included|g. /4n
Instant ++ 8.08
Retarded ++ 8.39
Instant All 8.55
Retarded All 8.44

5 Current conservation

5.1 Currents in the three-dimensional formalism

As discussed in the Introduction, we now want to compare the predictions of
this formalism with experimental data gained in electron scattering experi-
ments. In calculating the interaction of the electron with the hadronic bound
state it is crucial to derive a 3D reduction of the electromagnetic current
which is consistent with the reduction of the scattering equation we have
chosen to use here.
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The current in the full four-dimensional formalism is obtained by coupling
photons everywhere on the right-hand side of Eq. (1). This produces the
following gauge-invariant result for the photon’s interaction with the bound
state:

Ay = I(P")Go(P')J,Go(P)T(P)

+ I'(P")Go(P') K, Go(P)L(P), (23)

where P and P’ are the initial and final total four-momenta of the deuteron
bound state. Here J, contains the usual one-body currents and K repre-
sents two-body contributions which are necessary for maintaining the Ward-
Takahashi identities. All integrals implicitly are four-dimensional. The con-
nection to the three-dimensional amplitude, I, obtained from Eq. (22) is
made by inserting Eq. (14) into Eq. (23), giving

Ap = D(PWG(P') [Jy + KJ]G(P) L (P). (24)

Once the effective operator (G(P') [J, + K} ] G(P)) is calculated the expres-
sion (24) involves only three-dimensional integrals.

Since G is an infinite series in K — K this result would not be much help on
its own. But, given a result for I7 obtained by systematic expansion of K, the
amplitude A, can be analogously expanded in a way that maintains current
conservation. K as defined by Eq. (8) is an infinite series and the condition
{10) is imposed order-by-order in the expansion in K — K; defines K; to
some finite order. The question is: Does a corresponding 3D approximation
for the current matrix element (24) exist that maintains the Ward-Takahashi
identities of the theory? It turns out that the current matriz element (24)
is conserved if G(J, + K)G on the right-hand side of Eq. (2{) is expanded
to a given order in the coupling constant and the kernel Ky used to define
Iy is obtained from Eq. (10) by truncation at the same order in the coupling
constant.

This is done by splitting the right-hand side of Eq. (24) into two pieces,
one due to the one-body current J,, and one due to the two-body current
K. If Ky has been truncated at lowest order—i.e., K = K{Q)—then, in
the J, piece, we expand the Gs and retain terms up to the same order in

K- Ki?). A piece from the two-body current, in which we write G = G,
is added to this. That is, we define our second-order approximation to 4,,
AP, by

AP = [(P')(Gy um(P)
+ [(PY(Go(PYE®(P') — K (P')GY, )1 (P)
+ [P G, (KD (P) — K (P))Go(P)) I3 (P)
+ [(P)(Go(PYK} P Go(P) L (P), (25)
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where Gj , = Go(P')J,Go(P). It can now be shown that if Eq. (10) expanded

to second order defines K fz), the corresponding amplitude for electromagnetic
interactions of the bound state, as defined by Eq. (25), exactly obeys

QAR =0. (26)

It is straightforward to check that the same result holds if Eq. (10) for
K is truncated at fourth order, while the one-body and two-body current
pieces are expanded to fourth order.

The amplitude Af) includes contributions from diagrams where the pho-
ton couples to particles one and two while exchanged quanta are “in-flight”.
These contributions are of two kinds. Firstly, if the four-dimensional kernel
K is dependent on the total momentum, or if it involves the exchange of
charged particles, then the WTIs in the 4D theory require that K] contain
terms involving the coupling of the photon to internal lines in K. Secondly,
even if such terms are not present, terms arise in the three-dimensional for-
malism where the photon couples to particles one and two while an exchanged
meson is “in-flight”. These must be included if our 3D approach is to lead to
a conserved current. (See Fig. 2 for one such mechanism.)

Fig. 2. One example of a two-body current that is required in our formalism in
order to maintain current conservation.

A special case of the above results occurs when retardation effects are
omitted, i.e., the kernel Ky = Kipst, is chosen, and the bound-state equation
(13) is solved to get the vertex function I3 = Iing. Then a simple conserved
current is found:

»Ainst.u = _inst (P,><G8u>ﬂnst(P) +-Z:‘inst(P,xGO(P’))Ki;r]stu(GO(P»nnst(-P)a

(27)
where we have also replaced the meson-exchange current kernel K by the
instant approximation to it.

5.2 Current conservation in the 4D formalism with G¢

In Ref. {7] we showed how to construct a conserved current consistent with
the 4D equation
I'=U(Go+ Gc)I. (28)
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This turns out to be a moderately complicated exercise, because the propa-
gator G¢ depends on the three-momenta of particles one and two, not only in
the usual way, but also through the choice (19) made for 3 above. However,
a 4D current Gy , = G, + G{,, corresponding to the free Green’s function
Gy + G¢ can be constructed. Its form is displayed in Ref. [7] and is not re-
ally germane to our purposes here, for, as we shall see hereafter, only certain
pieces of the current Gy , are actually used in our calculations.

5.3 Reduction to 3D and the ET current

Having constructed a 4D current for the formalism involving G¢ that obeys
the required Ward-Takahashi identity, we can apply the reduction formalism
of Section 5.1 to obtain the currents corresponding to the 3D reduction of
this 4D theory. The result is:

AP = 0PN )T eT(P)
+ DT (PY{(Go + Go) (P YK (P') - U (P))G3 ) T e (P)
+ DLeT (PG (KEPD(P) - U (P))(Go + Go)(P)) T e (P)
+ N er(P){(Go + Go)(PYE (Go + Ge)(P) 1 er(P),  (29)

where Il g is the solution of Eq. (22) with U; = Ufz) . This current obeys the
appropriate Ward-Takahashi identity. In fact in one-boson exchange models
the only contributions to K Z'(Q) give rise to isovector structures, and so their
contribution to electromagnetic scattering off the deuteron is zero.

5.4 Impulse-approximation current based on the instant
approximation to ET formalism

Just as in the case of the Bethe-Salpeter equation, if the instant approxi-
mation is used to obtain a bound-state equation with an instant interaction
from Eq. (28) then a corresponding simple conserved impulse current can be
constructed:

Ainst,u = _inst <g(~)”u>rmst (30)

Now we note that the full result for Gj , was constructed in order to
obey Ward-Takahashi identities in the full four-dimensional theory. It is not
necessary to use this result if we are only concerned with maintaining WTIs
at the three-dimensional level in the instant approximation. Therefore we
may construct the corresponding current

Ginst,u(P1.P2; P, Q) = i{d1 (p1)d2(p2 + Q)j,(f)dz(m)
+d1(p1)d5(p2 + Q)55 (p2)) + (1 & 2). (31)

Here d; is the Dirac propagator for particle ¢, and j, = g7, is the usual one-
body current, with ¢ is the charge of the particle in question. Meanwhile df is
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a one-body Dirac propagator used in G¢(P) to construct the approximation
to the crossed-ladder graphs. Correspondingly, d¢ appears in G¢o(P + Q),
which does not equal df, even if particle ¢ is not the nucleon struck by the
photon. Finally,

i) = gy - 3,(12), (32)
where Y .
- + po

(2) _ g P2 T P2 33

Jul = g (33)

with Po = (e(p2),p2). (For further explanation of these quantities and the
necessity of their appearance here the reader is referred to Ref. [7].)

If a vertex function Iins is constructed to be a solution to Eq. (22) with
an instant interaction then the three-dimensional hadronic current:

Ainst,u = instgi’zlst’u[‘inst (34)

is conserved. This current is simpler than the full ET current and omits only
effects stemming from retardation in the current. Our present calculations are
designed to provide an assessment of the role of negative-energy states and
retardation effects in the vertex functions. Therefore we use the simple current
(34) in all of our calculations here-—even the ones where I'y is calculated using
a retarded two-body interaction. The effects stemming from retardation in
the current are expected to be minor, and so we expect this to be a good
approximation to the full current in the three-dimensional theory. Future
calculations should be performed to check the role of meson retardation in
that current.

6 Results for electron-deuteron scattering

6.1 Impulse approximation

We are now ready to calculate the experimentally observed deuteron elec-
tromagnetic form factors A and B, and the tensor polarization Z5p. These
are straightforwardly related to the charge, quadrupole, and magnetic form
factors of the deuteron, F, Fp, and Fas. These form factors in turn are
related to the Breit frame matrix elements of the current A, discussed in the
previous section,

Fo = ﬁaomm +2(+114° + 1)), (35)
1

Fo = 5 (OLA710) = (+114°) + 1), (36)
-1 -

Fy = m(+1|«4+|0); (37)

where |+ 1}, |0) and | — 1) are the three different spin states of the deuteron.
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We take the wave functions constructed for the four different interactions
of Section 4 and insert them into the expression (34). In using any of the
interactions obtained with only positive-energy state propagation we drop all

. "y . L
pieces of the operator inst,, 11 D€gative-energy sectors.

The single-nucleon current used in these calculations is the usual one for
extended nucleons. We choose to parametrize the single-nucleon form factors
Fy and F, via the 1976 Hohler fits {26]. Choosing different single-nucleon
form factors does not affect our qualitative conclusions, although it has some
impact on our quantitative results for A, B, and Tag.

Using this one-body current we then calculate the current matrix elements
via Eq. (24). This is a conserved current if the vertex function I is calculated
from an instant potential. However, if a potential including meson retardation
is used it violates the Ward-Takahashi identities by omission of pieces that
are required because of the inclusion of retardation effects in the calculation.
Work is in progress to estimate the size of these effects.

— - - Instant calfcufation

— Retarded calculation

---------- Instant calculation: ++ only
~— — Retarded caiculation: ++ only

B(Q")

F—el |1
o )

el /
L
o

o
o
)

50.0 750 100.0 250 . SO.QZ 75.0 100.0
Q (im™) Q° (im™®)

Fig. 3. The form factors A(Q*) and B(Q?) and the tensor polarization Teq for the
deuteron calculated in impulse approximation. The dash-dotted line represents a
calculation using a vertex function generated using the instant interaction. Mean-
while the solid line is the result obtained with the retarded vertex function. The
dotted and long dashed lines are obtained by performing a calculations with instant
and retarded interactions in which no negative-energy states are included.
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The results for the impulse approximation calculation of the experimental
observables A, B, and Ty are displayed in Fig. 3. We also show experimental
data from Refs. [27, 28, 29, 30, 31] for A, from Refs. [29, 30, 32, 33] for B
and from Ref. [34] for T5. A number of two-body effects must be added to
our calculations before they can be reliably compared to experimental data.
However, even here we see the close similarity of the results for these observ-
ables in all four calculations. The only really noticeable difference occurs at
the minimum in B. There, including the negative-energy states in the calcula-
tion shifts the minimum to somewhat larger Q2. A similar effect was observed
by van Orden et al. [8] in calculations of electron-deuteron scattering using
the spectator formalism. However, note that here, in contradistinction to the
results of Ref. [8], the inclusion of negative-energy states does not bring the
impulse approximation calculation into agreement with the data. :

The fact that negative-energy states seem to have a smaller effect on
observables in the ET analysis than in the spectator analysis of van Or-
den et al. [8] is somewhat surprising since our “ET” propagator has twice
the negative-energy state propagation amplitude of the spectator propaga-
tor. Thus, other differences between the ET and spectator models, not just
differences in the role of negative-energy states in the two approaches, appear
to be responsible for Ref. [8]’s success in reproducing the minimum in B.

For the tensor polarization Tsg the different models produce results which
are very similar. This suggests that this observable is fairly insensitive to
dynamical details of the deuteron model, at least up to Q2 = 4 GeV?2.

6.2 Meson-exchange currents

As Q? increases the cross-section due to the impulse approximation diagrams
drops precipitously. Thus we expect that in some regime other interactions
may become competitive with the impulse mechanism. One such possibility is
that the photon will couple to a meson while that meson is in flight. Because
of the deuteron’s isoscalar nature and the conservation of G-parity, the low-
est mass state which can contribute in such meson-exchange current (MEC)
diagrams is one where the photon induces a transition from a « to a p.
This pmy MEC is a conserved current whose structure can be found
in Refs. [10, 35]. The couplings and form factors for the meson-nucleon-
nucleon vertices are all taken to be consistent with those used in our one-
boson-exchange interaction. Meanwhile, the pry coupling is set to the value
gpny = 0.56, and a vector meson dominance form factor is employed at the
pry vertex: Fory(q) = 1/(g>—m2). The value of this MEC is added to the im-
pulse contribution calculated above and A, B, and Ty are calculated. This is
done with the vertex function obtained from an instant interaction, and con-
sequently the electromagnetic current is exactly conserved. The results of this
calculation are displayed in Fig. 4. We see that at Q2 of order 2 GeV? the pry
MEC makes a significant contribution to all three observables. However, far
from improving the agreement of the position of the minimum in the B form
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factor with the experimental data, this particular MEC moves the theoreti-
cal result away from the data—as noted by Hummel and Tjon [10], and seen
within a simplified version of the formalism presented here by Devine [35].
Thus, it would seem that some physics beyond the impulse approximation
other than the pry MEC plays a significant role in determining the position
of the minimum in B(Q?).

— - Impulse Approximation
-——— Impulse Approximation + pry MEC

T : N ]
0.0 25.0 50.0 75.0 100.0

@ (fm™)
3
~ B
~
b ~
~
. 1 \\ -
k<) %
5 = 1+
,/‘_ - T~ 1
| ¢
I -
107 i : by H : \ N
0.0 250 50.0 750 100.0 0.0 25.0 50.0 75.0 100.0
Q* m™) Q* (tm™)

Fig. 4. The form factors A(Q?) and B(Q?) together with the tensor polarization
for the deuteron. The long dashed line is an impulse approximation calculation with
an instant interaction. The solid line includes the effect of the pry MEC.

7 Conclusion

A systematic theory of the electromagnetic interactions of relativistic bound
states is available in three dimensions. In this formalism integrations are
performed over the zeroth component of the relative momentum of the two
particles, leading to the construction of “equal-time” (ET) Green’s functions.
If the formalism is to incorporate the Z-graphs that are expected in a quantum
field theory, then the propagator must include terms coming from crossed
Feynman graphs. Here we have displayed a three-dimensional propagator
that includes these effects correctly to leading order in 1/M.
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Given a suitable choice for the ET propagator, the electromagnetic and in-
teraction currents which should be used with it can be calculated. If these are
truncated in a fashion consistent with the truncation of the NN interaction
in the hadronic field theory then the Ward-Takahashi identities are main-
tained in the three-dimensional theory. A full accounting of the dynamical
role played by negative-energy states and of retardations in electromagnetic
interactions of the deuteron is thereby obtained.

Calculations have been performed for both the impulse approximation and
when the pry MEC is included. In our MEC calculations we use an instant
approximation for the electromagnetic current. This current satisfies current
conservation when used with deuteron vertex functions that are calculated
with instant interactions. We also have used this simpler current with vertex
functions which are calculated with the retarded interactions obtained within
the ET formalism.

Comparing impulse approximation calculations with and without negative-
energy states indicates that the role played by negative-energy state compo-
nents of the deuteron vertex function is small. This corroborates the results
of Humme] and Tjon and is in contrast to those obtained in Ref. [8]. Be-
cause the ET formalism incorporates the relevant Z-graphs in a preferable
way, we are confident that these Z-graphs really do play only a minor role
in calculations that are based upon standard boson-exchange models of the
NN interaction.

The results for impulse approximation calculations of the electromagnetic
observables are relatively insensitive to the distinction between a vertex cal-
culated with retardations included and one calculated in the instantaneous
approximation. The results of both calculations fall systematically below ex-
perimental data for the form factors A and B for Q of order 1 GeV. This
deficiency at higher ) suggests that mechanisms other than the impulse ap-
proximation graph should be significant. Indeed, when the pry MEC graph
is included in our calculation it somewhat remedies the result for A(Q?).
However, it fails to narrow the gap between our result for B(Q?) and the
existing experimental data. The significant gap that remains between our
theoretical result for B(Q?) and the data indicates that it is an interest-
ing observable in which to look for physics of the deuteron other than the
simple impulse mechanism or the standard pmy MEC. Finally, the existing
tensor polarization data are reasonably well described. This is consistent with
previous analyses which have shown Ty to be less sensitive to non-impulse
mechanisms.
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