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Abstract: The electrostriction of composites consisting of dielectric particles embedded
in a gel or elastomer is discussed. It is shown that when these particles are organized by
a uniaxial field before gelation, the resulting field-structured composites are expected to
exhibit enhanced electrostriction in a uniform field applied along the same axis as the
structuring field. The associated stresses might be large enough to form the basis of a

polymer-based fast artificial muscle.
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Introduction

When a suspension of dielectric particles is exposed to a uniaxial electric field, the
induced dipole moments will cause the particles to chain along the field lines to form
complex anisotropic structures, providing dielectric contrast exists between the particle
and liquid phase. These structures greatly modify the shear rheology of the suspension
and are the basis for the well-known electrorheological effect. [1] If the liquid phase is
polymerized while the field is applied, these anisotropic structures can be trapped to form
field-structured composites. These composites have anisotropic properties, some of
which have been reported in the literature, including the conductivity and permittivity,
[2,3] dielectric breakdown field, [4] and optical transmittance. [5, 6] In this paper we
discuss the enhanced electrostriction that field-structured materials exhibit, and the
possibility of using these materials as fast artificial muscles. We will show that the
expected electrostriction of these materials has a large contribution from the induced
dipoles on the particles interacting with each other.

In fact, two types of field structured composites have been demonstrated. In
addition to the uniaxial composites, of which a sample is shown in Fig. 1, it is possible to
create biaxial composites structured in a biaxial field, such as a rotating field. When a
rotating field is applied in the x-y plane at a sufficiently high frequency that particles do
not move much in one period, an average dipolar interaction is created between particles
that is exactly -1/2 the dipolar interaction produced by a uniaxial field applied along the z
axis. [7] The result of this is the formation of plates in the x-y plane, as shown in Fig. 1
for a sample of magnetic particles that was physically rotated between fixed magnets.

These uniaxial and biaxial structures form when a field is applied, in order to
reduce the free energy of the composite and its attached power supply, and a large
contribution to this is the net electrostatic energy. This energy is reduced when the
dipole-dipole interaction energy is reduced, a consequence of which is an increase of the
effective dielectric constant of the composite. Because field-structured composites
(FSCs) form to minimize the electrostatic energy, one might surmise that the electrostatic

energy might increase rapidly with deformation of these materials, and that the dielectric

constant might decrease rapidly. A major contribution to the electrostriction effect is




related to the derivative of the dielectric constant with respect to strain and therefore
FSCs should exhibit large electrostrictive effects.

Before computing the electrostrictive effect, it is useful to develop an intuitive
understanding of electrostriction in FSCs. First consider a chain of high permittivity,
hard spherical particles in a liquid. When an electric field is applied along the chain
direction, dipole moments will be induced on the particles which will create attractive
interactions between them. These attractive interactions will create positive pressure on
the particles and will be balanced by the mechanical deformation of the particles, causing
them to become very slightly oblate. If one were to apply a tensile force to this chain, by
literally pulling on opposite ends, one would find that the chain would pull apart when
the strain is just large enough that small gaps start to form between the spheres. The
reason for the small yield strain is that the electrostatic interaction, being a solution to
Laplace's equation, has negative curvature. Because of the negative curvature, the
interaction of a single sphere with its two slightly parted neighbors is bistable, Fig. 2,
having minima when the central sphere is in contact with either of its neighbors, and a
maximum when equidistant from its neighbors. Thus if one were to affinely stretch a
chain of dipoles and could somehow arrange that all were equidistant, the slightest
amount of thermal motion would cause gap coalescence, and thus the breaking of the
chain. [8] If the spheres are very hard, and they usually are, the work needed to break a
chain would be extremely small.

This instability should be ameliorated when the chain is embedded in a relatively
soft gel. The surrounding gel contributes an effective interaction between particles that
should stabilize the stretching of a chain, so that the particle dipole contribution to work
of extension is large. In fact, affine deformation of the FSC should be a good
approximation, even though it is completely incorrect when the suspending medium is a
liquid.

Another aspect of FSCs is the detailed mechanics of deformation. The particles in
an FSC would typically be much harder than the gel phase, so that in deformation virtual
stress singularities occur in the gel phase at particle contacts. We expect these regions of

the gel will rupture when the material is worked, so that a certain work softening occurs.

If the FCS were first formed in a gel, and the gel was then swollen slightly, we would




expect these particle contact regions to break, and that the particle cénters would move
affinely in the swollen gel, creating separations such that the electrostrictive stress would
lead to a substantial deformation of the gel as particles were drawn together by the
induced dipoles. This is probably the most practical method of producing an
electrostrictive FSC, but perhaps a better method would be to coat the dielectric particles
with a soft gel coating, whose shear modulus was at least as small as that of the gel phase.
The FSC would then form with the dielectric particles neatly spaced.

One advantage electrostrictive FSCs would have over so-called electromotive gels
[9] is the very rapid response, which is scale independent. The creation of stress in an
FSC would be limited by the polarization time of the particles, and if the particles have a
large intrinsic polarizability, such as BaTiOs, this time would be extremely fast.
Electromotive gels are limited by the diffusion of ions and water through the gel, and this
is slow and scales as the square of the size of the gel. Ionic gels are also mechanically

weak, whereas an FSC could be made in a strong elastomer.
Theory

Approach: We are interested in computing the electrostriction of a composite material
consisting of particles of volume fraction ¢ embedded in an elastomer or gel. When a
uniform field is applied to this material through contacting electrodes, there will be two
primary sources of electrostriction: the mutual attraction of the electrodes due to their
free charge density; and the mutual interaction of the induced dipole moments on the
particles. The electrodes have a mutual attraction because a uniform field exerts a force
on a monopole. A field gradient exerts a force on a dipole, so the dipoles only interact
with each other.

We follow the method of Anderson, [10] who computed the electrostriction of a
simple cubic lattice of point dipoles, showing that the classical Maxwell stress, which is
linear in the dielectric constant, is only one contribution to the total stress, which
contains terms quadratic in the dielectric constant. To compute the total stress one must

consider the dependence of the dielectric constant on strain. We will use this approach to




compute the electrostriction effect of disordered materials such as field structured
composites.
In the method of Anderson the electrostatic free energy is minimized. The

electrical free energy in a capacitor of capacitance C is
F=-CV*/2 (1)
which includes the energy stored in the voltage source. The capacitance is
C=x,5Ald . | @

where «, is the dielectric constant of the dielectric in the direction of the applied field (z-
axis), &, is the vacuum permittivity, 4 is the lateral area of the capacitor, and 4 is the

electrode spacing.
The uniaxial electrostriction coefficients can be defined through the dependence

of the dielectric constant on the tensile strain components s;,
3
Ky =K l—z VaiS; (3)
i=1

and can be expressed as y,; = -k~ 9k, /Js,. Including the change in the capacitance due

to changes in the dielectric area and thickness gives, to first order in strain, for the

electrostatic free energy density
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The tensile stresses o; are obtained by differentiating the electrostatic free energy density

. . -10F . .
with respect to the strains, o, = —d- 3 £, gIving
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o, = 1(802_0(1 - 7’31) (5a)

2
=S (14 ) (50)
Anderson [10] has pointed out that the quantities in the parentheses are corrections to the
Maxwell stress, and these corrections are due to the dependence of the dielectric constant
on strain. If the terms in the parentheses are positive, there is a compressive stress along
the applied field and a tensile strain in the orthogonal directions. (In the materials of
interest here, the x and y directions are equivalent, so o; = 02.) Anderson has also shown
that for the cubic lattice this approach is equivalent to summing the forces of interaction
between the dipoles and electrodes across a plane orthogonal to the axis of a stress

component.

Particles in a dielectric continuum: In this paper we are concerned with computing the
electrostrictive effect that is due to the presence of particles of dielectric constant k,in a
dielectric continuum of dielectric constant k.. To simplify the calculation, we make the
following observation: The lines of force of the electric field E in any given composite

structure will only depend on the ratio @ =x, /x, , and thus can be computed correctly by
setting x, =1 and K;, =a. The electrostatic energy density, however, is just DE and
2

using k, =1 and «/, = a will lead us to a displacement field D' that is reduced from the

correct displacement field D by the factor k.. Thus the true energy density will be

“DE =1KCD’-E, and the effective dielectric constant x, computed with k=1 and
2 2

x, = & will be related to the true effective dielectric constant by k,, =k k.. Likewise,
setting x =1 and x/, = & will underestimate the forces between particles by the factor of

K. Thus the electrostriction coefficients are computed correctly using «, =1 and ), = a,

but to get the stresses right one must use «x,; as the « that appears explicitly in Egs.




5a&b. In the following we have set x =1 and x/, = @, and denote the strain-dependent

dielectric constant we compute as kg ;.

The local field: To compute the electrostriction coefficients we must first develop a
relation for the dependence of the dielectric constant on strain. The dielectric constant is
related to the susceptibility by &}, —1=xi/¢, where P-Z=yE;Z and P is the
polarization of the dielectric. The z-component of the polarization is P-Z = m-z/v where
v =47a’[3¢ is the volume per dipole in the unstrained state and m-Z =4na’¢,BE, 2,

where E,_ is the local field. Here the particle radius is a, the dielectric contrast factor is

B=(a-1)/(a+2), and the vacuum permittivity is &,. To compute the electrostriction
coefficients we must therefore find the local field in a strained dielectric.

The local field at a dipole site is the sum of the field due to the free charge density
on the electrodes and that due to a/l of the dipoles in the system. In the method of
Lorentz, developed to simplify local field calculations, one instead adopts the perspective
that the local field is the sum of the applied field, due to the free charge on the electrode
plus the bound (polarization) charge on the dielectric at the electrode surface, and the
field due to the nearby dielectric. The field due to the nearby dielectric is then the field
due to the nearby dipoles, that reside in an imaginary cavity centered on the dipole of
interest, and the Lorentz cavity field, which is due to the bound charge on the surface of
the cavity (see Appendix A). The cavity can be of any shape and we choose a cubical

cavity in the unstrained material. The local field is then E,, =E, + E, + E, . where E,
is the applied field, Edip is the field produced by the dipoles within the cavity, and E . is

the field produced by the bound charge on the cavity.
If the Lorentz cavity is allowed to deform affinely with the applied strain, the z-
component of the Lorentz cavity field can be written [10] (see Appendix B)

E . z=

[1 _Z.-: 5, + (?}sl +5, - 253)[: (6)

m-Z
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The first term on the rhs of Eq. 1 is the Lorentz cavity correction for a volume of cubic
symmetry centered on the particle, and the term in square brackets is the effect of strain.

In the unstrained state the field at the i-th dipole due to the nearby dipoles is

- mz
E,z= 277:80a3 (“//2) (7a)
3
a
v, = _Z (r—) P,(cosh,) (7b)
=i\ My

where Pz(x)=l(3x2—1) is the second Legendre polynomial, 6, is the angle the
2

interparticle vector ry, of magnitude r;, makes to the applied field direction. The sum is
over all other particles in the Lorentz cavity and is determined by the vector particle-

particle pair distribution function. This field expanded in the strain is

E, (s)2=E, (0)2+sV E, (s)2]_, (8)

and if we now restrict our attention to materials in which the x and y axes are equivalent,
and assume that all interparticle vectors deform affinely with strain, so

r, =[x(1+5),y(1+5,),z(1+s,)], we obtain

N 'z 3
S'VsEdip (syzl_o= 2::_ za3 7 2(‘!’2 - ‘l/4)(51 + 52) + (3‘/’2 + 4‘/’4)53] (9a)
0
3
W, = _Z (’%J P,(cos8;) (9b)
=i\ i

where P,(x) = l(35x4 —30x% + 3) is the fourth Legendre polynomial.
8
The sum in Eq. 9b looks troublesome, because it is essentially a three dimensional
integral over a integrand proportional to r~, thus threatening a logarithmic divergence.

However, the potential logarithmic divergence will occur as r goes to o, and in this limit



the dielectric can be viewed as homogeneous. Thus if the angular integral

an(cose)sin 6d0 for n = 2,4 vanishes, the divergence will not occur. In fact, forn > 1
0

this is true because of the orthogonality of Legendre polynomials on (-1, 1):

T 1
an(cose) sin6do = J P,(x) P (x)dx = 0, where Po(x)=1.
0 -1

The local field is found by combining Eqs. 6-9, and using m-Z = 47a’s SE, -7, to

loc

obtain

Eloc ‘2=
E;3

I'il - B¢ -2y,)- ﬁg[z(‘lfz “/’4sz + s2)+ (31/’2 + 4‘//4)53] + ﬁ‘ll’l:Zs; - (:/;_3—}‘5‘1 TS, 233)']}

We emphasize that this expression is only valid for materials that are structurally

equivalent along the x and y axes.
Electrostriction coefficients: The electrostriction coefficients can be obtained from the

dielectric constant, which can be obtained from the polarization. Accounting for the

dependence of the volume per dipole on strain, one obtains

Pi = Eo(Kejf,?’ - I)Eoi = 3€0ﬁ¢(1 —Zsi ]Eloc'i (1 1)

From Egs. 10&11 the value of x; , can be obtained and the electrostriction coefficients

can be obtained by differentiation, with the result

) = (K'eﬁ- - l)(rc'eﬁ + 2) 2 (K:’jf ,_ 1)2 .

where




2 1 4 (‘/’2 - W4)

12 = 23 +7 ’ (13a)
_ 2 %(3‘/’2"'4‘/’4)
A= 03 + 7 5 (13b)

and the dielectric constant in the unstrained state is

o _1+28(9+v,)

- 14
T~ 1-BG—2v,) (1

Dividing by the volume fraction in Egs. 13a&b looks troublesome, but this multiplies
(K:,ﬁ, - 1)2oc¢2, so nothing horrible happens as ¢—0. For many structures, such as those

with cubic symmetry, v, =0 and A4, =-24,,. We now need only compute «,, and the

coefficients A; from a model of the composite structure.

Field-structured composites: We have recently reported large-scale simulations
of the evolution of structure of suspensions of spherical particles suddenly exposed to a
uniaxial field along the z-axis, or a rotating field in the x-y plane. [3] The uniaxial field
causes the formation of chain-like structures such as those shown in Fig. 3, and the
biaxial field causes the formation of sheet-like structures such as those shown in Fig. 3.
We will use these simulated structures to compute the electrostriction coefficients.

To compute the v it is useful to define a vector pair correlation function for the
cylindrical coordinates z, p (p? =x*+y*). Let P(z,p)dzdp denote the probability that
two particles are separated by a distance whose z magnitude is within [z, z+dz] and whose
magnitude orthogonal to the z axis is within [p, p+dp], where the search domain around
each particle is centered on the particle and is the size of the simulation volume,

containing N particles. The normalization is then H P(z,p)dzdp = N(N-1)/2. With

this normalization, r* = p* + 72, and N>> 1,

10




3
v, =-N"[[ (%) P,(cosB)P(z,p)dzdp (15)

The case of randomly distributed particles is notable. Here the pair distribution function

does not have an angular dependence, and because of the orthogonality of Legendre

polynomials discussed above, y, =y, =0.
Results and Discussion

The results of these computations are shown in Table I for the simple cubic (SC) and
body-centered tetragonal (BCT) lattices, as well as random particle dispersions, and
uniaxial and biaxial field structured composites, all in the limit of large contrast, § = 1.
The values of y» 4 are large for both the uniaxial and biaxial FSCs, and decrease with
volume fraction, due to the reduced structural anisotropy at high concentration. Notable
are the large values of k[, for the BCT lattice - the ground state in a uniaxial field - and
for the uniaxial FSCs. The dielectric constant for the biaxial FSCs is quite low along the
zZ axis.

Table II shows that the electrostriction coefficient along the z axis is much larger
for the BCT lattice and uniaxial FSCs than for the random particle dispersions, as
expected. Biaxial FSCs have very small electrostriction coefficients along both axes,
indicating that the structure of these materials tends to cancel other corrections to the

Maxwell stress.

We are more concerned with the particle-induced stresses, which we have

. 1 . . . .
normalized by o* = cr/ —k,£,E, . These stresses are in addition to the electrostrictive
2

stresses expected for the unfilled polymer. The data in Table II show that these stresses
are quite large along the z axis for the BCT lattice and uniaxial FSCs. At 30 vol. % a
uniaxial FSC has 3.5x the stress along the z axis as would a random particle dispersion.
A surprising effect is that for the BCT lattice and uniaxial FSCs the stress along the x
axis can actually be compressive, whereas for biaxial FSCs there is an enhanced

expansion, due to the strong dipolar repulsion.

11




How great is the electrostrictive stress due to the particles compared to that
produced by the continuous phase alone? Let us take the example of a composite
material of 30 vol. % particles of high dielectric contrast, S =1, in a polymer of dielectric

constant k, =5. The z-axis stress in the unfilled polymer itself should be -10.1 goE¢?,

assuming the material is random. If the particles are mixed in randomly, the additional
stress arising from the particles will be -11.9 aoEoz; if structured in a uniaxial field the
particles will generate a stress of -48.8 £0E¢”. If one could contrive a BCT lattice of
particles, the ground state for a field-structured composite, the particle stress would be -
195 &Ey>. These computed particle stresses can be compared to those particle stresses

expected for an electrorheological fluid, based on the point dipole approximation. An

analytic theory we have developed for ER fluids [8] predicts that the stress in shear flow
will be about 1.7 g,Eo”> without considering local field effects (local field effects would
increase this by a factor of ~ 7-8 but computer simulations show a stress 5x lower than
this due to the formation of complex sheet-like structures that form in shear flow.) Thus
we expect the electrostrictive effect to be much larger than that the ER effect.

If the material is allowed to strain, the elastic properties of the gel phase will
determine the strain. To a good approximation we expect the gel to be incompressible, so
that a compressive strain along the z axis will result in tensile strains along the x and y

axes, with s, =25, = —2s,. Thus the strain will be proportional to the net stress

2
' _1 'I
G3—0 = —chKeﬁgoEg 2+ —@ _2y, + 6y, \(de, ) |
2 T 1 ¢ } Ky |_|

(16)

The data in Table II show that the expected strain will in fact be compressive along the z
axis for all structures studied, with large strains expected for lattices and uniaxial FSCs.
Of course, the actual strains will be large only if the hard dielectric particles are separated
by swelling or coating.

It is well known that the point dipole approximation underestimates the actual
force of interaction between two vicinal particles when the dielectric contrast is large.

[11-13] This is often referred to as a multipolar effect, but though correct, this




terminology is somewhat misleading. Highly polarized spheres have the capping charge
very close to the poles of the spheres, so that when two such spheres are brought into
contact along the field axis, the ends of the dipoles on the two different spheres are
almost brought into contact. The dipole-dipole interaction is still most of the interaction,
but the simple point dipole approximation underestimates this. In any case, the actual
particle stresses in particle composite materials of high dielectric contrast should be
considerably larger than the point dipole approximation prediction contained herein. This

is especially true for FSCs, where the particles have been brought into close proximity.

Conclusions

We have shown that uniaxial field structured composites consisting of high permittivity
particles in a gel or elastomer should exhibit large electrostrictive stresses, compared to
random particle dispersions, or the gel itself. We have computed the electrostrictive
stresses in the point dipole approximation, and expect the measured stresses.to be much
greater than these, especially for the uniaxial FSCs, where the particles are brought into
close proximity. The same qualitative effects should be observed in magnetic particle
systems, and experience in electro- and magnetorheology indicates that the effect should
be at least 10x larger. Thus we believe that uniaxial FSCs might be tenable candidates as
artificial muscles.

Finally, experimental measurements of electrostriction should be made in very
uniform, but large fields, to avoid the competing effect of dielectrophoresis - motion due
to the force exerted on a dipole due to the gradient of the electric field. Dielectrophoresis
and electrostriction are both quadratic in the field.

Appendix A: The local field

When working on this paper a number of questions arose about the cavity field, and this
appendix is intended to explore some aspects of this. The treatment of the cavity field
can be found in standard texts on electromagnetism, [14] and these comments are

intended to elaborate on those treatments. In essence, the concept of the local or
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molecular field was created to account for the microscopic lumpiness of real dielectrics.
The average field in a unit cell must be the macroscopic, or applied field Eg, so that any
line integral of the electric field through the dielectric, from one electrode to the other,
equals the voltage drop. However, within a unit cell the actual electric field can vary
considerably. For dipole lattices with cubic symmetry it is straightforward to show that at
a dipole site (and at the center of the primitive unit cell - also a point of cubic symmetry)
the field due to all of the dipoles in a cubical Lorentz cavity centered on the site is zero.
Because the polarization is parallel to the field, the only contribution to the cavity field is

due to the bound charge o, = P on the z faces of the cube (field along z axis)

ELC =

P xzjdyjdx P (A1)
1

4”80 el (x2+y2+1)3/2 —-5;-0—

Summing this with the applied field gives the total local field at a dipole site

E,= (K; 2) E,, which can be considerably greater than the macroscopic field.

The Lorentz field is a clever bookkeeping construct that enables the correct
computation of the local field. And admittedly, some cavity shapes have no associated
fields. However, the local field can also be obtained without using cavity construct.
Consider a cube of dielectric that is sandwiched between two infinite electrodes. The

macroscopic field between the electrodes is then EyZ both inside and outside the

dielectric. The field at the dipole site which is at the center of this cube is produced by all
charges in the system, i.e. all of the dipoles in the dielectric and the free charge on the
electrodes. Because of the cubic symmetry, the dipoles produce no field at the central
dipole site, so all of the bound charge, including that at the electrode surfaces comes to
nought. The free charge on the electrodes consists of two contributions: outside the

dielectric there is a free charge density o, = &,E,, and above and below the dielectric the
free charge density is just xo,. Alternatively, one may sum the field from a free charge
density of o, over the entire electrodes, and an additional contribution of (x —1)o,

above and below the dielectric. The local field at the dipole site is then

14




E

(K—I)E

1 Lo 1 ]
-1 dx | =
(x2 Tt 1)3/2 +(x )J‘]d)’:[ (x2 A 1)3/2I_] Ey+

loc

g [= =
=ﬁx2 Ldyidx

and we see that the second integral, which is the sum over the excess free charge in the

electrodes next to the dielectric, is exactly the Lorentz cavity field. Thus the result

_(x+2)

E,= 3 E, is obtained without invoking the cavity construct.

Appendix B: Strain dependence of the cavity field

The Lorentz cavity field can be obtained by integrating the electric field produced by the

bound surface charge density, o, = P-ii where N is a unit vector normal to the surface,

over the walls of the cavity. For ease of computation, consider a cubical cavity of size 24
on a side whose faces are normal to X, J, Z, subject this to small tensile strains, and
compute the field at the center. Because the polarization is parallel to the z axis, one only
need integrate over the faces of the strained cube that are normal to the z axis. In terms

of the tensile strains the integral is

P(l—ZSiJ h(l+sy) h(l+sy) B+ s.)
E,=—=t2x2 [dy [ dve———2 — (BI)
47, —h(l+s,) —h(1+5)) (x +y +h"(1+s;) )

where the factor of 2 accounts for the two z faces of the cube. After a change of

variables, and recognizing the symmetry of the integral,

1 1

s dyf ax 1

E, = (B.2)

drney | % (x2(1+s1)2+y2(1+s2)2+(1+s3)2)3/2




where we have dropped terms O(s%). Evaluation of this integral at zero strain gives the

standard result E, .(0)=P/3¢,. The cavity field can now be expanded to obtain the
strain dependence to first order.

E,8)=E, (0)+sV.E, . (s)l_, (B.3)

Taking the derivatives of Eq. B.2 with respect to strain gives

aELC‘ -6P 52 P ) l/_z

s, w0 o I[dxj;d (x2+y2+ 1)5/2 = 380( 1+ - J (B.4a)
ﬁELcl =—6P‘d ld 1 =—P—[—1—2—@j -
653 530 &, .([ x{ y(x2 +y2 +1)5/2 380 ( . )

Substituting these results into Eq. B.3 gives the cavity field in Eq. 6.
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Figure Captions

1. Field-structured composites of particles structured by a uniaxial magnetic field (top),
and by a biaxial magnetic field (bottom). Both samples consist of an Fe powder with
a particle size of 4 pm and at a concentration of 2.0 vol. %. The magnification is 52x.
2. The bistable potential well that an induced dipole feels when interacting with two
neighboring field induced dipoles. This is the potential felt by the central dipole in a
stretched chain of three polarized spheres of diameter d, with the centers of the end

spheres fixed at 0 and 2d, aligned with the field.

3. An example of a simulated uniaxial FSC (top) and biaxial FSC, both at 30 vol. %
particles
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Table I

Computed data for perfect lattices and for simulations of 10,000 particles in

uniaxial and biaxial fields.

) structure v: A K,y (B=1) A As
0.523 SCT 0 -0.294 4.30 0.505 -1.01
0.698 BCTTt -0.032 -0.012 9.82 0.167 -0.427
0.10 random 0 0 1.33 0.18 -0.36

0.10 uniaxial -0.271 -0.189 1.84 -0.28 -4.85
0.10 biaxial 0.493 -0.395 1.16 5.26 -0.66
0.30 random 0 0 2.29 0.18 -0.37
0.30 uniaxial -0.185 -0.137 3.73 0.09 -1.42
0.30 biaxial 0.331 -0.304 1.66 1.39 -0.58
0.50 random 0 0 4.00 0.18 -0.37
0.50 uniaxial -0.083 -0.078 5.49 0.18 -0.69
0.50 biaxial 0.131 -0.181 297 0.54 -0.56

1SC = simple cubic, 1¥BCT = body-centered tetragonal
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Table IT

Computed data for perfect lattices and for simulations of 10,000 particles in

uniaxial and biaxial fields.

) structure 71 733 or* os* o*-or*
0.523 SCt 0.33 4.17 2.88 =222 -25.1
0.698 BCTTt 2.21 6.92 -11.9 -77.8 -65.9
0.10 random 0.69 6.31 0.97 -1.75 -2.7
0.10 uniaxial 0.58 2.43 0.57 -6.31 -6.9

0.10 biaxial 0.03 0.16 1.12 -1.34 -2.5
0.30 random 0.68 1.08 0.73 -4.76 -5.5
0.30 uniaxial 1.22 423 -0.81 -19.5 -18.7
0.30 biaxial 0.12 0.64 1.46 -2.72 -4.2
0.50 random 1.09 233 -0.35 -133 -13.0
0.50 uniaxial 1.39 4.57 -2.12 -30.6 -28.5
0.50 biaxial 0.39 1.82 1.81 -8.38 -10.2

+SC = simple cubic, $TBCT = body-centered tetragonal
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