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Abstract. The materials development of Gaj.xInxAsySb .y alloys for lattice-matched
thermophotovoltaic (TPV) devices is reported. Epilayers with cutoff wavelength 2 - 2.4
pm at room temperature and lattice-matched to GaSb substrates were grown by both
low-pressure organometallic vapor phase epitaxy and molecular beam epitaxy. These
layers exhibit high optical and structural quality. For demonstrating lattice-matched
thermophotovoltaic (TPV) devices, p- and n- type doping studies were performed.
Several TPV device structures were investigated, with variations in the base/emitter
thicknesses and the incorporation of a high bandgap GaSb or AlGaAsSb window layer.
Significant improvement in the external quantum efficiency is observed for devices with

an AlGaAsSb window layer compared to those without one.

INTRODUCTION

Recent developments of thermophotovoltaic (TPV) systems are based on
thermal sources which operate in the temperature range 1100 - 1500K [1]. For
high conversion efficiency, the cutoff wavelength of the photovoltaic cell should
closely match the peak in emissive power of the thermal source, which for this

temperature range corresponds to 1.9 - 2.6 pm. Consequently, optimized cells
* This work was sponsored by the Department of Energy under AF contract No. F19628-95-C-

0002. The opinions, interpretations, conclusions and recommendations are those of the author and
are not necessarily endorsed by the United States Air Force.
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will be based on low-bandgap semiconductor materials. For example, InGaAs
grown on InP substrates has been pursued [2,3]. However, the alloy composition
that satisfies this wavelength range is lattice mismatched to the InP substrate, and
defect filtering schemes must be incorporated to reduce crystalline defects. In
spite of this limitation, TPV devices have exhibited external quantum efficiency
(QE) as high as 50% at 2 um [3].

An alternative low-bandgap materials system is the Gaj.xInxAsySbi.y
quaternary alloy which has the advantage of being lattice matched to either GaSb
or InAs substrates. The energy gap is dependent primarily on the In content,
while As determines the lattice matching. Growth on GaSb substrates is
preferred over InAs substrates due to thermodyamic considerations [4],
electronic band structure[5], and mechanical stability [6]. Thermodynamically
stable alloys with a cutoff wavelength of 2.39 pum have been grown on GaSb by
liquid phase epitaxy (LPE) [7]. Therefore, the Gai.xInxAsi.ySby alloys are of
particular interest for TPV systems. Recently, GalnAsSb TPV devices grown by
LPE and molecular beam epitaxy (MBE) have been demonstrated, and external
QE exceeding 40% at 2 um has been obtained [6,8-9].

In this paper, we report the growth of Gaj.xInxAs,Sb.y alloys lattice
matched to GaSb substrates by both organometallic vapor phase epitaxy
(OMVPE) and MBE. Doping studies were performed, and the electrical, optical,
and structural properties of these alloys grown using the different techniques are
presented and compared. P-on-n Gal_XInXAéySbl-y devices were grown on GaSb
substrates and evaluated. The effects of base/emitter thickness, surface
passivation layer, and higher bandgap AlGaAsSb window layers on the quantum
efficiency are presented.

EPITAXIAL GROWTH AND CHARACTERIZATION

For OMVPE growth, Gaj.xInxAsySb1.y epilayers were grown on (100)
Te-doped GaSb or semi-insulating (SI) GaAs substrates misoriented 2° toward
(110) or 6° toward (111)B. A vertical rotating-disk reactor with H carrier gas at
a flow rate of 10 slpm and reactor pressure of 150 Torr was used [10]. All

organometallic sources including solution trimethylindium (TMlIn),
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triethylgallium (TEGa), tertiarybutylarsine (TBAs), and trimethylantimony
(TMSb) were used with diethyltellurium (DETe) (50 ppm in Hj) and
dimethylzinc (DMZn) (1000 ppm in H3) as n- and p-type doping sources,
respectively [11]. The total group III mole fraction was typically 3.5 to 4 x 10-4
which resulted in a growth rate of ~2.7 pmvh. The V/III ratio was typically 1.1 -
1.3. The growth temperature ranged from 525 - 575°C. AlGaAsSb lattice-
matched to GaSb substrates was grown with tritertiarybutylaluminum (TTBAI),
TEGa, TBAs, and TMSb as previously described [12].

For MBE growth, cpilayers were grown on (100) Te-doped GaSb or SI
GaAs substrates in a solid-source EPI Gen II system. Conventional effusion cells
were used to provide Ga, In, and Sby fluxes, and a valved As cracker to provide
As as described previously [13]. The growth temperaturc was 500 to 510°C, and
the growth rate was ~ 1 pm/h. Be was used as the p-type dopant, and GaTe as the
n-type dopant.

The surface morphology was examined using Nomarski contrast
microscopy. Double-crystal x-ray diffraction (DCXD) was used to measure the
degree of lattice mismatch to GaSb substrates. Photoluminescence (PL) was
measured at 4 and 300K using a cooled PbS detector. Electrical properties were
obtained from Hall measurements based on the van der Pauw method. The
composition of epilayers was determined from DCXD splitting, the peak
emission in PL spectra, and the energy gap dependence on composition based on
the binary bandgaps [14]:

E(x,y) = 0.726 - 0.961x - 0.501y + 0.08xy + 0.415x2 + 1.2y2 + 0.021x2y -
0.62xy?,
where y = 0.867x/(1 - 0.048x), the condition for lattice matching to GaSb.

GROWTH RESULTS

For OMVPE growth, the sensitivity of As incorporation (which controls
the lattice matching on GaSb substrates) in Ga1.xInxAsySbi.y (x ~ 0.13), was
established by growing epilayers with various TBAs vapor phase concentration
ratios, yv = {TBAs}/({TBAs]+[TMSb]). The results, Figure i, show that the
lattice mismatch varies linearly with little deviation as a function of yy,
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‘indicating that TBAs provides excellent controllability of lattice-matching

conditions. Similar control of lattice matching was obtained for epilayers grown
by MBE.

The surface morphology of lattice-matched GalnAsSb epilayers grown
by OMVPE on (100) substrates with a 2° toward (110) misorientation was
mirror-like to the eye, but for x > 0.1, exhibited a slight texture under Nomarski
contrast. For epilayers grown on substrates with a 6° toward (111)B
misorientation, the surface was mirror smooth. The morphology was mirror
smooth for all MBE-grown epilayers. Cross-hatching was observed for all layers
with a lattice mismatch > 5 x 10-3. Figure 2 shows the DCXD scan for a 2-pm-
thick Gapolng.1Asg08Sbgoz layer. A narrow full width at half-maximum
(FWHM) of 21 arc sec, which is comparable to 22 arc sec for the GaSb substrate,
indicates the excellent structural quality of this layer. The x-ray splitting of 39
arc sec corresponds to a lattice mismatch of 3 x 10-4. For lattice-matched
epilayers, the DCXD scans are similar whether the layers are grown by OMVPE
or MBE.

The optical quality of Gaj.xInxAs,Sbj.y epilayers was evaluated by
comparing the FWHM of PL spectra measured at 4K. Figure 3 summarizes the
results for epilayers grown by OMVPE and MBE. The composition of epilayers
was varied to cover the 300K energy range 0.55 - 0.72 eV, corresponding to 2.4 -
1.9 um. In general, the FWHM values are comparable for layers grown by
OMVPE and MBE for 4K PL peak energy Epx > 0.58 eV. For lower Ep,
FWHM values are slightly larger for layers grown by OMVPE. Also shown for
comparison are data for layers grown by LPE [15] and OMVPE [16].

The electrical properties were measured at 300K for nominally undoped
Gag.g7Ing.13Asp.12Sbo.g8 layers grown on SI GaAs substrates. This composition
corresponds to a cutoff wavelength of 2.2 pm at 300K. Since the lattice
mismatch between Ga xInxAs).ySby (lattice matched to GaSb) and GaAs is 8%,
growth was first initiated with a GaSb buffer layer. For layers grown by OMVPE
at 550°C, nominally undoped epilayers are p type with a typical hole
concentration of 5 - 8 x 1015 ¢cm-3 and hole mobility 450 - 580 cm2/V-s.
Nominally undoped GalnAsSb layers grown by MBE are p type with a hole
concentration of 2 x 1016 cm-3 and mobility of ~ 300 cm?/V-s.
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The 300K electrical properties of n- and p-doped
Gao.87In0.13As0.12Sbo.gg layers grown by OMVPE and MBE are summarized in
Figures 4 and 5, respectively. Although the results for MBE-grown layers are
somewhat limited, similar electrical characteristics are observed. For OMVPE
layers, the electron concentration ranged from 2.3 x 1017 to 2.3 x 1018 cm3,
with corresponding mobility values of 5208 and 2084 cm?/V-s, respectively. The
hole concentration ranged from 4.4 x 1016 to 1.7 x 1018 cm-3 with corresponding
mobility values of 419 and 180 cm?/V-s, respectively.

DEVICE STRUCTURES AND FABRICATION

Several different TPV structures were grown for comparison. The basic
structure consists of an n-GalnAsSb base layer and p-GalnAsSb emitter layer
grown on a GaSb substrate. Variations to the structure included a variation in
base/emitter layer thicknesses and incorporation of an AlGaAsSb/GaSb window
layer. Device structures grown by OMVPE were on (100) GaSb substrates with
either 2° toward (110) or 6° toward (111)B misorientation, while structures
grown by MBE were on exactly (100) GaSb substrates. Table 1 summarizes the
device structure, substrate orientation, 300K PL peak emission, and lattice
mismatch Aa/a. The doping level of the p-GalnAsSb emitter layer was designed
at ~2 x 1017 cm-3, since our earlier studies on test structures indicated that for
structures with p <2 x 1017 cm-3, the diode ideality factor ranged from 1.1 - 1.3
in the current density of 0.01 - 1 A/cm? . An increase in the ideality factor was
observed for diodes fabricated from structures with higher hole concentrations,
which may be related to tunneling [8].

Mesa diodes, 0.5 and 1 cm?2, were fabricated by a conventional
photolithographic process. A single 1-mm-wide central busbar connected to 10-
um wide grid lines spaced 100 um apart was used to make electrical contact to
the front surface. Ohmic contacts to p- and n-GaSb were formed by depositing
Ti/Pt/Au and Auw/Sn/Ti/Pt/Au, respectively, and alloying at 300°C. Mesas were
formed by wet chemical etching to a depth of 5 pm. No anti-reflection coatings
were deposited on these test devices.
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DEVICE RESULTS

The external quantum efficiency (QE) as a function of wavelength for
devices OM-379, OM-459, OM-462, and OM-463 are shown in Figure 6. The
value of Aa/a of these structures is less than 2 x 10-3. The highest QE near the
bandedge is observed for OM-463 with a 3-um-thick emitter layer/1-pum-thick
base layer, which results because of the higher minority carrier diffusion length
in p-type GalnAsSb compared to n-type GalnAsSb. However, at shorter
wavelengths, the QE of OM-463 is lower than OM-462 which consists of 1-pm-
thick emitter layer/3-um-thick base layer. Since carriers are predominantly
generated in the base layer for OM-462, this result suggests that these GaInAsSb
devices are highly susceptible to surface recombination. The highest QE at
wavelengths below 1.6 um is measured for OM-379 which has a GaSb window
layer. In general, the performance of devices grown on (100) 2° toward (110)
substrates are inferior to those grown on (100) 6° toward (111)B substrates. The
QE of TPV devices grown by MBE (3-pum-thick emitter layer/1-pm-thick base
layer) is similar to the results measured for OMVPE-grown devices.

Figure 7 shows the QE as a function of wavelength for OM-544 that
consists of a 3-um-thick emitter layer, 1-um-thick base layer, and lattice-
matched Alg25Gag.75 Asg.02Sbg.98/GaSb window layer. Higher bandgap window
layers are often incorporated to improve the performance GaAs and InP solar
cells [17]. For OM-544 with Aa/a < 1 x 10-3, the QE is nearly 60% over the
whole wavelength range from 1.2 - 2.0 wm, which is dramatically higher than
devices shown in Figure 6 without the AlGaAsSb window layer, higher than has
been previously reported for GalnAsSb/GaSb TPV devices [6,8-9], and
approaching the ~70% limit for uncoated devices. Compared to OM-544, the QE
is slightly lower by about 5% for OM-543 with Aa/a = 2.5 x 10-3 and lowest for
OM-542 with Aa/a = 5 x 10-3, indicating that structural defects affect the
performance of these devices.

The 300K photoluminescence spectra of TPV structures with and without
the AlGaAsSb window layer are shown in Figure 8. The PL efficiency is more
than 5 times higher for the structure with the window layer. Since carriers are

generated near the surface in these PL experiments (excitation source is 647 nm),
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these results indicate that the AlGaAsSb is epecially effective in passivating the
surface of the underlying GalnAsSb and effectively reduces the surface
recombination velocity. Furthermore, standard calculations [18] of external QE
suggest that the surface recombination velocity may be reduced by several orders
of magnitude with the AlIGaAsSb window layer and that the minority electron
diffusion length in our lattice-matched GalnAsSb is about 5 pm. The QE is
comparable to lattice-mismatched InGaAs/InP devices, which had a maximum
QE of 65% at 1.2 pm and dropped off to 53% at 2.0 um [3]. Further
characterization of GalnAsSb/AlGaAsSb/GaSb devices should be performed to
assess the potential of this materials system for TPV systems.

CONCLUSIONS

High-quality GalnAsSb epilayers were grown lattice matched to GaSb
substrates by OMVPE and MBE. The use of a higher bandgap AlGaAsSb
window layer is particularly effective in increasing the external QE by reducing
surface recombination velocity, and results in overall improved performance
especially at shorter wavelengths. External QE over 55% between 1.2 - 2 pm has
been measured. The present results suggest that GalnAsSb materials system is
promising for high performance TPV systems with source temperatures
operating 1100 - 1500K.
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FIGURE CAPTIONS

Figure1  Dependence of lattice mismatch of GalnAsSb epilayers grown at
575°C by OMVPE on GaSb substrates as function of TBAs gas
phase concentration.

Figure 2 Double-crystal x-ray diffraction scan of Gagglng 1 AsggsSbogz
grown at 575°C on GaSb by OMVPE.

Figure 3 Full width at half-maximum of photoluminescence spectra measured

%Ié of GalnAsSb layers grown on GaSb substrates by OMVPE and

Figure4  Electrical propertics measured at 300K of n-Gag g7lnp.13As0.125b0.88
grown by OMVPE and MBE.

Figure 5 Electrical properties measured at 300K of p-Gap g7Ing.13Asp 12Sboss
grown by OMVPE and MBE.

Figure 6  Extemnal quantum efficiency of TPV devices described in Table 1.

Figure 7 External quantum efficiency of TPV devices with AlGaAsSb
window layer.

Figure 8  Photoluminescence spectra of TPV devices with and without
AlGaAsSb window layer.
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