REPRODUCED AT GOV'T EXPENSE # 5
. | KAPL-P-000199
(K97141)

CONF-98)003 ~~

PARALLEL PERFORMANCE OF TORT ON THE CRAY J90: MODEL AND MEASUREMENT

A, Barnett, et. al.

~ October1997

DISTRIBUTION OF THIS DOCUMENT IS UNUBATED

MASTER

NOTICE

This report was prepared as an account of work sponsored by the United States Government.
Neither the United States, nor the United States Department of Energy, nor any of their employees,
nor any of their contractors, subcontractors, or their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness

~of any information, apparatus, product or process disclosed, or represents that its use would not
infringe privately owned rights.

KAPL ATOMIC POWER LABORATORY SCHENECTADY, NEW YORK 10701

Operated for the U, S. Department of Energy
by KAPL, Inc. a Lockheed Martin company




DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, compieteness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed hercin do not necessarily state or
reflect those of the United States Government or any agency thereof.




DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.




REPRODUCED AT GOV'T EXPENSE # 5

* Parallel Performance of TORT on the CRAY J90: Model and Measurement

Allen Barnett Yousry Y. Azmy

Lockheed Martin Corporation QOak Ridge National Laboratory
PO Box 1072 PO Box 2008, MS 6363
Schenectady, NY 12301 Oak Ridge, TN 37831

Ph: (518)395-6734 Ph: (423)574-8069

Fax: (518)395-6664 Fax: (423)574-9619

E-mail: yya@ornl.gov
1. Introduction

A limitation on the parallel performance of TORT (Ref. 1) on the CRAY J90 is the amount of
extra work introduced by the multitasking algorithm itself. The extra work beyond that of the
serial version of the code, called overhead, arises from the synchronization of the parallel tasks
and the accumulation of results by the master task. The goal of recent updates to TORT was to
reduce the time consumed by these activities (Ref. 2). To help understand which components of
the multitasking algorithm contribute significantly to the overhead, a parallel performance model
was constructed and compared to measurements of actual timings of the code.

2. Description of the Parallel Performance Model

The overhead in the TORT CRAY Macrotasking-based (Ref. 3) algorithm arises from seven
sources. The individual contribution of each of these to the total overhead is described below.

1. Creation of the Slave Tasks: The slave tasks are created only once per run and the time is in the
millisecond range (~0.2 msec). Hence, this source of overhead is excluded from the model.

2. CPU Hold Time: In order to improve parallel performance in a time-sharing environment, the
CRAY multitasking libraries will cause a task to spin-wait for a certain amount of time (the hold
time) rather than releasing the CPU immediately upon reaching a synchronization point. This
source of overhead is directly dependent on runtime conditions, such as machine loading, which
the user has no way of predicting or even obtaining from the operating system during execution.
Hence, this source of overhead is excluded from the model. Furthermore, in order to get the mea-
sured performance to conform with the model under this restriction, we set the CPU hold time to
zero via a call to the system routine tsktune. This causes all tasks to release the CPU upon enter-
ing synchronization points.

3. Serial Accumulation of Task Contributions to Shared Arrays: In the present implementation
each task accumulates its contribution to shared arrays in its own set of private arrays during the
sweep of a single row, then, upon completion of the sweep, the master task sums these private
arrays into their shared counterparts. This source of overhead is incurred at the rate of once per

participating task (v =ncpu), per flux iteration (J flux = itnfl) , per row along the x-dimension

(J X K = jm X km), per quadrant in angle space, e.g. 1, £ >0 (Q =4). Hence the contribution to
the parallel overhead from this component is given by:

Coccum(V) = Taccum XV X Iflux XIXKXQ. (N

Parallel Performance of TORT on the CRAY J190: Model and MeasurementJanuary 29, 1998 1




REPRODUCED AT GOV'T EXPENSE #.5

The contribution of this component of overhead was measured by instrumenting a special version
of TORT with a timer around the code section in subroutine row which performs this summation
and then running TORT with 1 through 32 tasks. The measured overhead time is divided by the

number of participating tasks, then the resulting points are fitted to a constant function to produce

T = 4,011 x 10_Ssec.

accum

4. Memory Management: This is the CPU time consumed moving data in memory to locations
where participating tasks are programmed to find them. The memory management overhead is
incurred at two locations. The first is in subroutine row to place current row data at the proper
memory locations and to identify the scratch space for each participating task. The second is in
subroutine rowdp where every task locates the above mentioned information in memory. This
penalty to CPU time is incurred at a rate similar to the serial accumulation activity described
above:

T V) = Tomory(V) X1 gy XTI XK X Q. )

memory(

The two parts of the memory management component were measured per instance. The measured
values were then fitted to models that describe the dependence of each parton v,

1 = 5535% 107V,

memory(v)

5. Barrier Assignment: In the present version of TORT synchronization among the participating
tasks is accomplished via barriers. There is a total of five barriers, two of which are used only if
the left boundary condition is reflective. The barriers are assigned only once at the beginning of a
run. The overhead for assigning one barrier is of the order 10usec ; hence we exclude the contri-
bution to the performance model from the barrier assignment activity.

6. Barrier Synchronization Overhead: Synchronizing a barrier consumes CPU time while tasks
spin at the barrier waiting for the arrival of the remaining participants in a calculation. It was mea-
sured in a simple test code as a function of the number of participating tasks and the loop index
within which the barriers are synchronized. The four main barriers used in TORT are synchro-

nized at the same rate as for the serial accumulation component, except it is not incurred if v<1.

Hence the contribution to the parallel performance model from the Barrier Synchronization com-
ponent is given by:

Tbarrier(v) = Tbarrier(v) x Iflux XIXKXQx4 &)

if v> 1 and zero otherwise and T,,,;,,(v) = 6.751x 107v + 1.121 x 107V

7. Angle Loop Redundancy: This includes a call to the function iselfsch, which increments a glo-
bal counter, and a test of ownership of an angle by the calling task to determine whether to pro-
cess it or skip to the next discrete ordinate. While the CPU time consumed by the global counter is
small, the number of times it is called is proportional to the number of ordinates in the quadrature.
Measuring the global counter overhead for the purpose of including it in the parallel performance
model presented two complications:

Parallel Performance of TORT on the CRAY J90: Model and MeasurementJanuary 29, 1998 2

»




REPRODUCED AT GOV'T EXPENSE # 5

a. It is very small: Measuring the global counter overhead inside of TORT on a per instance basis
yielded inaccurate results. A special code was written to measure the overhead of multiple
instances of iselfsch in a loop; even then, because iselfsch’s overhead is smaller than the clock
overhead, the latter had to be subtracted from the former to improve its accuracy.

b. The resulting value for the global counter overhead increased linearly with v < 10 or 12, then

behaved randomly for larger v . Furthermore, the value obtained would have greatly overpredicted
the total overhead. We hypothesize that this unexpected behavior is due to contention for the lock.
Indeed by performing the measurements described above within a lock itself, the measured iself-

-6 . . . .
sch overhead was largely constant, T,, ifse = 1.4 %10 “sec. Clearly, contention is unavoidable in

a production environment so that the above estimate for the model parameter © must be

selfsc
viewed as a lower bound. This source of overhead is incurred at the rate:

Tselfsc(v,p) =>2’fsezfscXVXPXlﬂuxXJXKXM’ )

where M = mm, the number of angles in the quadrature, and p = 1 implies the lower bound on
this time penalty in the absence of contention. Contention will result in a faster increase in this
component with increasing v in a generally unpredictable way. Hence in subsequent figures we
plot a range for this time component between its lower bound, p = 1, to twice that value, i.e.

p = 2.

8. Total Overhead Model: Adding each of the modeled overhead components together yields:
T(v, P) = Tmemory(v) + Taccum(v) + Tbarrier(v) + Tselfsc(v’ P). &)

3. Construction of the Parallel Performance Model

The parallel performance model (Eq. 5) was constructed for a modified version of TORT’s Test
Problem 6, a “large concrete building”. The quadrature was changed from S¢ to S, and both

group 1 and group 2 were solved. The basic parameters of Test Problem 6 are:
I'=117,J = 33,K = 27,14, = 17,M = 320. (6)

Figures 1.A-1.C show the fits to the various performance model parameters, while Figure 1.D
shows the total overhead model (with p varying from 1 to 2) compared to the actual mesured
overhead of TORT for both autotuning and fixed tuning runs.

4. Conclusions

The performance model we developed for the CRAY J90 version of TORT predicts the overhead
to within about 20% for this problem. This is well within expectations given the sources of
unquantifiable behavior in a time sharing system, including both memory and lock contention and
machine load. By setting the CPU hold time to zero, we were able to measure relatively consistent
values for each of the sections of code which are specific to the multitasking implementation.

Parallel Performance of TORT on the CRAY J90: Model and MeasurementJanuary 29, 1998 3




REPRODUCED AT GOV'T EXPENSE # 5

Figure 1. Performance Model Parameter Fits and Comparison to Measured Results

se¢ - A. Serial Accumulation Overhead for TQ6, Tyceum (V) s¢¢ B, Memory Management Overhead for TQ6, Tyemary (¥)
0.0001 ¢ 0.002
0.00175
0.00008
0.0015
0.00006 0.00125
'X2X] 0.00!
0.00004 | - 202°%%,0 o °
2 eV [
o W eet® 0.00075
0%,
0.00002 0005
0.00025
Tusks e Tusks
5 10 I8 20 25 30 5 10 5 20 25 30
see C. Barrier Synchronization Overhead, Tyurriec(¥) sec

D. CPU Overhead — Sequential Time=4193.418s

0.003 1750

——  Meusured — Autotuning
®  Measured — Fixed Tuning

1500 t 252 Model, Ty, p)

0.0025

0.002 1250

1000
0.0015
750
0.001
500

0.0005 250

Tasks 5 [ ]
5 10 15 20 25 30 5 10 15 20 25 30

Tasks

Of the sources of overhead which are within the control of the user, the dynamic scheduling fea-
ture in the inner-most loop over angles contributes the most to the overhead. Whether or not
switching to a static scheduling algorithm would improve parallel performance remains to be
investigated. The scheduling quantum under UNICOS is approximately 1/60 second. If a row
sweep requires less time than this, then dynamic scheduling would be desirable, since generally a
processor will always be ready for more work. If a row sweep requires more than 1/60 second,
then each sweep will be interrupted anyway and the round-robin scheduling of equal priority pro-
cesses will effectively keep the tasks synchronized.

5. References

1. ORNL/TM-13221, The TORT Three-Dimensional Discrete Ordinates Neutron/Photon Trans-
port Code (TORT Version 3), WA Rhodes, DB Simpson, October 1997

2. “Multitasking the Three-Dimensional Transport Code TORT on CRAY Platforms”, YY Azmy,
DA Barnett, CA Burre, Proceedings of the 1996 Topical Meeting on Radiation Protection and
Shielding, April 21-25, 1996

3. SR-2080, UNICOS System Libraries Reference Manual

Parallel Performance of TORT on the CRAY J90: Model and MeasurementJanuary 29, 1998 4




