COF-T80¥ 109
Heosotn,

| DORT AND TORT WORKSHOP - OUTLINE FOR PRESENTATION FOR PERFORMANCE ISSUES
FOR LARGE PROBLEMS

A. Barnett
April, 1998

NOTICE

This report was prepared as an account of work sponsored by the United States Government.
Neither the United States, nor the United States Department of Energy, nor any of their employees,
nor any of their contractors, subcontractors, or their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness
of any information, apparatus, product or process disclosed, or represents that its use would not
infringe privately owned rights.

KAPL ATOMIC POWER LABORATORY SCHENECTADY, NEW YORK 12301

Operated for the U. S. Department of Energy

by KAPL, Inc. a Lockheed Martin company M

DISTRIBUTION OF THIS DOCUMENT 1S mm};';

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed hercin do not necessarily state or
reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original

document.

2155 20

1.0 Problem Statement

11

1.2

2.0 Time - Run multiple, sequential, dependent jobs
- Method A

2.1

625$ a2 1 -1 e / outer, inner

22

Running Large TORT Problems

Allen Barnett

Givens: A limited amount of time per job and limited amount of memory and disk
space.

Solution: Must break up TORT run in time and space.

2.1.1 Set the flux iteration flag nfxmx=-1:

~1 flux iteration max. per group per itn. (default=20; neg: limit by group in 218$$)

2.1.2 Set 213$ (itnbg) to have a non-zero only in group 1 and fill with zeros:

f0 /itns -
region/zn matl/zn dens/zn impt/zn itn/gp i e
1 1.00000E+00 1.00000E-02 10
3 1.00000E+00 1.00000E+00 [}

2.1.3 Forjob 1, set nt£1x=0, ntfog=#_ntfog:
input, output

0 flux guess input unit if .gt. 0O
1 flux output unit if .gt. 0

2.1.4 Run TORT and save the fort.#_ntfog file.

2.1.5 For subsequent jobs, examine iteration monitor of previous job and set 21$$
to zero for groups which have converged.

2.1.6 Retrieve the fort.#_ntfog file, call it fort.#_ntflx and set

ntflx=#_ ntflux, ntfog=#_ntfog:
input, output

2 flux guess input unit if .gt. 0
1 flux output unit if .gt. 0

2.1.7 Goto2.14

Advantages: Each run ends at a group boundary so you can safely post-pro-
cess the flux data.

Disadvantages: Requires that each run’s input deck be modified by hand.
Problem may run into time limit since each group may take a different num-
ber of iterations to converge. ‘

Method B
2.2.1 Set flux iteration flag nfxmx=large value (sufficient to converge each group):

628% a2 1 20 e / outer, inner

20 flux iteration max. per group per itn.

(default=20; neg: limit by group in 215$)

’

222

223

2.3.6

2.3.7

2.4 Notes
2.4.1

nifenv = 1 0: no effect; 1l: skip cvgd grps on ntflx; +10: use rebal damping from ntflx

g yRuhning Lérge TORT Problems

Set tmax to a value less than the job’s time limit:

67** 1.7-20 1000. e / source mult., time

tmax = 1.00000E+03 maximum cpu min. for this problem {0 ignored)

For job 1, set nt £1x=0, nt fog=#_ntfog.

2.2.4 Run TORT and save the fort.#_ntfog file.

2.2.5 For job 2 and subsequent, retrieve the fort.#_ntfog file, call it
fort.#_ntflx and set ntflx=#_ntflux, ntfog=#_ntfog.

226 Goto2.24
Advantages: Straight forward, requires modifications to 2nd input deck, but
2nd and subsequent jobs all identical. Less likely to run into time limit.
Disadvantages: Does an extra iteration in each converged group on each
restart (can drive problem out of convergence, converges higher energy
groups to a tighter tolerance-> difficult to reproduce results).

2.3 Method C

2.3.1 Set flux iteration flag nfxmx=large value (sufficient to converge each group).

2.3.2 Set tmax to a value less than the job’s time limit. '

2.3.3 Forjob 1, set ntf1x=0, ntfog=#_ntfog.

2.3.4 Run TORT and save the fort.#_ntfog file.

2.3.5 For subsequent jobs, set nifcnv=1 -> skip converged groups in

fort.#_ntflx:

62%% a35 1 e / skip converged

Retrieve the fort.#_ntfog file, call it fort.# ntfixand
set ntflx—=#_ntflux, ntfog=#_ntfog.

Goto 2.3.4

Advantages: Straight forward, requires modifications to 2nd and subsequent
input decks (but all the same), does not do extra iterations in converged
groups.

Disadvantages: If TORT stops iterating in the middle of a group, then the
restart will begin with the original values of PCR damping factors. This can
occasionally drive the solution out of convergence (solution: set ni fenv=11,
use rebal damping from nt£1x!).

If using the time limit, tmax, note that TORT stops iterating only when tmax
is exceeded at the end of an inner iteration. Therefore, allow at least one

inner iteration’s duration between tmax and the job’s time limit. (And proba-
bly allow some more time for wrap up overhead.)

Running Large TORT Problems

2.42 TORT restarts can be dramatically sped up by saving the direct access rather
than the sequential file.
24.2.1 Setntflxandntfog to negative values:
61$% -2 -1 e / input, output

ntflx = -2 flux guess input unit if .gt. 0
= -1 flux output unit if .gt. 0

2.4.2.2 When a job is done, save both the fort.#_ntfog file AND the
fort.91 and fort. 95 files (flux moments and boundary fluxes).

2.4.2.3 For restarts, retrieve all three files and name fort.#_ntfog to
fort.# ntflx.

The disadvantage to this method is that the direct access file requires internal
TORT routines to interpret. So, save the scalar flux file for postprocessing,
too. Also, you cannot modify TORT’s memory model and restart from an old
direct access file (see below).

3.0 Space - use TORT internal memory conservation
features

3.1 Memory
3.1.1 Memory usage is controlled by locobj. Specified in 1000 word blocks:

62$$ al7 1000 e / memory

locobj = 1000 initial memory allocation, words*1000 (0 implies use default)
TORT tries to fit a problem into the available memory by:

3.1.1.1 Storing the entire problem (i.e., parameters, acceleration matrix,
flux solution).

3.1.1.2 Storing a single flux group.

3.1.1.3 Partitioning the acceleration matrix.

3.1.1.4 Storing a limited number of planes of the flux solution.
Here’s an example:

end of work, geom, sweep, rebal, source 3606295 17979 3606295 2574650 2542788
end of buffers, source-~io, output arrays 3606295 2554130 2406279
end of user buffers 3606296

Ogroups in memory= 2, PCR= 0, blocks per group= 1

Oend of primary input arrays = 930
end of secondary input arrays = 1304
end of general input arrays = 4264
end of indexing arrays = 5221

1l

Oend of primary input arrays 930
end of secondary input arrays 1304
end of general input arrays 4264
end of indexing arrays 5221

end of work, geom, sweep, rebal, source
end of buffers, source-io, output arrays
end of user buffers

Ogroups in memory=

689840 17979 689840 387105 355243
2879027 366585 218734

2879028
1, PCR= 0, blocks per group= 1

[0 T A (| N { N (1

”

lcmobj

*

g ﬂRunning Large TORT Problems

O0end of primary input arrays = 930
end of secondary input arrays = 1304
end of general input arrays 4264
end of indexing arrays 5221
end of work, geom, sweep, rebal, source = 529463 17979 529463 203628 355411
end of buffers, source-io, output arrays = 2718650 366753 218902
end of user buffers = 2718651
Ogroups in memory= 1, PCR= 1, blocks per group= 1
Oend of primary input arrays = 930
end of secondary input arrays = 1304
end of general input arrays = 4264
end of indexing arrays = 5221
end of work, geom, sweep, rebal, source = 429092 17979 429092 103257 255040
end of buffers, source-io, output arrays = 996659 266382 118531
end of user buffers = 996660
Ogroups in memoxry= 1, PCR= 1, blocks per group= 4
Ofinal memory requirement = 996660
3.1.2 Finer control over the “blocking” can be achieved with minblk and maxblk.
If you require that a certain number of k planes be in memory (for perfor-
mance reasons), set maxblk to a number less than km. To enforce blocking,
set minblk to the least number of planes. Normally these values are 0 which
. just lets TORT choose:
62$$ al9 1 0 e / enforce group-wise storage
minblk = 1 minimum no. of k blocks per group (0: all groups stored in memory if possible)
maxblk = 0 maximum no. of k blocks per group (0: maximum is km)
3.2 Disk space
3.2.1 There is not much you can do to reduce disk space usage, except reduce the
size of the problem. The largest file will be the flux solution,
(igm) (im) (jm) (km) (1m+1)~2 words. For example, TORT Test Problem 6 is
igm=2, im=117, dm=33, km=27, lm=1:
logical unit 82 requires 832 bytes
logical unit 83 requires 1667952 bytes
logical unit 84 requires 833976 bytes
logical unit 91 requires 11675664 bytes
logical unit 92 requires 5837832 bytes
logical unit 93 requires 5837832 bytes
logical unit 94 requires 5741296 bytes
logical unit 95 requires 833976 bytes

3.2.2 However, if your off-line storage can only store finite sized files (such as a
tape system which doesn’t support tape spanning), you can use the Icmobj
parameter to limit the size of any single file which TORT creates. Again,
lemobj is in 1000’s words (note that these files may be slightly larger than
requested due to additional OS control words):

62$$ al8 1000 e / file size

1000 file segment size, words*1000 (0 implies unlimited segment length)

4.1

4.2

1 1 8

1 1 8
i 02 2
1 3 2
1 4 9
1 5 5
1 6 2

4.0 Key Values

Running Large TORT Problems

Besides simply getting the problem to run, postprocessing large TORT problems can
occasionally present difficulties. TORT can help you out with a couple of easy to use
features for editing computed values:

Key Fluxes - by default, TORT prints the scalar flux in the first cell (i=1, j=1, k=1) in
the iteration monitor line:

8

10 1.00E+00 3.14E-01

Ogrp itn imfd jmfd kmfd*mx fx dv*mx dv fx*rebl*rebl err*max rebl*rb dv fx*grp rebl*key flux*neg fix

0 0.00E+00 0.00E+00 0.00E+00-1.00E+00 1.58E-01 1.00E+00

If this is the only value of interest in the problem and three significant digits are
enough, then you are done.

Otherwise, set nkeyfx to the number of positions in space where you would like the
scalar flux printed. The positions themselves are given in the arrays, 22*, 23*, 24*
(ceyai, ceyaj, ceyak). TORT locates the CELL in which these positions occur and
prints the cell average scalar flux after each iteration. If nkey£x is negative, then the
key fluxes are only printed after the group converges. Here is an example from the
primary TORT problem in the TORSET test problem YSETMAX:

MY R0 ®

6285 a6 -10 e / key fluxs

22** 0 -2814 2814 g2 g5

10 1.00E+00 3.14E-01
1 6.61E-01 6.48E-03
1 2.44E-01 2.58E-02
2-4.14E-02 2.70E-02
1-2.39E-02 1.35E-02
1-5.44E~03 1.50E-02

0 0.00E+00 O.
9 6.998B-03 7.
4-1.86E-03 7.
3-1.89E-03-2.
2-1.07E-03-6.
3 6.83E-05-8.

00E+00 0.
32E-01 6.
21E-02 7.
00E-02-1.
28E-03-6.
29E-04-7.

kfx 2.38339E-01 2.60313E-01 2.16980E-01 2.60313E-01 2.16980E-01
2.27926E-01 2.70373E-01 2.27926E-01

Note that all key fluxes are group-wise values.

00E+00-1.
96E-01 1.
03E-02-1.
89E~02-5.
27E-03-8.
72E-04 8.

00E+00
44E-01
68E-03
51E-03
95E-04
79E-05

/flux keys
23** 0 2r-692 2r692 as
24** 5r130 Sr480
nkeyfx = -10 length of key flux array (neg: print key fluxes last iteration only)
0 i key posn Jj key posn k key posn i key indx j key indx k key indx
1 0.00000E+00 0.00000E+00 1.30000E+02 5 5 5
2-2.81400E+03-6.92000E+02 1.30000E+02 4 5 5
3 2.81400E+03-6.92000E+02 1.30000E+02 6 5 5
4-2.81400E+03 6.92000E+02 1.30000E+02 4 5 5
5 2.81400E+03 6.92000E+02 1.30000E+02 6 5 5
6 0.00000E+00 0.00000E+Q0 4.80000E+02 S5] 7
7-2.81400E+03-6.92000E+02 4.80000E+02 4 5 7
8 2.81400E+03-6.92000E+02 4.80000E+02 6 5 7
9-2.81400E+03 6.92000E+02 4.80000E+02 4 5 7
10 2.81400E+03 6.92000E+02 4.80000E+02 6 5 7

1.

2.
2.
2.
2.
2.

58E-01
49E-01
39E-~01
38E-01
38E-01
38E~01

2.51230E-01 2.70373E-01

Ogrp itn imfd jmfd kmfd*mx fx dv*mx dv fx*rebl*rebl err*max rebl*rb dv fx*grp rebl*key flux*neg fix
1.

O0E+00

1.00E+00
1.00E+00
1.
1
1

00E+00

.00E+00
.00E+00

4.3 Response Functions - another built-in editing capability of TORT is the computation
of response functions. Here, a group-wise constant is multiplied by each group-wise

<

L 4

.

Running Large TORT Problems)

flux and the product summed over all groups. Responses may be computed on a
cell-wise or a region-wise basis.

nresp controls the number of different response functions to be edited. If nresp is
less than zero, then only the region-wise values are printed. Two arrays are used to
fold into the flux solution, 26* (dnres) and 27* (cnres). dnres is the response func-
tion per region; there must be (nresp)(izm) values in this array. The defaultis all 1’s.
cnres is the response function per energy group; there must be (nresp)(igm) values
in this array. Again, the default is all 1’s.

For the secondary TORT in the TORSET sample problem, YSETMAX, nresp is set

to -3, dnres is unity and cnres is the free-in-air tissue kerma:
62$8$ a8 -3 e / nresp

26**% £ 1 27** / n, gamma, then total resp
/ 13n-7g free-in-air tissue kerma/ dna 37n-g set -- jvp 03juls4
/ n, g, total fia tis ker (rad*cm2/n,q)
643617-14 +517832-14 fO

Oregion response integrals -- volume in last column, total in last row
0 regn resp 1 resp 2 resp 3 resp 4

1 2.89418E-01 0.00000E+00 0.00000E+00 1.00146E+09

2 7.76911E+00 (O.00000E+00 O0.00000E+00 1.57071E+10

region response averages -- volume in last column, overall in last row
0 regn resp 1 resp 2 resp 3 resp 4

1 2.88996E-10 0.00000E+00 0.00000E+00 1.00146E+09

2 4.94624E-10 0.00000E+00 O0.00000E+00 1.57071E+10

OKEY XEeSPONSES .« vvtvnnresesacecneaneenenanans
0 key resp 1 resp 2 resp 3
1 5.89278E-11 0.00000E+00 0.00000E+00
2 2.38074E-10 (0.00COOE+00 0.00000E+00

Notes:

4.3.1 Only the first response function has non-zero values for cnres, so the other
two response functions are zero.

4.3.2 The first group of values are the region integrals. The second group of values
are the region average responses. The region volume is given as the nresp+1
response.

4.3.3 If key fluxes are specified, then the corresponding key responses are also
printed.

4.3.4 TORT cannot handle material dependent response fluxes (called activity edits
in DORT). :

