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THEORIES OF HYDROPHOBIC EFFECTS AND THE DESCRIPTION
OF FREE VOLUME IN COMPLEX LIQUIDS

LAWRENCE R. PRATT, SHEKHAR GARDE, AND GERHARD HUMMER
Theoretical Division, Los Alamos National Laboratory
Los Alamos, New Mezico 87545 USA

Abstract. Recent progress on molecular theories of hydration of nonpolar
solutes in liquid aqueous solution has lead to new ways to thinking about
the old issue of free volume in liquids. This article surveys the principal new
results with particular attention to the context of general issues of packing
in liquids.

1. Introduction

Aqueous solutions of colloidal solutes are preeminent examples of com-
plex liquids. In such settings, attention is often directed towards the issues
of macromolecular structure, including aggregation, and dynamics. How-
ever, one aspect of these problems is stubbornly associated with the small
molecule size scale, the size scale of a water molecule. That problem is the
molecular understanding and description of hydration effects — hydropho-
bic effects — that stabilize membranes, micelles, folded conformations of
globular proteins, and supermolecular aggregates of such structures. This
presentation will focus on that basic, molecular scale issue underlying aque-
ous solutions of interest both to biophysics and colloidal materials science.

Because hydrophobic effects are so broadly discussed, you may be sur-
prised to notice that workers on molecular theories of hydrophobic effects
have not achieved good agreement on that molecular theory, at least when
we proceed beyond the primitive stage of the principles of statistical me-
chanics and specification of the intermolecular interactions involved. The
empirical fact is that different researchers hold different opinions on the
correctness of several available theories, each of which agree with a set of
experimental data at least roughly. A sampling of different perspectives is
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available from the references [1-33]; this collection, however, is not intended
to be complete.

Furthermore, the simplest extensions of our experimental information
can spark new debates about our understanding of hydrophobic effects.
A current example, the effect of pressure on hydrophobic stabilization of
folded, globular proteins, is discussed below. '

In consequence of such observations, the theory surveyed here was de-
signed for maximal simplicity on the fundamentals of statistical mechan-
ics and on the physical assumptions applied to the particular problems.
The theory that was developed has relevance for the traditional packing
problems of theories of liquids and that topic will be an emphasis of this
discussion.

A central problem for the theory of hydrophobic effects is the old, but
imperfectly solved, theoretical problem of finding space for a solute in liquid
solvents. As is well recognized, liquids are dense, disordered materials and
it is this combination of attributes that makes these problems difficult.
The description of free volume in hard core model liquids is central to the
modern understanding of the van der Waals equation of state and is basic
to the ordering phase transitions such as the hard sphere and disk freezing
and the liquid crystal phase transitions [34]. In the specific motivating case
here, the particular molecular structuring characteristic of liquid water is
expected to be important. So we must preserve the fidelity of the description
of the structure of liquid water, in addition to tackling the problem of
packing in dense, disordered materials.

This lecture develops a new conceptualization of this old problem and
new techniques for predicting the fractional free volume accessible to hard
core molecules in condensed phases. This new approach is based upon an
information theory perspective that has general applicability but was ini-
tially explicitly heuristic. Information was sought on a condensed medium
of interest and on that basis a prediction of the fractional free volume acces-
sible to a hard model solute was made. For some important cases considered
so far, the basic information required for accurate, interesting predictions
has been surprisingly modest.

2. Free Volume Statistics Sought

Let’s begin by consideration of the solubility of inert gases in aqueous so-
lutions. The medium is liquid water and the solute is idealized as a hard
object, perfectly repelling the center (oxygen atom) of each water molecule.
For such models the interaction part of the chemical potential of the solute
is obtained as

BAp=—-Inpg , (1)
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with po the probability that the hard solute could be inserted into the
system without overlap of van der Waals volume of the solvent; 1/3=kgT.
This is a specialization of Widom’s formula [35, 36]

exp{—BAu} = (exp{—BAU})o . (2)

AU is the change in the solute-solvent interaction potential energy upon
placement of the solute in an arbitrary position in the solvent and the
average indicated by (...)o is over the thermal motion of the solvent un-
affected by the solute. The solute is a test particle for this calculation.
For the hard core model being considered, AU is either zero or infinity,
so the average sought involves a random variable with value either one or
zero; the averaging collects the fraction of solute placements that would
be allowed. If presented with a thermal configuration of a sufficiently large
volume of solvent, you might estimate these quantities by performing many
trial placements of the solute throughout the solvent and determining the
fraction of those trial placements that would be allowed. This estimates
Viree/V, the fractional free volume accessible to the solute. Thus, Eq. (1)
is a free volume formula [37], exact for the model being considered.

The operation of these formulae can be alternatively viewed as follows:
Imagine identifying a molecular scale volume at an arbitrary position in the
liquid system by (1) hypothetical placement of the solute and (2) determi-
nation of those positions of water oxygen atoms that would be excluded
due to solute-solvent interactions. Below we will call this volume the ob-
servation volume. With such a molecular scale volume defined we could
keep track, say during a simulation calculation, of the probabilities p, that
the n = 0,1,... oxygen atom occupants are observed. As the notation sug-
gests, po is the probability that no occupants are observed in the molecular
volume. It is clear from this description that our strategy for theoretical
prediction of pg will be to model the distribution p, and to extract the
extreme value pg.

This will be a primitive approach to theories of SAu and solubilities
of inert gases water. Both more and less subtle theoretical works on these
topics have been long available. “Less subtle” here means simulation calcu-
lations, techniques more straightforwardly useful than many “more subtle”
approaches. The “more subtle” means here that further statistical quanti-
ties have been introduced for spherical solutes with the intention that they
might facilitate more expansive approximate theories. These include

)= -2 )
60 = () . @)
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A is the radius of a center-to-center exclusion sphere. These quantities have
been useful in suggesting physical theories because they have interpreta-
tions that are appreciated physically. dy(}), is the distribution function of
distances A from an arbitrary point in the liquid to the nearest solvent cen-
ter. 41 A2pG(X) [Eq. (4)] is, in view of Eq. (1), the derivative with respect to
exclusion radius of the hydration free energy due to intermolecular interac-
tions, in thermal energy units kgT. It gives the compressive force exerted
by the solvent on the hard spherical solute. In addition, 47 A%pG(A)dA is
the expected number of solvent centers in a shell of radius A and width dA
outside a hard sphere that excludes solvent centers from a ball of radius A.

3. Simulation Results for Liquid Water

Some of the simulation work has determined the quantities of Eqs. (3) and
(4) for molecular liquids represented realistically at the current state-of-
the-art [14, 16]. Thus we know that d;()) for liquid water and for liquid n-
hexane are both unimodal with maximum displaced by a distance less than
0.14; the maximum occurs at slightly smaller distances for liquid n-hexane
than for liquid water [14, 16]. This difference between liquid n-hexane and
liquid water in most probable cavity size is not large. The difference in
the most probable cavity size between liquid water and a reference random
medium, with sites of the same radius and distributed randomly at the same
density, is greater than the difference between n-hexane and water. So the
differences observed between the two molecular liquids considered are not
purely reflections of molecular size and density. This comparison addresses
the idea that the low solubility of inert gases in liquid water might be due
to the small size of the water molecule and the possibility that “interstitial”
cavities will, on this basis, be smaller in water than in coexisting organic
liquids of common interest {3, 38]. The fact that the differences between
these realistically described molecular liquids are slight is associated with
the fact that the basic units considered in n-hexane are the methyl and
methylene groups. These are not so different in size from a water molecule.
It should be noted also that on a packing fraction basis, typical organic
liquids are denser than liquid water [6].

The notable distinction between the results for liquid water and liquid
n-hexane is the distribution d;(}) is significantly narrower for liguid water.
This suggests that water is less flexible than n-hexane in opening cavities
of substantial size.

Simulation calculations have also produced G(A) for 0< A <3.04, ap-
proximately. This size range covers the simplest atomic solutes He and Ne
but not much more. This does, however, permit comparison between water
and organic solvents, and it permits comparison of available theories with
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the simulation data. Thus for the range 2.0A< X <3.04, G()) for liquid
water is approximately two-times larger than for n-hexane. Water exerts a
higher compressive force on the surface of an inert solute than do typical
organic liquids; water squeezes-out hydrophobic solutes [39].

The checking of theories against the available simulation data for G())
has also been revealing [14, 16]. We now know that the scaled particle model
(SPM) (40, 41] significantly underestimates the numerically exact results for
G(A). The Pratt-Chandler (PC) integral equation theory [42-44] predicts
results for G(A) that are significantly too large. The more pragmatic revised
scaled particle model due to Stillinger [2] typically predicts G()) between
those two theories and with some empiricism about interpolation junctions
can describe the available simulation data satisfactorily [14, 16]. For sizes
A >3.0A that available computer simulation data are less detailed, the
theories less convincing, and the checking has been pursued less vigorously.
See, however, the recent results of Reference [45].

4. Information Model

We now return to the theoretical program of predicting pg. What are the
standard theoretical tools for this? The most immediate guiding theory is
the ‘inclusion-exclusion’ development [46] of Eq. (2) [47, 48]:

=™ 1)”‘ (m) 5
Po = 1+ Z /drlfdr2 /drmp (1'1,1'2, rm) [ (D)
m=1

where p("‘) is the m-body joint density for solvent centers. This is depicted
in a standard way in Figure 1. These are standard combinatorial results,
more frequently seen in forms such as [46]

= 1)’”

po = 1—(n)o+ Z (n(n=1)-(n-m+1)o.  (6)

m=2

Here the random variable n is the number of solvent centers within the
observation volume and, e.g. (n)p is the expected number of centers within
the observation volume. Several important points that can be made from
Figure 1. The first is that the van der Waals approximation, the primordial
free volume model, is obtained from the first two terms shown SAu =
In[1 — (n)q]. The second point is direct and basic: pg is naturally expressed
in terms of occupancy moments, indeed binomial moments here. The sum
truncates sharply for cases where a finite maximum number of particles can
be present in the observation volume. The sum can be of practical value in
the van der Waals case that only the first nontrivial term must be retained.
For large solute volumes or solvent densities, this sum is not directly useful;
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we seek a way to exploit the same information but in a more broadly useful
form.

1 2
p( ) \p( )
Py= O + Ol -+ + .
= 1 - <>, + (1/2)<n(n—1)>0 + ..

Figure 1. Mayer-Montroll expansion for the insertion probability po. The standard
notation follows [49, 50}, e.g., the solid bonds indicate Mayer f-functions. The second line
gives the evaluations for the diagrams shown in the case of a hard core solute. n is the
number of solvent centers in the observation volume.

The next most immediate theoretical guidance comes from the virial
expansion depicted in Figure 2. This can be considered a resummation of
the series Figure 1 and is better in the sense that such a truncation cannot
produce a negative probability as truncation of Figure 1 can do. However,
when that trouble is avoided Figure 2 is not necessarily more accurate. In
fact the van der Waals free volume approximation is often satisfactory and
then Figure 2 is likely to be less so.

o® 5p@
N
—BAR = O=——=@ + + .

= —<m>y 4+ (U2){<nm-1)>g- <>y’ + .

Figure 2. Virial expansion, notation as in Figure 1. Note that ‘virial’ often connotes
a low density expansion but here we are assuming full knowledge of the medium cor-
relation functions in the absence of the solute; 5p(2)(1,2) = p(2)(1,2) - p(2)(1)p(1)(2).
Thus from the perspective of a density expansion is organization shuffles the contri-
butions to the virial coefficients. In fact, here contributions are ordered according to
the number of bonds attached to the root point. Successive contributions have a struc-
ture that may be derived from that of familiar cumulants with the formal replacement
(n*Yo — (n(n — 1)---(n — k + 1))o. See [51, 52]. Table 1 gives formulae for contribu-
tions through 5th order. It is helpful to realize that these successive contributions can be
directly observed in simulations and those observations can assist the theoretical analysis.

Ultimately these considerations avoid the issue that we have only limited
information and we want to make the best prediction of pp that we can.
When the problem is stated this way what to do next is clear: we model
the probabilities p, on an information theory basis. We consider a relative




TABLE 1. Successive contributions to the series Figure 2. (i) =[G -k)'k]is a
binomial coefficient.

Order Formula

1 <(;?>o
((G))o = ((3)/2)
(3o = (et (Do + ((7))e3/3
L))o = (GN{(ENo ~ (30272 +((3))o((F))e® = ((3))8/4]
(o = (Nt (E)o = (N (Z))o + {3l (1))0® + {(3))e (3o - --
—((G3((D))e® +{(1))*/5

[, S-S JC I )

or cross information entropy [53],

woah) = - 3opan (22 (7)
) n=0

where p, represents a “default model” chosen heuristically. The informa-
tion typically considered are moments of the p,. We then maximize this
information entropy subject to the constraints that the probabilities repro-
duce the available information. The information typically used is exactly
the moments that enter into the series Figure 2, obtained from simulation
calculations if necessary. The formal maximization of such this entropy

gives probabilities
max
Pj“ﬁjexp( ZC&( )) : 8)

where the (; are Lagrange multipliers to be adjusted so that the proba-
bilities finally reproduce the information given initially. The machinery for
doing this can be developed straightforwardly. For example, the normaliza-
tion of the probabilities can be deferred at an intermediate stages of the
calculation. Then the final thermodynamic result can be given in terms of
the required normalization factor

ﬂAu:InZ-Z—)—exp( Tffg( )) . (9)

n=0 Y

This is suggestive of the calculation of a partition function for a modest-
sized set of states with effective interactions. The interesting questions then
involve the predictions extracted from the p; for properties other than the
given information. In our case, the property of first interest is SAp.

We can make the comforting observation that use of only (n)¢ and the
natural default model p; «x 1/j! produces the Poisson distribution as ex-
pected; (3 = —In(n)e and SAp = (n)o as would be found by retaining only




8

the first term shown in Figure 2. Note that evaluation of the second term
there with the Poisson distribution gives zero as it should [52]; (§r2)o = (n)o
for a Poisson distribution.

Figure 3 shows how this prediction scheme work-outs when the solvent
is computer simulated liquid water and the solute is a hard sphere of a size
appropriate for comparison with a Ne atom. The immediate point is that
a model based upon the two moments that can be readily obtained from
experiment, (n)g and {n(n — 1)), fortuitously provides the most satisfac-
tory simple prediction of pg. In contrast the Poisson model that uses only
a single moment and is the primitive free volume theory is not satisfactory.
Further, inclusion of moments higher than the second is not advantageous
unless several higher moments are available. The behavior of the informa-
tion entropy 7 suggests that the initial two moments do a good job of
describing the distribution and the subsequent higher moments are ‘unin-
formative.’

These points are remarkable also because recent analyses [54, 55] have
underscored the fact that Percus-Yevick approximate integral equations
can be derived on the assumption that solvent density fluctuations are
distributed according to a Gaussian probability functional. The results of
the present investigations, including particularly [56-59], give further in-
sight and support to those ideas. The Pratt-Chandler approximate integral
equation theory of hydrophobic effects [42], at its inception merely a Percus-
Yevick analogue, can be given a similar basis [54]. The PC theory is thereby
given a better foundation than was available at its genesis.

Note that present modeling even if limited to two moments only is not
merely an assumption of a Gaussian probability functional for a density
field. The occupancies are also required be nonnegative integers. That this
be true of all subvolumes of the observation volume is also an nontrivial
restriction that we have found can be important.

That specifically binomial moments are involved in the series above
emphasizes the point that the occupancies must be nonnegative integers.
Further perspective on the convergence issue is obtained by examination
of successive contributions to the series Figure 2. Numerical results are
shown in Table 2. The first and second order terms make a significant
contribution but by themselves are not close to the full answer. The values
of the additional terms do not establish rapid or monotonic convergence
to the known full answer. It is suggestive that the average occupancy in
this case is 3.77 and that problematic convergence is evident only upon
examination of contributions of order 4 and larger. In any case, we can
view the information theory model as a technique for reorganization of the
series.




TABLE 2. Approximate evaluation of contributions to the
series Figure 2 for the circumstances of Figure 3, A=3.0A.
The column ‘Order Contribution’ gives approximate values
for the formulae of Table 1.

j ((;') Yo Order Contribution Cumulative Result
1 3.77 3.7 3.77
2 5.75 1.36 5.13
3 4.7 0.89 6.02
4 2.04 1.03 7.05
5 0.51 1.55 8.60
o0 - - 7.93

4.1. ENTROPY CONVERGENCE

When the typical occupation numbers n are large the granularity of the
distribution p, is expected to be less significant, at least near the center
of the distribution and when viewed on a coarse enough scale. In such
circumstances the predictions of two-moment information theory models
are not significantly different than those of the PC theory. It is remarkable
that a simple calculation along these lines gives a convincing explanation of
the puzzling and contentious issue of “entropy convergence” in hydrophobic
hydration [58].

The phenomenon to be explained is the following: entropies of transfer
of non-polar molecules from gas phase or a non-polar solvent into water
converge at a temperature of about 400 K to approximately zero entropy
change. Similar behavior was also seen in the microcalorimetry experiments
on unfolding of several globular proteins. This behavior is insensitive to the
particular hydrophobic solute molecule. Since the entropy is a temperature
derivative of a hydration free energy, the convergence temperature iden-
tifies a region where graphs of hydration free energy versus temperature
are extremal, in fact, maximal. Below that region the hydrophobic hydra-
tion free energy is increases with temperature but above that region the
hydrophobic hydration free energy decreases as the temperature is raised.

The two-moment information theory model above was applied to this
problem for hard sphere solutes in-water with the heuristic modification
that a flat default model was used; p; x constant for j<jm., and zero oth-
erwise. This latter adjustment was found empirically to give slightly better
hydration free energies. The results of the model and simulation calcula-
tions accurately agreed on the temperature dependence of the hydration
free energies. To analyze this agreement the information theory model was
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simplified to a continuous Gaussian distribution that then gives

n 2
Ap =~ Ez__T{ ((67320)0-1-111[27r(5n2)0]} (10)

= Tpsat(T)?{kgv?/2(6n%)0} + T{kp In(2n(6n%)0]/2} . (11)

v is the observation volume and p,,;(7') is the liquid density along the vapor
saturation curve so that (n)o = psat(T)v. (6n%)o is found to be insensitive to
temperature for the relevant conditions. Further, the first term of Eq. (11) is
larger than the second. Thus the non-monotonic behavior of the free energy
with temperature and the entropy convergence is largely a consequence
of the non-monotonic variation of Tp,q(T)? with temperature. The only
molecular parameter to complicate matters is the volume v and with this
formula v does not affect the entropy convergence temperature [58]. Thus
the temperature of entropy convergence is about the same for a wide family
of solutes.

The physical point is: the entropy convergence phenomenon occurs for
water because of the low and temperature insensitive values of (6n?)e. In
fact, the isothermal compressibility of water at low pressure has a mini-
mum value at T=319 K. That temperature differs substantially from the
observed entropy convergence temperatures but it is not necessary that
these temperatures be approximately equal, just that (én?)y be insensitive
to temperature in the region d[Tpsq:(T)?%]/dT ~0.

The technical point of Eq. (10) is: this formula is simple and effective
but how it is obtained from the series Figure 2 is not simple. Part of the
complication is that two additional twists have been interjected, the flat
default model and the continuous approximation.

4.2. PRESSURE DENATURATION OF PROTEINS

It is a common view, based upon our current understanding, that hydropho-
bic effects provide a nonspecific, cohesive stabilization of compact protein
structures. However, it has been argued [60] that our current understand-
ing of hydrophobic effects is not consistent with the experimental facts of
pressure denaturation of globular proteins. The information theory model
of the previous section was applied also to study hydration free energies
and potentials of mean force (pmfs) for two and three hydrophobic spheri-
cal solutes in water as a function of pressure [61]. As is well known, those
pmfs exhibit contact and solvent-separated minima corresponding, respec-
tively, to cases where the hydrophobic spheres contact each other or where
a water molecule intervenes. It was found that increasing pressure shifted
the free energy balance of those two cases towards the solvent-separated
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circumstance. This suggested an intercalation mechanism for pressure de-
naturation: as the pressure of the liquid is raised, water molecules are forced
into protein structure. A similar point of view can be taken of the formation
of clathrate hydrates at elevated pressures: a low pressure hydrophobic ef-
fects lead to close contacts and to clustering of hydrocarbon gases dissolved
in water. But sufficiently high pressure stabilizes the crystalline phase that
eliminates close solute contacts. If attention is focused in the hydrocarbon
material this behavior might seem counter-intuitive because the hydrocar-
bon material seems to expand. But, in view of the thermodynamic principle
that increasing pressure stabilizes the phase of lower volume, we conclude
that the system may be packed more efficiently and have a lower total vol-
ume when water molecules are intercalated into the hydrocarbon clusters.
These topics will be the subject of subsequent research.

5. Concluding Comments

Identification of some generalizations and future directions for these theo-
ries will provide concluding comments. Firstly, we note that the generaliza-
tion of these ideas to treat continuous, rather than only hard core repulsive,
solute-solvent interactions is known [62].

Secondly, in the context of the aqueous solution problems we note the
importance of our restriction here to small molecule solutes. It is by now
well recognized that treatment of larger solutes requires consideration of the
multiphasic character of these solutions on large length scales [2, 56, 61]. For
large enough hard sphere solutes dissolved in water close to phase coexis-
tence, the possibility that the solvent will pull away from the solute surface
requires specific attention. Further subtleties arise when the solute-solvent
interactions are not strictly repulsive but include attractive interactions too
[63, 64]. These issues will surely be the subject of further research in the
area of hydrophobic effects. It seems likely that an appropriately designed
default model should be able to describe such effects in a physical manner.

Thirdly and specifically on the topic of hydrophobic effects, we note that
these approaches provide some unanticipated answers [62] to the questions
such as “How is water different from hydrocarbon liquids as a solvent for
nonpolar solutes?” The importance of the low and temperature insensi-
tive values of the isothermal compressibility of liquid water is noteworthy.
However, such answers are not in the format that is most often intended
when such questions are asked. Most often such a question solicits informa-
tion about particular patterns of solvent structure in the neighborhood of
a hydrophobic solutes. Some groundwork has been laid for consideration of
those detailed structural issues in a format consistent with the discussion of
this paper [65). Pursuit of answers about the detailed structural issues and
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their relevance to hydrophobic effects will surely be the subject of future
research. 4

Finally, we note again the relevance of these ideas to the classic prob-
lems of packing in liquids. The importance of these issues is reflected in
the significance of the hard sphere fluid system to our understanding of
liquids generally. Such model systems may not be directly realistic. But it
continues to surprise that when attention is directed to new physical prob-
lems, e.g. the thermodynamics and structure of glasses or folded proteins,
understanding of basic packing problems is again requested. Such problems
turn-up quite broadly [66-72). It would be interesting to see the ordering
phase transitions associated packing problems, crystallization and liquid
crystallization transitions, analyzed on these bases. An initial step along
such lines for the hard sphere fluid has been taken [73] but more work is
deserved.

We hasten to add that the results so far have not superceded previous
theoretical results. But this new approach offers the possibility of better,
more physical understandings of packing problems in the equilibrium sta-
tistical mechanics of non-crystalline materials and the previous theories of
them. This approach has achieved new understanding for the problems of
primitive hydrophobic effects. By exploiting information external to con-
ventional theories, even simulation data, and by proposing a pattern for
utilizing that information, these approaches begin to respond to Ander-
sen’s [74] request for a ‘theory of theories.’
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Figure 8. Convergence of predictions for hydration free energy and information entropy
with numbers of binomial moments employed. The moment information was obtained
from computer simulation of liquid water [56]. A=3.0A.




