User Documentation for KINSOL,

A Nonlinear Solver for Sequential and Parallel Computers

A.G. Taylor
A.C. Hindmarsh

Center for
Applied Scientific Computing

UCRL-ID-131185
July 1998

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefuiness of any information, apparatus, product, or process disclosed,
or represents that its use would not infringe privately owned rights Reference herein to any specific
commerdal produet, process, or service by trade name, trademark, manufacturer, or otherwise, does
not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes

This report has been reproduced
directly from the best available copy

Available to DOE and DOE contractors from the
Office of Sdentific and Technical Information
P O Box 62, Oak Ridge, TN 37831
Prices available from (423) 576-8401

Available to the public from the
National Technical Information Service
US Department of Commerce
5285 Port Royal Rd ,
Springfield, VA 22161

USER DOCUMENTATION FOR KINSOL, A NONLINEAR SOLVER FOR
SEQUENTIAL AND PARALLEL COMPUTERS*

ALLAN G TAYLOR AND ALAN C HINDMARSH!

1. Introduction. KINSOL is a general purpose nonlinear system solver callable from
either C or Fortran programs It is based on NKSOL [3], but is written in ANSI-standard
C rather than Fortran77 Its most notable featuie is that it uses Krylov Inexact Newton
techniques in the system’s approximate solution, thus sharing significant modules previously
written within CASC at LLNL to support CVODE[6, 7]/PVODE[9, 5] It also requires
almost no matrix storage for solving the Newton equations as compared to direct methods
The name KINSOL is derived from those techniques Krylov Inexact Newton SOLver The
package was arranged so that selecting one of two forms of a single module in the compilation
process will allow the entire package to be created in either sequential (serial) or parallel
form The parallel version of KINSOL uses MPI (Message-Passing Interface) [8] and an
appropriately revised veision of the vector module NVECTOR, as mentioned above, to achieve
parallelism and portability KINSOL in parallel form is intended for the SPMD (Single
Progiam Multiple Data) model with distributed memory, in which all vectors are identically
distributed across processors In particular, the vector module NVECTOR is designed to help
the user assign a contiguous segment of a given vector to each of the processors for paiallel
computation Several primitives were added to NVECTOR as originally written for PVODE to
implement KINSOL

KINSOL has been run on a Cray-T3D, an eight-processor DEC ALPHA and a cluster
of workstations It is currently being used in a simulation of tokamak edge plasmas and in
groundwater two-phase flow studies at LLNL

The remainder of this paper is organized as follows Section 2 sets the mathematical
notation and summarizes the basic methods Section 3 summarizes the organization of the
KINSOL solver, while Section 4 summarizes its usage Section 5 describes a preconditioner
module, Section 6 describes a set of Fortran/C interfaces, Section 7 describes an example
problem, and Section 8 discusses availability

2. Mathematical Considerations. The KINSOL code is a C implementation of a
previous code, NKSOL, a nonlinea: system solver written in Fortran by Biown and Saad [3]
The nonlinear system of equations

(1) F(u) =0,

where F'(u) is a nonlinear function from R¥ to RV, is solved by this package An Inexact
Newton method is applied to (1) resulting in the following iteration

* Research performed under the auspices of the US Department of Energy, by Lawience Livermore
National Laboratory under contract W-7405-ENG-48 Work supported by LDRD, Project 95-ER-036
¥ Center for Applied Scientific Computing, 1-561, LLNL, Livermore, CA 94551

1

Inexact Newton iteration
1 Set up = an initial guess
2 Forn=0,1,2, until convergence do
(a) Solve J(u,)0n = —F(uy,)
(b) Set tny; = un + oy
(¢) Test for convergence
Here, J(un) = F'(u,) is the system Jacobian As this code module is anticipated for use on
large systems, only iterative methods were considered to solve the system in step 2(a) These
solutions are only approximate Methods of this type used for solution of nonlinear systems
are called Inexact Newton methods. At each stage in the iteration process, a multiple of the
approximate solution 4, to the equation of step 2(a) is applied to the previously determined
iterated approximate solution to produce a new approximate solution Convergence is tested
before iteration continues The iterative method cuirently implemented is one of the class
of Krylov methods
As only the matrix-vector product J(u)v is required in the Krylov method, in this
nonlinear equations setting that action is approximated by a difference quotient of the form
F(u+ov) — F(u)

) Ty e S ETH =20,

where u is the current approximation to a root of (1) and o is a scalar, appropriately chosen
to minimize numerical error in the computation of (2) An optional user-defined routine
implementing this matrix-vector product is accommodated See further details below in the
section describing the routine KINSpgmr

To the above methods are added scaling and preconditioning Scaling is allowed for
both the approximate solution vector and the system function vector Additionally, right
preconditioning is provided for if the preconditioning setup and solve routines are supplied
by the user

While only one linear solver is now implemented for use with this package, the formal
structure is in place for alternate solvers. The solver currently implemented is the GMRES
solver [2, 10] in module SPGMR and accessed via KINSPGMR Here GMRES stands for General-
ized Minimal RESidual In most cases, performance of SPGMR is improved by user-supplied
preconditioners

SPGMR is one of a class of preconditioned Krylov methods Write the linear system
simply as

(3) Az =1b
A preconditioned Krylov method for (3) involves a preconditioner matrix P that approxi-

mates A, but for which linear systems Px = b can be solved easily For preconditioning on
the right, the Krylov method is applied to the equivalent system

(AP~))(Pz) = b

In KINSOL, the user may precondition the system on the right or use no preconditioner In
any case, the I{rylov method (in our case GMRES) is applied to the transformed system

A7 = b

Mo

From an initial guess %;, an approximate solution Z,, = Zo+z is obtained form = 1,2, (un-
til convergence), with z chosen from the Krylov subspace K,, = span{ry, Ary, , flmglrg}
of dimension m, where 7 is the initial 1esidual b — A%, Each Kiylov iteration requires one
matrix-vector multiply operation Av, which is a combination of multiplies by A4 and by P!
Multiplication of a given vector v by A requires the product Jv, and that is approximated by
a difference quotient [F'(u + ov) — F(u)]/c Multiplication by P! is to be provided by the
user of the solver, and is generally problem-dependent In the case of GMRES, the choice
in K,, is based on minimizing the Ly norm of the residual b — A%, [2, 10] When a given
Z., meets the linear system conveigence criterion, Z,, cotresponds to the next increment §,
in the solution of (1) 4§, is obtained from Z,, by applying scaling and preconditioning The
increment 9y, 1s then added to u, to form u,; in step 2(b) by one of the strategies discussed
below The new iterate un4i is tested for (nonlinear) convergence in (1) , which is step 2(c)
of the Inexact Newton iteration

Two methods of applying a computed step &, to the previously computed appioximate
solution vector are implemented. Denoted ’global strategies’, they attempt to use the di-
rection implied by ¢, in the most efficient way in furthering convergence of the global (ie,
nonlinear) problem The fi1st and simplest is the Inexact Newton strategy. A more advanced
technique is implemented in the second stiategy, called Linesearch The so-called "Forcing
Term’ algorithms of Eisenstat and Walker [4] to control the linear convergence tolerance are
also implemented

A fundamental set of mathematical operations on N-vectors has been written for both
CVODE/PVODE and KINSOL This set of computational kernels exists in a distinct code
module called NVECTOR By separating these frequent operations from the rest of the code,
almost all operations in KINSOL with significant potential for parallel computation have
been isolated Then, two different sets of kernels, both with the same routine names and a
common interface, allow parallel computation to be very simply implemented in these codes
The operations done by this set of kernels are vector addition, scaling, and copy, vector
norms, scalar products, and so forth

3. Code Organization. A way to visualize KINSOL is to think of the code as being
organized in layers, as shown in Fig 1 Here, a module’s name is used to indicate the
general function of the module’s contents Viewed this way, the user’s main program is at the
top level This program, with associated user-supplied routines, makes various initialization
calls, manages input/output, and calls the KINSOL main module which carries out the system
solution At the next level down, the KINSOL main module controls the iterative solution
process, and is independent of the linear system method KXINSOL calls the user-supplied
function F', known as func internally, and accesses the linear system solver. At the third level
is found the linear system solver KINSPGMR, which provides an interface to a generic solver for
the SPGMR method, consisting of modules SPGMR and ITERATIV, KINSPGMR also accesses the
user-supplied preconditioner solve routine psolve, if specified, and, if supplied, also accesses
a user-supplied routine precondset that computes and preprocesses the preconditioner.
The precondset routine is usually implemented by way of an approximate Jacobian matiix
Other linear system solvers may be added to the package in the future Such additions will
be independent of the KINSOL and KINSPGMR modules Several supporting modules 1eside at

3

User Program

main(), func(), Precond{), Psolve()

/

KINSOL Main

kinsol h, kinsol ¢

!

KINSPGMR

Future additional
linear solvers

kinspgmr h, kinspgror ¢
e y

!

SPGMR

spgmr h, spgmr ¢

!

ITERATIV

iterativ h, iterativ ¢

NVECTOR

nvector h, nvector ¢

LLNLTYPS

Ilnltyps h

LLNLMATH

[tnlmath h, lnlmath ¢

F16 1 Overall structure of the KINSGL package Modules comprising the central solver are dis-
tinguished by rounded boxes, while the user program, generic linear solvers, and auziliary modules are in
unrounded bozes

the fourth level These include LLNLTYPS, LLNLMATH, and NVECTOR The first of these defines
types real and integer The second specifies power functions, and the thiid is discussed
further below

The key to being able to move from the sequential computing environment to the parallel
computing environment lies in the NVECTOR module This was briefly mentioned in the previ-
ous section The idea is to distribute solution of the nonlinear system over several processors
so that each processor is solving a contiguous subset of the system This is achieved through
the NVECTOR module, which handles all calculations on N-vector in a distributed manner,
when the parallel version is compiled with parallel libraries For any vector operation, each
processor peiforms the operation on its contiguous elements of the input vectors, of length
{say) Wlocal, followed by a global reduction operation where needed In this way, vector
calculations can be performed simultaneously with each processor working on its block of
the vector Vector kernels are designed to be used in a straightforward way for various vector
operations that require the use of the entite distributed N-vector These kernels include dot
products, various norms, linear sums, and so on The key to simply handling both parallel
and serial applications of a code lies in standardizing the interface to the vector kernels
both sequential and parallel versions of NVECTOR have an identical interface In this way, one
can access the kernels without 1eferring directly to the underlying vector structure. This
is assisted by using abstract data types that describe the machine environment data block
(type machEnvType) and all N-vectors (type N_Vector) Functions to define a block of
machine-dependent information and to free that block of infoimation are also included in
the vector module Because the KINSOL interface to the vector kernels is independent of
the vector structure, the nser could supply their own ketnel to best fit their application data
structures All references to parallelism are in the kernel, thus, the user would handle all
pairallel aspects in this case

As the algorithms used in NKSOL had several unique features, notably the way that
constraints were handled [3]|, several new vector keinels were written and added to the
module NVECTOR The changes, completely transparent to CVODE/PVODE, have now been
incorporated in the 'common’ version of NVECTOR.

The parallel version of KINSOL uses the MPI (Message Passing Interface) system [8]
for all inter-processor communication This achieves a high degree of portability, since MPI
is becoming widely accepted as a standard for message passing software For a different
parallel computing environment, some rewriting of the vector module could allow the use of
other specific machine-dependent instructions

The coding style and structure of KINSOL was based on both style and structure of
the preexisting CVODE/PVODE codes This was predicated upon the requirement that the
same vector kernel implementation and GMRES solvers be used in both codes At the same
time, those features somewhat unique to the Fortran language (e g, those constructs used in
the original code NKSOL), were placed appropriately in a C language setting Considerable
simplification of the calling sequences resulted from this process Of course, the resulting C
langnage structure maintains relative privacy for definitions for each portion of the code. The
resulting code has proven to be readily adaptable to either sequential or paiallel execution
by means of two versions of the module NVECTOR

5

4. Using KINSOL. This section is conceined with the use of KINSOL and consists of
five subsections Those subsections treat the user-callable routines constituting the KINSOL
interface in an overview and then in detail, give a layout or skeleton of the user’s main
progiam, and user-supplied functions or routines, and discusses C++/C interfacing The
listing of the sample program KINXP (a Predatoi-Prey PDE problem, P is for paiallel
version) in the Appendix may be particularly helpful That code is intended to serve as a
template to assist in preparations to use KINSOL and is included in the KINSOL distribution
package 'The seguential eguivalent of KINXP, called KINXS, and other variations and
examples are found with KINSOL in the distribution package

4.1. Overview of Routines and Their Usage. The source code is organized in files
(modules) as shown in Table 1 For each module there are two corresponding files Fot
example, KINSOL requires both the files kinsol ¢ and kinsol h

Wodule name | User-callable routines] other contents J
KINSOL KINMalloc, KINSol, system function type SysFn, linear solver
KINFree function pointers 1linit, lsetup,
lsolve, lfree
KINSPGMR KINSpgmr KINSpgmrPrecondFn type

KINSpgmrPrecondSolveFn type
KINSpgmrAtimesFn type

SPGMR SpgmrMalloc, SpgmrSolve, Spgmrkree
ITERATIV Routines in support of SPGMR
NVECTOR PVecInitMPI, Type N_Vector; vector macros
PVecFreeMPI, N_VMAKE, N_VDATA, etc
19 other vector keinels
LLNLMATH UnitRoundoff, RPowerI, RPowerR, RSqrt,
Macros MIN, MAX, ABS, SOR
| LLNLTYPS Types real, integer, boole
TABLE 1

Modules in the KINSOIL package

In addition to routines supplied with KINSOL, there are several routines either required
or optional that the user can supply They are outlined in Table 2 Details and use of the
last two routines listed there are discussed in Section 5

4.2. Detailed description of routines. This subsection uses extracts from header
files for KINSOL and KINSPGMR to detail the arguments of user-callable routines For each
routine, the declaration with arguments is followed by a section of comments Please note
that the system function F'(u) is called func (uu) in the actual KINSOL and KINSPGMR source
code The independent variable u is called uu in those code modules as well

4.2.1. Memory allocation routine KINMalloc.

void *KINMalloc(integer Neq, FILE *msgfp, void *machEnv);

/1 3K ek o sk ok sk e 5 ok s ok 3K ke o e o e ko 3k K o 2k ek o ok o ek sk ok e ko ok ook ok sk ok s sk ok ke ok s ok ok o sk ok s ol ok ke Kok ok
sk
Function : KINMalloc

*

*

* This function allocates main memory for the KINSol
* package. It also allocates several vectors of size
* Neq used by the package. Other N_Vectors are also
* to be allocated by the user and supplied to KINSol
e

* Neq size of vectors being handled by the current memory

* allocation call to KINMalloc

5

*

*

*

msgfp pointer to a FILE used to receive error messages from
KiNMalloc

* OF ¥ ¥ ¥ ¥ O X K ¥ ¥ X X *

a4 26 23 2k 2k ke e A sk ok ok s 2k ok ok ok vk ok ke ek o o sk s ok sk sk ok sk ook ke sk s dk sk ok 2k ok sk ok ok ol ke ol o R e ode e ke oke e e ok ke R ok ok ok

4,2.2. Main solver KINSol.

int KINSol(void *kinmem, integer Neq,
N_Vector uwu, SysFn func, int globalstrategy,
N_Vector uscale, N_Vector fscale,
real fnormtol, real scsteptol, N_Vector coastraints,
boole optIn, long int iopt[], real ropt[l, void *f_data,
FILE #*msgfp, void *machEnv);

34 3ok o st o s ke ke sk e ok ek 3 oK 6 sk e sk e Sk e sk Sk ok ke o o sk e 6 ko ke 366 s ok ok ke e e e ok s se e o se e e s oK oK ok e ke e o

* *
* Function : KINSol *
M e —-— e ————————————— *

#* KINSol initializes memory for a problem previously allocated by=*

| typedef name (* - optional) | purpose of user-supplied routine

SysFn the function F(u), also known as func (uu)
KINSpgmrPrecondFn* setup routine for pieconditioner
KINSpgmrPrecondSolveFn™ | solve routine for preconditioner
KINSpgmruserAtimesFn* user-supplied Atimes function
KINLocalFn* local conrputation function
(BBD preconditioner)
KINCommFn* interprocessor communication function
(BBD preconditioner)

TABLE 2
User-supplied routines for KINSOL

*OX K O OE K OR R OX O O R OE K K O RO O X R O X K OF K X K X N K K KON X X K KX N O KK K K K K

a call t
(the ini

o KINMalloc. It alse checks the initial value of uun *
tial guess) against the constraints and checks if the =*

initial guess is a solution of the system. It then attempts to *
solve the system func(uu) = 0. , where the function func is *
supplied by the user The input arguments for KINSol and theirx
function are described below: *
*
Neq is the number of equations in the algebraic system or, #*
for a parallel problem, the number of variables *
assigned to the current processor *
*
kinmem pointer to KINSol memory block returned by the *
preceding KINMalloc call *
uu iz the solution vector for the system func(uu) = 0. *
vu is to be set to an initial value if other *
than 0. vector starting value is desired *
*
func is the system function for the system: func(uu) = 0. *
P
globalstrategy is a variable which indicates which global *
strategy to apply the computed increment delta in the *
solution un. Choices are : *
INEXACT_NEWTON or LINESEARCH *
*
uscale is an array (type N_Vector) of diagonal elements of thex
scaling matrix for uu. The elements of uscale must be =
positive values. The scaling matrix uscale should be *
chosen so that uscale * uu (as a matrix multiplication)#*
should have all its components with roughly the same *
magnitude when uu is close to a root of func. *
*
fscale is an array (type N_Vector) of diagonal elements of the#
scaling matrix for func. the elements of fscale must bex*
positive values. The scaling matrix fscale should be
chosen so that fscale * func(uu) (as a matrix
multiplication) should have all its components with
roughly the same magnitude when uu is NOT too near a
root of func.
fnormtol

tolerance on maxnorm(fscale * func¢(uu))

If fnormtol is input as 0., then a default value of
(uround) to the 1/3 power will be used.

uround is the unit roundoff for the machine

in use for the calculation. (see UnitRoundoff in

1lnlmath module
*

*
*
*
*
*
Y
is a real (scalar) value containing the stopping *
*
*
*
*
*
*

scsteptol 1is a real (scalar) value containing the stopping
tolerance on the maximum scaled step uu(k) - uu(k-1)
If scsteptol is input as 0., then a default value of
(uround) to the 2/3 power will be used
uround isg the unit roundoff for the machine
in use for the calculation. {(see UnitRoundoff in
llnlmath module

* *
* *
* *
* *
* *
* *
* *
* *
* congstraints is a pointer to an array (type N_Vector) of *
* congtraints on uu If the pointer passed in is NULL, #*
* then NO constraints are applied to uu . A NULL pointer #
* also stops application of the constraint on the max *
* relative change in uu , controlled by the input *
* variable relu which is input via ropt[RELU] *
* a positive value in comstraints[i] *
* implies that the ith* component of uu is to be *
* constrained > 0 *
* A negative value in constraints[i] implies that the ith#
* component of uu is to be constrained < 0,

* A zero value in constraints[i] implies there is no
* constraint on uufli].

* optIn is a flag (boole} indicating whether optional inputs
* from the user in the arrays iopt and ropt are to be
* used. Pass FALSE to ignore all optional inputs and TRUE#
* to use all eptional inputs that are present.
sk
*
*
*
*
*
*
*
*
*
*
%
*
%
*
*
*
*
*
*
*
*
*

* ¥ ¥ X #

Either choice does NOT affect outputs in other
positions of iopt or ropt.

iopt ig the user-allocated array (of size OPT_SIZE) that
will hold optional integer inputs and outputs.
The user can pass NULL if he/she does not
wish to use optional integer imputs or outputs
If optIn is TRUE, the user should preset to O those
locations for which default values are to be used
Elements of iopt which have significance for either
input or output parameters are:
PRINTFL, MXITER, PRECOND_NO_INIT, NNI ,NFE ,NBCF,
NBKTRK, MXKRYL, and ETACHOICE

ropt is the user-allocated array (of size OPT_SIZE) that
will hold optional real inputs and outputs.
The user can pass NULL if he/she does not
wish to use optional real inputs or outputs.
If optIn is TRUE, the user should preset to 0 0 the
optional input locations for which default values are
to be used.
Elements of iopt which have significance for either
input or output parameters are:

9

*OF K ¥ X O K F F ¥ OF ¥ X O X O ¥ O O F X ¥ OE ¥

MINEWTSTEP, RELFUNC , RELU , FNORM , STEPL, ETACONST,
ETAGAMMA, and ETAALPHA

*
*
*
Permissible iopt and ropt input parameters are given *
in a section below. *

*

f_data is a pointer to work space for use by the user-suppliedx*

function func The space allocated to f_data is *
allocated by the user’s program before the call to *
KINMalloc *

*
nsgfp is the file pointer for a message file where all KINSolx

wvarning, error and informational messages will be *
written. This parameter can be stdout (standard output)=*
, stderr (standard error), a file pointer to a user *

created file, or NULL. If NULL is passed, then stdout
(standard output) is used as a default

*
*
%
*
machEnv is a pointer to machine environment-specific *
information. Pass NULL for the sequential case *

(see nvector.h) *

*

*

*

*

%*

If successful, KINMalloc returns a peinter to initialized
problem memory. This pointer should be passed to KINScl If
an initialization error occurs, KINMalloc prints an error
message to the file specified by msgip and returns NULL.

* ¥ X O X X X ¥ ¥ ¥ K K X ¥ ¥ OF ¥ X X ¥ R X X X * * ¥ =

e 2 e o o o5 e ke ke ke ok ke ok e ok ol e ok e e ke i ol o o o ke e ke ke ok ek ke dle ak ke e ol sl ol ke o e ke e ok s sl ok sl I Kl ok A ol i ok ok ok ak ok

4.2.3. Main solver KINSol optional inputs and outputs. The input of several
optional input parameters is handled by placing their values in appropiiate elements of
either iopt or ropt arrays. Those optional input parameters and their permissible input
values are now discussed

3 3 3 e o ok 3k o 3k ok ke ok o o ok o ke e ok e o ok e o4 3R o o e sk sk sk ok 2k ok S S sk Sk ok ok ke oK 3 3 3 e ok ok ok ok ok 8 ok ok ok 38 3 ke e o ko
* *
Dptional Inputs and Outputs *

*

i
i
*

The user should declare two arrays for optiomal input and
output, an iopt array for optional integer input and cutput
and an ropt array for optional real input and output. These
arrays should both be of size OPT_SIZE.

So the user’s declaration should look like:

long int iopt[OPT_SIZE];
real ropt [OPT_SIZE];

OR XK X ¥ K X O
* ¥ K ¥ ¥ ¥ K *

10

XN ¥ ¥ K ¥ K KX K K OE X OF R X XK X X O N O K X X R X X O N O K K X O O K OE K ¥ K K K E K KK

The following definitions are indices into the iopt and ropt
arrays A brief description of the contents of these positions

follows

iopt [PRINTFL]

iopt [MXITER]

iopt [PRECOND_ND_INIT] (input) Set to 1 to prevent the initial

iopt [ETACHOICE]

(input) allows user to select from 4 levels
of output to FILE msgfp.

=0 no statistics printed (DEFAULT)

=1 output the nonlinear iteration count, the

(input) maximum allowable number of nonlinear

scaled norm of func(uu), and number of
func calls.
2 same as 1 with the addition of global
strategy statistics:
f1 = 0 bxnorm(fscalexfunc(uu))**2 and
finew = 0 S*norm(fscalexfunc(unew))**2 .
3 same as 2 with the addition of further
Krylov iteration statistics.

iterations. The default is MXITER_DEFAULT

call to the routine precondset upon a given
call to KINSol. Set to O or leave unset to
force the initial call to precondset

Use the choice of 1 only after beginning thex*
first of a series of calls with a Q0 value *
If a value other than 0 or 1 is encountered,*
the default, 0, is set in this element of *
iopt and thus the routine precondset will *
be called upon every call to KINSol, unless *
iopt [PRECOND_NO_INIT] is changed by the userx

F N BT S T TR N N DT N I I NEE N I S B B B K 2

(input) a flag indicating which of three
methods to use for computing eta, the
coefficient in the linear solver
convergence tolerance eps given by
eps = {(etatu_round}*norm(func(uu))
here, all norms are the scaled L2 norm
The linear solver attempts to produce a step#
p such that norm(func(u)+J(uu)*p) <= eps
Two of the methods for computing eta
calculate a value based on the convergence
process in the routine KINForcingTerm
The third method does not require
calculation; a constant eta is selected

£ K ¥ X * * *

*O% ¥ H ¥ %X X X

The default if iopt[ETACHOICE] is mnot
11

¥R O OX ¥ ¥ O OK X K K OF N K K ¥ X X K O O K OE K OFH K K OF R N OE X K O K OH N N K K X K K O OE X K ¥

specified is ETACHOICE1l, (see below) *
*

The allowed values (methods) are: *
ETACUONSTANT constant eta, default of 0 1 or user#
supplied choice, for which see ropt[ETACONST],*

*

ETACHOICEl [default] which uses choice 1 of *
Eisenstat and Walker’s paper of SIAM J Sci. =*
Comput.,17 (1996), pp 16-32 vwherein eta is: *
eta(k) = *

ABS(norm(func(uu(k))) - norm(func(uu(k-1))+J(uu(k-1))*p)) =
/ norm{func (uu(k-1))) *

*

ETACHOICE2 which uses choice 2 of *
Eisenstat and Walker wherein eta is: *
eta(k) = egamma * *

(norm(func(uu(k))) / norm(func(u(k-1)))) ealpha *
*

egamma and ealpha for choice 2, both required,=*
are from either defaults (egamma = 0.9 , *
ealpha = 2) or from user input, *
see ropt[ETAALPHA] and ropt[ETAGAMMA], below. *

&

For eta(k) determined by either Choice 1 or =
Choice 2, a value eta_safe is determined, and =*
the safeguard eta(k) <- max(eta_safe,eta(k))*
is applied to prevent eta(k) from becoming too*
small to quickly.
For Choice 1,

eta_safe = eta(k-1)"((1.+sqrt(5.))/2)
and for Choice 2,
eta_safe = egamma*eta(k-1) ealpha.

(These safeguards are turned off if they drop
below 0.1 Alsc, eta is never allowed to be
less than eta_min = 1.e-4 .

iopt [NNI] (output) total number of nonlinear iterations

iopt [NFE] (output) total number of calls to the user-
supplied system function func.

iopt [NBCF] (output) total number of times the beta
condition could not be met in the linesearch
algorithm. The nonlinear iteration is halted
if this value ever exceeds MXNBCF (10)

* ¥ X X ¥ ¥ X X X OF ¥ OE OF X X X X F K ¥ *

iopt [NBKTRK] (output) total number of backtracks in the
12

linesearch algorithm

ropt [MXNEWTSTEP] (input) maximum allowable length of a newton
step. The default value is calculated from
1000+max (norm{uscale*uu(0) ,norm(uscale))

ropt [RELFUNC] (input) relative error in computing func(uu)
if known. Default is the machine epsilon

ropt [RELU] (input) a scalar constraint which restricts
the update of uu to del(uu)/uu < ropt[RELU]
The default is no constraint on the relative
step in uu.

ropt [ETAGAMMA] (input) the coefficient egamma in the eta
computation. See routine KINForcingTerm
(SEE iopt {ETACHOICE] above for additional info)

ropt [ETAALPHA] (input) the coefficient ealpha in the sta
computation. See routine KINForcingTerm
(SEE iopt [ETACHOICE] above for additicnal info)

ropt [ETACONST] (input) a user specified constant value for
eta, used in lieu of that computed by
routine KINForcingTerm
(SEE iopt [ETACHDICE] above for additional info)
Permissible ETACHOICE values are
ETACHOICEL (the default), ETACHOICE2, and
ETACONST

ropt [FNORM] (output) the scaled norm at a given iteration:
norm(fscale(func(uu))

ropt [STEPL] (output) last step length in the global
strategy routine:
KINLineSearch or KINInexactNewton)

X X K OE K ¥ X X N ¥ X O X X X O O X X R K ¥ ¥ F O X X X X X X X X ¥ ¥ ¥ *
X % ¥ N K X OFH R % ¥ K O OE X O O ¥ O O F ¥ X X ¥ OF OF ¥ OF ¥ X X X ¥ ¥ ¥ ¥ * ¥

4.2.4. Main solver (KINSol) return codes. The return code values for the routine

KINSol, both for success and a variety of possible failures, are given next

* *
KINSol returns an integer—valued termination code with the setx*
of possible values:

KINSOL_NO_MEM,KINSOL_INPUT_ERROR,
KINSOL_SUCCESS, KINSOL_SCALED_LT_FNORM,
KINSOL_LNSRCH_NONCONV, KINSOL_MAXITER_REACHED,
KINSOL_MXNEWT_5X_EXCEEDED, KINSOL_LINESEARCH_BCFAIL,

13

* %X ® O * # #
* % ¥ * ¥

HO% R R OF R O OE O O O O R OE X N K F X K R OE OF R OE OE K X ¥ OE X K K K ¥ O X K E X X X X F K X KK

KINSOL_KRYLOV_FAILURE, KINSCOL_PRECONDSET_FAILURE,
KINSOL_PRECONDSOLVE_FAILURE,
KINSOL_INITIAL_GUESS_0OK

The meanings of these return codes are now given, each by
the suffix portion of the respective code That is,

KINSOL_NO_MEM is 1listed in the descriptions below as NO_MEM+
*

* X K X * %

*
SUCCESS : means maxnorm(fscale*func{uu) <= fnormtol, where *
maxnorm{) is the maximum norm function N_VMaxNorm#
uu is probably an approximate root of func. *
*
SCALED_LT_FNORM: means the scaled distance between the last *
two steps is less than scsteptol. uu may be an *
approximate root of func, but it is also possiblex

that the algorithm is making very slow progress

and is not mear a root or that scsteptol is too

large

norm(func) sufficiently on the last global step
Either un is close to a root of £ and no more
accuracy is possible, or the finite-difference
approximation to j*v is inaccurate, or scsteptol
is too large. Check the outputs ncfl and nni: if
ncfl is close to mni, it may be the case that thex
Krylov iteration is converging very slowly. In *
this case, the user may want to use precondition-*
ing and/or increase the maxl value in the *
KINSpgmr input list (that is, increase the max
dimension of the Krylov subspace by setting maxl *
to nonzero (thus not using the default value of =«
KINSPGMR_MAXL, or if maxl is being set, increase *
*
*
*

*

*

*

*

LNSRCH_NONCONV: means the LineSearch module failed to reduce =
*

*

%

*

F'

its value

MAXITER_REACHED: means that the maximum allowable number of
nonlinear iterations has been reached This is by»
default 200, but may be changed through opticnal *
input iopt[MXITER]. *

*

MXNEWT_S5X_EXCEEDED: means 5 consecutive steps of length mxnewt*
(maximum Newton stepsize limit) have been taken.
Either norm(f) asymptotes from above to a finite
value in some direction, or mxnewt is too small.
Mxnewt is computed internally (by default) as
mxnewt = 1000*max(norm{uscale*uud),1), where
uu0 is the initial guesg for uu, and norm() is

14

£ * ¥ ¥ ¥ ¥

the Fuclidean norm N_VWrmsNorm(). Mxnewt can be
set by the user through optional input
ropt [MXNEWTSTEP] .

LINESEARCH_BCFAIL: means that more than the allowed maximum
number of failures (MXNBCF) occurred when trying
to satisfy the beta condition in the linesearch
algorithm It is likely that the iteration is
making poor pProgress.

KRYLOV_FAILURE: means there was a failure of the Krylov
iteration process to converge

LK R S SR S R B I 2]

PRECONDSET_FAILURE: means there was a nonrecoverable
error in PrecondSet causing the iteration to haltx

PRECONDSOLVE_FAILURE: means there was a nonrecoverable
error in PrecondSolve causing the iteration to halt.

NO_MEM: the KINSol memory pointer received was NULL

* ¥ O X F* ¥ X X *

INPUT_ERROR: one or more input parameters or arrays was in

eror. See the listing in msgfp for further info *
s ke s e e ok s o ok o sk ok ok ok ok o ok ok ok ek s ke ok sk ks o ok ok o ok ok ok ke o o e ok kol ok o ok ok ek K ok ok sk ok ok sk kKR sk ok ok

N B BT I BT B K . I ST N I N I S R

4.2.5. Deallocation routine KINFree. The next material describes the routine KINFree
Note that it need not be called after a specific KINSol call but only when the memory used
by the KINSOL package is to be released

void KINFree(void *kin_mem);

/**

* *
* Function : KINFree *
R e e —————— e — *
* KINFree frees the problem memory kinsol_mem allocated by *
* KINMalloc Its only argument is the pointer kinsol_mem *
* returned by KINMalloc *
* *

stk o sk St ok oo e e oo o ok o o s ok o s oK oK o ook ak sk s o ko s s s ok ok 3o s Stk ke o o s sk ok o ok oo ok ok o ok ok Kok ok ke ok /

4.2.6. Linear solver interface function definitions. The linear solver package to
be used with KINSOL interfaces with it via four routines of the type given below Note that
at present there are only the four routines (KINSpgmrInit, KINSpgmrSetup, KINSpgmrSolve,
and KINSpgmrFree) from the KINSPGMR package available In the following, each routine
is named, followed by the generic description If a user wishes to implement another linear

15

solver within KINSOL, the calling conventions given below need to be followed as well as
the entire interface as used in KINSPGMR

KINSpgmrlInit:

/***

* *
*# int (*kin_linit) (KINMem kin_mem, boole *setupNonlull); *
*—-- —— e ————— e ———————— e —— *
* The purpose of kin_linit is to allocate memory for the *
* solver-specific fields in the structure *(kin_mem->kin_lmem) and*
* perform any needed initializations of solver-specific memory, *
* such as counters/statistics. The kin_linit routine should set *
* *getupNonNull t¢ be TRUE if the setup operation for the linear =*
* solver is non-empty and FALSE if the setup operation does *
* nothing An LInitFn should return LINIT_OK (== 0) if it has *
* guccessfully initialized the KINSol linear solver and LINIT_ERR =
* (== -1) otherwise. These constants are defined above. If an *
* error does occur, an appropriate message should be sent to *
* (kin_mem->msgfp). *
* *

***l

KINSpgmrSetup:

/33t oo o K ok ok ok ko o s ok o S o ok K S S ok ok K R o S ok ok S sk o oS o o o i o o e s o ok e ko K

* *
* int (*kin_lsetup) (KINMem kin_mem) ; *
* e e e e e e e e e e e e e *
* The job of kin_lgetup is to prepare the linear solver for *
* subsequent calls to kin_lsolve *
* *
* kin_mem - problem memory pointer of type KINMem. See the big *
* typedef earlier in this file. *
* *
* The kin_lsetup routine should return 0 if successful, *
* a positive value for a recoverable error, and a negative value *
* for an unrecoverable error. *
* *

**********#**************************************#*****************/

KINSpgmrSolve:

/**************************************#********#*******************

* *
* int (¥kin_lsolve) (KINMem kin_mem, N_Vector bb, N_Vector xx, *
* real *res_norm); *

16

* kin_lsolve must solve the linear equation J x = b, where *
* J 1s an approximate Jacobian matrix, x is the approximate system*
* solution, and the RHS vector b is input. The solution is to be *
* returned in the vector b. kin_lsolve returns a positive value *
* for a recoverable error and a negative value for an *
* unrecoverable error. Success is indicated by a 0 return value. *
* *

***/

KINSpgmrFree:

/***

* *
* void (*kin_lfree) (KINMem kin_mem) : *
et e e T T P ———
* kin_lfree should free up any memory allocated by the linear *
* solver This routine is called once a problem has been *
* completed and the linear solver is no longer needed *
* *

Sk o ke o s s sk ok o sk Kk o o ok o s o o ook K ok s ok sk ok ok o o s o ook K o ok o ok e o ok ok ok ok o ok ok o sk oK ok ok ok o sk ok ok ok ok

4.2.7. Linear solver routine KINSpgmr and its optional outputs. Pointers to the
routines just described for the linear solver KINSPGMR are ’set’ in the KINSOL memory
structure by the call to KINSpgmr No other action to prepare for those routines is required
KINSpgmr is now described

void KINSpgmr{void *kin_mem, int maxl, int maxlrst, int msbpre,
KINSpgmrPrecondFn precondset,
KINSpgmrPrecondScolveFn precondsolve,
KINSpgmruserAtimesFn useritimes,
void *P_data);

J R s s sk s oo o o oo o o ok s R R S o K o o ok oo o oK o oK o K o ok o o o K ko oo
* *
* Function : KINSpgmr *

*
1
1
|
|
|
|
I
!
k
l
)
{
|
|
|
!
1
|
|
|
]
1
1
1
1
1
13
f
|
1
:
|
1
1
|
*

* A call to the KINSpgmr function links the main KINSol solver *
* with the KINSpgmr linear solver. Among other things, it sets =*
* the generic names linit, lsetup, lsolve, and lfree to the *
* gpecific names for this package: *
* KINSpgmrInit *
* KINSpgmrSetup *
* KINSpgmrSolve *
* KINSpgmr¥Free *
* *
* *

kin_mem 1is the pointer to KINSol memory returned by
17

KINSolMalloc.

maxl is the maximum Krylov dimension. This is an
optional input to the KINSpgmr solver. Pass 0 to
use the default value MIN(Neq, KINSPGMR_MAXL=10)

maxlrst is the maximum number of linear solver restarts
allowed Values outside the range 0 to 2+Neq/maxl
will be restricted to that range. 0, meaning no
restarts is a safe starting value.

msbpre is the maximum number of steps calling the solver
precondsolve without calling the preconditioner
precondset. (The default is KINSPGMR_MSBPRE = 10)

% ¥ % X O ¥ X X X X H W X %

precondset 1is the user’s preconditioner routine. It is used to*
evaluate and preprocess any Jacobian-related data
needed by the precondsolve routine. See the
documentation for the type KINSpgmrPrecondFn for
full details. Pass NULL if no such setup of
Jacobian data is required. A precond routine is
NOT required, but rather provided when needed by
user’s precondsolve routine

precondsolve is the user’s preconditioner solve routine It
is used to solve Px=b, where P is a preconditioner
matrix. See the documentation for the type *
KINSpgmrPrecondSolveFn for full details The only *
case in which psolve is allowed to be NULL is whenx
no preconditioning is to be done The NULL is taken*
as a flag that preconditioning is not desired.

* X K X O X X O O ¥

userAtimes is an optional routine supplied by the user to
perform the matrix-vector multiply J v, where J is
an approximate Jacobian matrix for that iterationm.
Enter NULL if no such routine is required. If one
is supplied, conforming to the definitions given
in this file, enter its filename.

P_data is a pointer to user preconditioner data. This
pointer is passed to precondset and precondsolve
every time these routines are called.

¥ O X ¥ Ok K X X X X * X K K X ¥ OF X K O X F ¥ OE ¥ K K K K O® O K K K K K K ¥ O K K X ¥
¥ ¥ ¥ OF % ¥ K ¥ X X ¥ *

*
s o oo ok koK S o 3 ko o o o o oK sk 3 o ok ool oo of ok s ok sk s ok ok ok Koo ok ok o ok ok sk o K ok o ko /

Four elements in the KINSOL array iopt are used to retmin KINSPGMR statistics Those iopt
elements a1e indexed by constants SPGMR_NLI, SPGMR_NPE, SPGMR_NPS, and SPGMR_NCFL, which are
defined in file kinspgmr.h The meaning of each output parameter available for KINSpgmr is

18

explained next

/**

*

*

*

* O K K OF K K K K X X K K ¥ ¥ X

*

KINSpgmr solver statistics indices *
_______________________________ — e ———————
The following enumeration gives a symbolic name to each *
KINSpgmr-specific statistic The symbolic names are used as *

indices into the iopt and ropt arrays and values of both arrays*

are set in this module
The KINSpgmr statistics are:
iopt [SPGMR_NLI] (output) number of linear iterations

iopt [SPGMR_NPE] (output) number of preconditioner evaluations

* X ¥ X O® ¥ ¥

iopt [SPGMR_NPS] (output) number of calls made to user’s psolvex

function. *
*

iopt [SPGMR_NCFL] (output) number of linear convergence failuresx

*

sk ok ok ok sk e sk e 38 3 e s s ke o ok ko 3 ok o 3 e 3o ok ok o ok ook ok e ok o b o ok ok o s o ok o o ok e sk e ke sk ke e e ok sk ke ok ok f

4.3. A Skeleton of the User’s Main Program. The user’s program must have the
following steps in the order indicated

-1

. MPI_Init(&argc, &argv); to initialize MPI if used by the user’s program Here

argc and argv ate the command line argument counter and aray received by main
Set n, the local vector length (the sub-vector length for this processor), Neq, the
global vector length (the problem size N, and the sum of all the values of Nlocal),
and the active set of processors

machEnv = PVecInitMPI(comm, n, Neq, &argc, &argv), toinitializethe NVEC-
TOR module Here comm is the MPI communicator, which may be set in one of two
ways If a proper subset of active processors is to be used, comm must be set by
suitable MPI calls Otherwise, to specify that all processors are to be used, comm
must be either MPI_COMM_WORLD or NULL.

Set the vector u of initial values Use the macro N.VMAKE(u, udata, machEnv),
if an existing array udata contains the initial values of u Otherwise, make the
call u = N_VNew(Neq, machEnv); and load initial values into the array defined by
N_VDATA(w)

kmem = KINMalloc(. .), which allocates internal memory for KINSOL and re-
turns a pointer to the KINSOL memory structure

KINSpgmr(.},

ier = KINSol(kmem, u, .), performs the solve

N_VDISPOSE, or N_VFree, upon completion of the integration, to deallocate the

19

9
10

memory for the vector u, allocated by N_VMAKE or N_VNew, respectively
KINFree (kmem); to free the memory allocated for KINSOL
PVecFreeMPI (machEnv) ; to free machine-dependent data

A summary of these in practice, for both the serial and parallel case, is given next

Summary of Serial Usage of KINSOL

Dh O s W o

msgfile=fopen("*** out","w"),

Allocate and initialize vectors and structures, as required
kmem= KINMalloc(SystemSize, msgfile, NULL),
KINSpgmr (kmem, ..),

retcode=KINSol (kmem, ..),

KINFree{men),

Summary of Parallel Usage of KINSOL

9.
10.

11

msgfile = fopen("test.out","w"), Open message file, if desired

MPI_Init(), as PVecInitMPI, below, also calls MPI_Init, this call is only 1equired
if the user’s program uses MPI before step 3

Set local length n and global length Neq, and the active set of processois

machEnv = PVecInitMPI(comm, n, Neq, argc, argv); comm = MPI communica-
tor (if set up by user), or comm = MPI_COMM_WORLD or NULL (specifying all processors)
if (machEnv == NULL) return(1l);

N_VMAKE(u, udata, machEnv); or u = N.VNew(Neq,machEnv), user sets up vec-
tors, structures, etc

kmem = KINMalloc(Neq, msgfile, machEnv), initializes KINSOL if stdout is to
be used instead of a specific error message file, enter NULL in place of msgfile
KINSpgmr(.), call the setup routine for the linear solver to be used Note that
only KINSpgnr is available at present

flag= KINSol(kmem, Neq, u, func, ., machEnv); call the KINSOL main
routine — can be called repetitively with different functions func and other options
A linear solver choice made in step 7, when another choice is available, cannot be
changed between KINSol calls

N.VDISPOSE(), or N.VFree(), call, as appropriate

KINFree (kmem), Fiee KINSOL memory, independent of machine
PVecFreeMPI(machEnv), Fiee machine-dependent data.

Every usage of KINSOL requires at least the inclusion of the following header files
kinsol.h, kinspgmr h or a future alternate solver, math h, 1lnityps h, and nvector h
If the BBD preconditioner is used, additional header files are required kinbbdpre h and
band h The header file mpi h is required for parallel applications of KINSOL

20

4.4. User-Supplied Functions. The function defining the nonlinear system, called
F(u) in this 1eport, but func{uu) in KINSOL and KINSPGMR internal usage, must be of the
form described by the following typedef extracted from KINSOL

typedef void (*SysFn)(integer Neq, N_Vector uu,
N_Vector fval, void *f_data)

e sk s e st e sk sk e ke ok sk e ke 3K ke sk s s o s o o of sk ok ok o sk ok ok ok ok ok ok ok ok sk ke s o ok o sk ok R R ok ok o o oK ko sk ok ok s o ok
* *
* Type : SysFn *
___________________________ _— O ——
The func function which defines the system to be soclved : *
func(uu) = 0 must have type SysFn. *
func takes as input the problem size Neq and the dependent *
variable vector un The function stores the result of func(uu) *
in fval The necessary work space, besides uu and fval, is *
*
*
*
*
*

*

provided by the pointer f_data.
The uu argument is of type N_Vector.
A BysFn function does not have a return value

* ¥ ¥ ¥ ¥ ¥ K X ¥

ok ok o s o o o o o o ok o sk o o oo o ok o S K o ol o ok ol o sk sk ok e e s sk s s ok ok o s SRR ok s sk kR ok ok ok ok ok /

Preconditioning is an important step in using KINSOL with any linear solver The
interface for the routines defining the preconditioner setup and solve routines for KINSPGMR
are given next

typedef int (*KINSpgmrPrecondFn) (integer Negq,
N_Vector uwu, N_Vector uscale ,
N_Vector fval, N_Vector fscale,
N_Vector vtempl, N_Vector vtemp2,
SysFn func, real uround,
long int *nfePtr, void *P_data};

/**

* *
* Type : KINSpgmrPrecondFn *
A e e e e e e e e e e e ——
* The user-supplied preconditioner setup function precondset and *
* the user-supplied preconditioner solve function precondsolve *
* together must define the right preconditoner matrix P chosen *
* S0 as to provide an easier system for the Krylov sclver *
* to solve. precondset 1s called to provide any matrix data *
* required by the subsequent call(s) to precondsolve The data isx
* stored in the memory allocated to P_data and the structuring of*
* that memory is up to the user More specifically, *
* the user-supplied preconditioner setup function precondset *
* is to evaluate and preprocess any Jacobian-related data *

21

* ok ¥ % ¥ ¥ X ¥ F ¥ ¥ X F F O F F X K K % ¥ X X K ¥ X X X ¥ ¥ X F X X E ¥ ¥ ¥ % F * * * X ¥ N ¥ ¥

needed by the preconditioner solve function precondsolve.
This might include forming a crude approximate Jacobian,

and performing an LU factorization on the resulting
approximation to J. This function will not be called in
advance of every call to precondsolve, but instead will be
called only as often as necessary to achieve convergence
within the Newton iteration in KINSol. If the precondsolve
function needs no preparation, the precondset function can be
NULL.

precondset should not modify the contents of the arrays
uwu or fval as those arrays are used elsewhere in the
iteration process

Each call to the precondset function is preceded by a call to
the system function func. Thus the precondset function can use
any auxiliary data that is computed by the func function and
saved in a way accessible to precondset.

The two scaling arrays, fscale and uscale, and unit roundoff

* % F O F ¥ O X K ¥ O R F X X X X X X ¥ *

uround are provided to the precondset function for possible usex

in approximating Jacobian data, e.g. by difference quotients.
These arrays should alsoc not be altered

A function precondset must have the prototype given below.
Its parameters are as follows:

Neq is the length of all vector arguments.
uu an N_Vector giving the current iterate for the system.

uscale an N_Vector giving the diagonal entries of the uu-
scaling matrix.

fval an N_Vector giving the current function value

fscale an N_Vector giving the diagonal entries of the func-
scaling matrix.

vtempl an N_Vector temporary

vtemp2 an N_Vector temporary

func the function func defines the system being solved:
func{uu) = 0 , and its name is passed initially to

KINSol in the call to KINMalloc

urcund is the machine unit roundoff.
22

* O ¥ OE® % OF K ¥ OF A ¥ K K ¥ K O OE R K O ¥ O X X F X ¥

* *
* nfePtr 1is a pointer to the memory location containing the *
* KINSol problem data nfe = number of calls to func *
* The precondset routine should update this counter by *
* adding on the number of func calls made in order to *
* approximate the Jacobian, if any For example, if *
* the routine calls func a total of W times, then the *
* update is *nfePtr += ¥ *
* *
* P_data is a pointer to user data - the same as the P_data *
* parameter passed to KINSpgmr. *
* *
* *
* Returned value: *
* The value to be returned by the precondset function is a flag =
* indicating whether it was successful This value should be *
* 0 if successful, *
* 1 if failure, in which case KINSol stops *
* *
* *

o8 e o 2K ok o R oK oK ks KB ol ok o o S ok o e K ok ek o o 2 oo o oK ok ook Bl ok ks ok ok ko o ok o ook o ok sk ok ok ok

typedef int (*KINSpgmrPrecondSolveFn)(integer Neq,
N_Vector uu, N_Vector uscale,
N_Vector fval, N_Vector fscale,
N_Vector vtem, N_Vector ftem,
SysFn func, real u_round,
long int *nfePtr, void *P_data);

/**

* *
* Type : KINSpgmrPrecondSolveFn *
*——— — i a m - ———
* The user-supplied preconditioner solve function precondsolve *
* is to solve a linear system P x = r in which the matrix P is *
* the (right) preconditioner matrix P *
* *
* precondset should not modify the contents of the iterate *
* array uu or the current function value array fval as those =*
* are used elsewhere in the iteration process *
* *
* A function precondscolve must have the prototype given below. *
* Jts parameters are as follows: *
* *
* Neq is the length of all vector arguments. *
* *
* uu an N_Vector giving the current iterate for the system. =*

23

func{uu) = 0.

uround is the machine unit roundoff.

*

uscale an N_Vector giving the diagonal entries of the uu- *
scaling matrix *

*

fval an N_Vector giving the current function value *
*

fscale an N _Vector giving the diagonal entries of the fumc- *
scaling matrix *

*

vtem an N_Vector work array, holds the RHS vector on input *
and the result x on output/return *

*

ftem an N_Vector work array, usually set on input as vtemp *
*

func the function func defines the system being solved: *
*

%

*

*

sk

nfePtr is a pointer to the memory location containing the
KINSol problem data nfe = number of calls to func. The*
precondsolve routine should update this counter by *
adding on the number of func calls made in order to *
carry out the solution, if any For example, if the =*
routine calls func a total of W times, then the updatex
igs #*nfePtr += W

P_data is a pointer to user data - the same as the P_data
parameter passed to KINSpgmr.

* % ¥ * ¥ ¥

Returned value:
The value to be returned by the precondsolve function is a flag#*

¥ O OX X N K X OE R ¥ ¥ K K O OH X O ¥ ¥ ¥ K K ¥ ¥ O F X X ¥ ¥ X X X H ¥ * X

indicating whether it was successful. This value should be *
0 if successful, *

1 if failure, in which case KINSol stops *

*

s o o 3t o o K o 1 o ok s e o of o sk o sk ok o ke oK ok ok o8 o R o ok ok s e o 3 K o ok ke s ke s ke ok ok ok s ok o ke ok sk ok s ok ok o sk ok ok o

The matrix-vector multiply Jv may be done more efficiently on occasion by an algorithm
supplied by the user This option is handled by supplying a routine of type next described
to KINSPGMR, the routine KINSpgmr, in particular

typedef int (#KINSpgmruserAtimesFn)(void *f_data, N_Vector v,
N_Vector z, boole *new_uu,
N_Vector uu);

384 o ke ke ok 3 s e sk e ok e of s e ok s ok ok ok s b ok B ok K o ke S e oK 6 o ke e 5 o e o ok ek o o ok ok ok s sk ok R Kok ek ok ok oK

24

type : KINSpgmruserAtimesFn
The user-supplied A times x routine (optional) where A is
the Jacobian matrix dF/du or an approximation to it and v
is a vector z = (J v) is computed
f.data is a pointer to the structure used to handle data for
the user-supplied system function and also to contain data

for evaluation of the Jacobian of func

v ig the N_Vector to be multiplied by J
(preconditioned and unscaled as received)

z is the N_Vector resulting from the application of J to v

new_uu is a flag indicating if a new_uu has been
processed or not

uu ig the N_Vector of the current iterate

* % X OB X ¥ X OF ¥ ¥ X ¥ F X ¥ X * F * F #
* X ¥ ¥ K X O XK XK ¥ K F X X F X X X X X

********************!It**/

4.5. Use by a C++ Application. KINSOL has been written in so that it permits
use by applications wiitten in C++4 as well as in C For this purpose, each KINSOL header
file is wiapped with conditionally compiled lines reading extern "C" { . }, conditional
on the variable __cplusplus being defined This directive causes the C++ compiler to
use C-style names when compiling the function prototypes encountered Users with C+4-+
applications should also be awaie that we have defined, in 11lnltyps.h, a boolean variable
type, boole, since C has no such type The type boole is equated to type int, and so
arguments in user calls, or calls to user-supplied routines, which are of type boole can be
typed as either boole or int by the user The same applies to vector kernels which have a
type boole return value, if the user is providing these kernels

5. A Band-Block-Diagonal Preconditioner Module. A principal reason for using
a parallel nonlinear system solver such as KINSOL lies in the solution of nonlinear systems
arising in a paitial differential equations (PDE) context Moreover, the use of a Krylov
iterative method for the solution of many such problems is motivated by the nature of the
undetlying linear system of equations that must be solved at each time step The linea:
algebraic system is large, sparse, and structured However, if a Kiylov iterative method
is to be effective in this setting, then an effective preconditioner needs to be used Other-
wise, the rate of convergence of the Krylov iterative method is usually unacceptably slow
Unfortunately, an effective preconditioner tends to be problem-specific

However, we have developed one type of preconditioner that treats a rather broad class
of problems It has been successfully used for several realistic, large-scale problems and

25

is included in a software module within the KINSOL package This module generates a
preconditioner that is a block-diagonal matrix with each block being a band matrix The
blocks need not have the same number of super- and sub-diagonals and these numbers
may vary from block to block This Band-Block-Diagonal Preconditioner module is called
KINBBDPRE

One way to envision these pieconditioners is to think of the domain of the computa-
tional PDE problem as being subdivided into M non-overlapping subdomains Each of these
subdomains is then assigned to one of the M processors to be used to solve the PDE system
The basic idea is to isolate the preconditioning so that it is local to each processor, and also
to use a (possibly cheaper) approximate system function. This 1equires the definition of a
new function g(u) which approximates the function F'(u) in the definition of the nonlinear
system (1) However, the user may set g = F° Corresponding to the domain decomposition,
there is a decomposition of the solution vector « into M disjoint blocks u,,, and a decompo-
sition of ¢ into blocks g,, The block g, depends on u,, and also on components of blocks
Uy asssociated with neighboring subdomains (so-called ghost-cell data) Let @, denote u,,
augmented with those other components on which g, depends Then we have

(4) g(u) = [g1(@1), g2(tz), + gae(t, Bar)]”

and each of the blocks g,,(%, %) is uncoupled from the others
The preconditioner associated with this decomposition has the form

(5) P = d?:(lg[Pl, PQ, ,PM]
where
(6) P, & Jnm

and J,, is a difference quotient approximation to 8¢,,/0u, This matrix is taken to be
banded, with upper and lower half-bandwidths mu and ml defined as the number of non-
zero diagonals above and below the main diagonal, respectively The difference quotient
approximation is computed using mu + ml + 2 evaluations of g,, The parameters m1 and
mu need not be the true half-bandwidths of the Jacobian of the local block of g, if smaller
values provide a more efficient preconditioner Also, they need not be the same on every
processor The solution of the complete linear system

(7) Pr=1»%
reduces to solving each of the equations
(8) Py = by,

and this is done by banded LU factorization of F,, followed by a banded backsolve.
To use this KINBBDPRE module, the user must supply two functions which the module
calls to construct P These are in addition to the user-supplied system function func
26

e A function glocfn{(Nlocal, ulocal, glocal, f_data) must be supplied by the
user to compute ¢g(u) It loads the real array glocal as a function of t and ulocal
Both glocal and ulocal are of length Nlocal, the local vector length
e A function gcomm(Nlocal, u, f_data) which must be supplied to perform all inter-
processor communications necessary for the execution of the glocfn function, using
the input vector u of type N_Vector
Both functions take as input the same pointer f_data as that passed by the user to
KINMalloc and passed to the uset’s function func, and neither function has a return value
The user is responsible for providing space (presumably within f_data) for components of
u that are communicated by gcomm from the other processors, and that are then used by
gloctn, which is not expected to do any communication.
The user’s calling program should include the following elements
e #include "kinbbdpre.h" for needed function prototypes and for type KBBDData
e KBBDData p_data,

e machEnv = PVecInitMPI{comm, Nlocal, N, argc, argv),

e N_VMake(u, udata, machEnv),

e kmem = KINMalloc(N, F, .),

e p_data = KBBDAlloc(Nlocal, mu, ml, . , glocfn, gcomm, ..}, where the

upper and lower half-bandwidths are mu and m1, respectively, and glocfn and gcomm
are user-supplied functions
e KINSpgmr (kmem, maxl, maxlrst, msbpre, KBBDPrecon, KBBDPSol,
userAtimes, p.data), with the memory pointers kmem and p_data returned by the
two previous calls, the parameters (maxl, maxlrst, and msbpre) and the names
of the preconditioner routines (KBBDPrecon, KBBDPSol) supplied with the KINBB-
DPRE module If a user-supplied matrix-vector multiply routine,userAtimes, is
supplied, it also is entered here
ier = KINSol(cvode_mem, u ...), to carry out the KINSOL solution
KBBDFree (p_data), to free the KBBDPRE memory block
KINFree (kmem), to free the KINSOL memory block
e PVecFreeMPI (machEnv), to free the KINSOL MPI memory block
Three optional outputs associated with this module are available by way of macros
These are
KBBD_RPWSIZE(p_data) = size of the real workspace (local to the current processor) used
by KINBBDPRE
KBBD_IPWSIZE(p_data) = size of the integer workspace (local to the cutrent processor) used
by KINBBDPRE
KBBD_NGE(p_data) = cumulative number of ¢ evaluations (calls to glocfn) so far
The costs associated with KINBBDPRE also include npe LU factorizations, npe calls to
gcomm, and nps banded backsolve calls, where npe and nps are optional KINSOL outputs
Similar block-diagonal preconditioners could be considered with different treatment of
the blocks P, For example, incomplete LU factorization or an iterative method could be
used instead of banded LU factorization

27

6. The Fortran/C Interface Package. We anticipate that many users of KINSOL
will work from existing Fortran application programs To accommodate them, we have
provided a set of inteiface routines that make the 1equired connections to KINSOL with a
minimum of changes to the application programs Specifically, a Fortran/C interface package
called FKINSOL is a collection of C language functions and header files which enables the
user to write a main program and all user-supplied subroutines in Fortran and to use the C
language KINSOL package This package entails some compromises in portability, but we
have kept these to a minimum by requiring fixed names for user-supplied routines, and by
using a name-mapping scheme to set the names of externals in the Fortran/C linkages The
latter depends on two parameters set in a small header file

Since a user cannot successfully link a program where any routine calls a Fortran routine
not supplied, it is necessary that there be six choices for the FKINSPGMR routine FKINSPGMROO
is found in fkinsol.c but the others are in separate files to simplify linking Each calls the
routine KINSpgmr (a C module) but with different options The first of two suffix digits
indicates whether the number of routines supplied is 0 (no preconditioning), 1 (precondi-
tioner solve only), or 2 {(both preconditioner setup and solve routines) The second digit
indicates whether or not a userAtimes 1outine routine is supplied in Fortran For example,
if FKINSPGMR11 is called from the Fortian main, it will be necessary that the user supply as
well the routines FPSOL and FATIMES In this way, dummy routines named FPSOL, FATIMES,
etc , are not required

The Fortran/C interfaces have been tested on a Cray-T3D, a DEC ALPHA, and a cluster
of Sun workstations

A similar interface package, called FKINBBD, has been wiitten fo: the KINBBDPRE pre-
conditioner module It works in conjunction with the FKINSOL interface package The addi-
tional user-callable functions here are FKBBDINITO and FKINBBDINIT1, which inteirface with
KBBDAlloc and KINSpgmr, FKINBBDOPT, which accesses optional outputs, and FKINBBDFREE,
which inteifaces with KBBDFree The two user-supplied Fortran subroutines required, in ad-
dition to KFUN to define ¥, are KLOCFN, which computes g{u}, and KCOMMFN, which performs
cotnmunications necessary for KLOCFN

An overview of the Fortran interface and a skeleton program illustrating their use follow

6.1. Overview of Fortran interface routines. The 1outines used to interface with
a Fortran main program and with Fortian user-supplied routines are summarized below
Further details can be found in the header file fkinsol.h Also, the user should check, and
1eset if necessary, the parameters in the file fcmixpar h The functions which are callable
from the user’s Fortran program are as follows:

e FKINITMPI interfaces with PVecInitMPI and is used to initialize the NVECTOR
module

e FPKINMALLOC interfaces with KINMalloc and is used to initialize KINSol.

e FKINSPGMROO, FKINSPGMRO1, FKINSPGMR10, FKINSPGMR11, FKINSPGMR20, and
FKINSPGMR21 interface with KINSpgmr when SPGMR has been chosen as the linear
system solver (the only choice at present) These six interface routines correspond
to the cases of no preconditioning, preconditioning with no saved matrix data, and
pieconditioning with saved matrix data, respectively, each without or with a user-

28

supplied Jacobian-vector multiply (FATIMES) routine For example, FKINSPGMR11
uses conditioning but no setup routine {psolve but no precondset) and also the
user has supplied a routine FATIMES that performs the Jacobian-vector multiply
used in the GMRES solver

e FKINSOL interfaces with KINSol

e FKINFREE interfaces with KINFree and is used to free memory allocated for CVode

e FKFREEMPI interfaces with PVecFreeMPI and is used to ftee memoty allocated for
MPI

Fortran interface modules and routines

‘ MODULE | Fortran-callable routine l
FKINSOL FKINITMPI, FKFREEMPI, FPKINMALLOC,
FKINFREE, FKINSPGMROO, FKINSOL
FKINSPGMRO1 | FKINSPGMRO1
FKINSPGMR10 | FKINSPGMR10
FKINSPGMR11 | FKINSPGMR11
FKINSPGMR20 | FKINSPGMR20
FKINSPGMR21 | FKINSPGMR21

The user-supplied Fortran subroutines are as follows. The names of these routines aie
fixed and are case-sensitive

o KFUN which defines the function, F, that described the system to be solved F/(u) = 0

e KPSOL which solves the preconditioner equation, and is 1equired if preconditioning
is used

e KPRECO which computes the preconditioner, and is required if preconditioning in-
volves pre-computed matrix data

e FATIMES which performs a Jacobian-vector product paralleling the C routine user-
Atimes

¢ KLOCFN which performs the local computation of the system function as required for
the BBD preconditioner

e KCOMMFN which performs the communication of function values between processors
as 1equired for the BBD preconditioner

Routines to be provided by the user
(* indicates optional)

KFUN user-supplied Fortran system function
KPRECD* | user-supplied Fortran preconditioner setup *
KPSOL* user-supplied Fortran preconditioner solve *
FATIMES* | user-supplied Fortran Atimes *

KLOCFN* | for BBD preconditioner/Fortran interface*
KCOMMFN* | for BBD preconditioner/Fortran interface*

29

6.2. Skeleton of Fortran usage. The two summaries of usage in a Fortran context
are brief but follow the pattern established above for the C inteiface
Summaiy of Parallel Usage of KINSOL, using the Fortran interface
1 call MPI_INIT() Initialize MPI
2 call FKINITMPI(nlocal, neq, ier) Initialize the NVECTOR interface to MPI
Heie, nlocal and neq are the local and global sizes of vectors to be used
3 call MPI_COMM_SIZE(.) or call MPI_COMM_RANK(..) Optional calls to deter-
mine logical processor number and count, part of MPI, proper
4 call FPKINMALLOC(.) Allocate space for KINSOL
5 call FKINSPGMR20(...) Set up the linear solver The choice illustiated here is for
both a setup and solve preconditioner routine to be supplied by the user in Fortran,
but no user-supplied FATIMES 1outine
6 call FKINSQL(..) Call KINSol, through the Fortran interface
7 call FKINFREE Free memory usage by KINSOL and its Fortran interface
8 call FKFREEMPI Fiee MFI interface
Summary of Serial Usage of KINSOL, using the Fortran interface
1 call FPKINMALLOC(.) Allocate space for KINSOL
2 call FKINSPGMR20(.) Set up the linear solver The choice illustrated here is for
both a setup and solve preconditioner routine to be supplied by the user in Fortran,
but no user-supplied FATIMES routine
3. call FKINSOL(.) Call XINSol, through the Fortran interface
4 c¢all FKINFREE Free memory usage by KINSOL and its Fortran interface

7. Example Problems. Although a trivial diagonal example is supplied with the
distribution package, the following example, the so-called predator-prey PDE system, is
more illustrative of the power of KINSOL with real problems This particular problem,
outlined below, was solved by both a sequential and parallel implementation of KINSOL
(kinxs ¢ and kinxp.c being the C program source) It was also solved using the Band-
Block-Diagonal Preconditioner supplied with KINSOL (kinxbbd.c) The PDE problem to
be solved is now briefly presented

This example problem is a model of a multi-species food web [1], in which mutual
competition and/o1 predator-prey relationships in a spatial domain are simulated For this
problem the dependent variable ¢ replaces the generic dependent variable u used above

Here we consider a model with s = 2p species, where both species 1,- ,p (the prey) and
p+1, s (the predators) have infinitely fast reaction rates
(9) Ozfz(miyac)—‘_d%(c?rm_‘_cz;y) (T’=1:27":p)1
0= f?-(:E: Y, C) + d’i(c?zm + C;;y) (7’ =p+ 1) vt :S)a
with
(10) filz,y,0) = ci(bi + Z az-jcj)

=1

The interaction and diffusion coefficients (s, b;, d;) could be functions of (z,y) in general
The choices made for this test problem are for a simple model of p prey and p predator
30

species, arranged in that oider in the vector ¢ We take the various coefficients to be as
follows
(11) a;;=-05 107% (i< p,j>p)

a5 =10* (i > p,j < p)

(all other a;; = 0),

by =bi(z,y) = (L + azy) (< p)
(12) { by =bi(z,y) = —(L+azy (i>p)
and
di=1 (i < p)
(13) {d,-=05(1'£p)

The domain is the unit square 0 < x,y < 1. The boundary conditions are of Neumann
type (zero normal derivatives) everywhere The coefficients are such that a unique stable
equilibrium is guaranteed to exist when « is zero [1] Empirically, for (9) a stable equilibrium
appears to exist when o is positive, although it may not be unique In this problem we take
o = 1 The initial conditions used for this problem are taken to be constant functions by
species type These satisfy the boundary conditions and very neaily satisfy the constraints,
given by

¢ = 116347 (i=1,- ,p)
¢ = 349031 (r=p+1, ,s)

The PDE system (9) (plus boundary conditions) was discretized with central differencing
on an L x L mesh, with the resulting nonlinear system has size N = sL?

The main program source solving this problem (kinxs c) is given in its entirety in the
Appendix The output for this case is also included in the Appendix

8. Availability. At present, the KINSOL package has not been released for general dis-
tribution However, plans are in progiess for a limited release, and interested potential users
at DOE Laboratories can obtain KINSOL on request from Allan Taylor or Alan Hindmarsh
(at agtaylor@llnl gov or alanh@llinl gov, resp)

REFERENCES

[1] P N Biown, Decay to Uniform States in Food Webs, SIAM J Appl Math , 46 (1986), 376-392

[2} P N Brown and A C Hindmaish, Reduced Storage Matriz Methods in Stiff ODE Systems, J Appl
Math & Comp 31 (1989), pp 40-91

[3] P N Brownand Y Saad, Hybrid Krylov methods for nonlinear systems of equations, SIAM J Sci Stat
Comput , 11 {1990}, pp 450-481

[4] S C Eisenstat and H ¥ Walker, Choosing the Forcing Terms in an Inexact Newton Method, SIAM J
Sci Comput , 17 (1996), pp 16-32

31

[5] GeorgeD Byrne and Alan C Hindmarsh, User Documentation for PVODE, An ODE Solver for Parallel
Computers, Lawience Livetmore National Laboratory report UCRL-ID-130884, May 1998

6] S D Cohen and A C Hindmaish, CVODE User Guide, Lawience Livermore National Laboratory
report UCRI-MA-118618, September 1994

[7} Scott D Cohen and Alan C Hindmaish, CVODE, a Stiff/Nonstiff ODE Solver in C, Computers in
Physics, 10, No 2 (1996), pp 138-143

(8] William Gropp, Ewing Lusk, and Anthony Skjellum, Using MPI Portable Parollel Programming with
the Message-Passing Interface, The MIT Press, Cambiidge, MA, 1994

{9] Alan C Hindmaish and Allan G Taylor, PVODE and KINSOL Parollel Software for Differential and
Nonlinear Systems, Lawrence Livermore National Laboiatory report UCRL-ID-129739, February
1598

[10] Y Saad and M H Schultz, GMRES A Generalized Minimal Residual Algorithm for Solving Nonsym-
metric Linear Systems, SIAM J Sci Stat Comp 7 (1986), pp 856-869

32

9. Appendix: Listing of Predator-Prey PDE Example Program.

/********************#***

* *
* File: kinxp ¢ *
* Programmers: Allan G Taylor and Alan C. Hindmarsh @ LLNL *
* Version of 1 Dec 1997 *
B — o e e e e *

Example problem for KINSol, parallel machine case

This example solves a nonlinear system that arises from a system of
partial differential equations. The PDE system is a food web
population model, with predator-prey interaction and diffusion on the
unit square in two dimensicns. The dependent variable vector is

1 2 ns
c=f(,c, ...,¢c) (denoted by the variable cc)

and the pde’s are as follows:

i i
0 = d(i)*(c +c) + £ (x,y,0) (i=1,.. ,ns)
xx vy i
where
i ns J
£ (x,y,¢) = ¢ * (b{i) + sum a(i,jd*c)
i j=1

The number of species is ns = 2 * np, with the first np being prey and
the last np being predators. The number np is both the number of prey and
predator species The coefficients a(i,j) , b(i) , d(i) are

a(i,i} = -AA (all i)

a(i,j) = -GG (1 <=np , j > np)

a(i,j) EE (i > np, j <= np)

b(i) = BB * (1 + alpha * x * y) (i <= np)
b(i) =-BB # (1 + alpha * x * y) (i >= np)
d(i) = dprey (i <= np)

d(i) = dpred (i > np)

The various scalar parameters are set using define’s
or in routine InitUserData
The boundary conditions are . normal derivative = Q.
The initial guess is constant in x and y, although the final
solution is not

* ¥ ¥ % ¥ ¥ O K ¥ OF ¥ ¥ X H FH ¥ X X ¥ ¥ ¥ F ¥ R F F H ¥ ¥ ¥ ¥ F F* ¥ ¥ ¥ ¥ ¥ ¥ *

The PDEs are discretized by central differencing on a mx by my mesh
33

The nonlinear system is solved by KINSol using the method specified in
local variable globalstrat

The preconditioner matrix is a block-diagonal matrix based on the
partial derivatives of the interaction terms f (in the above equation) only

Execution: mpirun -np N -machinefile machines kinxp
{with N = NPEX*NPEY, total number of processors, see below}

references..

1.

Peter N Brown and Youcef Saad,

Hybrid Krylov Methods for Nonlinear Systems of Equations
LLNL report UCRL-97645, November 1987

Peter N Brown and Alan C. Hindwmarsh,

Reduced Storage Matrix Methods in Stiff ODE systems,

Lawrence Livermore National Laboratory Report UCRL-95088, Rev. 1,

June 1987, and Journal of Applied Mathematics and Computation, Vol. 31
(May 1989), pp 40-91 (for a description of the time-dependent
version of this test problem)

run command line: mpirun -np N -machinefile machines kinxp
where N = NPEX * NPEY is the number of processors to use.
st 3 3 e e S o ok 8 3R K S e o o8 ok R o o 2 o oo sk R o ko o ke o ok ok o ok sk o o ok sk ok ok ook /

¥ ¥ K OF O E X OFR X K OE OE OE X OE K X X ¥ X K K X ¥ X ¥ ¥ X X ¥

#include <stdioc.h>

#include <stdlib.h>

#include <math h>

#include "llnltyps h" /* definitions of real, integer, boole, TRUE, FALSE*/

#include "kinsol.h" /* main KINSol header file */
#include "iterativ.h" /* contains the enum for types of preconditioning */
#include "kinspgmr.h" /* use KINSpgmr linear solver */
#include "dense h" /* use generic DENSE solver for preconditioning */
#include "nvector h" /* definitions of type N_Vector, macro N_VDATA */
#include "llnlmath h" /* contains RSqrt and UnitRoundoff routines */
#include "mpi h" /* MPI include file */

/* Problem Constants */

#define NUM_SPECIES 6 /* must equal 2+(number of prey or
predators} number of prey =
number of predators */

34

#define

#define
#define
#define
#define
#define
#define
#define
fidefine
#define

#define
#define
#tdefine
#define
#define
#define
#define
#define
#define
#tdefine
#define
#tdefine
#define
#define

/* User-defined vector accessor macro:

PI

NPEX
NPEY
MXSUB
MYSURB
MX

MY
NSMXSUB
NSMXSUB2
NEQ

EB
DPREY
DPRED
ALPHA
AX

AY
FTOL
STOL
THOUSAND
ZERG
ONE

3.1415926535898

2
2
10
10

RCONST(1.

/*

pi */

/* number of processors in the x-direction */
/* number of processors in the y-direction */

/* MXSUB
/¥ MYSUB

0)

RCONST (10000)

RCONST (0.
RCONST(1
RCONST (1
RCONST (0.
RCONST(1
RCONST (1
RCONST(1
RCONST (1
RCONST(1

5e-6)

.0)

0)
5)

.0)
.0)

0)
e-7)
e-13)

RCONST(1000.0)

RCONST(OQ.
RCONST(1

)
0)

/%
/*
/*
/*
/*
/*
VL
/*
/*
VES
/*
/x
/*
/%

= number of x mesh points per subgrid */
= number of y mesh points per subgrid #/
(NPEX*MXSUB) /* number of grid points in the x-direction */
(NPEY*MYSUB) /* number of grid points in the y-direction */
(NUM_SPECIES * MXSUB)
(NUM_SPECIES * (MXSUB+2))
(NUM_SPECIES * MX % MY)
/* number of

value
value
value
value
value
value
value
total
total

ftol

stol

Q0 =/
1 %/

equations in the system */

of
of
of
of
of
of
of

coefficient
coefficient
coefficient
coefficient
coefficient
coefficient
coefficient

a, above eqns */
e, above eqns */
g, above egns */
b, above eqns */
dprey, above eqns */
dpred, above eqns */
alpha, above eqns */

range of x variable */
range of y variable */
tolerance */
tolerance */
one thousand */

IJ_Vptr */

/* IJ_Vptr is define in order to isolate the underlying 3-d structure of the
dependent variable vector from its underlying 1-d storage (an N_Vector).
IJ _Vptr returns a pointer to the location in vv corresponding to

ns =

#define IJ_Vptr(vv,i,j)

/* Type

typedef

0, jx

i, jy =73

: UserData
contains preconditioner blocks, pivot arrays, and problem constants */

struct {

real **P[MXSUB] [MYSUB];
integer *pivot[MXSUB] [MYSUB];
real **acoef, *bcoef;

*/

35

(&(((vv)->data) [(i)*NUM_SPECIES + (j)*NSMXSUB]))

N_Vector rates;

real *COX, *coy;

real cext[NUM_SPECIES * (MXSUB+2)*(MYSUB+2)];
integer my_pe, isubx, isuby, nsmxsub, nsmxsub2;

MPI_Comm comm;

real ax, ay, dx, dy;

real uround, sqruround;

integer Neq, mx, my, ns, np;
} sUserData;

/* Private Helper Functions #*/

static UserData AllocUserData(void);
static void InitUserData(integer my_pe, MPI_Comm comm, UserData data);
static void FreeUserData(UserData data);
static void SetInitialProfiles{(N_Vector cc, N_Vector sc);
static void PrintOutput(integer my_pe, MPI_Comm comm, N_Vector cc);
static void PrintFinalStats(long int *iopt);
static void WebRate(real xx, real yy, real *cxy, real *ratesxy, void *f_data);
static real DotProd(integer size, real *x1, real *x2);
static void BSend(MPI_Comm comm, integer my_pe, integer isubx, integer isuby,
integer dsizex, integer dsizey, real *cdata);
static void BRecvPost(MPI_Comm comm, MPI_Request requestl], integer my_pe,
integer isubx, integer isuby,
integer dsizex, integer dsizey,
real *cext, real #buffer);
static void BRecvWait (MPI_Request request[], integer isubx, integer isuby,
integer dsizex, real *cext, real *buffer);
static void ccomm(integer Neq, real *cdata, UserData data);
static void fcalcprpr(integer Neq, N_Vector cc, N_Vector fval,
void *f_data);

/* Functions Called by the KINSol Solver */

static void funcprpr(integer Neg, N_Vector cc, N_Vector fval,
void *f_data);

static int Precondbd(integer Neq, N_Vector cc, N_Vector cscale,
N_Vector fval, N_Vector fscale,
N_Vector vtem,N_Vector vtempl, SysFn func, real uround,
long int *nfePtr, void *P_data);
36

static int PSolvebd{integer Neq, N_Vector cc, N_Vector cscale,
N_Vector fval, N_Vector fscale, N_Vector vv, N_Vector ftem,
SysFn func, real uround,
long int *nfePtr, void *P_data);

/FFodckRRkkok koo Rk ko Rk kol Main Program soksksk koo sk kokokdkk ook ok kokookdokkkok [/

main{int argec, char *argv[])

{
FILE *mggfile;
integer Neq=NEQ;
integer globalstrategy, i, local N;
real fnormtol, scsteptol, ropt [OPT_SIZE];
long int iopt[OPT_SIZE];
N_Vector cc, sc, constraints;
UserData data;
int iout, flag;
int npelast = NPEX*NPEY-1;
int my_pe, npes;
boole optin;

void #*mem;

KIiNMem kmem;
machEnvType machEnv;
MPI_Comm comm;

/* Allocate memory, and set problem data, initial values, tolerances #*/
msgfile = fopen("PredPrey out","w");
/* Get processor number and total number of pe’s */

MPI_Init(&argc, &argv);

comm = MPI_COMM_WORLD;
MPI_Comm_size(comm, &npes);
MPI_Comm_rank(comm, &my_pe);

if (npes !'= NPEX*NPEY) {
if (my_pe == 0)
printf("\n npes=%d is not equal to NPEX*NPEY=Yd\n", npes,NPEX+NPEY);
return(l);

+

/* Set local length */
37

local N = NUM_SPECIES*MXSUB*MYSUR;
/* allocate and initialize user data block */

data=(UserData)AllocUserData();

InitUserData(my_pe, comm, data);

machEnv = PVecInitMPI(comm, local N, Neq, &argc, &argv);
if (machEnv==NULL) return(i);

/* example of changing defaults using iopt */
optIn = TRUE; for(i=0;i<KINSOL_IOPT_SIZE;i++)iopt[i]=0;
for(i=0;i<KINSOL_ROPT_SIZE;i++)ropt [i]1=ZER0;
iopt [MXITER]=250;

/* choose global strategy */
globalstrategy = INEXACT_NEWTON;

/* allocate (initialize) vectors =/
cc = N_VNew(Neq, machEnv);

sc = N_VNew(Neq, machEnv);
data->rates=N_VNew(Neq,machEnv);

constraints = N_VNew(Neq, machEnv);
N_VConst (0. ,constraints);

SetInitialProfiles(cc, s¢);
fnormtol=FTOL; scsteptol=STOL;
/* Call KINMalloc to allocate KINSol memory block:
A pointer to KINSol problem memory is returned and stored in kmem.*/

mem = KINMalloc(Neq, msgfile, machEnv);
if (my_pe==0 &k mem == NULL) { printf(“KiNMalloc failed."); return(1); }
kmem = (KINMem)mem;

/* Call KINSpgmr to specify the KINSol linear solver KINSpgmr with solve
routines Precondbd and PSclvebd, and the peinter to
the user-defined block data */

KINSpgmr (kmem,
16, /* a zero in this position forces use of the KINSpgmr default
for maxl, dimension of the Krylov spacex*/
2, /#* if zero in this position forces use of the KINSpgmr default
for maxlrst, the max number of linear solver restarts allowed*/
0, /* a zero in this position forces use of the KINSpgmr default

J8

for msbpre, the number of calls to the preconditioner allowed
without a call to the preconditioner setup routine */
Precondbd, /* user-supplied preconditioner setup routine */
PSolvebd, /#* user-supplied preconditioner solve routine */

NULL, /* user-supplied ATimes routine -- Null chosen here */
data);
if (my_pe==0)printf(" \n predator-prey test problem -- KINSol\n\n");

/* first,print out the problem size and then the
initial concentration profile */

if (my_pe==0){
printf("Mesh dimengions %d X 4d\n",MX,MY);
printf("Total system size #d\n",Neq);
printf ("Preconditioning uses interaction-only block-diagonal matrixi\n");
printf("tolerance parameters: fnormtol = %g scsteptol = %g\n",
fnormtol,scsteptol);

printf("\nInitial profile of concentration\n");

}
if (my_pe==0 || my_pe==npelast) PrintOutput(my_pe, comm, cc);

/* call KINSol and print output concentration profile */

flag = KINSol (kmem, /* KINSol memory block */
Neq, /* system size —-- number of equations */
cc, /* solution cc of funcprpr(cc)=0 is desired */
funcprpr, /* function describing the system equations */
globalstrategy, /* global stragegy choice */
sc, /* scaling vector, for the variable cc */
sc, /* scaling vector for function values fval */
fnormtol, /* tolerance on fnorm funcprpr(cc) for sol’n #/
scsteptol, /* step size tolerance */
constraints, /* constraints vector */
optIn, /* optional inputs flat: TRUE or FALSE %/
iopt, /* integer optional input array */
ropt, /* real optional input array */
data, /* pointer to user data */
msgfile, /* file pointer to message file */
machEnv) ; /* machEnv pointer */

if (my_pe==0)}{

if (flag != KINSOL_SUCCESS) {
printf ("KINSol failed, flag=id.\n", flag);
return(flag); }

39

printf ("\n\n\nComputed equilibrium species concentrations:\n\n");

}
if({my_pe==0 || my_pe==npelast)PrintQutput{(my_pe, comm, cc);

/* cc values are available on each processor */
if (my_pe==0) PrintFinalStats(iopt);

/* Free memory and print final statistics */
N_VFree(cc);

N_VFree(sc);

N_VFree(constraints);

KINFree (kmem) ;

FreeUserData(data);

MPI_Finalize();
return(0);

sk sk ok okoRkdkok Kook kkokk k% Private Helper Functions sk diersrkfkhk/

/* Allocate memory for data structure of type UserData */

static UserData AllocUserData(void)
{

int jx, jy;

UserData data;

data = (UserData) malloc(sizeof *data);

for (jx=0; jx < MXSUB; jx++) {
for (jy=0; jy < MYSUB; jy++) {
(data->P) [jx] [jy] = denalloc(NUM_SPECIES);
(data->pivot) [jx] [jy]l = denallocpiv(NUM_SPECIES);
}

1
(data~->acoef)
(data->bcoef)
{data->cox)
(data->coy)

denalloc (NUM_SPECIES);

(real *)malloc{(NUM_SPECIES * sizeof(real)):
{real *)malloc(NUM_SPECIES #* sizeof(real));
(real *)malloc(NUM_SPECIES * sizeof{(real));

[l

Ir

return(data);

}

40

/* readability constants defined */

#idefine acoef (data->acoef)
#define bcoef (data->bcoef)
#define cox (data->cox)
#define coy (data->coy)

/3038 o ik o o o ok 3ok 8 o o ok 3 ok ke e sk e s e s ool ok e e o sk o K o S ke e ke s i e skl e s ok sk sk skak ook kol ok ol ok f
/* Load problem constants in data */

static void InitUserData(integer my_pe, MPI_Comm comm,UserData data)
{

int i, j, np;

real *al,*a2, *a3, »a4, *b, dx2, dy2;

data->mx = MX;

data->my = MY;

data->»ns = NUM_SPECIES;

data->np = NUM_SPECIES / 2;

data->ax = AX;

data->ay = AY;

data->dz = (data->ax)/(MX-1);

data->dy = (data->ay)/(MY-1);
data->Neqg= NEG;

data->my_pe = my_pe;

data->comm = comm;

data->isuby = my_pe / NPEX;

data->isubxz = my_pe - data->isuby*NPEX;
data->nsmxsub = NUM_SPECIES * MXSUB;
data->nsmxsub2 = NUM_SPECIES * (MXSUB+2);

data->uround = UnitRoundoff();
data->sqruround = RSqrt(data—>uround);

/* set up the coefficients a and b plus others found in the equations */
np = data->np;

dx2=(data->dx)*(data->dx); dy2=(data->dy)*(data->dy);

for(i=0;i<np;i++){
al= &(acoef[i] [npl);
a2= &(acoef[i+np] [0]);
a3= &(acoef[i][0]);
ad= &(acoef [i+np] [npl);

41

/* £ill in the portion of acoef in the four quadrants, row by row */
for(j=0;j<np;j++){

*al++ = -GG;
*a2++ = EE;
*a3++ = ZEROD;
*ad++ = ZERQ;

/* and then change the diagonal elements of acoef to -AA */
acoef[i] [1]1=-4AA;
acoef [i+np] [i+np] = -AA;

bcoef [i] = BB;
becoef [i+np] = -BB;

cox[i]=DPREY/ (dx2) ;
cox[i+np]=DPRED/ (dx2);

coy [i1=DPREY/(dy2) ;
coy [i+np}=DPRED/ (dy2);

}

A s ot ok o R K oo ko e S o oo o Kok o ok o R oK o K K sk o R s ok ok ok ok ok ek S sk ok
/* Free data memory */

static void FreeUserData(UserData data)

{

int jx, jy;

for (jx=0; jx < MXSUB; jx++) {
for (jy=0; jy < MYSUB; jy++) {
denfree((data->P) [jx] [jy1);
denfreepiv((data~>pivot) [jx] [jyl);
}
}

denfree(acoef);
free(bcoef);
free(cox);

N_VFree(data->rates);

free(data) ;

42

/s s e e sk o o sk e o o o ke sk sk s S ik 3o 6 6 ok o s ok 3 R o 8 3 ok S o o i R ok ok o ok o ook ok o Aok sk sk ok o ok sk ke ok
/* Set initial conditions in cc */

static void SetInitialProfiles(N_Vector cc, N_Vector sc)
{

int i, jx, jy;

real *ctl, *=stl, *ct2, *st2;

real ctemp[NUM_SPECIES], stemp[NUM_SPECIES];

/* Initialize temporary arrays ctemp and stemp to be used
in the loading process */

for (i=0;i<NUM_SPECIES;i++)
if (1<NUM_SPECIES/2){
ctemp[i]=RCONST(1.16347};
stemp[i]=0NE;}
else {
ctemp [i]=RCONST(34903.1);
stemp [1]=RCONST(0.00001);}

/* Load initial profiles into c¢c¢ and sc vector from temporary arrays */

for (jy=0; jy < MYSUB; jy++) {
for (jx=0; jx < MXSUB; jx++) {

ctl = IJ_Vptr(cc,jx,jy);
ct2 = ctemp,
stl = IJ_Vptr(sc,jx,jy);
st2 = stemp;
for(i=0;i<NUM_SPECIES;i++){

Aot l++=%Ct 24+

*gtl+t+=%gt2++;

}

]

}
¥

} /* end SetInitialProfiles */
/**[
/* Print sample of current cc values */
static void PrintOutput(integer my_pe, MPI_Comm comm, N_Vector cc)
{

int is, jx, jy, 10, npelast;

real *ct, tempc[NUM_SPECIES];
MPI_Status status;

43

npelast = NPEX*NPEY - 1;
ct = N_VDATA(cc);

/* send the cc values (for all species) at the top right mesh point to PE 0 */
if(my_pe == npelast){
i0 = NUM_SPECIES*(MXSUB*MYSUB-1);
if (npelast!=0)
MPI_Send(&ct[i0] ,NUM_SPECIES,PVEC_REAL_MPI_TYPE,0,0,comm) ;
else /% single processor cage */
for(is=0;is<NUM_SPECIES;is++) tempc[is]=ct[i0+is];
}

/* On PE 0, receive the cc values at top right, then print performance data
and sampled solution values */
if(my_pe == 0) {

if(npelast != 0)
MPI_Recv(&tempc [0] ,NUM_SPECIES,PVEC_REAL_MPI_TYPE, npelast,0,comm,&status);
printf{"\n");
printf ("At bottom left::\n");
for(is=0;is<NUM_SPECIES;is++){
if ((is%6)*6== ig)printf("\n");
printf (" %g",ctlis]);
}

printf ("\n\a");

printf("At top right:\n");

for(is=0;is<NUM_SPECIES;is++){
if((is%6)*6 == ig)printf("\n");
printf (" %g",tempcl[is]);

}

printf("\n\n");

}
}

/****************************llt**************************************#/
/* Print final statistics contained in iopt */

static void PrintFinalStats(long int *iopt)
{
printf("\nFinal Statistics . \n\n");
printf("nni = %bld nli #51d\n", iopt[NNI], iopt[SPGMR_NLI]);
printf("nfe %#51d npe %51d\n", iopt[NFE], iopt [SPGMR_NPE]) ;
printf (“nps %5ld ncfl 4#51d\n", iopt[SPGMR_NPS], iopt[SPGMR_NCFL]);

nmon

]

I
]

44

/**/

/* Routine to send boundary data to neighboring PEs */

static void BSend(MPI_Comm comm, integer my_pe, integer isubx, integer isuby,
integer dsizex, integer dsizey, real *cdata)
{
int i, ly;
integer offsetc, offsetbuf;
real bufleft [NUM_SPECIES*MYSUB], bufright [NUM_SPECIES*MYSUB] ;

/* If isuby > 0, send data from bottom x-line of u */

if (isuby != 0)
MPI_Send(&cdatal[0], dsizex, PVEC_REAL_MPI_TYPE, my_pe-NPEX, 0, comm);

/* If isuby < NPEY-1, send data from top x-line of u */

if (isuby != NPEY-1) {

offsetc = {MYSUB-1)+*dsizex;

MPI_Send(&cdata[offsetc], dsizex, PVEC_REAL_MPI_TYPE, my_pe+NPEX, O, comm);
}

/* If isubx > 0, send data from left y-line of u (via bufleft) */

if (isubx = 0) {
for (ly = 0; 1y < MYSUB; ly++) {
offsetbuf = ly*NUM_SPECIES;
offsetc = ly*dsizex;
for (i = 0; i1 < NUM_SPECIES; i++)
bufleftfoffsetbuf+i] = cdataloffsetc+i];
}
MPI_Send(&bufleft[0], dsizey, PVEC_REAL_MPI_TYPE, my_pe-1, 0, comm);
}

/% If isubx < NPEX-1, send data from right y-line of u (via bufright) */

if (isubx !'= NPEX-1) {
for (ly = 0; ly < MYSUB; ly++) {
offsetbuf = 1y*NUM_SPECIES;
offsetc = offsetbuf*MXSUB + (MXSUB-1)*NUM_SPECIES;
for (i = 0; i < NUM_SPECIES; i++)
bufright [offsetbuf+il = cdataloffsetc+il;
}
MPI_Send(&bufright 0], dsizey, PVEC_REAL_MPI_TYPE, my_pe+1, 0, comm);

45

98k e e e e o ok o ok ok o ok o ok s oo o o 3k 6 K K K 3K K K0 Ol ok ke oK ok ok e e ek ok ke R R Rk s ks ek

/* Routine to start receiving boundary data from neighboring PEs.
Notes:
1) buffer should be able to hold 2*NUM_SPECIES*MYSUB real entries, should be
passed to both the BRecvPost and BRecvWait functions, and should not
be manipulated between the two calls.
2} request should have 4 entries, and should be passed in both calls also. */

gtatic void BRecvPost (MPI_Comm comm, MPI_Request request[], integer my_pe,
integer isubx, integer isuby,
integer dsizex, integer dsizey,
real *cext, real *buffer)

integer offsetce;
/* Have bufleft and bufright use the same buffer =/
real *bufleft = buffer, *bufright = buffer+NUM_SPECIES*MYSUB;

/* If isuby > 0, receive data for bottom x-line of cext */
if (isuby !'= 0)
MPI_Irecv(&cext [NUM_SPECIES], dsizex, PVEC_REAL_MPI_TYPE,
my_pe-NPEX, 0, comm, &request[0]);

/* If isuby < NPEY-1, receive data for top x-line of cext */
if (isuby != NPEY-1) {
offsetce = NUM_SPECIES#(1 + (MYSUB+1)*(MXSUB+2));
MPI_Irecv(&cext[offsetce], dsizex, PVEC_REAL_MPI_TYPE,
my_pe+NPEX, 0, comm, &request[1]);

/* If isubx > 0, receive data for left y-line of cext (via bufleft) */
if (isubx !'= 0) {
MPI_Irecv(&bufleft[0], dsizey, PVEC_REAL_MPI_TYPE,
my_pe-1, 0, comm, &request[2]);

/* If isubx < NPEX-1, receive data for right y-line of cext (via bufright) #*/
if (isubx != NPEX-1) {
MPI_Irecv(&bufright[0], dsizey, PVEC_REAL_MPI_TYPE,
my_pe+l, 0, comm, &request[3]);

46

/e s s ok o o o 3 5K o Sk Sk sk Sk ok KoK oK 3 kK e o oSS ke e o ok o 3 o o o ok o sl ol o e o oo o oo o ok koK ok ok ok ok ok f

/* Routine to finish receiving boundary data from neighboring PEs.

Notes:

1) buffer should be able to hold 2*NUM_SPECIES*MYSUB real entries, should be

passed to both the BRecvPost and BRecvWait functions, and should not
be manipulated between the two calls

2) request should have 4 entries, and should be passed in both calls also.

static void BRecvWait(MPI_Request requestl], integer isubx, integer isuby,

{

integer dsizex, real *cext, real *buffer)

int i, ly;

integer dsizex2, offgetce, offsetbuf;

real *bufleft = buffer, *bufright = buffer+NUM_SPECIES+MYSUB;
MPI_Status status;

dsizex? = dsizex + 2*NUM_SPECIES;

/* If isuby > 0, receive data for bottom x-line of cext */
if (isuby != 0)
MPI_Wait (&request [0],&status);

/* If isuby < NPEY-1, receive data for top x-line of cext */
if (isuby != WPEY-1)
MPI_Wait(&request[1],&status);

/* If isubx > 0, receive data for left y-line of cext (via bufleft) */
if (isubx != 0) {
MPI_Wait (&request[2],&status);

/* Copy the buffer to cext */
for (ly = 0; 1y < MYSUB; ly++) {

offsetbuf = 1ly*NUM_SPECIES;

offsetce = (ly+1)*dsizex2;

for (i = 0; i < NUM_SPECIES; i++)

cext [offsetce+i] = bufleft[offsetbuf+il;
s
}

*/

/* If isubx < NPEX-1, receive data for right y-line of cext (via bufright) */

if (isubx != NPEX-1) {
MPI_Wait (&request[3],&status);

/* Copy the buffer to cext */
for (ly = 0; ly < MYSUB; ly++) {
47

offsetbuf = 1y*NUM_SPECIES;
offsetce = (ly+2)*dsizex2 - NUM_SPECIES;
for (i = 0; i < NUM_SPECIES; i++)
cext [offsetce+i] = bufright[offsetbuf+i];
hy
}

/o AR e o sk ok sk ks o ok R R ok o ks o ko R R oOR SRR ok ok Kok sk ko Rk R o ok e/

/* ccomm routine. This routine performs all communication
between processors of data needed to calculate f. */

static void ccomm(integer Neq,real *cdata, UserData data)

{

real *cext, buffer[2+«NUM_SPECIES#MYSUE];
MPI_Comm comm;

integer my_pe, isubx, isuby, nsmxsub, nsmysub;
MPI_Request request[4];

/* Get comm, my_pe, subgrid indices, data sizes, extended array cext */

comm = data->comm; my_pe = data->my_pe;
isubx = data->isubx; isuby = data->isuby;
nsmxsub = data->nsmxsub;

nsmysub NUM_SPECIES*MYSUB;

cext = data->cext;

/* Start receiving boundary data from neighboring PEs */
BRecvPost (comm, request, my_pe, isubx, isuby, nsmxsub, nsmysub, cext, buffer);
/* Send data from boundary of local grid to neighboring PEs */
BSend(comm, my_pe, isubx, isuby, nsmxsub, nsmysub, cdata);
/* Finish receiving boundary data from neighboring PEs */
BRecvWait (request, isubx, isuby, nsmxsub, cext, buffer);
}

/************************************llt*******************************/

48

/* system function for predator - prey system calculation part */

static void fcalcprpr(integer Neq, N_Vector cc, N_Vector fval,

{

void *f_data)

real xx, yy, *¢xy, *rxy, *fxy, dcydi, dcyui, dcxli, dexri;

real *cext, dely, delx, *cdata;

integer i, 3, is, ly;

integer isubx, isuby, nsmxsub, nsmxsub2;

integer shifty, offsetc, offsetce, offsetcl, offsetcr, offsetcd, offsetcu;
UserData data;

data=(UserData)f_data;
cdata = N_VDATA(cc);

/* Get subgrid indices, data sizes, extended work array cext */

isubx = data->isubx; isuby = data->isuby;
nsmxsub = data->nsmxsub; nsmxsub2 = data->nsmxsub?2;
cext = data->cext;

/* Copy local segment of cc vector into the working extended array cext */

offsetc = Q;

offsetce = nsmxsub2 + NUM_SPECIES;

for (1y = 0; ly < MYSUB; 1ly++) {
for (i = 0; i < nsmxsub; i++) cext[offsetce+i] = cdataloffsetc+i];
offgsetc = offsetc + nsmxsub;
offsetce = offsetce + nsmxsub2;

}

/* To facilitate homogeneous Neumann boundary conditions, when this is
a boundary PE, copy data from the first interior mesh line of c¢c to cext */

/* 1f isuby = 0, copy x-line 2 of cc to cext */
if (disuby == 0) {
for (i = 0; i < nsmxsub; i++) cext[NUM_SPECIES+i] = cdatalnsmxsub+il;

¥

/* If isuby = NPEY-1, copy x-line MYSUB-1 of cc to cext */
if (isuby == NPEY-1) {
offgsetc = (MYSUB-2)*nsmxsub;
offsetce = (MYSUB+1)*nsmxsub2 + NUM_SPECIES;
for (i = 0; i < nsmxsub; i++) cext[offsetce+i] = cdataloffsetc+i];

)y

49

/* If isubx = 0, copy y-line 2 of cc to cext */
if (isubx == Q) {
for (ly = 0; ly < MYSUB; 1ly++) {
offsetc = ly*nsmxsub + NUM_SPECIES;
offsetce = (ly+1)#*nsmxsub2;
for (i = 0; i < NUM_SPECIES; i++) cext[offsetce+i] = cdatal[offsetc+il;
}
}

/* If isubx = NPEX-1, copy y-line MXSUB-1 of cc¢ to cext */
if (isubx == NPEX-1) {
for (1y = 0; 1y < MYSUB; 1ly++) {
offsetc = (ly+1)*nsmxsub - 2+«NUM_SPECIES;
offsetce = (ly+2)*nsmxsub2 - NUM_SPECIES;
for (i = 0; i < NUM_SPECIES; i++) cext[offsetce+i] = cdataloffsetc+il;
}
}

/* loop over all grid points, evaluating for each species at each */

delx data->dx;
dely = data—->dy;
shifty = (MXSUB+2)*NUM_SPECIES;
for(j=0; j<MYSUB; j++) {
yy = dely*(j + isuby * MYSUB);
for{i=0; i<MXSUB; i++){

xx = delx * (i + isubx * MXSUR);
cxy = IJ_Vptr(cc,i,j);

rxy = IJ_Vptr(data->rates,i,j);
fxy = IJ_Vptr(fval,i,j);

WebRate(xx, yy, c¢xy, rxy, f_data);

offsetc = (i+1)*NUM_SPECIES + (j+1)*NSMXSUB2;
offsetcd = offsetc - shifty;

offsetcu = offsetc + shifty;
offsetcl = offsetc ~ NUM_SPECIES;
offsetcr = offsetc + NUM_SPECIES;

for(is=0; is<NUM_SPECIES; is++){
/* differencing in x */

deydi = cext[offsetc+is] - cext[offsetcd+is];
dcyui = cext{offsetcu+is] - cext[offsetc+is];

50

/* differencing in y */

dcxli = cextloffsetc+is] - cext[offsetcl+is];
dexri = cextl[offsetcr+is} - cextlioffsetc+is];

/* compute the value at xx , yy */

fxyl[is] = (coy)[is] * (dcyuni - dcydi) +
(cox) [is] * (decxri - dexli) + rxylis];

} /* end is loop */
} /* end of i or x loop */
} /% end of j or y loop */

} /% end of routine fcalcprpr */

JHxrkdkkennxrrkkkk Functions Called by the KINSol Solver k¥sickskdkdkiioksxkkk/

/* system function routine. Evaluate funcprpr(cc). First call ccomm to do
communication of subgrid boundary data into ¢ext Then calculate funcprpr
by a call to fcalcprpr */

static void funcprpr(integer Neq, N_Vector cc, N_Vector fval, void *f_data)

{
real *cdata, *fvdata;

UserData data;
cdata = N_VDATA(cc);

fvdata = N_VDATA(fval);
data = (UserData) f_data;

/* Call ccomm to do inter-processor communicaiton */
ccomm (Neq, cdata, data);
/* Call fcalc to calculate the system function */

fcalcprpr (Neq, cc, fval, data);

a1

/**/
/* Preconditioner setup routine. Generate and preprocess P. */

static int Precondbd(integer Neq, N_Vector cc, N_Vector cscale,
N_Vector fval, N_Vector fscale,
N_Vector vtem, N_Vector vtempl, SysFn func, real uround,
long int *nfePtr, void *P_data)

real r, r0, sgruround;

real xx, yy, *cxXy, *scxy, cctemp, **Pxy, sratesxy, *Pxycol;
real fac, perturb_rates[NUM_SPECIES];

integer i, j, jx, jy, ret;

UserData data;
data = (UserData)P_data;

sqruround = data->sqruround;
fac = N_VWL2Norm(fval, fscale);
r0 = THOUSAND #* uround * fac * Neq;

if(r0 == ZER0O) r0 = ONE;

for(jy=0; jy<MYSUB; jy++){
yy =data->dy *(jy + data~>isuby * MYSUB);
for(jx=0; jx<MXSUB; jx++){

xx = data->dx * (jx + data->isubx * MXSUB);
Pxy = (data->P) [jx][jyl;

cxy = IJ_Vptr(ce,jx,jy);

scxy= 1J_Vptr(cscale,jx,jyl);

ratesxy = LJ_Vptr({data->rates),jx,jy);

for(j=0; j<NUM_SPECIES; j++){

cctemp=cxy[jl; /* save the j,jx,jy element of cc */
r=MAX(sqruround * ABS(cctemp),r0/scxy[jl);
cxy[j] += r; /* perturb the j,jx,jy element of cc */
fac = QNE/rx;

52

WebRate(xx, yy, cxy, perturb_rates,data};
Pxycol = Pxy[jl;
for(i=0; i<NUM_SPECIES; i++) {

Pxycol[i]=(perturb_rates[i}-ratesxy[i]l) * fac;
}

/* restore j,jx,jy element of cc */
cxyljl = cctemp;

} /* end of j loop */

/* lu decomposition of each block */

ret = gefa(Pxy, NUM_SPECIES, (data->pivot)[jx]1[jy]);

if(ret!'=0)return{l);
} /* end jx loop */

} /* end jy loop */
return(0);

} /* end of routine Precondbd */

/s sk sk e e o o ook o ok o ok o R R KK ks sk o o o o ok ok ok sk s s o s o o sk ok s ke e sk ko o sk ok ok ok sk ok sk Kok

/* Preconditioner solve routine */

static int PSolvebd(integer Neq, N_Vector cc, N_Vector cscale,
N_Vector fval, N_Vector fscale, N_Vector vv, N_Vector ftem,
SysFn func, real uround,
long int *nfePtr, void *P_data)

{

real **Pxy, *vxy;

integer *pivot, jx, jy;

UserData data;

data = (UserData)P_data;

for(jx=0; jx<MXSUB; jx++) {
for(jy=0; jy<MYSUB; jy++){
/* for a given jx,jy block, do the inversion process */
53

/* vvxy is the address of the portion of the vector to which the
inversion process is applied, and Pxy is the first address for the
j%x,jy block of P */

pivot=(data->pivot) [jx][jyl;

Pxy = (data->P) [jx][jyl;

vy = IJ_Vptr(vv,jx,jy);

gesl(Pxy, NUM_SPECIES, pivot, vxy);

} /* end of jy loop */
} /* end of jx loop */
return{0);

} /* end of PSolvebd #*/

/****************#***/

static void WebRate(real xx, real yy, real *cxy, real *ratesxy, void *f_data)
{

integer i;

integer j;

real fac;

UserData data;

data = (UserData)f_data;
for (i=0;i<NUM_SPECIES;i++)
ratesxy[il= DotProd (NUM_SPECIES, cxy, acoef[i]);
/* above, ratesxy is used as an intermediate array. see below */
fac = ONE + ALPHA * xx * yy;
for(i=0; i<NUM_SPECIES; i++){ ratesxy{i]l = cxy[i] =*
(beoef[i]} * fac + ratesxyl[i]);
}
} /* end WebRate */

/**/

static real DotProd(integer size, real #*xl1, real *x2)
{

integer 1i;

real *xx1, *xx2, temp = ZERD;

54

xx1 = x1; xx2 = x2;
for(i=0; i<size; i++) temp += *xXI++ * *kxx2++;
return(temp) ;

55

Sample output for the sample case KINXP

predator-prey test problem -- KINSol
Mesh dimensions 20 X 20
Total system size 2400
Preconditioning uses interaction-only block-diagonal matrix
tolerance parameters: fnormtol = 1le-07 scsteptol = le-13
Initial profile of concentration
At bottom left::

1.16347 1.16347 1.16347 34503 1 34903 1 34903.1

At top right:

1.16347 1 16347 1.16347 34903 1 34903.1 34903.1

Computed equilibrium species concentrations:

At bottom left::
1.165 1.165 1.165 34949 34949 34949
At top right:

1.25562 1.255652 1.25562 37663.2 37663.2 37663.2

Final Statistics..

nni = 68 nli = 1339
nfe = 1476 npe = 6
nps = 1407 ncfl = 16

56

Technicallnformation Departments Lawrence Livermore National Laboratory
University of California « Livermore, California 94551

