UCRL-CR-131046
B 330442

Improving the Quality of Numerical Software
Through User-Centered Design

Cherri M. Pancake

June 1998

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed,
or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does
not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract W-7405-ENG-48.

Improving the Quality of Numerical Software

through User-centered Design

Cherri M. Pancake
Department of Computer Science

Oregon State University

Corvallis, OR 97531

Final Report for Contract B330442

Submitted to Lawrence Livermore National Laboratory

Improving the Usability of Numerical Software
through User-Centered Design

Cherri M. Pancake
Department of Computer Science
Oregon State University
pancake@cs.orst.edu

The software interface — whether graphical, command-oriented, menu-driven, or in the form of subroutine calls
— shapes the user’s perception of what software can do. It also establishes upper bounds on software usability.
Numerical software interfaces typically are based on the designer’s understanding of how the software should
be used. That is a poor foundation for usability, since the features that are "instinctively right" from the
developer’s perspective are often the very ones that technical programmers find most objectionable or most
difficult to learn. This paper discusses how numerical software interfaces can be improved by involving users
more actively in design, a process known as user-centered design (UCD). While UCD requires extra
organization and effort, it results in much higher levels of usability and can actually reduce software costs. This
is true not just for graphical user interfaces, but for all software interfaces. Examples show how UCD improved
the usability of a subroutine library, a command language, and an invocation interface.

Introduction

A "build it and they will come" mentality has dominated the design of scientific software for some
time. It is increasingly clear, however, that this attitude is responsible for the failure of many software
systems. Software users are no longer willing to put up with products that are difficult to learn or use [8].
This is actually a positive impetus for change. As one author writes, "Much of the improvement in
software is attributable to research and knowledge supplied by research in human cognition and behavior,
expertise that the computer scientists who designed the earlier systems never realized they needed until
consumer discontent became impossible to ignore" [9].

Unfortunately, very few computer scientists have any formal training or expertise in cognitive
psychology, ethnology, or even the subdiscipline of computer science known as HCI (human-computer
interaction). One consequence is that only software targeted at mass markets like home computing shows

real evidence of being designed to please the consumer. Consider, for example, the use of metaphors and
symbols to convey relationships and actions. In an environment based on the desktop metaphor, file
folders and page icons can be used effectively to identify the origin or type of directories and files. The
successes have been scored in metaphors for home and business computing environments, however, and
not for scientific or numerical applications. In fact, there is remarkably little understanding of what human
factors are important for software targeted at scientists and engineers [4, 7, 25].

Meanwhile, technical users are becoming increasingly vocal about how difficult it is to learn
software tools and libraries, particularly in the area of high-performance computing (HPC). It is also
becoming more difficult to woo these users to new products, even though libraries and software tools have
great potential for facilitating HPC application development [13, 26, 24]. Technological sophistication
is no longer enough of a drawing-card; the technical community expects software to be able to address
their requirements, and to do it in ways that map well to their established patterns for developing
applications. In addition to more traditional software characteristics, like robustness and accuracy,
scientists and engineers now expect usability.

Usability encompasses a variety of factors, including how easy the software is to learn, how easily
it can be remembered by infrequent users, its efficiency in the hands of advanced users, its forgiveness
of user errors, and how well it can be applied to new tasks or needs that evolve. These are human factors,
requiring that the software interface designer know and understand the target users. Fifteen years ago,
Moran observed that software developers think:

the best way to deal with the user is simply to take more care in considering the user -- all the
system designer needs is to be given the time to do so. The designer is, after all, human and
has the intuitions to predict what will be easy for the user. It is mostly common sense,
anyway, isn't it? The limitation of this approach is obvious: The designer’s intuitions do not
necessarily match the user’s. [18:2]

Historically, HPC software has been based on computer scientists’ understanding of how the software will
be used. This is a poor foundation for usability. The HPC user community is composed of scientists and
engineers, who approach programming very differently from their CS counterparts. Consequently, the
features that are "instinctively right" from the software developer’s perspective are often the very ones that
technical programmers find most objectionable or most difficult to learn [25, 24, 26].

This paper discusses software usability within the framework of numerical software for HPC.
Attention is drawn to the software interface itself, which shapes the user’s perception of what can be done
with the software, in what ways, and with what degree of effort. The first section outlines the factors that
contribute to usability. This is followed by a description of why and how users should be involved in
software design, a process known as user-centered design (UCD). Case studies from the HPC industry
illustrate what kinds of information UCD can yield and how that feedback can be applied to improve
usability. A final section draws conclusions about where numerical software developers should
concentrate their UCD efforts.

Factors Influencing Software Usability

Usability has several dimensions, of which four are particularly important for numerical software.
Table 1 summarizes the key design objectives associated with each dimension.

The first factor,ease-of-learningis particularly important for attracting new users. The interface
presents the user with an implicit model of the underlying software. This shapes the user’'s understanding
of what can be done with the software, and how. Learning a new piece of software requires that the user

discover, or invent, a mapping function from his/her logical understanding of the software’s domain, to
the implicit model established by the interface [12].

Designers often fail to take into account the fact that the interface is really the only view of the
software that a user ever sees. Each inconsistency, ambiguity, and omission in the interface model can
lead to confusion and misunderstanding during the learning process. For example, providing default
settings for some objects, but not for all, hinders learning because it forces users to recognize subtle
distinctions when they are still having to make assumptions about the larger patterns; a common result
is the misinterpretation of what object categories mean or what defaults are for. In fact, any place the
interface deviates from what users already know — about the domain this software supports, or about any
other software with which they are familiar — is a likely source of error [16, 27]. Consequently, it is a
mistake to rely on computer science concepts or terminology in designing an interface that will be used
by non-computer scientists.

It is also important to recognize that the time a user invests to learn a library or tool will not be
warranted unless it can be amortized across many applications of the interface. If the interface is a poor
match to users’ logical models, lack of regular use forces them to re-learn the interface many times over
([13] gives a good example). The short lifespan of HPC machines exacerbate the problem. Like it or not,
HPC programmers will end up migrating their applications across several machine platforms over the
course of time. The investment in learning a software package may not be warranted unless it is
supported, and behaves consistently, across multiple platforms.

Once an interface is familiar to the user, other usability factors begin to domizatse-of-use
refers to the amount of attention and effort required to accomplish a specific task using the software. In
general, the more a user has to memorize about using the interface, the more effort will be required to
apply that remembered knowledge [12, 2]. This is why mnemonic hames, the availability of menus listing
operations, and other mechanisms aimed at prodding the user's memory serve to improve usability.
Interface simplicity is equally important, since it allows users to organize their actions in small, meaningful
units; complexity forces users to pause and re-consider their logic at frequent intervals. Ease-of-use also
suffers dramatically when features and operations are indirect, or "hidden" at other levels of the interface.
For example, the need to precede a desired action by some apparently unrelated action forces the user to
expend extra effort, both to recognize the dependency, and to memorize the sequencing requirement.

Table 1. Usability objectives for software interfaces

Dimension Objectives

Ease of learning | provide an intuitive conceptual framework
* map terms/actions to user’s (not developer’'s) frame of reference
» make terminology and operations consistent

Ease of use * base the interface on recognition rather than recall
* minimize interface complexity

Usefulness * help user understand how to apply software to new situations
* provide recoverability from potential errors

Throughput * streamline common sequences of operations
* reduce likely frequency of errors
» must be efficient enough to increase user productivity

Where ease-of-use refers to how easy it is to figure out what actions are needed to accomplish
some taskusefulnesfocusses on how directly the software supports the user’'s own task model. That is,
as the user formulates goals and executes a series of actions to reach each goal, how direct is the mapping
between what the user wants to do and what he/she must do within the constraints imposed by the
interface? If a lengthy sequence of steps must be carried out to accomplish even very common goals,
usefulness is low. On the other hand, if the most common user tasks are met through simple, direct
operations, usefulness will be high (in spite of the fact that long sequences may be required for tasks that
occur only rarely). Another aspect of usefulness is how easily users can apply the software to new task
situations. If the implicit model presented by the interface is clear, it should be possible to infer new uses
with a low incidence of error. For example, if the user knows how to generate a 3-way stencil for data
access, it should be straightforward to extend that knowledge to 4-way stencils.

Since the inherent goal of software is to increase user productikityughputis also important.

This measure reflects the degree to which the tool or library contributes to user productivity in general.
It includes the efficiency with which the software can be applied to accomplish the user’s goals, as well
as the negative influences exerted by frequent errors and situations where corrections are difficult or time-
consuming. For graphical interfaces or other software with start-up costs, throughput also measures the
amount of time required to invoke the software and begin applying it to tasks.

It should be clear that all four dimensions contribute to how quickly and generally a software
package will be adopted by the target user audience. It should be equally clear that users are the only
ones who will have the insight needed to accurately identify which interface features contribute to
usability, and which represent potential sources of confusion or error. The basis for usability lies in how
responsive the software interface is to user needs and preferences — something that can only be
determined with the help of actual users.

Involving Users in Design

User-centered design is based on the premise that usability will be achieved only if the software
design process is customer-driven. The designer must make a conscious effort to understand the target
users, the set of tasks they will want to perform, and the logical models they will use in applying the
software to those tasks [21, 20]. The concept that usability should be the driving factor in software design
and implementation is not particularly new; it has appeared in the literature under the guises of usability
engineering, participatory design, and iterative design, as well as user-centered design [21, 23, 30, 28, 24].
There is not yet a firm consensus on what methodology is most appropriate, nor on the frequency with
which users should be involved in design decisions (cf. [10, 29]).

What is clear is that the tradition of soliciting user feedback only during the very early and very
late stages of development is not adequate for assessing and improving usability. During early stages, the
design is too amorphous for a user to really assess how the interface structure might enhance or constrain
task performance. During late stages such as alpha testing, the software structure has already solidified
so much that user impact will be largely cosmetic. User involvement and feedback is really needed
throughout the design process, since different types of usability problems will be caught and corrected at
different points. Moreover, it is important to work with at least a few individual users on a sustained
basis. The introduction of any computerized tool does more than replace a sequence of manual operations
by automated ones; only by observing how a user interacts with the interface as he/she becomes familiar
with it can designers understand the real issues affecting usability [14, 19, 6].

Our research work as a mediator between HPC vendors and their user communities, has provided
a number of opportunities to observe how user involvement can improve interface usability dramatically.
The most immediate benefit of UCD is that it allows developers to concentrate their attentions on those

aspects of the software that reflect users’ highest priorities. Our experiences suggest a four-step model
for incorporating UCD in the development of numerical software:

(1) Ensure that initial software requirements are based on demonstrable user nBeddistic
requirements can be identified only by soliciting input directly from the user community.
Specifically, a library or tool will not be useful unless it facilitates tasks that the user already does
and that are time-consuming, tedious, or error-prone when performed manually. If, instead, design
is driven by the kinds of support that the software’s developers are ready or able to provide, it will
miss the mark.

(2) Analyze user tasks within the context of actual task environm@ifts.first step in design is

to study the intended audience in their world, where the software ultimately will be used. The
point is to observe how users organize their efforts to accomplish tasks, what tasks need to be
easiest or fastest, and what tasks are most subject to variation or indecision. For example, the
observation that users write down or sketch out certain information for themselves provides
important clues about how visual representations should be structured and how the interface
should be documented, as well as indicating the need for associated utilities or toolkits.

(3) Design incrementally, with many cycles of design—user-test—redesign-and-eBaased. on

the task analysis, the developer should begin to organize the proposed interface so that the most
common user tasks are the best supported. "Paper prototypes" or mockups can be constructed to
show basic interface concepts. This allows user evaluation to begin long before implementation
efforts have been invested in features that will have low usability payoffs. It also allows the
developer to observe users’ instinctive reactions, one piece at a time. For example, the user might
be presented with a few subroutine names and asked to guess what each does or what arguments
are required for each. Early reactions might suggest major changes in thrust that will ultimately
have repercussions throughout the interface.

(4) Have users evaluate every aspect of interface structure and beha&#the paper designs

are converted into prototype, then full implementation form, user tests should be performed at
many points along the way. This permits feature-by-feature refinement in response to specific
sources of user confusion or frustration. It also provides the developer with valuable insight into
sources of user error — and what might be done to minimize the opportunity for errors or

ameliorate their effects.

The idea of repeatedly asking users for input is intimidating to many software developers, whose
experience has been that users are remarkably diverse and inconsistent. Interestingly, people who have
actually applied this strategy note that it is not necessary to show a given version to more than a handful
of representative users, since the iterative process means than premature or ineffective changes will be
caught in later cycles. Moreover, a remarkable degree of consensus is reached by the later stages of
iteration [15, 5]. The fact that users have seen, questioned, and commented on the entire interface
structure from the ground up, so to speak, means that the structure actually does reflect user concepts and
user preferences.

What User Involvement Reveals

This section describes the problems that users identified in the design of three software interfaces.
In each case, we were involved in assessing the product’s usability through a series of user-centered

5

activities, organized by us on behalf of the vendor companies. Although the deficiencies may seem
obvious here, they were not at all obvious to software developers prior to the user reviews. Each of the
three designs was considered adequate in terms of usability, and the reviews were not expected to reveal
significant problems or insights. (In actuality, they led to further development and further cycles of user
involvement.) The examples have been modified slightly to protect the identity of the companies
involved.

The first example is th@rogrammatic interfacdalso known as an API, or application program
interface) for a message-passing library. Like many numerical and scientific subroutine libraries, this
defines alternate syntax/semantics for invocation from Fortran and C programs. It includes four major
categories of routines: point-to-point communications (e.g., send), group communications (broadcast),
global operations (global maximum), and informational (buffer status). The developers were professional
library writers, who already had several years of experience in developing math or operating-system
libraries.

The command language interfadeom a parallel debugger serves as a second example. The
language designers were influenced strongly by existing serial debuggers. Most of the commands simply
augmented serial commands with a processor specification, indicating to which of the total processor set
a command should apply. The developers assumed that by basing their work on existing products, they
could leverage user familiarity to arrive at a language that was easy to learn and apply. The development
team included a person with compiler and language design experience, as well as a person specializing
in debuggers.

The third example is thanvocation interfacefrom a run-time environment, where each
"command" issued by the user serves to invoke some component of the environment (e.g. loader, memory
management utility, file migration utility, event tracing monitor). The components had been developed
by multiple teams, so it was anticipated that their invocation syntax and error message structure would
reveal some inconsistencies. These differences were exacerbated by the fact that each team’s composition
(in terms of member experience and interests) and software design objectives were somewhat different.
Although the collection of teams as a whole included interface and language designers, individual teams
were highly skewed toward specific system software components.

Users were involved in several different evaluation activities, which varied somewhat for the three
examples. We extracted information from the specification documents for the products, to create "paper
prototypes" outlining specific subsets of functionality and the language constructs associated with them.
In several cases, users were presented with alternative designs and asked to choose among them or revise
them to improve their intuitiveness. Later evaluations were conducted using alpha and beta versions of
the software.

For the purposes of this discussion, we have organize those aspects of the three interfaces that
were consistently criticized by users into several categories. Each has been assigned a general name and
definition, but there is some overlap among categories. Examples are given with each definition. Table
2 provides additional examples, together with the solution suggested in user/developer interactions.

Inconsistency lack of symmetry or consistency among elements within a given interface. The

most blatant inconsistencies (e.g., spelling, naming of elements, or punctuation) can be caught through a
careful checking by the software developers themselves. Nevertheless, users always find additional
inconsistencies that are likely to result in problems. In the case of the programmatic interface, for
example, users noted that in most routine calls, the source (of a communication) appeared first in the
argument list, followed by the destination and the message itself, but in the global operations the message
preceded the source/destination info. For the command language, users were quick to point out that some
command modifiers were preceded by hyphens but others weren't. In the third case, they noted that while
some options are controllable via both command-line flags and environment variables, just one of the two

6

was available for controlling others. In all these cases, the developers cited practical justifications for the
inconsistencies — but users insisted that they would cause errors and confusion.

Incongruency: the interface’s operation and object don't relate to each other in the same way
that logical action and object do. An example from the programmatic interface was that the result was
undefined if a non-current message identifier was specified as an argument to the status-checking routine;
the users’ comment was: "but how do you know it has become stale in the first place? The status code
should just say ‘I don’t know what this identifier refers to’." Note that this category of error occurs
because the interface fails to match the logical model of users. Another example, from the users who
evaluated the command language interface, was that it was necessary to issue a whole series of commands
in order to set breakpoint at multiple locations. Although a list of program identifiers could be specified
on the command controlling the display of data values, only one location could be specified on the
breakpoint command.

Incompatibility : the interface specification contradicts or overrides accepted patterns of usage.
Where consistency compares elements within an interface, compatibility assesses how well the interface
conforms to "normal practice." Users were quick to complain that the programmatic interface did not
order in-arguments (i.e., those furnished as input to the routine) ahead of out-arguments (generated as
output), but mixed them in seemingly arbitrary ways. For the second case study, users noted that one
command had a triadic statengre on and more off controlled the status of the option, whiteore
displayed its status), in contradiction to other examples, where informatory commandsHevgxxx)
were distinct from those provoking actionad@d/remove xxx). With the invocation interface, users
complained that although some toggle-like options were controlled with binary flagsH.gry or-on/-
off), others had only unary flagss(interpreted as "on", with "off" applying where the flag was omitted).

Ambiguity : the choice of interface names leads to user misinterpretation. In the programmatic
interface, users were confused by the fact that both "reduce” and "combine" were routines, where one
referred to the operation the users traditionally call reduction or combination (i.e., acquiring values from
each of multiple nodes and calculating the sum, minimum, etc.) and the other was a shortcut referring to
that same operation, followed immediately by a broadcasting of the result to all nodes. The users
complained that it would be very hard to remember which meaning went with which name. For the
command language interface, similar criticisms were levied at the uBst ¢fo display a source code
listing) versussource (to establish the path for locating source code files).

Indirection : one operation must be performed as a preliminary to another. In the cases examined,
indirection most often involved some sort of table lookup operation, so that the index (rather than the
name assigned by the user) could be supplied as an argument to some other operation. In the first case
study, users noted that they could not simply invoke the routine to set the so-called options mask, but
rather had to retrieve the current mask first. Similarly, the invocation interface made freeing a node subset
a two-step operation: the user had to obtain the subset’s identifier through a status command, then issue
a remove command specifying the identifier (although subset allocation could be accomplished in a single
step). For the command-language interface, users complained that they couldn’t begin executing the
program in single-step mode; instead, they had to insert a breakpoint at the first executable line, then issue
the "run" command, wait until the debugger stopped at the breakpoint, and only then start issuing single-
step commands.

Obfuscation: operations or key information are hidden from the user’s view. These problems
are often due to poorly conceived default values. Users pointed out that the debugger command language,

7

for example, truncated the display of queue entries at 42 elements for one queue, but 51 for another (and
neither of those quantities was under the user’s control). In the invocation interface, environment variables
were the only mechanisms for controlling some settings (others are set by command-line flags), which
meant that the settings were effectively hidden from the user, who had to remember which setting fit into
which mechanism category.

Fragility : subtleties in syntax or semantics that are likely to result in errors. In the programmatic
interface, for example, all blocking operations involve routines whose names begin with "b" (e.g., bsend,
brecv), but one routine beginning with that letter (bcast) is non-blocking. Fragility increases when the
errors are essentially undetectable (that is, the software will still work, but results will be incorrect or
unexpected). Users pointed out in the third case study that environment variables often cause users to
think that they have specified an option, when in fact the software is not even aware of the user action,
because the variable was spelled incorrectly or with lower-case letters.

Ergonomic problems too many (or too clumsy) physical movements must be performed by the
user. In most cases, problems occur because users are forced to do unnecessary or redundant typing. In
the first case study, for example, users complained that they must specify the number of processes to be
involved in a barrier or global operation, although that number almost always is the total count of all
active processes (and so could be specified with a wildcard argument, such as "*" or -1). Similarly, users
evaluating the command language interface pointed out that the way sequences of nodes are specified
(using counts within parentheses, such as "(1:9)") involves many shift/unshift actions, making it both
awkward and slow, even though the punctuation is really just "syntactic sugar".

The Cost of Responding to User Input

As part of analysis of the three case studies cited in the last section, we considered what kinds of
changes had to be made to remedy the problems identified by user review. There were essentially six
levels of improvement:

superficial change: modification limited to the documentation and/or procedure prototypes (e.g.,

to change the names of arguments)

trivial syntactic change: maodification limited to the name of the operation

syntactic change: modification of the order of arguments or operands

trivial semantic change: modification of the number of arguments or operands

semantic change: relatively minor modification of the operation’s meaning

fundamental change: addition of a new feature to the interface and/or major changes in

operational semantics
Although collectively the users identified a large number of interface problems (almost two hundred), an
overwhelming majority fell into the categories of superficial or trivial syntactic changes. That is, simple
changes in the names used to refer to operations or operands were sufficient to eliminate the problem,
from the users’ perspective. Only six problems fell into the category of fundamental changes, requiring
significant implementation work. Thus, the actual cost of responding to user comments was extremely
low.

In fact, the widespread notion that UCD prolongs the software development process in terms of
costs or time-to-market. Experience has shown that this is not really true [1, 11, 17, 22]. Usability
improvements reduce ultimate costs, particularly maintenance, training, and technical support activities.
In some cases, development time is actually shortened because features that would have required major
implementation effort turn out to be of no real interest to users. Essentially, more developer time is spent
earlier in the product design cycle (i.e., at the requirements and prototyping stages), rather than making

8

adjustments once the product has jelled. Generally speaking, the earlier in the design cycle that input is
solicited from users, the easier and less expensive it is to make changes — particularly semantic or
fundamental changes.

Finally, UCD engenders real interest and commitment on the part of users [15, 14, 5]. From their
perspective, the developers are making a serious attempt to be responsive to their needs, rather than
"making half-hearted, cosmetic changes when it's too late to do any good anyway" [31]. In our
experiences, users have spontaneously helped in ways that go well beyond interface evaluation, such as

developing example applications or publicizing the software among their colleagues.

Table 2. Examples of potential solutions for problems identified by users.

Category Example (from interface 1, 2, or 3 User-responsive solution
inconsistency (12) "loadpath" sets the path for change command name from
executables, while "source" sets the path"source” to "srcpath”
for locating source code files
incongruency (I3) default value for environment setting a variable to the null string

variable only applies if user has never g
its value in this session

ebr unsetting it should result in use
of default value

incompatibility

(12) in the argument list, an array or list
item is specified ahead of the integer
indicating the number of elements

change the order of arguments sg
that the count occurs before the
arrayl/list to which it refers

user specify "all" if the command is to
apply to all nodes

ambiguity (13) the verb "monitor" enables program change the command to "trace" o
event tracing, but is easily confused with "log_events"
the concept of a debugging monitor

indirection (12) to remove a breakpoint, user must | support the same specifiers (e.g.,
first obtain a list of current breakpoints | line number, function name) for
and their internal identifiers, then specify both setting and removing
the identifier on the "remove" command breakpoints

obfuscation (I11) some routines use "mode arguments&very mode argument should have
(predefined constants or strings) to a fallback value, and it should be
distinguish mode, but only some of them the mode that is most commonly
have fallback defaults needed

fragility (12) a breakpoint is set at a line numben unmodified numbers should refer
by prefixing the number with "#"; an to the most common usage; have
unmodified number refers to an addresses require the prefix "@"
instruction address

ergonomics (I13) many commands require that the | make "all* the default (no need to

specify), since that's what's
wanted 95% of the time

Conclusions

There can be little dispute that how users perceive and respond to software is critical to its success.
Creating an elegant, powerful piece of software does not guarantee that it will be accepted by users. Ease-
of-learning, ease-of-use, usefulness, and throughput are all important indicators of software usability, and
they depend more on the software interface than on the underlying software structure.

User-centered design, as a methodology, attempts to capitalize on the observation that users are
the ones who are best qualified to determine how software should support their work patterns. Making sure
that software requirements reflect user needs, that interface organization correlates well with established
ways of carrying out tasks, and that interface features and terminology are clear and efficient for users —
all of these are relatively obvious, once the decision has been made to focus on potential users.

In the case studies reported here, a number of the problems identified by users could also have
been found by usability or HCI specialists, or even interface developers who knew what to look for. More
importantly, had user task structure been studied in the first place, many of the problems would never have
occurred. Traditional approaches to software design rely on the insight of developers to identify where
efforts should be concentrated. In contrast, UCD centers on repeated, frequent interactions with users to
validate or re-focus every design decision. It is the user audience who establish what the key focal areas
should be.

While this sounds onerous, experience has shown that it can be dynamic and positive for
developers and users alike. Although the cases reported in the literature are not completely analogous,
since they refer to business/commercial or custom-designed software interfaces, their results have been
quite encouraging. Our experiences have borne this out. The problems found by technical users were all
ranked as "important” when independent groups were asked to review the results of earlier sessions. In
an overwhelming majority of cases, the improvements that were recommended proved to be both fast and
relatively easy. They also had considerable impact on the clarity and intuitiveness of the interfaces.
Usability is, in fact, within the reach of numerical software developers, if they can learn to center design
more on potential users.

References
[1] R. G. Bias and D. J. Mayhew, ed€pst-Justifying UsabilityAcademic Press, 1994.
[2] J. M. Carroll, J. C. Thomas and A. Mahotra, “Presentation and Representation in Design Problem-Solving,”

British Journal of Psychologywol. 71, 1980, pp. 143-153.

[3] K. A. Ericsson and H. A. SimonProtocol Analysis: Verbal Reports as DatslIT Press, 1984.

[4] J. C. French, A. K. Jones and J. |. Pfaltz, eds., “Multidisciplinary interfaces (Panel RepBr¢eedings
Workshop on Scientific Database Management: Panel Reports and Supporting MatSHklsponsored

workshop held at School of Engineering and Applied Science, University of Virginia, 1990, pp. 2-12.

[5] J. Grudin, “Interactive Systems: Bridging the Gaps between Developers and UHeEE'ComputerApril
1991, pp. 59-69.

[6] D. L. Heppe, W. H. Edmondson and R. Spence, “Helping Both the Novice and Advanced User in Menu-
Driven Information Retrieval Systems,Proceedings Conference of the British Computer Sociegpt.
1985, pp. 95-100.

10

[7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

(23]

[24]

[25]

B. Hesse, L. Sproull, S. Kiesler, and J. Walsh, “Returns to Science: Computer Networks in Oceanography,”
Communications of the ACWol. 36, No. 8, 1993, pp. 90-101.

K. Holtzblatt and H. Beyer, “Making Customer Centered Design Work for Tean@ofmmunications of
the ACM Vol. 36, No. 10, Oct. 1993, pp. 93-103.

W. Howell, “How Social Scientists Can Contribute to the Information RevolutiGhronicle of Higher
Education June 8, p. A40.

R. Jeffries, J. R. Miller, C. Wharton and K. M. Uyeda, “User Interface Evaluation in the Real World: A
Comparison of Four TechniquesProc. CHI'91, 1991, pp. 119-124.

C.-M. Karat, “Usability Engineering in Dollars and CentslEEE Software May 1993, pp. 88-89.

D. E. Kieras and S. Bovair, “The Role of a Mental Model in Learning to Operate a DeviCeghnitive
ScienceVol. 8, 1984, pp. 255-273.

J. Kuehn, “NCAR User Perspective,Proc. 1992 Supercomputing Debugger Workshizm 1993.

M. Kyng, “Designing for Cooperation: Cooperating in DesigriCbmmunications of the ACMVol. 34,
No. 12, December 1991, pp. 64-73.

T. K. Landauer,The Trouble with Computers: Usefulness, Usability, and Productiiitylr Press, 1995.

C. Lewis and D. A. Norman, “Designing for Error,” iReadings in Human-Computer Interactjed. R.
M. Baecker and W. A. S. Buxton, Morgan Kaufman, 1983, pp. 627-638.

M. M. Mantei and T. J. Teorey, “Cost/Benefit Analysis for Incorporating Human Factors in the Software
LifeCycle,” Communications of the ACMWol. 31, No. 4, 1988, pp. 428-439.

Moran, T. P., “An Applied Psychology of the UserACM Computing Survey¥ol. 13, No. 1 (1981), pp.
1-12.

National Research Councilpformation Technology and the Conduct of Research: The User’s,View
National Academy Press, 1992.

J. Neilsen, “Non-Command User InterfacesCommunications of the ACM\pr. 1994, pp. 83-98.
J. Neilsen, “The Usability Engineering Life Cycle,Computer March 1992, pp. 12-22.

J. Nielsen, “Usability Engineering at a Discount,” iDesigning and Using Human-Computer Interfaces
and Knowledge-Based Systerad. G. Salvendy and M. J. Smith, Elsevier Science, 1989, pp. 394-401.

D. A. Norman, “Cognitive Engineering,” ilJser Centered System System Design: New Perspectives in
Human-Computer Interactigreds. D. A. Norman and S. W. Draper, Erlbaum Associates, 1986, pp. 31-62.

C. M. Pancake and C. Cook, “What Users Need in Parallel Tool Support: Survey Results and Analysis,”
Proc. Scalable High Performance Computing Confered@94, pp. 40-47.

C. M. Pancake and D. Bergmark, “Do Parallel Languages Respond to the Needs of Scientific
Researchers?TEEE ComputerVol. 23, No. 12, Dec. 1990, pp. 13-23.

11

[26]

[27]

(28]

[29]

[30]

C. M. Pancakeet al.,, unpublished results of user surveys conducted on behalf of Intel Corporation, IBM
Corporation, Hewlett-Packard Corporation, Convex Computer Corporation, and the Parallel Tools
Consortium, 1989-1995.

A. Rizzo, S. Bagnara and M. Visciola, “Human Error Detection Procesdesginational Journal of Man-
Machine StudigsVol. 27, 1987, pp. 555-570.

A. Rose, B. Shneiderman and C. Plaisant, “An Applied Ethnographic Method for Redesigning User
Interfaces,” Proceedings of the Symposium on Designing Interactive Systems: Processes, Practices,
Methods, & Technique#Ann Arbor, 1995, pp. 25-31.

J. Whiteside, J. Bennett and K. Holtzblatt, “Usability Engineering: Our Experience and Evoluation," in
Handbook of Human-Computer Interactjoed. M. Helander, North-Holland, 1988.

S. Wilson and P. Johnson, “Empowering Users in a Task-Based Approach to DeRigitgedings of the

Symposium on Designing Interactive Systems: Processes, Practices, Methods, & Tegchmgudbor,
1995, pp. 25-31.

12

Technicallnformation Departments Lawrence Livermore National Laboratory
University of California « Livermore, California 94551

