

**Radioactive Air Emissions
Notice of Construction
340-A Building Tank
Sludge Clean Out**

Date Published
April 1997

**United States
Department of Energy**
P.O. Box 550
Richland, Washington 99352

Approved for Public Release

RELEASE AUTHORIZATION

Document Number: DOE/RL-97-06, Revision 0

Document Title: Radionuclide Air Emissions Notice of Construction
340-A Building Tank Sludge Clean Out

This document, reviewed in accordance with DOE Order 1430.1D, "Scientific and Technical Information Management," and DOE G 1430.1D-1, "Guide to the Management of Scientific and Technical Information," does not contain classified or sensitive unclassified information and is:

APPROVED FOR PUBLIC RELEASE

V. L. Birkland

V. L. Birkland

Lockheed Martin Services, Inc.
Document Control/Information Clearance

7/17/97

Reviewed for Applied Technology, Business Sensitive, Classified, Copyrighted, Export Controlled, Patent, Personal/Private, Proprietary, Protected CRADA, Trademark, Unclassified Controlled Nuclear Information.

Trademark Disclaimer. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. This report has been reproduced from the best available copy.

Printed in the United States of America.

Available to the U.S. Department of Energy and its contractors from the U.S. Department of Energy Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; Telephone: 423/576-8401.

Available to the public from the U.S. Department of Commerce National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161; Telephone: 703/487-4650.

7/17/97

INFORMATION RELEASE REQUEST - (Long Form)

(GRAY SHADED AREAS NOT TO BE FILLED IN BY INITIATOR)

1. COMPLETE THIS SECTION FOR ALL DOCUMENTS

A. Information Category		B. Document ID Number (include rev., vol., etc.)	
Speech or Presentation		DOE/RL-97-06	
<input type="checkbox"/> Full Paper	<input type="checkbox"/> Journal Article	C. List attachments (i.e., copyright permission, copyright transfer)	
<input type="checkbox"/> Summary	<input type="checkbox"/> Multimedia Presentation	None	
<input type="checkbox"/> Abstract	<input type="checkbox"/> Software		
<input type="checkbox"/> Visual Aid			
<input checked="" type="checkbox"/> Other Rad Air NOC			

D. Document Title

Radioactive Air Emissions Notice of Construction 340-A Building Tank Sludge Clean Out.

E. WHC Project or Program
300 Area Liquid Effluent Facilities

F. New or novel (patentable) subject matter? No or Yes
 If "Yes", has disclosure been submitted by WHC?
 No or Yes If "Yes", Disclosure No(s): _____

G. Information received from others in confidence, such as proprietary data, and/or inventions?
 No or Yes If "Yes", contact WHC General Counsel.

H. Copyrights? No or Yes If "Yes", attach permission.

I. Trademarks? No or Yes If "Yes", identify in document.

2. COMPLETE THIS SECTION FOR ALL DOCUMENTS REQUIRING SUBMISSION TO OSTI

A. Unclassified Category UC - 630 B. Budget & Reporting Code B&R -

3. COMPLETE THIS SECTION ONLY FOR A JOURNAL SUBMISSION

A. Title of Journal

4. COMPLETE THIS SECTION ONLY FOR A SPEECH OR PRESENTATION

A. Title for Conference or Meeting B. Group or Society Sponsoring

C. Date(s) of Conference or Meeting D. City/State E. Will material be published in proceedings? No or Yes
 Will material be handed out? No or Yes

5. REVIEWS

Reviewers	Yes	Signature indicates Approval as Requested unless otherwise indicated Name (print)	Signature/Date	Limited Use Info
General Counsel	<input type="checkbox"/>	<i>See attached Transmittal # 97-EAP-907</i>		
DOE-RL	<input checked="" type="checkbox"/>			
Communications	<input type="checkbox"/>			
Applied Technology-Export Controlled Information or International Program	<input type="checkbox"/>			
Other	<input type="checkbox"/>			
Other	<input type="checkbox"/>			

6. Applied Technology Material Referenced

 No Yes

INFORMATION RELEASE ADMINISTRATION APPROVAL

IRA Approval is required before release. Release is contingent upon resolution of mandatory comments. NOTE: This block for IRA use only.

7. Release Level

 Public Limited Distribution

8. Author/Requestor

J. S. Hill
(Print and Sign)3/24/97
Date

J.B.

9. Responsible Manager

E. M. Greager
(Print and Sign)3/24/97
Date

7/17/97

Date Cancelled

Date Disapproved

10. LEGENDS/NOTICES/MARKINGS (Required by WHC-CM 3.4 or Reviewer): Reviewer indicates applicable markings to be affixed or removed.

	<u>Prefix</u>	<u>Remove</u>	<u>Initials</u>		<u>Prefix</u>	<u>Remove</u>	<u>Initials</u>
Applied Technology	<input type="checkbox"/>	<input type="checkbox"/>	_____	Official Use Only	<input type="checkbox"/>	<input type="checkbox"/>	_____
Availability - OSTI	<input type="checkbox"/>	<input type="checkbox"/>	_____	Patent Status	<input type="checkbox"/>	<input type="checkbox"/>	_____
Availability - ESTSC	<input type="checkbox"/>	<input type="checkbox"/>	_____	Predecisional Information	<input type="checkbox"/>	<input type="checkbox"/>	_____
Availability - NTIS	<input type="checkbox"/>	<input type="checkbox"/>	_____	Programmatic Notice	<input type="checkbox"/>	<input type="checkbox"/>	_____
Business-Sensitive Information	<input type="checkbox"/>	<input type="checkbox"/>	_____	Proprietary Information	<input type="checkbox"/>	<input type="checkbox"/>	_____
Computer Software Notice	<input type="checkbox"/>	<input type="checkbox"/>	_____	Purpose and Use	<input type="checkbox"/>	<input type="checkbox"/>	_____
Copyright License Notice	<input type="checkbox"/>	<input type="checkbox"/>	_____	Thesis/Dissertation	<input type="checkbox"/>	<input type="checkbox"/>	_____
Export Controlled Information	<input type="checkbox"/>	<input type="checkbox"/>	_____	Trademark Disclaimer	<input checked="" type="checkbox"/>	<input type="checkbox"/>	_____ <i>VB</i>
Legal Disclaimer	<input type="checkbox"/>	<input type="checkbox"/>	_____	Other:	<input type="checkbox"/>	<input type="checkbox"/>	_____
Limited Disclosure	<input type="checkbox"/>	<input type="checkbox"/>	_____				

11. MANDATORY COMMENTS (List only mandatory comments here. All other comments shall be made on the document and returned to the author.)

Reviewer
Print & Sign

55

Resolved by Author/Requestor
(Print & Sign)

Date

12. ADDITIONAL INFORMATION/COMMENTS:

Department of Energy
Richland Operations Office
P.O. Box 550
Richland, Washington 99352

MAY 08 1997

97-EAP-407

Mr. Jerry Leitch, Chief
Radiation and Indoor Air Section
U.S. Environmental Protection Agency
Region 10
1200 Sixth Avenue
Seattle, Washington 98101

Mr. A. W. Conklin, Head
Air Emissions and Defense
Waste Section
Division of Radiation Protection
State of Washington
Department of Health
Airstream Park Building 5, LE-13
Olympia, Washington 98504-0095

Dear Messrs. Leitch and Conklin:

TRANSMITTAL OF RADIOACTIVE AIR EMISSIONS NOTICE OF CONSTRUCTION (NOC) 340-A
BUILDING TANK SLUDGE CLEAN OUT

Enclosed is the NOC for the removal of sludge from six storage tanks located inside the 340-A Building, which is located in the 300 Area of the Hanford Site. The NOC is being submitted pursuant to 40 Code of Federal Regulations (CFR) Part 61.96 and Washington Administrative Code (WAC) 246-247-060.

The proposed activity is categorized as a significant modification (>1.0 millirem per year) to an existing source under WAC 246-247. The proposed modification consists of removing sludge from the bottom of six storage tanks located in the 340-A Building. Sludge will be suspended using air sparging, water sluicing, and/or a circulation pump while simultaneously draining the tanks to the underground vault tanks located within the 340 Complex. Removing the sludge will reduce the radiological dose to 340-A Building personnel. A summary of the resulting offsite release and dose is provided as follows.

	Unabated release (curies/year)	Abated release (curies/year)	Unabated dose (millirem/year)	Abated dose (millirem/year)	Nearest receptor
340-HT-EX Stack	7.93 E-02	1.98 E-08	1.22	3.05 E-07	1,400 meters northeast

MAY 08 1997

Messrs. Leitch and Conklin
97-EAP-407

-2-

Commencement of this activity needs to start within a short time frame since higher ambient temperatures will prevent this activity from starting due to worker safety concerns. Therefore, this transmittal letter is intended to satisfy all the notifications of startup in accordance with requirements in 40 CFR 61.09 and that approval of the application to construct would also constitute U.S. Environmental Protection Agency (EPA) acceptance of the startup notifications.

Should you have any questions, please contact me or Hector M. Rodriguez, of my staff, on (509) 376-6421.

Sincerely,

James E. Rasmussen, Director
Environmental Assurance, Permits,
and Policy Division

EAP:HMR

Enclosure:
Radioactive NOC 340-A Building

cc w/encl:
R. Jim, YIN
D. Powaukee, NPT
J. Wilkinson, CTUIR

cc w/o encl:
W. Adair, FDH
E. Aromi, RFSH
E. Greager, RFSH
S. Price, FDH

CORRESPONDENCE DISTRIBUTION COVERSHEET

Author	Addressee	Correspondence No.
J. E. Rasmussen, RL (J. S. Hill, 372-1617)	Mr. J. Leitch, EPA Mr. A. W. Conklin, WDOH	Incoming: 9700292 xref:RFSH-9750278

subject: TRANSMITTAL OF RADIOACTIVE AIR EMISSIONS NOTICE OF CONSTRUCTION (NOC)
340-A BUILDING TANK SLUDGE CLEAN OUT

DISTRIBUTION

Approval	Date	Name	Location	W/att
<u>Correspondence Control</u> A3-01				
<u>President's Office</u> H5-20				
<u>Fluor Daniel Hanford, Inc.</u>				
		W. D. Adair	H6-21	
		J. A. Bates	H6-36	
		C. G. Mattsson	N1-26	
		K. J. Svoboda	H5-20	
		B. D. Williamson	B3-15	
<u>Rust Federal Services of Hanford Inc.</u>				
		E. S. Aromi	T3-01	
		R. T. Stordeur	L6-05	
		E. M. Greager	H6-36	
		D. L. Halgren	L6-04	
		J. S. Hill	H6-36	
		J. J. Luke	H6-25	
		D. L. Renberger	T3-03	
		L. W. Roberts	L6-04	
		R. W. Szelmeczka	L6-05	
		D. B. Van Leuven	H6-10	
		J. A. Winterhalder	H6-21	
		M. T. Yasdick	H6-20	
		EMG File/LB	H6-36	

CONTENTS

4	METRIC CONVERSION CHART	iv
5	1.0 INTRODUCTION	1
6	2.0 FACILITY LOCATION (Requirement 1)	1
7	3.0 RESPONSIBLE MANAGER (Requirement 2)	1
8	4.0 TYPE OF PROPOSED ACTION (Requirement 3)	3
9	5.0 STATE ENVIRONMENTAL POLICY ACT (Requirement 4)	3
10	6.0 PROCESS DESCRIPTION (Requirements 5 and 7)	3
11	7.0 ANNUAL POSSESSION QUANTITY AND PHYSICAL FORM (Requirements 8, 10, 11, and 12)	4
12	8.0 CONTROL SYSTEM (Requirement 6)	4
13	9.0 MONITORING SYSTEM (Requirement 9)	4
14	10.0 RELEASE RATES (Requirement 13)	5
15	11.0 OFFSITE IMPACT (Requirements 14 and 15)	5
16	12.0 FACILITY LIFETIME (Requirement 17)	5
17	13.0 TECHNOLOGY STANDARDS (Requirement 18)	6
18	14.0 REFERENCES	7

APPENDICES

39	A	340-A DOSE CALCULATIONS	APP A-i
40			
41	B	VENTILATION SYSTEM DRAWING	APP B-i
42			
43	C	DISCUSSION OF BEST AVAILABLE RADIONUCLIDE CONTROL TECHNOLOGY	
44		(Requirement 16)	APP C-i
45			

FIGURE

METRIC CONVERSION CHART

The following conversion chart is provided to the reader as a tool to aid in conversion.

Into metric units

Out of metric units

If you know	Multiply by	To get	If you know	Multiply by	To get
Length			Length		
inches	25.40	millimeters	millimeters	0.0393	inches
inches	2.54	centimeters	centimeters	0.393	inches
feet	0.3048	meters	meters	3.2808	feet
yards	0.914	meters	meters	1.09	yards
miles	1.609	kilometers	kilometers	0.62	miles
Area			Area		
square inches	6.4516	square centimeters	square centimeters	0.155	square inches
square feet	0.092	square meters	square meters	10.7639	square feet
square yards	0.836	square meters	square meters	1.20	square yards
square miles	2.59	square kilometers	square kilometers	0.39	square miles
acres	0.404	hectares	hectares	2.471	acres
Mass (weight)			Mass (weight)		
ounces	28.35	grams	grams	0.0352	ounces
pounds	0.453	kilograms	kilograms	2.2046	pounds
short ton	0.907	metric ton	metric ton	1.10	short ton
Volume			Volume		
fluid ounces	29.57	milliliters	milliliters	0.03	fluid ounces
quarts	0.95	liters	liters	1.057	quarts
gallons	3.79	liters	liters	0.26	gallons
cubic feet	0.03	cubic meters	cubic meters	35.3147	cubic feet
cubic yards	0.76	cubic meters	cubic meters	1.308	cubic yards
Temperature			Temperature		
Fahrenheit	subtract 32 then multiply by 5/9ths	Celsius	Celsius	multiply by 9/5ths, then add 32	Fahrenheit

Source: *Engineering Unit Conversions*, M. R. Lindeburg, P.E., Second Ed., 1990, Professional Publications, Inc., Belmont, California.

**RADIOACTIVE AIR EMISSIONS
NOTICE OF CONSTRUCTION
340-A BUILDING TANK SLUDGE CLEAN OUT**

1.0 INTRODUCTION

This document serves as a notice of construction pursuant to the requirements of Washington Administrative Code (WAC) 246-247-060 and as a request for approval to construct pursuant to 40 Code of Federal Regulations (CFR) 61.96 for the removal of sludge from six storage tanks located inside the 340-A Building, which is located in the 300 Area of the Hanford Site.

2.0 FACILITY LOCATION (Requirement 1)

The 340-A Building is located within the 300 Area of the Hanford Site (Figure 1). The geodetic coordinates for the 340-A Building are N54475 E15475

3.0 RESPONSIBLE MANAGER (Requirement 2)

The responsible manager's name and address are as follows:

Mr. T. K. Teynor, Director
Waste Programs Division
U.S. Department of Energy,
Richland Operations Office
P.O. Box 550
Richland, Washington 99352
(509) 376-1366

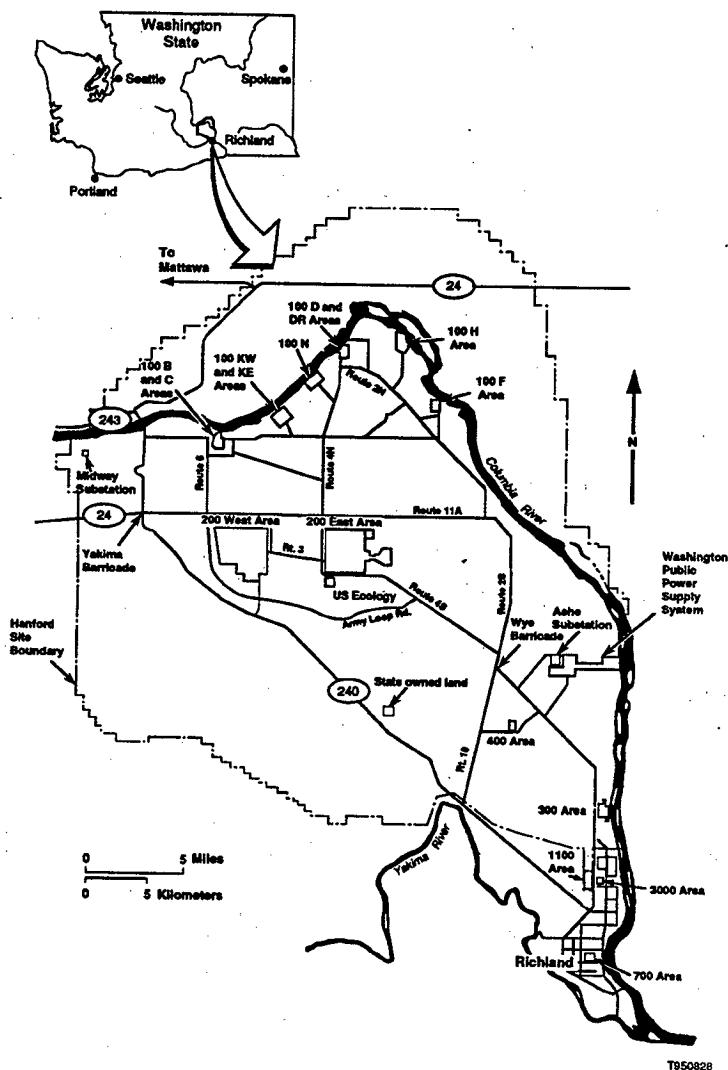


Figure 1. Hanford Site.

1 **4.0 TYPE OF PROPOSED ACTION (Requirement 3)**

2
3
4 The proposed activity is categorized as a significant modification
5 (>1.0 millirem per year) to an existing source under WAC 246-247. The
6 proposed modification consists of removing sludge from the bottom of six
7 storage tanks located in the 340-A Building. Sludge will be suspended using
8 air sparging, water sluicing, and/or a circulation pump while simultaneously
9 draining the tanks to the underground vault tanks located within the
10 340 Complex. Removing the sludge will reduce the radiological dose to
11 340-A Building personnel.

12
13 The most recent tank solids removal effort occurred in the early 1980s.
14 Future solids removal campaigns will be performed as needed to support as low
15 as reasonably achievable (ALARA) practices/principles. There could be several
16 years between campaigns. It should be noted that submittal of this document
17 also is intended to satisfy WAC 246-247 notice of construction and 40 CFR 61
18 application for approval of construction or modification requirements for all
19 future tank sludge removal campaigns at the 340-A Building if the following
20 conditions are met.

21
22 • Potential emissions will not exceed the levels provided in Appendix A.
23
24 • There will be no potential emissions of radionuclides that are not
25 identified in Appendix A.
26
27 • No more than one tank solids removal campaign will be performed during
28 any annual period. (A campaign consists of the removal of all sludge
29 in the subject tanks.)
30
31 • The pollution control measures stated in this document have been
32 implemented.

33
34 **5.0 STATE ENVIRONMENTAL POLICY ACT (Requirement 4)**

35
36 This activity is categorically exempt.

37
38 **6.0 PROCESS DESCRIPTION (Requirements 5 and 7)**

39
40 The 340 Complex is a less-than-90-day tank accumulation unit (according
41 to the *Resource Conservation and Recovery Act of 1976*) for mixed waste from
42 various buildings within the 300 Area. Included as part of the 340 Complex is
43 the 340-A Building, which contains six 30,000-liter stainless steel tanks.
44 These tanks provide reserve storage capacity for liquid mixed waste in the
45 event there is a major upset in one of the facilities transferring waste to
46 the 340 Complex, or if the 340 vault tanks fail.

1 The 340-A Building tanks are not equipped with agitation devices and/or
2 equipment. Consequently, past usage of the tanks has resulted in the settling
3 of waste solids (sludge). Inserting the agitation devices (e.g., air
4 sparging, water sluicing, and/or a circulation pump) into the tanks will be
5 accomplished through an opening on the top of each tank. To reduce the
6 potential for airborne contamination, the tanks will be maintained at a
7 negative pressure differential with respect to atmospheric pressure. The six
8 tanks contain an average depth of 3.8 centimeters of sludge for a total volume
9 of 1.67 cubic meters.

7.0 ANNUAL POSSESSION QUANTITY AND PHYSICAL FORM

(Requirements 8, 10, 11, and 12)

16 The source term for the six tanks is based on the quantity of sludge and
17 the analytical results obtained from sludge samples. All isotopes are
18 expected to be in particulate form. Source term data have been provided in
19 Appendix A.

8.0 CONTROL SYSTEM (Requirement 6)

The 340-NT-EX Stack is registered with Washington State Department of Health (WDOH) as a pre-existing (before August 10, 1988) actively ventilated stack. As shown in Appendix B, the ventilation system contains three parallel filter trains consisting of a prefilter, two high-efficiency particulate air filters, and an activated charcoal filter. All three filter trains are used during normal ventilation system operation. The activated charcoal filters are pre-existing equipment and are not maintained; therefore, no credit is taken for the removal of radionuclides by the activated charcoal filters. The two high-efficiency particulate air filters are tested annually and each has a minimum efficiency of 99.95 percent for a particle size of 0.3 micron.

36 The existing control system is proposed as best available radionuclide
37 control technology (BARCT) for the proposed tank cleanout activities in the
38 340-A Building (Appendix C).

9.0 MONITORING SYSTEM (Requirement 9)

The 340-NT-EX Stack has been designated a major stack and is in compliance with the standards required under 40 CFR 61, Subpart H. The stack contains a continuous monitoring system with a calibrated isokinetic sampling system. The sampling system meets the ANSI N13.1 standard. The monitoring system consists of a record sampler and Versapore 3000[®] filter paper or equivalent for particulates.

• Gelman Sciences Inc., Ann Arbor, MI.

1 **10.0 RELEASE RATES (Requirement 13)**
2
3
4 This section contains information and calculations regarding unabated and
5 abated release rates associated with sludge removal from the six 340-A tanks.
6 The potential to emit was calculated based on the volume and isotopic analysis
7 of the sludge. An efficiency of 99.95 percent was assigned for each testable
8 stage of the in-line high-efficiency particulate air filter for estimating the
9 abated offsite release. No credit was taken for the prefilter or the
10 activated carbon filter.
11
12 A release factor of 10^{-3} was used for the particulates. The estimated
13 unabated and abated releases are presented in Appendix A.
14
15
16 **11.0 OFFSITE IMPACT (Requirements 14 and 15)**
17
18
19 This section contains information regarding the effective dose
20 equivalents to the theoretical maximum exposed offsite receptor from unabated
21 and abated emissions from the proposed activity.
22
23 Appendix A contains the information used to calculate the unabated and
24 abated dose increases from the 340-NT-EX Stack from removing the sludge. Unit
25 dose factors used in Appendix A were derived using CAP88 (WHC 1991).
26 A summary of the resulting offsite release and dose is provided as follows.
27
28

	Unabated release (curies/year)	Abated release (curies/year)	Unabated dose (millirem/year)	Abated dose (millirem/year)	Nearest receptor
340-NT-EX Stack	7.93 E-02	1.98 E-08	1.22	3.05 E-07	1,400 meters northeast

32
33
34 The unabated dose from the 340-NT-EX Stack for routine operations within
35 the 340 Complex is estimated at 167 millirems per year (WHC 1995). The abated
36 dose for calendar year 1995 operations within the 340 Complex was
37 5.5 E-06 millirem per year (DOE/RL-96-37). The dose resulting from all
38 Hanford Site operations in 1995 was determined to be 2.9 E-03 millirems per
39 year for an individual located at the Sagemore Farm (1,500 meters east of the
40 300 Area), excluding radon (DOE/RL-96-37). The calculated abated offsite dose
41 increase originating from the 340-NT-EX Stack is estimated to be
42 3.05 E-07 millirems per year. Cleaning out the six tanks in the
43 340-A Building, in conjunction with other current operations on the Hanford
44 Site, is within the National Emission Standard of 10 millirems per year.
45
46

47 **12.0 FACILITY LIFETIME (Requirement 17)**
48
49
50 The 340-A Building is expected to continue receiving radioactive waste
51 water through September 1998.

1 **13.0 TECHNOLOGY STANDARDS (Requirement 18)**

2
3
4 Two testable high-efficiency particulate air filters are used in series
5 on the ventilation system to control particulate emissions resulting from
6 transfer operations. The ventilation system is equivalent to the codes and
7 standards contained in WAC 246-247-110(18). The 340-NT-EX HEPA filters
8 equivalency demonstration for compliance with the ANSI/ASME N-509 and N-510
9 standards was approved by WDOH on March 13, 1997 (RFSH 1997) in accordance
10 with WAC 246-247. The 340 Complex is not expected to receive any radioactive
11 waste water after September 1998. In the event that a decision is made to use
12 the 340 Complex for accepting radioactive waste water after September 1998, a
13 schedule will be negotiated with WDOH for upgrading the ventilation system to
14 meet ASME/ANSI N509 and N510 standards.
15

1 14.0 REFERENCES
2
3
4 ANSI, 1994, *Guide to Sampling Airborne Radioactive Materials in Nuclear*
5 *Facilities N13.1*, American National Standards Institute.
6
7 ASME/ANSI, 1989, *Nuclear Power Plant Air-Cleaning Units and Components*, N509,
8 American Society of Mechanical Engineers, American National Standards
9 Institute.
10
11 ASME/ANSI, 1989, *Nuclear Power Plant Air-Cleaning Units and Components*, N510,
12 American Society of Mechanical Engineers, American National Standards
13 Institute.
14
15 DOE/RL-95-07, "Hanford Site Air Operating Permit Application," May 1995,
16 U.S. Department of Energy, Richland Operations Office, Richland,
17 Washington.
18
19 DOE/RL-96-37, "Radionuclide Air Emissions Report for the Hanford Site,
20 Calendar Year 1995," June 1996, U.S. Department of Energy, Richland
21 Operations Office, Richland, Washington.
22
23 DOE-RL, 1995, Letter, "Identification of Potential Noncompliant Conditions
24 with State of Washington Department of Health (DOH) Radioactive Air
25 Emissions Regulations (246-247 Washington Administrative Code) at the
26 Hanford Site," J. E. Rasmussen, RL, to A. W. Conklin, WDOH, October 31,
27 1995.
28
29 RFSH, 1997, Telephone Conference Memorandum, "340-NT-EX Stack Filters
30 ANSI/ASME N509 & N510 Substantive Requirements Demonstration," between
31 R. S. Acselrod, WDOH, and J. S. Hill, RFSH, March 13, 1997.
32
33 WDOH, 1992, Letter, Air 92-107, A. W. Conklin, WDOH, to J. D. Bauer, RL,
34 no subject, October 5, 1992.
35
36 WHC, 1991, "Unit Dose Calculation Methods and Summary of Facility Effluent
37 Monitoring Plan Determinations," Westinghouse Hanford Company, Richland,
38 Washington.
39
40 WHC, 1995, "Hanford Site Radionuclide National Emission Standards for
41 Hazardous Air Pollutants Registered and Unregistered Stack (Powered
42 Exhaust) Source Assessment", Westinghouse Hanford Company, Richland,
43 Washington.

1
2
3
4
5

This page intentionally left blank.

1
2
3
4

APPENDIX A

DOSE CALCULATIONS

1
2
3
4
5

This page intentionally left blank.

340-A BUILDING ESTIMATED RADILOGICAL EMISSIONS ESTIMATE							
NUMBER OF TANKS		6		INCHES			
AVERAGE SLUDGE DEPTH		1.5					
TANK DIAMETER		10		FEET			
TOTAL WET SLUDGE VOLUME		56.90		CUBIC FEET			
TOTAL WET SLUDGE VOLUME		1.67E+06		MILLILITER			
WET SLUDGE DENSITY		1.048		GRAM/MILLILITER			
TOTAL WET SLUDGE MASS		1.75E+06		GRAM			
RELEASE FRACTION		1.00E+03					
NUMBER OF HEPA FILTERS IN SERIES		2					
HEPA FILTER EFFICIENCY		99.95%					
ISOTOPE		CONCENTRATION		TOTAL CURIES		TOTAL UNABATED	
		MICROCURIES/GRAM		RELEASE, CURIES		RELEASE, CURIES	
Sr-90 (Total Beta)		2.42E+01		4.23E+01		1.00E+08	
U-234		8.11E+04		1.42E+03		3.56E+13	
U-235		2.65E+05		4.61E+05		1.16E+14	
U-236		7.18E+05		1.26E+04		3.14E+14	
U-238		4.94E+04		8.63E+04		2.16E+13	
Pu-238		6.70E+01		1.17E+03		2.91E+10	
Pu-239		3.20E+01		5.59E+01		1.40E+10	
Pu-240		3.00E+01		5.24E+01		1.31E+10	
Pu-241		1.81E+01		3.20E+01		8.00E+09	
Pu-242		6.30E+04		1.10E+03		2.75E+13	
Am-241		1.58E+00		2.75E+00		6.81E+10	
TOTAL		4.54E+01		7.93E+01		1.94E+08	
						1.221	
						TOTAL UNABATED	
						OPPOSITE DOSE	
						MRAD	
						MRAD/CURIE	
						3.69E+02	
						9.22E+09	
						2.25E+11	
						6.82E+13	
						1.83E+12	
						1.22E+11	
						4.69E+05	
						1.61E+01	
						4.61E+08	
						2.42E+08	
						2.27E+08	
						2.12E+08	
						4.76E+11	
						1.80E+07	
						3.04E+07	

1
2
3
4
5

This page intentionally left blank.

1
2
3
4

APPENDIX B

VENTILATION SYSTEM DRAWING

1
2
3
4
5

This page intentionally left blank.

FACILITY: 340 Building ENTEX System
EMISSION POINT: 300P340NTX 001

1
2
3
4
5

This page intentionally left blank.

1
2
3
4
5
6

APPENDIX C

DISCUSSION OF BEST AVAILABLE RADIONUCLIDE CONTROL TECHNOLOGY (Requirement 16)

1
2
3
4
5

This page intentionally left blank.

1 **DISCUSSION OF BEST AVAILABLE RADIONUCLIDE CONTROL TECHNOLOGY**
2 (Requirement 16)

5 Requirement 16 of WAC 246-247-060 is not applicable because best
6 available radionuclide control technology (BARCT) emission equipment will be
7 used. The BARCT is defined by WAC 246-247-030 as follows:

9 "Technology that will result in a radionuclide emission limitation
10 based on the maximum degree of reduction for radionuclides from any
11 proposed newly constructed or significantly modified emission units
12 that the licensing authority determines is achievable on a
13 case-by-case basis. A BARCT compliance demonstration must consider
14 energy, environmental, and economic impacts, and other costs through
15 examination of production processes, and available methods, systems
16 and techniques for control of radionuclide emissions. A BARCT
17 compliance demonstration is the conclusion of an evaluative process
18 that results in the selection of the most effective control
19 technology from all known feasible alternatives. In no event shall
20 application of BARCT result in emissions of radionuclides that could
21 exceed the applicable standards of WAC 246-247-040. Control
22 technology that meets BARCT requirements also meets ALARCT
23 requirements."

25 As stated in WAC 246-247-120, only those radionuclides comprising more
26 than 10 percent of the unabated dose need to be evaluated. The total dose is
27 due to particulate radionuclides. The WDOH has provided guidance that
28 high-efficiency particulate air filters generally are considered BARCT for
29 particulate emissions (WDOH 1992).

31 It is proposed, pursuant to the citation above, that the heating,
32 ventilation, and air conditioning systems (described in Section 8.0) and the
33 controls (engineering and administrative) (described in Section 9.0) be
34 approved as BARCT for the proposed tank cleanout activities in the
35 340-A Building.

1
2
3
4
5

This page intentionally left blank.

DISTRIBUTION

OFFSITE

MSIN

Mr. A. W. Conklin, Head
Air Emissions and Defense Waste Section
Division of Radiation Protection
State of Washington
Department of Health
P. O. Box 47827
Olympia, Washington 98504-7827

Mr. Jerry Leitch, Chief
Radiation and Indoor Air Section
U.S. Environmental Protection Agency
Region 10
1200 Sixth Avenue
Seattle, Washington 98101

J. Wilkinson
Confederated Tribes of the Umatilla
Indian Nation
P. O. Box 638
Pendleton, Oregon 97801

D. Powaukee
Nez Perce Tribe
P. O. Box 365
Lapwai, Idaho 93540

R. Jim, Manager
Environmental Restoration/
Waste Management Program
Yakima Indian Nation
P. O. Box 151
Toppenish, Washington 98948

ONSITE

U.S. Department of Energy,
Richland Operations Office

A. V. Beard	S7-55
G. M. Bell	A5-52
J. E. Rasmussen	A5-15
H. M. Rodriguez	A5-15
A. B. Sidpara	S7-54
D. J. Williams	S7-41
Reading Room (2)	H2-53

DISTRIBUTION (cont)

MSIN

Pacific Northwest National Laboratory

Hanford Technical Library K1-11

Fluor Daniel Hanford, Inc.

J. A. Bates H6-36
B. D. Williamson B3-15

Lockheed Martin Services, Inc.

Central Files A3-88
DPC H6-08
EDMC H6-08

Rust Federal Services of Hanford Inc.

L. D. Berneski	L6-40
E. M. Greager	H6-21
D. L. Halgren	L6-04
J. S. Hill	H6-25
J. J. Luke	H6-25
L. W. Roberts	L6-04
R. W. Szelmeczka	L6-05
Air Operating Permit File	H6-25