o, - H
A =3
e Z 4
> 9
ot =
;.x s
3

ol

. 7 2~
DosfeRfra7037= 7

UIRTRBOTION OF Thts pogymeyy |

~W0dd1 quswesiopus syt Aidun 1o 3pmysuos Ajuessaosu jou soop IMIDYI0 JO ‘ToImpdeInuRw
“YIewoper) ‘Suren spesy £q 90IAI9S 10 ‘ssa001d “oupord [etaseunmoes oyivads Kue oy U219y 20U
-19J9y 's)yBu paumo Apseand sJunjur jou pinom asn sy Tet) sjussaxdas 10 ‘pasoposip ssasord
1o ‘ponpoid ‘smeredde ‘uoheuLIojul ue jo sssupnjasn 10 ‘ssauajaidwon ‘Aovinoow sy 107 Aumiq
~Isuodsal 1o Kyiqer (e8] Aue sowmsse 1o ‘paridunt 1o ssaxdxs ‘Kjueizem Kue soyew ‘ssakojdwo
19y jo Aue Jou ‘Jooidyy KousFe Kue zou JUSWUIA0D) S3TRIS PONT() Y3 ISYNON "JUIWUIIA0N)
saElg paun) oY) Jo LdusBe ue £q pososuods 3I0M JO junodoe ue se paredard seam jiodss syt

3
&
2 £ g
2] V-
4 @ e i
@) -w o 2 m |
@ A 5§ & b
< a B 2 5 N
= £ 3 5 5 P
bt vt Q oo e 3
m & g r'& = H b :
= . a o
Q 2 o b= @ S ..
< 8 s T 8 & © -
U g g o -~ 2 &
& 5 g % 8 & = B & -
o s = =
0 .Wo 5 ..m.". m =
W .m I ..m 1> S - o
Jounst (¥ < Q e 8] 177}
2 z = = 2 g &
K =5 E o 2
2, T B 3 5 &
-~ .
Z 5 © 6 & |
m a 0 Rt ‘Joarayy A>uage Aue Jo juowuiasog sajeIg pajun
E > m M =) U3 Jo asoyy 1091Ja1 10 Aeys Kjuessedou jou op ulbiay passaidxa sioyne jo suormdo pue
m.. bt mu... SMIIA 9y, ‘Joarayy AousSe Aue Jo judwuIoA0n 91815 payu() oY) £q Bupoae] 10 ‘vonepusw
i < -
=
<

JINIVIOSIA




DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are

" produced from the best available original
document. |




The Thesis of Susan Marie Gerhart is Approved:

Ivan Catton

s s
/ rd Ve
o f . , - .
. {-/.'\!4(/(, A U BT |

Adrienne Lavine

lre K e

Vijay K. Dhir, Cofnmittee Chairman

University of California, Los Angeles

1991

i




P

TABLE OF CONTENTS

Page
List of Figures iv
List of Tables : v
List of Symbols vi
Abstract of the Thesis viii
1 Introduction 1
it Literature Search 3
I Experimental Apparatus and Procedure 11
IV~ Discussion of Results for a Rigidly Mounted Tube 30
\'/ Discussion of Results for a Flexibly Mounted Tube 45
VI  Conclusions 50
References 51
Appendix 1 - Error Analysis 54
Appendix 2 - Tabulation of Data 59

Appendix 3 - Derivation of Equations for Coefficient of
Drag and Coefficient of Lift 99




LIST OF FIGURES

Figure

1 Coefficient of Drag v.s. Void Fraction

2 Parallel Triangular Array

3 Rigid Tube Mounting

4 Scematic Diagram of the Loop

5 Test Section Segment

6 Gamma Beam Positions

7 Pressure Tap Distribution

8 Reduced Area of Arrays

9 Flexible Tube Mounting

10  Strain Gage Calibration Curve

11 Coefficient of Drag Over a Single Rigid Tube

12 Coefficient of Drag Over a Single Rigid Tube

13 Pressure Distribution About Tube

14  Pressure Distribution About Tube

15  Vertical Void Fraction Profile

16  Angle v.s. Void Fraction

17 Vertical Void Fraction Profile

18  Radial Void Fraction Profile

19  Coefficient of Drag Over a Rigid Tube in an Array
20  Pressure Distribution About Tube

21  Coefficient of Drag Over a Single Flexibly Mounted Tube
22 Coefficient of Drag Over a Single Flexibly Mounted Tube
23 Pressure Distribution About Tube

iv




Table

2A
2B
2C
2D

2F
2G

LIST OF TABLES

Coefficient of Drag Over a Rigid Tube

Coefficient of Lift Over a Rigid Tube

Pressure Distribution About a Rigid Tube

Void Fraction Profiles for a Single Rigid Tube
Coefficient of Drag Over a Flexibly Mounted Tube
Coefficient of Lift Over a Flexibly Mounted Tube
Pressure Distribution About a Flexibly Mounted Tube




A,Across-section
Cp

CL

D,d

) o ‘o
3 0

Qa

Q, Qw
Rej

Re]'gap

Uss

Ul'l Uref
w .

Ofs

LIST OF SYMBOLS

Cross-sectional Area of the Test Section

Coefficient of Drag

Coefficient of Lift

Tube Diameter

Frequency

Drag Force

Gravitational Acceleration

Hydrodynamic Mass

Pressure

Volumetric Flow Rate of Air

Volumetric Flow Rate of Liquid, Water

Reynolds Number Based on Superficial Liquid Velocity
Reynolds Number Based on Superficial Liquid Gap (or
Reference) Velocity

Velocity

Liquid Freestream Velocity

Superficial Liquid Velocity

Superficial Liquid Gap (or Reference) Velocity

Width of the Test Section

GREEK
Void fraction
Free stream void fraction
Partial derivative

Difference in pressure from that at lower stagnation point
or small change

vi




GREEK (Continued)

A* Difference in pressure from that at upper stagnation point
VL Liquid kinematic viscosity

PPgPLPw Density, density of gas, liquid, water

¢ Angle about tube, from lower stagnation point

4 Mass damping parameter |

vii




ABSTRACT OF THE THESIS
An Experimental Investigation of Two-Phase Crossflow
Over Rigidly and Flexibly Mounted Tubes
by
Susan Marie Gerhért
Master of Science in Mechanical Engineering
University of California, Los Angeles, 1991

Professor Vijay K. Dhir, Chair

Two-phase crossflow over heat exchanger tubes induces vibrations which con-
tribute greatly to the wear on the tubes. Of the three mechanisms leading to two-
phase flow-induced vibrations which have been identified, fluid-elastic instability has
been recognized as that which leads to the vibrations with the largest amplitude.
The mass damping parameter is used to predict the onset of fluid-elastic instability,
and the mean drag coefficient is used to calculate the mass damping parameter. In
this thesis, the drag coefficient measured over single tubes and tubes within array,

in single-phase and two-phase flow at various Reynolds numbers, is discussed.

The drag coefficient was measured by two methods. For flexibly mounted tubes,

strain gages were mounted on cantilever beams which held the tube in place and




allowed it to vibrate in the direction parallel to the flow only. For both rigidly and
flexibly mounted tubes, pressure distributions were measured around the perimeter
of the tube. Forces, and then the drag coefficient, could be calculated from this

information.

The drag coefficient was not found to depend upon the flexibility of the tube
mounting. As the void fracion of the flow increases, the drag coefficient over the
tube increases. This effect was found to be quite large at low Reynolds numbers,
and weaker at higher Reynolds numbers, and a different effect was found at very

high Reynolds numbers.

ix




I Introduction

Vibrations induced by two-phase crossflow over heat exchanger tubes have been
recognized as a major cause of wear of the tubes found in steam generators, condensers,
reboilers, and other heat exchangers found in nuclear power stations. The wear limits the
current design lifetime of the tubes to about 30 years. The replacement of the tubes is
quite costly, as it requires a shutdown of the facility. Thus, if the tube lifetime can be

extended, the cost of nuclear power can be significantly reduced.

Three mechanisms leading to two-phase flow-induced vibrations have been
identified. They are periodic wake or vortex shedding, random pressure fluctuations
caused by turbulence at the wall, and fluid-elastic instability. Fluid-elastic instability
results from a change in the angle of attack of the fluid, which in turn results from the
tube vibrations. The amplitude of the self-excited vibrations due to ﬂuid-clagtic instability
is much larger than for the other two mechanisms, and is caused by variations in the
coefficients of drag and lift due to the altered flow field as the tube vibrates. The onset
of fluid-elastic instability can be predicted using a correlation involving the mass damping
parameter (Blevins,[1990]). Mean drag coefficient is used to calculate the mass damping
parameter. Therefore, it is important to obtain measurements of the drag coefficient on

tubes under two-phase crossflow.

The objective of this study is to develop a correlation for the dependence on

certain parameters of the drag coefficient on a cylinder. These parameters include the




Reynolds number, the void fraction of the flow, and the ratio of the pitch between
tubes to the tube diameter. Many parameters are involved in these vibrational
mechanisms, and the mechanisms governing tube arrays cannot be properly under-
stood without first developing a good understanding of those governing a single
tube. Forces over 5 rigidly mounted tube are also of interest, because they can be
compared to those over a flexibly mounted tube to distinguish the effects caused
by our mounting techniques from those which are caused by the flow alone. This

information is needed to compare the data to those of other researchers, as each

utilizes different mounting techniques.




II Literature Search

Little work has be;an done on the drag coefficient of a blunt body subjected to
two-phase flow. Yokosawa et al. [1986] measured the drag on a cylinder under two-
phase crossflow, in the Reynolds number range of 4 x 10 to 3 x 10° and low void
fractions (0 to 0.1). They measured the drag forces using pressure distributions on
rigidly mounted tubes. Cantilever beam tube supports instrumented with strain
gages were used for flexible tubes. These methods are similar to those used in this
study which are described in section III of this document. Figure 1 is an example
of their drag coeflicient results for two-phase Reynold; numbers of 25000 to 130000,

plotted versus void fraction. They define two-phase Reynolds number as:

UsrpD

ReTp = VL (21)
where the freestream velocity Up.7p is defined as:
Uozp = {2Apo/[pL(1 — a) + py(a)]} (2.2)

and Ap, is the dynamic pressure of the main flow. Their results of the drag coef-
ficients for both methods were equal, within reasonable error (+ 4%). They found
that for two-phase Reynolds numbers sufficiently below the single-phase critical
Reynolds number of 6.3 x 104, the drag coefficient decreased with increasing void
fraction, while for Reynolds numbers above the critical value, the drag coefficient

began to gradually increase with increasing void fraction, although it remained sig-

nificantly less than the value for subcritical, single-phase flow. They correlated their
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Figure 1. Coefficient of Drag vs. Void Fraction
Taken from Yokosawa, Kozawa, Inoue and Aoki (1986)




data to the following equations:

Corp
Cpsp

= (6.60 + 0.40ezp{—a(8.67D/h)*))[1 — 2.5a(D/ds)™?] (2.3)

for 1.9 x 10* < Rerp < 6.3 x 10, and

Corp
Cpsp

= 0.46 + 0.64a°/* (2.4)

for 1.3 x10% < Rerp < 2.5%x10° , both for 0 < a < 0.1 , where h is the width of the
channel (D/h is the blockage), d; is the mean bubble diameter, and -g—gﬁfis the ratio
of the drag coefficient under two-phase flow conditions to that under single-phase

flow conditions.

The first part of the same study (Inoue et al. [1986]) determined the void fraction
distributions around the cylinder. They found a 4 or 5 fold increase in void fraction
from the freestream value near the separation point, in a region which extended
along the separation flow line into the wake, and a liquid-rich layer immediately
upstream and downstream of the cylinder. They found that as the flow velocity
was increased, the peak value of the void fraction increased at both the separation
point and in the wake, and the peak position in the wake moved upstream. Also, the
upstream liquid layer thickened while the downstream liquid layer thinned. When
freestream void fraction was increased, they found that the only effect on the void

profile was that the peak position for void fraction moved slightly downstream.

Hara has done a lot of research on two-phase crossflow over cylinders and arrays

of cylinders, with the intent of minimizing flow-induced vibrations. In his work




concerning vortex-induced vibrations (1984), he found that by introducing a small
amount of bubbles in crossflow, the cylinder vibrations could be decreased, while
at larger void fractions, the bubbles excite the vibrations. Hara thought that the
cause of this was that the random motion of the bubbles disturbed the cylinder’s

boundary layer and produced a random buffeting force.

Pettigrew et al. (1988), Taylor et al. (1986), and Taylor et al. (1988) discuss
two-phase crossflow over tubes and tube bundles. In Taylor et al. (1986) they
discussed forces over rows of tubes. They measured fluctuating forces on rows of
tubes under crossflow with homogeneous void fractions, defined as ay = Q_A%AQ?’
varying from 0 to 0.95, and for pitch to diameter ratios of 1.5 and 3.0. The tubes
they studied were 30 mm in diameter. They found that for single-phase flow, the
fluctuations in lift dominate over those of drag, while the opposite was true for
two-phase flow, and that the two-phase effect was magnified at the higher pitch
to diameter ratio. Both the drag and lift coefficients were found to increase with
increasing void fraction up to a void fraction of about 0.50, and then both coefficients
decreased with increasing void fraction. Pettigrew et al. (1988) studied various tube
array configurations, with pitch to diameter ratios of 1.47 and 1.32. Both a flexible
tube in rigid bundle, and a bundle of flexible tubes were studied. They observed

relatively stagnant zones of mostly liquid immediately upstream and downstream of

each tube, with the two-phase mixture flowing around them, in a wake-like pattern.




f&m,

@b

They defined the fluidelastic instability factor K by the equation:

Ur
fD

_ 2r(m. .
=K (---—-p D2 ) (2.5)

It was found that the instability factor decreased at the lower pitch to diameter
ratio. Fluidelastic instability was found to occur at lower velocities with the arrays

of all flexible tubes than for a flexible tube in the arrays of rigid tubes.

In Taylor et al. (1988), turbulence-induced vibrations for single tubes and single
rows of tubes with various end conditions, were studied. The tubes had the same
pitch to diameter ratios as in the previous part. VThey found that for low void
fractions, the dynamic lift and drag coefficients were of the same magnitude, and
the coeflicients for single cylinders followed similar trends depending on void fraction
and Reynolds number. Previous authors, including Taylor et al. (1986), Mulcahy
(1984), and Savkar (1984), had found the lift coefficient to depend on Reynolds
number an order of magnitude more strongly than the drag coefficient. Taylor et
al. (1988) found the fluctuating forces to be strongest at a void fraction near 0.50
for arrays. For void fractions below 0.15, the lift and drag coefficients were found

to be approximately the same as for single-phase flow.

Goyder (1988) has studied fluidelastic instability from a theoretical standpoint
and supported his results with others’ experiments. He concentrated on a square
array of tubes, with fixed pitch and diameter. The tubes had flexible cantilever

mountings and were allowed to vibrate in the lift direction. Void fraction varied

from 0 to .93. He developed correlations for the excitation force, with and without




A

turbulence, based on both steady and fluctuating drag and lift coefficients, fluid
properties, and tube dimensions. It was concluded that at low void fractions (up to
.25), fluidelastic instability behavior is similar to that found for single phase flow,
while at higher void fractions (.50 and higher), substantial vibrational amplitudes

occur without threshold conditions to determine the onset of instability.

Work which involves forces on tubes under crossflow, but is limited to single
phase flow, has been done by Fung (1960), Connors (1970), Price and Paidoussis
(1984), Chen and Jendrzejczyk (1987), and Sin and So (1987). Fung measured
steady and oscillating drag and lift forces on a large cylinder (12.65 inch diameter),
subjected to an air crossflow, with Reynolds numbers of 3 x 10° to 1.4 x 10°® using
strain gage transducers. He found the oscillating lift force to be of the order of the
mean drag force, and to be approximately constant at large Reynolds numbers. The
mean lift force was found to be 0, and at large Reynolds numbers the mean drag
coefficient was found to be around 0.25. Aliowing the cylinder to oscillate had no

effect on the oscillating lift force.

Connors also used strain gage transducers in his study of vibration of tube ar-
rays. His tubes were tuned to different natural frequencies. and he ;tudied normal
square, rotated square, and parallel triangular arrays. He was mainly interested in
the oscillating lift coefficient, as it is the main cause of the excitation mechanism.

In the drag direction, he found a large steady component of the force, with a smaller

fluctuating component superimposed. In the lift direction, he only found the alter-




nating component. When the vortex shedding frequency of the flow was below or at
the tube’s natural frequency, he found that the lift force oscillated predominantly
at the shedding frequency. However, when the shedding frequency was sufficiently
above the natural frequency, the lift force fluctuated at the natural frequency with
the shedding frequency superimposed. The fluctuating drag force always oscillated

at the tube’s natural frequency.

Price and Paidoussis measured the drag and lift on one cylinder in a group
of two or three cylinders under uniform crossflow. They varied the geometry and
spacing between tubes in a range of Reynolds numbers of 1.7 x 10* to 8.6 x 10%.
They successfully predicted the tube response in this range by using superposition
principals. For pairs of cylinders, they found the drag on the rear cylinder to be
minimized when one tube was directly behind the other and the pitch to diameter
ratio was 5.0. They found the drag on the front cylinder to be maximized when the
rear tube was offset 0.2 diameters in the lift direction and 1.5 diameters in the drag
direction. The lift force was found to increase as the rear tube was offset in the
lift direction. The lift reached a maximum at 1.2 diameters for a drag directional
offset of 5 diameters, but decreased thereafter. Experiments involving groups of
three cylinders included the case of the test cylinder being positioned behind two
cylinders which were both the same distance ahead of it in the drag direction.
As the rear tube was moved in the lift direction, the drag was found to behave

symmetrically, while the lift behaved antisymmetrically. The drag was minimized




when the rear tube was directly behind one of the front tubes.

Sin and So measur.ed unsteady forces on a cylinder in an air crossflow by taking
dynamic pressure distributions. They took data at a Reynolds number of about
4.8 x 104, and compared pressure differences along the span of the tube. Chen and
Jendrzejczyk determined forces acting on a square array of tubes with a pitch to
diameter ratio of 1.75 under turbulent crossflow. They measured the fluctuating
drag and lift as a function of Reynolds number, incoming flow conditions, and the
tube’s location within the array. They found that the fluctuating lift and drag had
similar frequencies, and that at low Reynolds numbers, the lift was periodic, while
it was random at high Reynolds numbers. The lift was found to be greater than
the drag, except for the front row tubes at Reynolds numbers below 3 x 10%. They
also found the forces on the first few rows to depend upon incoming flow conditions,
while the system reached a steady state after 3 or 4 rows. Turbulence and forces

were both found to increase with distance along the array.
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IO Experimental Apparatus and Procedure

In the present worl;, forces were measured over both flexibly and rigidly mounted
cylinders of 2.2 cm outer dia.meter,ia.nd over a rigidly mounted cylinder of 1.9 cm
outer diameter, under both single phase and two phase crossflow conditions. Water
was used for the single phase flow, and a mixture of water and air was used for the
two phase flow. Freestream void fractions tested have ranged from 0 to 42%. The
1.9 cm tube was measured as a single tube only, ﬁhile the 2.2 cm tubes were tested
both alone and within a parallel triangular array, as shown in Figure 2. The tubes
in the array which were not being tested for drag were always rigidly mounted.
These untested tubes were made 20 cm long and had plugs glued to each end. Each
plug had a threaded hole in the center to fit a 1040 allan screw which held it in

place through a small hole in the test section wall, as shown in Figure 3.

The tubes being tested extended through the walls of the test section, which
is 20 cm inner diameter in the direction parallel to the cylinders, giving them an
effective length of 20 cm. The rigidly mounted tubes were fixed to the walls of the
test section, also shown in Figure 2. The 1.9 cm tube was bought as 3/4 inch stock
acrylic tube, and the 2.2 ¢cm tube was cut down, from 1 inch stock acrylic tube,
using a lathe in the Student and Faculty Shop at UCLA. The tubes have an outer
diameter tolerance of +0.015 inches. The depth of the inside of the test section is
12.5 cm in the direction normal to both the cylinders and the flow, and is 30 cm in

height. Flow is in the vertically upwards direction.

11
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A schematic of the flow loop is shown in Figure 4. It is primarily formed with
4 inch PVC pipe. The pump supplies water from the secondary reservoir to the
pressure vessel. Utility air, which is available in the lab from the UCLA campus,
is supplied above the water in the pressure vessel. A pressure regulator keeps it at
a pressure of about 40 psi to maintain a constant flow rate from the vessel to the
remaining sections of the loop. The flow exits the pressure vessel through a globe
valve. Recently, a new pump has been installed. Most of the data have been taken
with a 300 GPM pump, but data at the highest Reynolds numbers have been taken
with the newer, 1000 GPM capacity pump. After passing through the globe valve,
the pipeline for the older pump leads to a turbine flow meter, and the pipeline for
the newer pump is split to lead to two turbine flow meters running in parallel. The
additional line for the newer pump is indicated by dashed lines in Figure 4, and the
parallel lines are rejoined before the next section of pipe. Water flow is then turned
upwards to flow vertically through the test section segment of the flow shown in
Figure 5. If two phase flow is desired, utility air is introduced through one or more
injection holes. For each injéction hole, air enters a flow meter through a gate valve.
It passes a pressure gage, which is used to correct the measured flow rate, and a
ball valve releases it to the water. The bubbles are broken up to an average size of
3.6 mm diameter by a series of wire meshes which homogenize the mixture before
it enters the diffuser. After expansion in the diffuser, which expands at angles
of 7 degrees, the flow is straightened in the flow development section. The flow

development section is 30 cm high, and has the same dimensions as the test section.

14
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The flow exits through a converging section which is identical to the diffuser, and

is then released to the secondary reservoir, where air is allowed to escape.

The test section segment of the flow is constructed of half inch plexiglass sheet.
This allowed the use of photography to visualize the flow, and a gamma densitometer
to measure the time-averaged void fraction at various positions, providing informa-
tion on the existence of a wake downstream of the cylinder and the freestream void
fraction. The gamma densitometer consists of a cesium-137 source and an Nal de-
tector. The gamma beam created by the source is collimated by passing through a
small opening in the source’s lead housing. It then passes through the test section,
and it is again collimated by passing through a small opening in the detector’s lead
housing. More rays pass through air than through water. Gamma rays are absorbed
in the detector, producing electronic pulses which are passed on to a single-channel
analyzer. A 1024-channel analyzer sorts the pulses into different channels, depend-
ing on the energy of each pulse, and stores them. The number of pulses is plotted
versus channel number, and the integral under the curve (I) is calculated within
the region of interest among the channels. The value of I is recorded and used to

calculate the void fraction using the following equation:

_ In(I/1)
= (L) (3.1)

where I; is the integral under the curve in the case of pure liquid, and I, is in
the case of pure air, and all integrals are for the same time period. The gamma

densitometer must be calibrated before each run, because each time it is moved

17




with respect to the test section, the gamma beam goes through the test section at
a different angle with respect to the walls (see Figure 6), and a different amount
of the beam is attenuated with the contents of the test section. In general, the
calibration time period is longer than the two-phase flow run time. The integrals
may be normalized by dividing by the run time. For instance, usually the calibration
is run for 100 seconds each for pure water and pure air, but the actual experiment
is run for only 30 seconds for two-phase flow. In the equation, the time difference
in the denominator cancels, but not in the numerator. The value of I; used in the
numerator is normalized by multiplying it by 30/ 100 before it is inserted into the

equation, so the actual equation used is:

__ In(i/31)

= Tn(l]T) (3.2)

The rigidly mounted tube is instrumented with pressure taps to measure the
drag coefficient. The distribution of the pressure taps about the tube is shown in
Figure 7. The 1.9 cm tube has two pressure taps, which are located 180° from each
other, and are .125 inches in diameter. In each tap, a teflon tube of 1 mm inner
diameter and .079 inches outer diameter is inserted, with a 0.4 inch long collar of
tygon tubing .063 inches inner diameter and .125 inches outer diameter holding it
tight in the tap. The tubing and the collar are inserted from the outside of the
cylinder to the inside of it, and then any tubing extending beyond the cylinder
diameter is cut flush to it, resulting in the configuration shown in Figure 7. The

teflon tubing extends through the center of the cylinder and out of the test section,

18
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where it is expanded through a reducing union to a .125 inch inner diameter and
.250 inch outer diameter polyethelene tubing. beough the polyethelene tubing, the
taps lead to an inclined .13 inch inner diameter glass manometer which gives the
pressure difference between the two. After a few experiments, it was determined
that it was impossible to keep bubbles of air from slipping into the taps along
with the water which filled the tubing as the liquid level changed due to change in
pressure ciifference. Because air is compressible, any bubbles must be removed from
the line if we are to read an accurate magnitude of the pressure. To accomplish
this, we installed a valve at each line of polyethele#e tubing which allows the tap
to be connected either to the manometer or to a pressurized water source which
would push the bubbles back out. The pressure difference of the taps under s§atic
conditions is measured with the taps located horizontal from each other. Once
the flow conditions have been set, the tube is turned to provide angles between
the taps and the direction of the flow of 0°, 22.5°, 45°, 67.5°, and 90°, and the
pressure difference between the two is measured at each angle. The static pressure
is subtracted from the pressure under crossflow to give the value of the pressure
difference caused by the flow alone. This value is multiplied by the cosine of the
angle between the taps and the flow, and then integrated over the angle, ¢. The

drag coeflicient is calculated using the following equation:

%D P4
Co= 7 (g + /o Ci cosddg) (3.3)
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where C; depends upon the angle that the manometers are inclined from the hori-

zontal. (See Appendix 3 for the derivation.)

The 2.2 cm tube has pressure taps located at angles of 0°, 30°, —60°, £90°,
£+120°, and 180° from the lower stagnation point. Each tap is .125 inches diameter.
A .063 inch inner diameter and .125 inch outer diameter tygon tubing is inserted
inside each tap in a manner similar to the method used with the 1.9 cm tube.
Another 1 mm inner diameter, .079 inch outer diameter teflon tubing is inserted to
minimize the number of bubbles enterix’lg the tube during the run. Outside the test
section, the tubing is again expanded through a reducing union to .125 inch inner
diameter and .230 inch outer diameter polyethelene tubing. A tap at the lower
stagnation point is connected to each of the remaining taps through a manometer,
and as with the 1.9 cm cylinder, each line has a valve for the expulsion of any

bubbles in the line. The drag coefficient is calculated using the equation:

=D 170 B sgds
Co= T+ /o Cy 5-cosdg) (3.4)

and the lift coefficient is calculated using the equation:
_ gD /2: A
CL= U7 Jo o D stngdd (3.5)

Reynolds numbers (Re;) have been tested in the range of 371 to 21854 for a

single tube, and in the range of 5883 to 32683 for a tube in an array, based on
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superficial liquid i'elocit)' in the test section and the superficial liquid gap velocity,
respectively. The flow meters are calibrated to give volumetric flow rate, and veloc-
ities are calculated by dividing the flow rate by the cross- sectional area of the test
section. For a triangular array, the liquid gap velocity is usually calculated using

the equation

P

Ufef = F:_—I—)Uf, (3.6)

The correction is based on the reduction of the cross-sectional area of the flow in
an infinite array by the insertion of the tubes. (See Figure 8a.) However, the array
used in these experiments does not include enough tubes to be considered infinite.
As such the decrease in cross-sectional area, and hence the increase in velocity at
the gap, are not as large. As can be seen from Figure 8b, the actual gap velocity

may be calculated using the equation

w
U,-,, = me, (3.7)

where n is the number of tubes in the row. For our array, the test section is 12.5
cm wide, and the tube being tested is in a row of three 2.2 cm diameter tubes, so

U;’CI = 2.12Uj,.

The same test section is used for flexibly mounted tubes as for rigidly mounted

tubes. The 2.2 ¢cm flexibly mounted tubes were attached to cantilever beams
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Figure 8b — Reduced Area of Limited Array
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mounted just outside the test section, and had cups over them to keep the wa-
ter in. This setup is shown in Figure 9. This method was used, rather than simply
putting the cantilever beams inside the test section, to prevent the cantilevers from
interfering with the flow, as well as to keep the flow from directly affecting the can-

tilever beams, which were sometimes instrumented with strain gages as described

below.

The vibrations of the flexibly mounted tube are quite large. For this reason, only
the freestream void fraction could be obtained. The accuracy in location desired
for a local void fraction is within a smaller distance than the vibrational amplitude,
and the run time during which the gamma densitometer signal is integrated is much
longer than the p¢riod of vibration of the tube, so a void fraction profile of a flexibly

mounted tube would not be as meaningful as a profile of a rigidly mounted tube.

The drag coefficient on a flexibly mounted tube is measured in two ways. The
pressure distribution is taken in exactly the same way as for a 2.2 cm rigidly mounted
tube, and strain gages are installed on the cantilever beams supporting the tube.
The strain gages used are CEA-06-125UN-120 strain gages. The cantilever beams
are constructed of .018 inch thick spring steel and are 6 mm wide. The strain gages
are located 5.0 cm from the center of the tube, giving the beams an effective length
of 5.0 cm from the applied force to the gage. Two gages are installed on each
cantilever, one on the tension side, one on the compression side. The strain gage

signal is sent to a 3800 wide range strain indicator, and the wheatstone bridge is
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zeroed with the test section sideways to minimize the strain-on the gages at the
calibrated zero. The gages are also calibrated in this configuration, to keep the
calibration curve within the range at which the strain gage respoase is linear. The
ca.lib;ation is performed by putting static loads on the tube, in both the upstream
and the downstream directions, and noting the resulting strain. An example of a

typical calibration curve is given in Figure 10.

The strain indicator is connected to a chart .recorder, which records strain as
a function of time. From this, the mean value of the drag over the tube can be
obtained, as well as the amplitude of vibration. The strain indicator can also be
connected to a spectrum analyzer to get data on the frequencies of vibration of
the tube. When the strain gages are used to calculate the drag coeflicient, the test
section is first filled with water. The flow is stopped, and while the tube is at rest the
chart recorder is run to plot the constant strain on the system as the zero value. The
water flow is then started at the desired liquid velocity, and the air is added, if two-
phase flow conditions are desired. Then, the chart recorder is run again, on the same
chart, to plot the varying strain on the system under flow conditions. To obtain the
drag, several regions of the strain-time plot are chosen for analysis. In each region,
each peak and valley of the curve is measured to determine its distance from the
zero value. The mean height is calculated within each region, and the corresponding
strain and force are calculated. The height, strain, and force are averaged over all of

the regions chosen for the given conditions. A comparison of the values obtained for
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the individual regions gives the uncertainty of our measurements. The difference in
the buoyancy force acting on the tube submerged in pure liquid, and the buoyancy
force on the tube in the two-phase mixture is added to the force calculated from

the plots, and the result is the net drag force.

The flexibly mounted tube weighs 0.0775 kg. Reynolds numbers in the range of
428 to 8226 have been tested for a single flexibly mounted tube, and in the range

of 4703 to 17428 for a flexibly mounted tube in an array.
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IV Discussion of Results for a Rigidly Mounted Tube

For a rigidly mounted tube, observations were made of drag coeflicient, lift
coefficient, pressure distribution, and void fraction profile. The data are tabulated

Taw

in Tables 2A to 2D of Appendix 2.

The coeflicients of drag on a single rigidly mounted tube are plotted versus void
fraction, on a semilog scale, for various Reynolds numbers, in Figure 11. Increasing
void fraction is found to very strongly increase the drag coefficient at lower Reynolds
numbers, and to more weakly increase the drag coefficient at higher Reynolds num-
bers. At a Reynolds number of 428, the drag coefficient for a void fraction of 17%
is about 450. This is about 375 times 1.2, the value for single-phase water flow. At
the same Reynolds number, the drag coefficient for a void fraction of 36% is 717,
about 600 times the value for single-phase flow. For a Reynolds number of 8226,
and a void fraction of 36%, the drag coefficient is 4.3, which is only about 4 times
1.1, which is the value for pure water flow. This is a much smaller increase than
that at the smaller Reynolds number, although it is quite a substantial one. For a
Reynolds number of 21854, however, the drag coefficient at a void fraction of 4.6%
is only 0.81, which is actually less than (about 0.6 times) the single-phase value
of about 1.3. This shows that the effect of void fraction on the drag coefficient
undergoes a change at very high Reynolds numbers. As the void fraction is further
increased, the drag coefficient does begin to increase again, though, up to 1.99 for a

void fraction of 24%, which is a drag coefficient of about 1.6 times the single-phase
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value.

In Figure 12, the d.rag coefficient data are again plotted, this time versus Reynolds
number for various void fractions, including 0.0, and on a log-log scale. The lines
plotted through the data are the curves fitted using the least squared method.
Plotted on the same figure is the well established correlation found by Roshko, (see
Sabersky, Acosta, and Hauptmann (1971]). The drag coefficients obtained at zero

void fraction were within 15% of the correlated values.

The pressure distribution for a Reynolds number of 8226 and a void fraction of
0.25, found by the pressure taps, is plotted in Figure 13, going around the tube
starting at the lower stagnation point. The pressure plotted is the difference in
pressure from that at the upper stagnation point. The drag coefficient was obtained
by taking the integral of the pressure multiplied by the cosine of the angle around
the tube. Although the lift coefficient is always expected to be zero by theory, it
could similarly be obtained by taking the integral of the pressure multiplied by the
sine of the angle around the tube. The slight asymmetry of Figure 13, which was
also found in the void profiles, is the cause of the non-zero lift measurement. The
magnitude of the lift coefficient is indicative of the extent of error in the drag data,
and is included in Appendices 1 and 2. The lift is at least an order of magnitude
less than the drag at high velocities, and is at least two orders of magnitude less

than the drag at lower velocities.

In Figure 14, data taken by Yokosawa et al. (1986) have been plotted in a similar
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manner, for comparison. The data shown here are for a Reynolds number range of
2.5 x 10* to 1.3 x 10%, and a void fraction of 0.06. Ir the paper, they plotted the

pressure coefficient, defined as:

_ (Psur — Poo)
Cpour = T Am (4.1)

where p,,, is the static pressure on the cylinder surface, and p,, is what the static
pressure which would be at the same position without the test cylinder, while the
pressure distribution in Figure 14 is plotted is the difference between that at the
position about the tube and that at the upper stagnation point, for comparison
with the results given in Figure 13. (1 Pa is equivalent to about 500 mm water on

our scale.) This was done by using the following equation:

AP = APO(CPJuré - Cp:urISO) (42)

Figure 15 is a vertical void profile, also for a freestream void fraction of 0.25, and
at a Reynolds number of 1304. Approaching the tube from below, the void fraction
is seen to gradually increase until just below the lower stagnation point, while a
decrease in void fraction (2 "bubble wake") is detected immediately downstream
of the cylinder, which gradually returns to the freestream value. This is further
illustrated in Figure 16, a plot of the circumferential void profile at various radii,
for the same conditions of liquid Reynolds number and freestream void fraction. It
had b.een expected that centrifugal force on the liquid would encourage the bubbles

to move towards the cylinder, but as the profiles indicate, they are following the
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surface of the tube to its equator, and then buoyancy is causing them to rise straight
up. Figures 17 and 18, vertical and circum{erential void profiles at a liquid Reynolds
number of 8226 and a freestream void fraction of 0.25, indicate that the buoyancy
effect is somewhat diminished at higher flow rates. The wake in bubbles illustrated
by the circumferential void profiles is compatible with the pressure distribution data,
as is the slight horizontal asymmetry in void profile which might cause a weak lift
force. However, the lift coefficients measured were weak, with random sign changes,

and are considered to be error, as mentioned earlier.

Figure 19 shows the drag coefficient for a rigidly mounted cylinder in a normal
triangular array of tubes, plotted versus void fraction, for Reynolds numbers of 4703,
17429, and 32683. Plotted on the same figure is the correlation found by Zukauskas
(1989), for single phase flow. When the values in this figure for a Reynolds number
of 17429 are compared to those in Figure 11 for a Reynolds number of 15427 at the
same void fractions, it can be seen that the drag coefficient on a cylinder in an array
of tubes has comparable to that on a single cylinder, when the Reynolds number

based on the gap velocity is the same as that of the single tube.

The pressure distribution for a Reynolds number of 17429 and a void fraction
of 0.25, found by the pressure taps, is plotted in Figure 20, going around the tube
starting at the lower stagnation point. The plotted pressure difference is the differ-

ence in pressure from that at the upper stagnation point. The freestream velocity

of the flow is the same as that of the flow in Figure 13, and a comparison of the two
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‘ plots shows that the magnitude of the pressures is increased with the additional

tubes, but the shape of the curve is qualitatively similar.




V Discussion of Results for a Flexibly Mounted Tube

For a flexibly mounted tube, observations were made of drag coefficient, lift
coefficient, and pressure distribution. The data are tabulated in Tables 2E to 2G
of Appendix 2. The coefficients of drag on a single flexibly mounted tube are
plotted versus void fraction, for various Reynolds numbers, in Figure 21. The
results are not noticably different from those for a rigidly mounted tube. Again,
increasing void fraction is found to very strongiy increase the drag coefficient at
lower Reynolds numbers, and to more weakly increase the drag coefficient at higher

Reynolds numbers.

In Figure 22, the drag coeflicient data are again plotted, this time versus Reynolds
number for various void fractions, including @ = 0. Again, the well established
correlatioﬁ found by Roshko (from Sabersky, Acosta, and Hauptmann [1971]) is
included. The Reynolds numbers tested at zero void fraction still come within 15%

of the correlated values.

The pressure distribution for a Reynolds number of 8226 and a void fraction of
0.25, obtained from the pressure taps, is plotted in Figure 23, with angular position
starting from the lower stagnation point. The pressure plotted is again the difference
in pressure from that at the upper stagnation point. The mean lift coefficient still
is not quite zero, and is tabulated in Appendix 2. When the lift coeflicients for a
flexibly mounted tube at a Reynolds number of 8226 are compared to those for a

rigidly mounted tube at the same Reynolds number (sée tables 2B.1f and 2F.1b),
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it can be seen that the lift coefficient on the flexibly mounted tube tends to be
slightly smaller than that on the rigidly mounted tube, although this is not always
the case. The randomness seen in the comparison strengthens the argument that

the lift exists due to experimental uncertainty.
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VI Conclusions

1. The drag coefficient over a single cylinder, whether rigidly or flexibly mounted,
is very strongly increased by the addition of air at low Reynolds numbers. As the
Reynolds number based on superficial liquid velocity increases, the effect of the

addition of air is diminished.

2. At very high Reynolds numbers, the effect on the drag coefficient by the
addition of air changes from that experienced at lower Reynolds numbers. By the
time the Reynolds number reaches a value of 22000, the addition of a small amount
of air in the flow actually decreases the drag coeflicient slightly, and as the void
fraction increases, the drag coefficient eventually returns to the single-phase value,

and then continues to increase.

3. At lower Reynolds numbers, the air bubbles in the flow tend to follow the
tube to its equator, and then the buoyancy forces on them overcome any centrifugal
forces, and cause them to rise. At higher Reynolds numbers, the centrifugal forces
begin to overcome the buoyancy forces, and a higher concentration of bubbles begins

to collect behind the tube.

4. There is not much difference between the drag coefficient on a rigidly mounted
tﬁbe, and that on a flexibly mounted tube. All differences measured were within

the uncertainty of the data. There also is not much difference between the drag

coefficient on a single tube and that on a tube located within an array.
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Appendices
Appendix 1 - Error Analysis

The sources of error for these experiments included error in void fraction mea-
surements, error in Reynolds number measurements, and error in the forces mea-

sured. Each of these will be discussed below.
Error in Void Fraction:

The void fraction measurements were made using the gamma densitometer and

were evaluated with the following equation:

_In(I/1)
&= L/ 1) (31)

The first source of error in the void fraction measurements which will be discussed
is the error due to limitations of the gamma densitometer. This includes inaccuracy

Ao

in the measurements of I,I;, and I;. The resulting error in void fraction, £2 is

found using the formula

= 5_0’ 2 é‘i 2 bor 2v1/2
Aa—((MAI) +(5I¢AII) +(61¢AI°) ) (A1.1.1)
Substitute
ba 1
1 = Tin(1/T) (A1.1.2)
ba a-—1
and
ba _ _—In(I/1) (A1.1.4)

§I, — I(In(I,/1))?
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to get:

1 . ((a 1)AL

Aa = 71;(-1-3-—/15(@1/1)’ T )4 (et )’)‘/2 (Al1.1.5)

which will henceforth be referred to as Aaun:- éﬁgﬂ* was usually found to be

under £10%, but for void fractions below 20%, it could be as high as +21%.

For void profiles taken very near the tube, errors in the void fraction due to
errors in the measuring position also arose. If the distance of the beam from the

tube center is called r, then the total error in void fraction could be calculated as:
2, (S 2\1/2
Aa = ((Aagunt)® + (E;Ar) ) (Al1.1.6)

and the total error in void fraction was usually found to be under £12% of the void
fraction, but for void fractions below 20%, it could be as high as +60% of the void

fraction.
Error in Reynolds Number:

Liquid Reynolds number is defined by Re; = %2, and sources of error in
Reynolds number include error in liquid flow rate, resulting in an error of U, and

temperature variations, resulting in an error of v.

The error in flow rate as measured by the turbine flow meter is rated at +0.25%.

Since the superficial liquid velocity is calculated as

U= (A1.2.1)

Acfou-uction

the error in velocity is also +0.25%.
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For the high Reynolds numbers studied using the 1000 GPM pump, a variation
in temperature of £2°C was found. In the temperature range of the experiments,
this resulted in a variation in kinematic viscosity of £4.65%. The total error in

Reynolds number is calculated as:

ARe, = ((aRe'AU)’+(6Re'A Yy (A1.2.2)
where
5;;’ = % (A1.2.3)
and
6?:" = '[V];D (A1.2.4)

The resulting error in Reynolds number is calculated as:
ARe, = (( =AU + ( —UD,, )?)1/2 (A1.2.5)
giving an overall error in Reynolds number of +4.66%.
Error in Forces (or in Cp):

Error occurs in the forces measured on the tube for both methods used in the
measurements. For the strain gage measurements, the force is directly proportional
to the strain readings, so the error in force is simply the same percentage as the error
in strain. There are two sources of error for the strain readings, error in calibration,
and uncertainty of the measurements. To determine the total error in the strain

readings, these two should be directly added. The error in calibration was found to
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be +4%, and the uncertainty of the measurements was +16.8%, so the total error

in strain gage force measurements was £+20.8%. The drag coefficient is calculated

as:
Fp
e R T Y Al3.1
Cp =1 [2pwU2 A ( )
so
6Cp 2
= Al3.
6Fp pwUfA ( 3 2)
and -
6Cp —4Fp
= Al3.
5U1 prUl3 ( 3 3)
giving an error in drag coefficient of:
2 —4Fp
ACp = ((—5—AFp)? AU)?)H? Al.3.4

which has a value of +4.6%.

The drag coefficients measured using the pressure distribution methods were

calculated as:

Cp = gD o

/ cx——cosqsdc,ﬁ) (3.4)

This method has possibilities for error in velocity, void fraction, pressure, and angle.

Using:
56%1" “fj‘f" (A1.4.1)
{%D - 22%‘_’; (A1.4.2)
and
Ko 9£‘g Acosp (A1.4.4)
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we obtain:

’Emﬁ

2Cp
ACp = (=AU +

aDr
207

gDCy
U:D

Aa)? +( A*cospAd)?)/? (A1.4.5)

which gives an error in Cp of £15%.
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i Appendix 2 - Tabulation of Data

This appendix includes tables of data listing the drag coefficients and lift coef-
ficients over both rigidly and flexibly mounted single tubes and tubes in arrays. It
also includes data for the pressure distributions about these tubes, in mm of water,

as well as data for the void fraction profiles for single rigidly mounted tubes.

iy
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Table 2A - Coefficient of Drag Over a Rigid Tube
Table 2A.1 - Single Rigid Tube

Table 2A.1a Re; = 371

Run | & Cp

(1) |0.16 | 305.7
(1) |o.23 495
(2) | 0.23 | 4296
(1) | 031} 7205

(2) | 031 7735

(1) | 0.39 | 1027.1

Table 2A.1b Re; = 428

Run| a Cp

(1) |0.16] 453
(1) |0.23 | 597.3

(1) | 0.31]6714

(1) {0.39 | 7444

a0




Table 2A.1¢c Re; = 1129

Run | a Cp

(1) {0.17 ] 48.2
(1) {0.25] 776
(1) | 0351118
(1) | 0.41] 1244
(2) {041]1165

(3) |0.41 | 1208

Table 2A.1d Re; = 1304

Run | «a Cp

(1) |0.17 | 40.75
(1) oos| 7.3
(1) | 0.35| 105.6

(1) |0.41 1307
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Table 2A.1e Re; = 1922

Run| a | Cp

(1) |07 198
(1) | 0.25 | 26.2
(1) |035 36.5
(1) | 041|427

(2) {0.41| 465

- Table 2A.1f Re; = 2220

Run| a Cp

(1) |o017]181
(1) [0.25]24.5
(1) | 0.35 | 38.3

(1) {0.41]46.2
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Table 2A.1g Re; = 7123

Run| a | Cp

| o {117
@ | o |12
(1) |0.17]2.77
(1) |0.25 | 3.92
(1) | 0.36 | 6.49

(1) | 0.40 | 7.76
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Table 2A.1h Re; = 8226

Run| a CD.

| o |1.34
@] o |11
(1) |0.05|2.16

(1) {0.11]2.27
< (1) |0.17] 2.66
(1) |o0.25]2.99
(1) |0.36 | 4.33
2) |0.36 | 4.03

(1) | 0.40 | 4.51

(2) {0.40 | 4.82




"iﬂ*\\

Table 2A.1i Re; = 15427

Run| « Cp

(1) | o |o.s22
(1) | 0.052 | 1.029
(1) | 0110 | 1.332
(1) | 0.182 | 1.519
(1) | 0.263 | 2.066
(1) | 0.360 | 2.391

(1) | 0.413 | 3.423

Table 2A.1j

Re; = 21615, Re; = 21854

Re; a Cp

21615 0 1.27
21854 | 0.046 | 0.807
21854 | 0.158 | 1.377

21854 | 0.243 | 1.991
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- Table 2A.2 - Rigid Tube in an Array

Table 2A.2a Re; = 4703

Run a Cp

M| o |or24
(1) | 0.056 | 0.889
(1) | 0.10 | 0.843
(1) | 017 | 2.235
(1) | 0.25 | 2.686
(1) | 0.36 | 3.61

(1) | 0.42 | 412

Table 2A.2b Re; = 17429

Run a Cp

1| o |o0.73s
(1) | 0.054 | 0.788
(1) | 0.11 |0.892
(1) | 017 | 0.962
(1) | 0.25 | 1.01
(1) | 0.36 | 1.29

(1) | 0.40 | 1.39

t6




Table 2A.2¢c Re; = 32683

Run «a Cp

(1| o }o.522
(1) |0.057 | 0.484
(1) |0.119 | 0.500
(1) {0.198 { 0.550
(1) |0.281 | 0.774

(1) | 0.38 | 1.02
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Table 2B - Coefficient of Lift Over a Rigid Tube
Table 2B.1 - Single Rigid Tube

Table 2B.1a Re; = 428

Run| a CL

(1) |0.16 | -18.8
(1) |0.23| -8.16

(1) 031 -21.8

(1) |0.39 | +20.4

Table 2B.1b Re; = 1304

Run| a CL

(1) {017 | -2.49
) (1) {0.25| -1.54

(1) | 0.35 | +3.85

(1) | 041 -5.16

Table 2B.1c Re; = 1922

Run| a CL

(1) | 0.41 | +0.84
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Table 2B.1d Re; = 2220

Run| «a Ct

(1) 047 | +1.21
(1) |025] 0.74

(1) {035 -0.31

(1) | 0.41] -0.55

Table 2B.1e Re; = 7123

Run| a | Cp

)| o {oa2s
(1) |0.17 | 0.50
(1) |0.25 | 0.90
(1) | 0.36 | 1.56

(1) |0.40 | 1.70
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Table 2B.1f Re; = 8226

Run| a CL

() | o | o.0867
@ | o | 0135
(1) |0.05| 0.043
(1) |0.11{-0.0104
(1) |0.17}-0.0163
(1) | 0.25| -0.130
(2) | 0.25 | +0.169
(1) |0.36 | -0.379
(2) | 0.36 | -0.5168
(1) | 0.40 | -0.825

(2) | 040 | -0.483
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Table 2B.1g Re; = 15427

Run| « CL
(1) 0 -0.0603
(1) jo0.052 | -0.102
(1) | 0.11 | +0.0225
(1) 10.182 | +0.0439
(1) ] 0.263 | -0.0018
(1) | 0.36 | -0.0258
(1) | 0.413 | -0.0380

A,

Table 2B.1h Re; = 21615

Run |

CL

(1)
(1
(1)
(1)

0.046

0.158

0.243

0.1330

0.0284

0.2168

0.0394

kg

71




. Table 2B.2 - Rigid Tube in an Array

Table 2B.2a Re; = 4703

Run a CL

(1| o |o.024
(1) | 0.056 | -0.472
(1) | 0.10 |-0.266
(1) | 017 |-0.414
(1) | 0.25 | -0.444

(1) | 0.36 |-0.698

(1) | 0.42 |-0.635

Table 2B.2b Re; = 17429

Run a CL

(1) { o | -0.0071
(1) | 0.054 | -0.00001
(1) | 0.11 | -0.068
(1) | 017 | -0.112
(1) | 0.25 | -0.054
(1) | 0.36 | -0.057

(1) | 0.40 | -0.032




Table 2B.2¢ Re; = 32683

Run a CL

1 | o | -0.197
(1) |0.057| -0.115
(1) |0.119 | 4+0.0565

(1) |0.198 | -0.330
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Table 2C - Pressure Distribution About 2 Rigid Tube

Table 2C.1 - Single Rigid Tube

Table 2C.1a Re; = 428

¢ | A*(a=10.16) | A*(a=0.23) | A*(a =0.31) | A*(a = 0.39)
0° 103.5mm 115mm 131.5mm 151.5mm
30° 78mm 84mm 68mm 83.5mm
60° 23.5mm -41.5mm -71.5mm -113.5mm

120° Smm -56mm -83.5mm -79.5mm
180° Omm Omm Omm Omm
270° -13.5mm -78.5mm -127mm -154.5mm
300° 22mm -28mm -91mm -132mm
330° 66.5mm 64mm 56.5mm 76mm
360° 103.5mm 115mm 131.5mm 151.5mm
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Table 2C.1b Re; = 1304

¢ | A%(a=0.17) | A*(a=0.25) | A*(a =0.35) | A*(a = 0.41)
0° 94mm 163mm 228mm 285mm
30° S9mm 108mm 153mm 195mm
60° -20mm -10mm -47mm -18mm
120° 1mm -14mm -39mm -44mm
180° Omm Omm Omm Omm
270° -48mm -73mm -117mm -123mm
300° -26mm -34mm -47mm -69mm
330° 65mm 117mm 170mm 198mm
360° 94mm 163mm 228mm 285mm
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Table 2C.1¢c Re; = 2220

¢ | AY(a=0.173) | A%(a=0.245) | A*(a =0.349) | A*(a = 0.41)

0° 118mm 167mm 259mm 310mm
30° 75mm 112mm 184mm 212mm
60° -62mm -73mm -47mm -47mm
120° -5mm -27mm -18mm -35mm
180° Omm Omm Omm 0mm
270° -50mm -101mm -101mm -130mm
300° -20mm -60mm -51mm -81mm
330° 87mm 116mm 169mm 198mm
360° 118mm 167mm 259mm 310mm
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Table 2C.1d Re, = 8226

io Ay A LY ar A as ar
5 {(a=0){(=0.05) | (a=0.11} | (a =0.17) | (o = 0.25) | (@ = 0.36) | (o = 0.40)
0° | l4lmm | 220mm 244mm 255mm 298mm | 395mm 428mm
; 30 | 10lmm | 130mm 95mm 93mm 134:&::;} " 212mm 225mm
90° | -26mm -52mm -118mm -180mm -249mﬁm§m -206mm -219mm
120° | 10mm 53mm -4mm -109mm -113mfr§ :'I -72mm -96mm
$180° | Omm Omm Ormm Omm Omr_r_xlég Omm Omm
2:5° : 9mm 6imm Tmm -65mm ~110_131£8 -66mm -9lmm
; 270¢ | -9mm -42mm -138mm -216mm ~275mn: -276mm -285mm
1 300° | -19mm 52mm -5mm -124mm :-ISS::H;,B -146mm -156mm
i L~
: [360° | 14lmm | 220mm | 24dmm | 255mm | 298mm| 3%mm | 423mm




Table 2C.1e Re; = 15427

-] A a° as .y ac ot A
{0=0)1{(e=003)|(a=10.11) | (@a=0.18) | (a =0.26) | (a = 0.36) | (e = 0.41)

0° | 210mm | 19Imm 212mm 244mm 294mm 396mm 473mm
30° | &lmm 125mm 156mm 187mm 229mm 277mm 328mm
90° | -87mm | -123mm -164mm -180mm -183mm -154mm -141mm
120° | -26mm -42mm -63mm -92mm -80mm -108mm -114mm
180° | Omm Omm Omm 0mm O0mm Omm Omm
2:0° | ~49mm -50mm -60inm -56mm -85mm -114mm -105mm
270° | -91mm | -134mm | |-167mm -194mm -192mm -177mm -157mm
300° | -13imm | -143mm -163mm -178mm -174mm ! -221mm -170mm
360° | 210mm | 191mm 212mm 244mm 294mm l 396mm 473rom

i
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Table 2C.1f Re; = 21615,a = 0, and Re; = 21854,a # 0

¢ | A*(a=0)] A*(a=0.05) | A*(a =0.16) | A™(a = 0.24)
0° 431mmo 350mm 486mm o 609mm o
30° 317mm 266mm 388mm 524mm
N s -q¢ -
90° -116mm -268mm -285mm -274mm
_eu? - ~q1! -5e2
120° -16:5151';? -33:{112?; -93mm g -93mu-17 )
180° Omm Omm___ Omm _ /4 Omm ,,
. ) ) )
240 33r£1m ; 81£nlt{r§ ; 32mm i 6mm
21 270° | -107mm -193mm -261mm -283mm
S I ~1¢] Tt
300° | -155mm /| -320mm -328mm -328mm
-t e -g'v -9
360° tL?llmmD 350mm 486mm 609mm
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Tzble 2C.2 - Rigid Tube in an Array

Table 2C.2a Re;gqp = 4703

o a° A* AC 4a° A* a° a°

{e=0 | (a=0.056) | (@ =0.10) | (a = 0.17) | (a = 0.25) | (a = 0.36) | {a = 0.42)
i
(1hd 14.5m~ 34.%mm 11.7mm 65.6mm 78.6mm 86.3mm 95mm

30° 43mo 20.2mm 19.7mm 31.1mm 25.1lmm -4.8mm -10mm

90° | -37.5mm | -39.8mm -44.3mm -174mm -20.4mm -55.3mm -60mm

120° | -20.5mm -5.3mm -9.1mm -0.9mm

0.lmm -18.8mm -27mm
180° . Oz Omm Omm Omm Omm Omm Omm
250° i Sl Smm -7.3mm -7.3mm -4.9mm -2.6mm -11.5mm -I0mm
2:0° | 473z | -64.8mm -60.8mm | -424mm | -50.9mm | -106mm -119mm

300° | -0.3mo -33.8mm -62.8mm -46.2mm -50.4mm -58mm -49mm

360° l4.5r:u:.i 34.7mm 41.7mm 65.6mm 78.6mm 86.3mm 95mm




Table 2C.2b Reyge, = 17429

o LY ar 4 as A ar y.\g
{a=0) | (@=0.054) | (e =0.11) | (a =0.17) } (a = 0.25) | (e = 0.36) | (a = 0.40)
l 0° | 287 332mm 376mm 407mm 451mm 522mm 578mm
i 30° | 11Smm 153mm 142mm 136mm 199mm 133mm 145mm
- 90° | <117mm | -108mm -12lmm | -120mm | -180mm | -170mm | -158mm
126° | -70mm -3imm -42.3mm | -66.9mm -113mm -155mm -159mm
i80°{ Omm Omm Omm Omm Omm Omm Omm
i 2402 | 62mm 4.3mm -16.5mm -47mm -80mm -92mm -101mm E
é 270’ 1 -13lmm | -i49mm -197mm -224mm -263mm -250mm -240mm ;
i 306° | -23mm -431nm 18.5mm | -19.5mm | -61.2mm -62mm -59mm i
| 360° | 287mm 332mm 376mm 407mm 451mm 522mm §78mm ‘
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Table 2D - Void Fraction Profiles for a Single Rigid Tube
Table 2D.1a Re; = 428,ay, = 0.025

Gamma Beam Normal to Tube

Run | Distance Above a
Tube (cm)

(1) -27 0.0249
(3) -21 0.0237
1) ~12 0.0223
(3) -11 0.0287
(3) -5 0.0246
(1) -4 0.0161
(3) -2 0.0263
3) +6 0.0330
(1) +9 0.0341
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Table 2D.1b Re; = 428,ay, = 0.025

Gamma Beam Parallel to Tube
Run | Distance Above a
Tube (cm)
2) -24 0.0093
(4) —24 0.0344
2) -14 0.0240
\ (4) ~-14 0.0206
(2) -8 0.0144
(4) -8 0.0259
(4) -3 0.0267
2 +7 0.0036
(4) +8 0.0205
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Table 2D.2a Re; = 428,ay, = 0.15

Gamma Beam Normal to Tube

Distance Above | «
Tube (cm)
-38 0.163
2.1 0.179
4.2 0.165
8.2 0.157
14.2 0.155
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Table 2D.2b Re; = 428

Gamma Beam Parallel to Tube

Distance Above a a

Tube (cm) (ays = .12) | (ay, = .15)

-9 0.122 -
-1 - 0.136
+3 - 0.087
+4 0.083 -
+6 - 0.120

+7 0.108 -




Table 2D.3
Re; = 428,ay, = 0.13,
R = 3 ¢m from tube center

Gamma Beam Parallel to Tube

0° 10.174

90° | 0.167

135° { 0.159

- 180° | 0.110

225° 1 0.139

270° | 0.174
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Table 2D.4 Re; = 428,a4, = 0.31

Gamma Beam Parallel to Tube

¢ a at a at a at
R=23cm |R=28cm | R=33cm
0° 0.416 0.410 0.402
90° 0.334 0.335 | 0.326
135° 0.276 0.317 0.311
180° 0.267 0.283 0.293
225° 0.304 0.303 0.308
270° 0.295 0.308 0.282

Table 2D.52 Re; = 428,05, = 0.25

Gamma Beam Parallel to Tube

¢ a at a at a at
R=25cm | R=30cm |R=4.0cm
0° 0.314 0.306 0.288
90° 0.241 0.238 0.210
135° 0.201 0.214 0.218
180° 0.215 0.218 0.232
225° 0.206 0.226 0.221
270° 0.256 0.258 0.249
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Table 2D.5b Re; = 428,ay, = 0.25

Gamma Beam Parallel to Tube

Distance From a o

Tube (cm) | Above Tube | Below Tube

1.5 0.126 | 0283

2 0.164 0.324
3 0.211 0.301
4.5 0.230 0.266
7 0.249 0.256

0.249

0.244




Table 2D.5¢c Re; = 428,ay, = 0.25

Gamma Beam Parallel to Tube
¢ a at o at a at a at
R=1.5cm R=20cm |[R=45cm |R=70cm

0° 0.283 0.324 0.266 0.256
45° 0.265 0.294 0.238 0.189
90° 0.211 0.229 0.181 -
135° 0.119 0.185 0.227 0.192
180° 0.126 0.164 0.230 0.249
225° 0.148 0.167 0.237 0.216
270° 0.235 0.248 0.227 -
315° 0.285 0.292 0.251 0.208




Table 2D.6a Re; = 2220,ay, = 0.35

Gamma Beam Parallel to Tube

Distance From a a
Tube (cm) | Above Tube | Below Tube
1.5 0.198 0.322
2 0.245 0.397
3 0.320 0.396
4.5 0.334 0.365
7 0.345 0.361
10 0.348 -

Table 2D.6b Re; = 2220,a4, = 0.35

Gamma Beam Paralle] to Tube

@ a at a at a at a at a at
R=15cm |R=20ecm |R=30cm |R=45em | R =6.0cm

45° 0.306 0.352 0.382 0.328 0.283
90° 0.268 0.296 0.330 0.279 -
135° 0.225 0.275 0.322 0.317 | 0.265
225° 0.252 0.287 0.333 0.321 0.276
270° 0.298 0.332 0.342 0.282 -
315° 0.336 0.374 0.389 0.337 0.285




Table 2D.7a Re; = 8226, ay,) = 0.25, ay,2 = 0.40

Gamma Beam Parallel to Tube

Distance From

ay ay az az
Tube (cm) | Above Tube | Below Tube | Above Tube | Below Tube
1.5 0.024 0.191 0.336 0.212
3 0.315 0.274 0.439 0.432
4.5 0.297 0.268 0.418 0.423
7 0.289 0.265 0.408 0.413
10 0.277 0.256 0.416 0.418
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Table 2D.7b Re; = 8226, ay, = 0.25 P
y &fs 5@ ‘& ,,/U~f§ Jju_
Gamma Beam Parallel to Tube / '
¢ a at a at a at a at
R=15cm | R=20em |R=3.0cm | R =4.0cm
0° o250 > | 0.200 0.283 0.282
n.2°%
45° 0.237 0.266 0.278 0.265
90° 0.245 031  0.269 0.277 0.235
». 29
135° | 0.155 0.297 0.282 0.261
. 0- 313
e | Comese 0 0.293 0.307 0.303
Sl 2250 | aatE opF 020 0.287 0.256
or0c |  0.24079° 0.243 0.276 0.243
315° | @253 023 0210 0.279 0.265

’Q /
/Ejrff wi t 2N nofe IbO’b{Q gugv/m : ) Pl,[ ’ bod Of‘/

CA A
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Table 2D.7¢ Re; = 8226,ay, = 0.40

Gamma Beam Parallel to Tube
¢ o at a at a at a at
R=15m|{R=20cm|R=30cm |R=40cm
0° 0-389.2>¢  0.332 0.443 0.437
45° 0-361-03P7 0.409 0.434 0.398
90° 0.3;1%_ § 0.395 0.412 0.378
135° 0.250 ool 0.428 0.423 0.412
180° | 0.186 0-3¥7 0.417 0.446 0.448
225° 8451 0.3 0.421 0.420 ©0.397
270° 0.385 0.345 0.415 0.393
036 7
315° 0:390-, 34y 0.352 0.436 0.402
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Table 2D.7d Re; = 8226,
Qfs1 = 0.25, Qfs2 = 0.40

Gamma Beam Parallel to Tube

Distance From a; a;
Tube (cm) | Above Tube | Above Tube
1.5 0.180 0.317
1.6 0.219 0.361
1.7 0.270 0.395
1.8 0.262 0.390
1.9 0.247 0.394
2.0 0.270 0.397
2.1 0.254 0.397
2.5 0.305 0.433




Table 2E - Coefficient of Drag Over a Flexibly Mounted Tube

Table 2E.1 Single Phase Flow

Re; | Cp

1304 | 1.037

1751 | 0.730

2220 | 0.863

2628 | 0.973

Table 2E.2 Re; = 1304

Run} a Cp

1y | o | 088
@] 0 | 104
(1) |o0.23 ! 39.26

(1) |0.33]69.11

(1) |0.37] 1108
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Table 2E.3 Re; = 8226

a | Cp Strain | Cp Press.
Gages Dist.

0 1.31 1.22
0.17 1.87 2.74
0.25 2.38 3.20
0.36 3.16 4.82
0.40 3.48 5.05
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Table 2F - Coefficient of Lift Over a Flexibly Mounted Tube

Re, = 8226

Run} a CL

1) | o | o.019
2 | o |-0.057m
1y {0.17] 013
@) |0.17 | 0.0778
(1) {0.25 | -0.127
(2) |0.25] -0.163
(1) {0.36 | 0.086
(2) {0.36 | -0.09%

(1) | 0.40| o0.291

(2) | 0.40 -0.0186
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Table 2G - Pressure Distribution About a Flexibly Mounted Tube

Re; = 8226
¢ A AT A A A\
(a=0)|(a=0.17) | (a = 0.25) (ﬁ = 0.36) | (a = 0.40)

0° | 95mm | 270.5mm | 325.5mm | 491.5mm | 575.8mm
30° | 5lmm | 143.5mm | 161.5mm 256mm 276.8mm
90° | -1lmm | -25.3mm | -105.7mm | -95.5mm | -100.1mm
120° | -30mm | -7.5mm -43mm -31mm -8.4mm
180° | Omm Omm Omm Omm Omm
240° | -lmm 22.8 -1.25mm 48mm 103.8
270° | -40mm | -37mm -162.5mm | -171.6mm | -189.8mm
300° | 15mm 7lmm -124mm | -101.5mm | -75.5mm
360° | 95Smm | 270.5mm | 325.5mm | 491.5mm | §75.8mm
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Appendix 3 - Derivation of Equations for Coefficient of Drag and Coefficient of

Lift

Equation 3.3:

If P, is the pressure at the angle ¢ about the cylinder, and P, is the pressure at

¢ + 180°, then the total upwards force on the cylinder per unit length is:
2D
F=2 /o" 7 (P~ Pu)cosgds (A3.1.1)
and
P1 - Pg = pwg(6 + ClA) (A31.2)

where C, depends upon the angle of the manometers, A is the pressure difference
read on the manometers, in mm, and § is the vertical distance between the cylinder

surface at ¢ and at ¢ + =, or

é = Dcos¢ (A3.1.3)
for a cylinder of diameter D. The total force is now:
/2 7 ’
Fi=D [ (Dpwgeoss + pwyCicos¢)ds (43.1.4)
or
=Ip? 2 [P A
F= 1 Dpwg+ D ,[; pwgCchos¢d¢ (A3.1.5)
The buoyancy force is:
D2
= pwg1r4—(1 - a) (A3.1.6)
so the drag , which is Fp = F; — F} is:

=T 2 [*2 a
Fp = 4D pwga+ D /0 pwgCh Dcos¢d¢ (A3.1.7)
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since

Fp
CD - %PH’UzD
we have:
_ 29D = =2 A
Co=T7Ca+ [ 1 cs0dd) (3.3)
Equation 3.4:

If P, is the pressure at the upper stagnation point of the cylinder, and P is the

pressure at the angle ¢ about the cylinder from the lower stagnation point, then:

P-P
pwg

= 6 + ClA. (A3.2.1)

where C; depends upon the angle of the manometers, A® is the pressure difference
between ¢ and the upper stagnation point read on the manometers, in mm, and § is
the vertical distance between the cylinder surface at ¢ and at the lower stagnation
point, or

6 = —cos¢ —

2

cosh~ 5 (43.2.2)

for a cylinder of diameter D.

If the total force per unit length on the cylinder is called F,, and is positive in

the upstream direction, then:

F.t ¢=2x PO -~ P

—_— D/2 d A3.2.3
Pwg é=0 / Pwy cosgdd ( )
or
F, 2x D .
= /o 7 (6 + C1a")cosgds (A3.2.4)
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/2." D scosgas = [ 2 (cosé - 1)cossas (43.25)

2
/ (cos’*¢ — cos¢p)dg = 7rD (A3.2.6)
so:
2
i "—Q- / C,A° 2cos¢d¢ (A3.2.7)
pPwy
If F, is the buoyancy force,
Fb XD2
—_—=——(1- A3.2.8
=T -a) (43.28)
and the drag force Fp = F; — F;,(A3.2.9), so
2
o _ ﬂa+/ CiA -l—)cos¢do (A3.2.10)
pwy
By definition of Cp, we have:
Fp = %pUzCDD (A3.2.11)
so
2 2 2
g—-CDD = ”—i?-a + C,A'-’Zcos¢d¢ (A3.2.12)
and finally:
LV o Y
=5 Cat /o Cy 5 cosddg) (3.4)

Equation 3.5: The lift force on the cylinder is the total force in the horizontal

direction, which is:

2 -—
£ __ D/2 h-P singd¢ (A3.3.1)
PWg o PWg
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In the horizontal direction, the contribution by § becomes zero, so from equation

A3.2.1:

By definition of Cy,

F _ 2= D .
= /o > Cilbsingdg (A3.3.2)
F= %pwUchD (433.3)

L Q__D_ 2r .
CL=-4 /0 CiAsingdé (3.5)
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