ﬁﬂ/g/mcs/(zﬂ- 75920

~ Conf-a40¥222 -/

Language Constructs and Runtime Systems for
Compositional Parallel Programming

lan Foster! and Carl Kesselman?

! Mathematics and Computer Science Division, Argonne National Laboratory,
Argonne, IL 60439, U.S.A.
2 Beckman Institute, California Institute of Technology,
Pasadena, CA 91125, U.S.A.

Abstract. In task-parallel programs, diverse activities can take place
concurrently, and communication and synchronization patterns are com-
plex and not easily predictable. Previous work has identified composition-
ality as an important design principle for task-parallel programs. In this
paper, we discuss alternative approaches to the realization of this prin-
ciple. We first provide a review and critical analysis of Strand, an early
compositional programming language. We examine the strengths of the
Strand approach and also its weaknesses, which we attribute primarily to
the use of a specialized language. Then, we present an alternative pro-
gramming language framework that overcomes these weaknesses. This
framework uses simple extensions to existing sequential languages (C++
and Fortran) and a common runtime system to provide a basis for the
construction of large, task-parallel programs. We also discuss the run-
time system techniques required to support these languages on parallel
and distributed computer systems.

1 Introduction

Parallel programming is widely regarded as difficult: more difficult than sequen-
tial programming, and perhaps (at least this is our view) more difficult than
it needs to be. In addition to the normal programming concerns, the parallel
programmer has to deal with the added complexity brought about by multiple
threads of control: managing their creation and destruction, and orchestrating
their interactions via synchronization and communication. Parallel programs
must also manage a richer set of resources than sequential programs, controlling
for example the mapping and scheduling of computation onto multiple proces-
sors.

As in sequential programming, complexity in program development can be
managed by providing appropriate programming language constructs. Language
constructs can help both by supporting encapsulation so as to prevent unwanted
interactions between program components, and by providing higher-level ab-
stractions which leverage programmer effort by allowing compilers to handle
mundane, error-prone aspects of parallel program implementation. For example,
the various languages that have been developed to support data-parallel pro-
gramming achieve both these goals, albeit for a restricted class of programs (7,

The submitted manuscript has been authored
by a contractor of the U.S. Government
under contract No. W-31-109-ENG-38.
Accordingly, the U. S. Government retains a
nonexclusive, royalty-free license to publish
or reproduce the published form of this
contribution, or aliow others to do so, for
U. S. Gavernment purposes.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITE.
Pior

I EERRRRRIRRRm




DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.




9, 17]. Data-parallel programs exploit the parallelism inherent in applying the
same operation to all or most elements of large data structures. Data-parallel lan-
guages avoid unwanted interactions by enforcing sequential semantics. They use
data distribution statements to provide a high-level, abstract syntax for spec-
ifying data placement, freeing the programmer from the labor of partitioning
computation and translating between global and local addresses.

Our research goal is to develop language constructs and associated tools to
support the more general class of task-parallel applications, in which multiple
unrelated activities can take place concurrently. Task parallelism arises in time-
dependent problems such as discrete-event simulation, in irregular problems such
as those involving sparse matrices, and in maltidisciplinary simulations coupling
multiple, possibly data-parallel, computations. The challenge when developing
language constructs for task-parallel programming is to provide the modularity
and abstraction needed for ease of programming while maintaining the generality
needed to support arbitrary parallel computations.

Compositionality has been proposed as a design principle for task-parallel
programs. A compositional programming system is one in which properties of
program components are preserved when those components are composed in
parallel with other program components. That is, the behavior of the whole is a
logical combination of the behavior of the parts. Compositionality can simplify
program development by allowing program components to be developed and
tested in isolation and then reused in any environment.

In this paper, we describe various language constructs and runtime system
techniques that have been proposed to support compositionality. We first use the
example of Strand to show how the basic ideas of compositional programming
can be supported using a small number of simple concepts, namely monotone
operations on shared objects, a uniform addressing mechanism, and parallel com-
position. Then, we show how these same concepts have been incorporated into
the Compositional C++ and Fortran M extensions to the sequential languages
C-++ and Fortran, hence providing a more flexible and accessible implementation
of the ideas. Finally, we examine the runtime system techniques used to support
these various compositional programming languages on parallel and distributed
computer systems.

2 New Languages: Strand and PCIN

One particularly elegant and satisfying approach to compositional task-parallel
programming is to define a simple language that provides just the essential
elements required to support this programming style. This language can be used
both as a language in its own right and as a coordination language, providing
a parallel superstructure for existing sequential code. These dual roles require a
simple, uniform, highly-parallel programming system in which:

— the structure of the computation, the number of concurrently-executing
threads of control, and the placement of these threads can vary dynami-
cally during program execution,




— communication and synchronization operations are introduced into a pro-
gram via high-level abstractions which can be efficiently implemented by
the language compiler,

— patterns of communication can change dynamically,

— the functional behavior of parallel program modules is independent of the
scheduling or processor allocation strategy used,

— arbitrary parallel modules can be combined and will function correctly, and

— modules written in other languages can be incorporated.

These goals motivate the design both of Strand and of the CC++ and Fortran M
languages described below.
2.1 Strand Design

The Strand language integrated ideas from earlier work in parallel logic program-
ming (8], dataflow computing {1], and imperative programming [15] to provide a
simple task-parallel programming language based on four related ideas:

single assignment variables,
a global, shared namespace,
parallel composition as the only method of program composition, and
a foreign language interface.

Single-assignment variables provide a unified mechanism for both synchro-
nization and communication. All variables in Strand follow the single-assignment
rule [1]: a variable is set at most once and subsequently cannot change. Any at-
tempt by a program component to read a variable before it has been assigned a
value will cause the program component to block. All synchronization operations
are implemented via reading and writing these variables. New variables can be
introduced by writing recursive procedure definitions.

Strand variables also define a global namespace. A variable can refer to any
object in the computation, even another variable. The location of the variable or
object being referenced does not matter. Thus, Strand does not require explicit
communication operations: processes can communicate simply by reading and
writing shared variables.

Unlike most programming languages which support only the sequential com-
position of program components, Strand supports only parallel composition. A
parallel composition of program components executes as a concurrent interleav-
ing of the components, with execution order constrained only by availability of
data, as determined by the single-assignment rule.

The combination of single-assignment variables, a global namespace, and
parallel composition means that the behavior of a Strand program is invariant
to the placement and scheduling of computations. One consequence of this in-
variance is that Strand programs are compositional: a program component will
function correctly in any environment. Another consequence is that the spec-
ification of the location of a computation is orthogonal to the specification of




the computation. To exploit these features, Strand provides a mapping operator
which allows the programmer to control the placement of a computation on a
parallel computer.

By allowing modules written in sequential languages to be integrated into
Strand computations, the foreign language interface supports the use of Strand
as a coordination language. Sequential modules that are to be integrated in
this way must implement pure functions. The interface supports communication
between foreign modules and Strand by providing routines that allow foreign
language modules to access Strand variables passed as arguments.

2.2 Strand Critique

Unlike many parallel programming systems developed in a research environment,
Strand has been used extensively for application development in areas as diverse
as computational biology, discrete event simulation, telephone exchange control,
automated theorem proving, and weather modeling. This work provides a broad
base of practical experience on which we can draw when evaluating the strengths
and weaknesses of the Strand approach. Analysis of this experience indicates
‘three particular strengths of the Strand constructs:

— The use of parallel composition and a high-level, uniform communication
abstraction simplifies development of task-parallel applications featuring dy-
namic creation and deletion of threads, complex scheduling algorithms, and
dynamic communication patterns. Complex distributed algorithms can often
be expressed in a few lines of code using Strand constructs.

~ Parallel composition and single assignment variables also enforce and expose
the benefits of a compositional programming model. This eases program
development, testing, and debugging, and the reuse of program components.

— The recursively-defined data structures and rule-based syntax that Strand
borrows from logic programming are useful when implementing symbolic
applications, for example in computational biology.

This same analysis also reveals four significant weaknesses which limit the
utility of the Strand system, particularly for larger scientific and engineering
applications.

— While the use of a separate coordination language for parallel computation is
conceptually economical, it is not universally popular. Writing even a simple
program requires that a programmer learn a completely new language, and
the logic-based syntax is unfamiliar to many.

— The foreign language interface is often too restrictive for programmers in-
tent on reusing existing sequential code in a parallel framework. In particular,
it is difficult to convert sequential code into single program/multiple data
(SPMD) libraries, as this typically requires the ability to embed parallel
constructs in existing sequential code, something that Strand does not sup-
port. As a consequence, combining existing program modules with Strand
can require significant restructuring of those modules.




— The Strand abstractions provide little assistance to the programmer intent
on applying domain decomposition techniques to regular data structures. In
these applications, the principal difficulties facing the programmer are not
thread management or scheduling, but translating between local and global
addresses, problems which have been addressed in data-parallel languages.

— The use of a new language means that program development tools such as
debuggers and execution profilers have to be developed from scratch; it also
hinders the application of existing sequential development tools to sequential
code modules.

2.3 Program Composition Notation

In a related research project stimulated in part by Strand and the Unity sys-
tem [5], Chandy and Taylor investigated the feasibility of integrating single-
assignment variables and concurrent composition with conventional imperative
programming. This led to the development of Program Composition Notation
(PCN) [6). Like Strand, PCN provides a parallel programming model based on
single-assignment variables, a global address space, and concurrent composition.
Its major contribution is to show how this model can be integrated with the
conventional world of “multiple-assignment” variables and sequential composi-
tion. This produces a programming language that is both more complex and
more expressive than Strand. In retrospect, however, it appears that while PCN
addressed some Strand deficiencies, these were probably not the important ones.
PCN still suffers from the four essential weaknesses identified in the preceding
subsection.

3 Language Extensions: CC++ and FM

The weaknesses of the Strand approach appear to derive in large part from the
use of a new language to express paralle]l computation. This observation suggests
an alternative approach to compositional programming in which traditional lan-
guages, such as C++ and Fortran, are extended to provide the central strengths
of Strand: compositionality and high-level specification of communication and
synchronization. (Support for symbolic applications appears less fundamental.)
In principle, these language extensions can address Strand’s weaknesses by pro-
viding a common framework for parallel and sequential programming and sim-
plifying the integration of existing code. It would also be desirable for these
extensions to support the specification of data-parallel computations.

The design of a language extension that supports compositional parallel pro-
gramming requires some analysis of what makes a programming language “com-
positional.” Compositionality in Strand is achieved using three mechanisms.
Single-assignment variables provide both an interaction mechanism based on
monotonic operations on shared state, and a uniform address space; parallel com-
position provides a concurrent interleaving. (State changes on single-assignment
variables are monotonic in that the value of a variable cannot be changed once




written [4].) Together. these mechanisms ensure that neither the order in which
program components execute, nor the location of this execution, affect the result
computed. Other mechanisms can provide the same capabilities. For example,
nonblocking send and blocking receive operations on a virtual channel data type
are also monotonic, and could form the basis for a compositional programming
language.

These various consideration lead to the following additional design goals for
compositional programming languages.

— A language should define just a small set of new language constructs; these
new constructs should be compatible with the basic concepts of the sequen-
tial base language.

— The new constructs should provide monotonic operations on shared program
state, so as to support compositionality.

— The new constructs should be easily embedded in existing sequential code,
so as to facilitate the development of parallel SPMD libraries.

— The language should retain support for flexible communication and synchro-
nization structures, and a data-driven execution model.

— The language should support interoperability, both with other compositional
languages and with data-parallel languages.

These design goals have motivated the development of the parallel program-
ming framework illustrated in Figure 1. Compositional programming is sup-
ported by small sets of extensions to C++ and Fortran 77 called Compositional
C++ (CC++) and Fortran M (FM), respectively. A common runtime system,
Nexus, is used by the compilers developed for both languages, facilitating inter-
operability. We describe the language extensions in the following.

3.1 Compositional C++

Compositional C++ [3], or CC++, is a general-purpose parallel programming
language based on C++. CC++ defines six new keywords, designed to provide an
essential set of capabilities from which many different types of parallel programs
could be constructed. For example, we can write CC++ libraries that implement
parallel programming paradigms such as synchronous virtual channels, actors,
data flow, and concurrent aggregates [16].

CC++ is not a purely compositional programming language. In order to
guarantee compositionality, unacceptable restrictions would have to be made on
the C++ constructs that are available in CC++. Thus, in designing CC++, our
approach was to provide constructs that would enable rather than guarantee
the construction of compositional modules. In most instances, compositional
modules can be obtained by following simple programming conventions [4].

CC++ provides three different mechanisms for creating threads of control:
the parallel block, the parallel loop, and spawned functions. The first two have a
parbegin/parend semantics, while the spawned function creates an independent
thread.




MPC

2

Forran M

L ADIFOR

Parallel and Networked Computers

Fig.1. A task-parallel programming framework based on language extensions (CC++
and FM), a common runtime system, and libraries implementing common abstractions
such as virtual channels. The language extensions can be used to construct libraries
supporting a range of programming models, including message passing (MPCL), data
parallelism (A++, HPF), and parallelism extracted automatically from derivative com-
putations (ADIFOR).

CC++ borrows the idea of a single-assignment variable from Strand. In
CC+H+, a single-assignment variable is called a synchronization, or sync variable,
and is distinguished by the type modifier sync. A CC++ program can contain
both sync and regular C++ variables. Programs that contain only sync variables
will be compositional. To support the development of compositional programs
containing regular C++ variables, CC++ introduces atomic functions. Within
an instance of a given C++ class, only one atomic function is allowed to ex-
ecute at a time. The operations specified in the body of an atomic function
execute without interference. Thus, an atomic function is like a monitor [14]. If
all accesses to a shared C++ variable takes place within the body of an atomic
function, than the resulting program is compositional.

The remaining aspects of C++ deal with the allocation of computation to
processors and the methods used to access data on different processors. The
central issue is what happens to global and static data in a CC++ program.
Our approach is to introduce a structure called a processor object. A processor
object is a virtual processor, containing a private copy of all global and static
data. Like other C++ objects, a processor object has a type declared by a class
definition, encapsulates functions and data, and can be dynamically created and
destroyed. Each instance of a processor object contains an address space from
which regular objects can be allocated. As in Strand, the functional behavior of
the program is independent of where the processor objects are placed.

CC++ distinguishes between inter-processor object and intra-processor ob-
ject references: a pointer that can refer to an object in another processor object
must be declared to be global. Global pointers provide CC++ with both a
global name space and a two-level locality model that can be manipulated di-




rectly by a program. A global pointer can be dereferenced like any other C++
pointer. However, dereferencing a global pointer causes an operation to take place
in the processor object referenced by that global pointer. Thus in CC++, com-
munication abstractions are provided by operations on global pointers, while
synchronization abstractions are provided by sync pointers.

In summary, CC++ integrates parallel composition with sequential execu-
tion. It uses global pointers to provide a uniform global address space and sync
variables and atomic functions to implement compositional interactions between
program components.

3.2 Fortran M

Fortran M (FM) [11] is a small set of extensions to Fortran 77 for task-parallel
programming. FM is designed to support both the modular construction of
large parallel programs and the development of libraries implementing other
programming paradigms. For example, FM libraries have been used to integrate
SPMD message-passing computations and data-parallel HPF programs into a
task-parallel framework [10], and to implement distributed data structures. Al-
though simple, the FM extensions provide the essential mechanisms required
for compositional programming. Program components can encapsulate arbitrary
concurrent computations and can be reused in any environment.

Concepts such as pointers and dynamic memory allocation are foreign to
Fortran 77. Hence, the FM design bases its communication and synchroniza-
tion constructs on an existing concept: file I/O. FM programs can dynamically
create and destroy processes, single-reader/single-writer virtual files (channels),
and multiple-writer, single-reader virtual files (mergers). Processes can encap-
sulate state and communicate by sending and receiving messages on channels
and mergers; references to channels, called ports, can be passed as arguments or
transferred between processes in messages, providing a restricted global address
space.

FM processes are created by process block and process do-loop constructs
with parbegin/parend semantics. Arguments passed to a process are copied in
on call and back on return; common blocks are local to each process. A channel
is a typed, first-in/first-out message queue with a single sender and a single
receiver; the merger is similar but allows for multiple senders. FM constructs
allow the programmer to control process placement by specifying the mapping
of processes to virtual computers: arrays of virtual processors. Mapping decisions
do not effect program semantics. A novel aspect of the FM extensions is that
even complex programs can be guaranteed to be deterministic [2].

In summary, FM integrates parallel composition with sequential execution. It
uses channels both to provide a uniform global address space and to implement
compositional interactions between program components.




4 Runtime Systems

Compilers for parallel languages rely on the existence of a runtime system. The
runtime system defines the compiler’s view of a parallel computer: how compu-
tational resources are allocated and controlled and how parallel components of
a program interact, communicate and synchronize with one another.

Runtime systems for data-parallel languages are concerned primarily with the
efficient realization of collective operations in which all processors communicate
at the same time, in a structured fashion. Runtime systems for compositional
task-parallel languages such as Strand, PCN, CC++, and FM are more complex,
as they must support:

— multiple, concurrent threads of control;

— a data-driven execution model;

-~ dynamic allocation and deletion of threads, shared variables, and other re-
sources;

— a global address space, whether based on single-assignment variables, global
pointers, or channels;

— asynchronous access to remote resources; and

— efficient sequential execution.

In addition, task-parallel programs are often required to execute in hetero-
geneous environments such as networked collections of multiprocessors.

4.1 Strand and PCN: Interpreter-based Runtime Systems

The implementation technology used to support the requirements just listed
depends in part on what aspect of program performance is to be optimized.
The goal of Strand and PCN implementation efforts was to provide highly effi-
cient support for concurrent composition and lightweight processes. These goals
were met using a interpreter- and heap-based runtime system. (Similar tech-
niques have been used in abstract machines for Id and other functional lan-
guages [18].) Programs are compiled to the instruction set of an abstract ma-
chine. A portable interpreter for this abstract machine handles the data-driven
scheduling of lightweight processes. References to shared variables are tagged,
and a runtime test is used to determine when a read or write operation is ap-
plied to an off-processor reference. The operation is then implemented as a call
to a machine-dependent communication library. This design allows the efficient
execution of programs that create thousands of processors and switch frequently
between threads of control. A disadvantage is that the use of a heap-based stor-
age system and an interpreter hinders efficient execution of sequential code.

4.2 CC++ and FM: The Nexus Runtime System

An alternative approach to runtime system design is to focus on enabling effi-
cient execution of sequential code. This implies an execution model based on a




“heap of stacks” rather than a simple heap, so that code generated by optimizing
sequential language compilers can be used unchanged. Executable code gener-
ated by these compilers is linked with a runtime library implementing the basic
abstractions needed for task-parallel execution, using existing message-passing
and thread systems when possible. This approach is taken in the runtime system
called Nexus that is used by both CC++ and FM compilers. ,

Nezus Interface. Nexus provides five basic abstractions: nodes, contexts, threads,
global pointers, and remote service requests [12]. Associated services provide di-
rect support for light-weight threading, address space management, communi-
cation, and synchronization. A computation consists of a set of threads, each
executing in an address space called a contezi. An individual thread executes a
sequential program, which may read and write data shared with other threads
executing in the same context. It can also generate asynchronous remote service
requests, which invoke procedures in other contexts. Nodes, contexts, threads,
and global pointers can be created and destroyed during program execution. The
abstractions have the following properties.

— The node abstraction supports dynamic acquisition and release of potentially
heterogeneous processor resources.

~ The context abstraction supports the creation of multiple address spaces in
a single node. (This corresponds to the CC++ processor object and the FM
process.)

—~ The thread abstraction supports the creation of multiple threads of control.

— The global pointer supports the implementation of a uniform global address
space. (This corresponds to the CC++ global pointer and is used to imple-
ment the FM channel.)

— The remote service request provides access to remote resources.

Nezus as a Compiler Target. The translation from CC++ and FM constructs to
the Nexus abstractions is fairly straightforward. For example, an FM process is
implemented as a thread executing in a dedicated Nexus context, with the con-
text’s data segments used to hold process state. This context must be allocated
by the FM compiler prior to creating the thread, and deallocated upon process
termination. As an optimization, processes without state can be implemented as
threads in a preexisting context containing the appropriate code. This optimiza-
tion can reduce process creation costs and, in some systems, scheduling costs,
and is important for fine-grained applications. A channel is implemented as a
message queue data structure maintained in the context of the receiving pro-
cess; an outport is implemented as a data structure containing a Nexus global
pointer to the channel data structure. A send operation is compiled to code
which packs message data into a buffer and invokes a remote service request
to a compiler-generated handler which enqueues the message onto the channel.
A receive operation is compiled to code which unpacks a pending message into
variables or suspends on a condition variable in the channel data structure if no
messages are pending.




Heterogeneity. A novel aspect of the Nexus design is that it supports heterogene-
ity at multiple levels, allowing a single computation to utilize different program-
ming languages, executables, processors, and network protocols. In order to sup-
port heterogeneity, the Nexus implementation encapsulates thread and commu-
nication functions in thread and protocol modules, respectively, that implement
a standard interface to low-level mechanisms. Current thread modules include
POSIX threads, DCE threads, C threads, and Solaris threads. Current protocol
modules include local (intracontext) communication, TCP sockets, PVM, IBM’s
EUI message-passing library, and Intel NX message-passing. Protocol modules
for MPI, SVR4 shared memory, Fiber Channel, AAL-5 (ATM Adaptation Layer
5) for Asynchronous Transfer Mode (ATM), and remote memory operations such
as the get and put operations on the Cray T3D are planned or under develop-
ment. When communicating between contexts on a global pointer, Nexus uses
the most efficient protocol available to the two contexts.

Interoperability. Nexus provides a basis for interoperability between diverse par-
allel languages. Interoperability involves a range of both mundane and complex
issues relating to data structures, subroutine calling conventions, and the like.
Our focus is on those issues that are particular to parallel computing. Because
CC++ and FM are both implemented using Nexus facilities, parallel structures
in the two languages can both coexist and interact. For example, an FM pro-
gram can invoke a CC++ program, specifying the contexts in which it is to
execute and passing as arguments an array of Nexus global pointers represent-

" ing the inports or outports of channels. The CC++ program can then apply send
or receive functions to these global pointers to transfer data between contexts
executing FM code and contexts executing CC++ code.

5 Conclusions

The goal of compositional programming is to simplify parallel program develop-
ment by allowing complex programs to be developed from simpler components.
In this paper, we have discussed a variety of approaches to the realization of
this goal. A review of Strand, an early compositional programming language,
indicates both the advantages of a compositional approach and the disadvan-
tages of using a specialized language. A description of Compositional C++ and
Fortran M shows how the advantages of compositionality can be exploited in
more familiar settings by extending existing languages with appropriate con-
structs. Finally, a description of the runtime support required for compositional
programming languages indicates that a relatively small set of simple mecha-
nisms suffices to support complex task-parallel computations on parallel and
distributed computer systems.

DISCLAIMER

This report was prepared as an account of work sponsored by an-agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,

, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-

/ mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.




6 Acknowledgments

The Strand system was developed with Steve Taylor. We gratefully acknowledge
the many contributions of Mani Chandy to the work on CC++ and FM, and
the outstanding implementation efforts of John Garnett, Tal Lancaster, Robert
Olson, James Patton, Mei Su, Steven Tuecke, and Ming Xu. This work was
supported by the Office of Scientific Computing, U.S. Department of Energy,
under Contract W-31-109-Eng-38, and by the National Science Foundation’s
Center for Research in Parallel Computation under Contract CCR-8809615.

References

1. Ackerman, W.: Data flow Languages. Computer 15(2), (1982), 15-25

2. Chandy, K.M., Foster, I.: A deterministic notation for cooperating processes.
Preprint, Argonne National Laboratory (1993)

3. Chandy, K.M., Kesselman, C.: CC++: A declarative concurrent object-oriented
programming notation. Research Directions in Object Oriented Programming,
MIT Press (1993)

4. Chandy, K.M., Kesselman, C.: The derivation of compositional programs. Proc.
1992 Joint Intl Conf. and Symp. on Logic Programming, MIT Press (1992)

5. Chandy, K.M., Misra, J.: Parallel Program Design. Addison-Wesley (1988)

6. Chandy, K.M., Taylor, S.: An Introduction to Parallel Programming. Jones and
Bartlett {1992)

7. Chapman, B., Mehrotra, P., Zima, H.: Programming in Vienna Fortran. Scientific
Programming 1(1) (1992) 31-50

8. Clark, K., Gregory, S.: A relational language for parallel programming. Proc. 1981
ACM Conf. on Functional Programming Languages and Computer Architectures
(1981) 171-178

9. Fox, G., Hiranandani, S., Kennedy, K., Koelbel, C., Kremer, U., Tseng, C., Wu,
M.: Fortran D language specification. Rice University TR90-141 (1990)

10. Foster, 1., Avalani, B., Choudhary, A., Xu, M., A compilation system that inte-
grates High Performance Fortran and Fortran M. Proc. 1994 Scalable High Per-
formance Computing Conf., IEEE Computer Science Press (1994) 293-300

11. Foster, I., Chandy, K.M.: Fortran M: A language for modular parallel program-
ming. J. Parallel and Distributed Computing (to appear)

12. Foster, I., Kesselman, C., Tuecke, S.: Nexus: Runtime support for task-parallel
programming languages. Preprint, Argonne National Laboratory (1994)

13. Foster, 1., Taylor, S.: Strand: New Concepts in Parallel Programming. Prentice
Hall (1989)

14. Hoare, C.A.R.: Monitors: An operating system structuring concept. Commun.
ACM 17(10) (1974) 549-557

15. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall (1984)

16. Kesselman, C.: Implementing parallel programming paradigms in CC++. Proc.
Workshop on Parallel Environments and Tools, SIAM (to appear)

17. Koelbel, C., Loveman, D., Schreiber, R., Steele, G., Zosel, M.: The High Perfor-
mance Fortran Handbook. MIT Press (1994)

18. von Eicken, T., Culler, D., Goldstein, S., Schauser, K.: TAM — A compiler con-

trolled threaded abstract machine. J. Parallel and Distributed Computing (1992)




