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USER DOCUMENTATION FOR KINSOL, A NONLINEAR SOLVER FOR 
SEQUENTIAL AND PARALLEL COMPUTERS* 

ALLAN G TAYLOR AND ALAN C HINDMARSHt 

1. Introduction. KINSOL is a general purpose nonlinear system solver callable from 
either C or Fortran programs It is based on NKSOL [3], but is written in ANSI-standard 
C rather than Fortran Its most notable feature is that it uses Krylov Inexact Newton 
techniques in the system’s approximate solution, thus sharing significant modules previously 
written within CASC at LLNL to support CVODE[G, 7]/PVODE[9, 51 It also requires 
almost no matrix storage for solving the Newton equations as compared to direct methods 
The name KINSOL is derived from those techniques Krylov Inexact Newton SOLver The 
package was arranged so that selecting one of two forms of a single module in the compilation 
process will allow the entire package to be created in either sequential (serial) or parallel 
form The parallel version of KINSOL uses MPI (Message-Passing Interface) [8] and an 
appropriately revised version of the vector module NVECTOR, as mentioned above, to achieve 
parallelism and portability KINSOL in parallel form is intended for the SPMD (Single 
Program Multiple Data) model with distributed memory, in which all vectors are identically 
distributed across processors In particular, the vector module NVECTOR is designed to help 
the user assign a contiguous segment of a given vector to each of the processors for parallel 
computation Several primitives were added to NVECTOR as originally written for PVODE to 
implement KINSOL 

KINSOL has been run on a Cray-T3D, an eight-processor DEC ALPHA and a cluster 
of workstations It is currently being used in a simulation of tokamak edge plasmas and in 
groundwater two-phase flow studies at LLNL 

The remainder of this paper is organized as follows Section 2 sets the mathematical 
notation and summarizes the basic methods Section 3 summarizes the organization of the 
KINSOL solver, while Section 4 summarizes its usage Section 5 describes a preconditioner 
module, Section 6 describes a set of Fortran/C interfaces, Section 7 describes an example 
problem, and Section 8 discusses availability 

2. Mathematical Considerations. The KINSOL code is a C implementation of a 
previous code, NKSOL, a nonlinear system solver written in Fortran by Brown and Saad [3] 

The nonlinear system of equations 

(1) F(u) = 0, 

where F(u) is a nonlinear function from RN to RN, is solved by this package An Inexact 
Newton method is applied to (1) resulting in the following iteration 

* Research performed under the auspices of the U S Department of Energy, by Lawence Livermore 
National Laboratory under contract W-7405.ENG-48 Walk supported by LDRD, Project 9%ER-036 

’ Centa fol Applied Scientific Computing, L-561, LLNL, Livermole, CA 94551 
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Inexact Newton iteration 
1 Set Un = an initial guess 
2 Forn=0,1,2, until convergence do 

(a) Solve J(u,)S, = -F(u,) 
(b) Set u~+~ = U, + 6, 
(c) Test for convergence 

Here, J(u~) = F’(u,) is the system Jacobian As this code module is anticipated for use on 
large systems, only iterative methods were considered to solve the system in step 2(a) These 
solutions are only approximate Methods of this type used for solution of nonlinear systems 
are called Inexact Newton methods. At each stage in the iteration process, a multiple of the 
approximate solution 6, to the equation of step 2(a) is applied to the previously determined 
iterated approximate solution to produce a new approximate solution Convergence is tested 
before iteration continues The iterative method currently implemented is one of the class 
of Krylov methods 

As only the matrix-vector product J(U) r~ is required in the Krylov method, in this 
nonlinear equations setting that action is approximated by a difference quotient of the form 

where u is the current approximation to a root of (1) and c is a scalar, appropriately chosen 
to minimize numerical error in the computation of (2) An optional user-defined routine 
implementing this matrix-vector product is accommodated See further details below in the 
section describing the routine KINSpgmr 

To the above methods are added scaling and preconditioning Scaling is allowed for 
both the approximate solution vector and the system function vector Additionally, right 
preconditioning is provided for if the preconditioning setup and solve routines are supplied 
by the user 

While only one linear solver is now implemented for use with this package, the formal 
structure is in place for alternate solvers. The solver currently implemented is the GMRES 
solver [2, lo] in module SPGMR and accessed via KINSPGMR Here GMRES stands for General- 
ized Minimal RESidual In most cases, performance of SPGMR is improved by user-supplied 
preconditioners 

SPGMR is one of a class of preconditioned Krylov methods Write the linear system 
simply as 

(3) Ax = b 

A preconditioned Krylov method for (3) mvolves a preconditioner matrix P that approxi- 
mates A, but for which linear systems Px = b can be solved easily For preconditioning on 
the right, the Krylov method is applied to the equivalent system 

(AP-l)(h) = b 

In KINSOL, the user may precondition the system on the right or use no preconditioner In 
any case, the Krylov method (in our case GMRES) is applied to the transformed system 

‘& = ij 
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From an initial guess in, an approximate solution Z, = Z~+Z is obtained form = 1,2, (un- 
til convergence), with .z chosen from the Krylov subspace K, = span{rn, Art,, ) P-‘?-0) 
of dimension m, where rn is the initial residual 6 - il%n Each Krylov iteration requires one 
matrix-vector multiply operation Aw, which is a combination of multiplies by A and by P-r 
Multiplication of a given vector 21 by A requires the product Jv, and that is approximated by 
a difference quotient [F(u + av) - F(u)]/0 Multiplication by P-r is to be provided by the 
user of the solver, and is generally problem-dependent In the case of GMRES, the choice 
in Km is based on minimizing the Lz norm of the residual b - AZ, [2, lo] When a given 
2, meets the linear system convergence criterion, z?&, corresponds to the next increment 6, 
in the solution of (1) 6, is obtained from Z, by applying scaling and preconditioning The 
increment 6, is then added to U, to form u,+r in step 2(b) by one of the strategies discussed 
below The new iterate un+r is tested for (nonlinear) convergence in (1) , which is step 2(c) 
of the Inexact Newton iteration 

Two methods of applying a computed step 6, to the previously computed approximate 
solution vector are implemented. Denoted ‘global strategies’, they attempt to use the di- 
rection implied by 6, in the most efficient way in furthering convergence of the global (i e , 
nonlinear) problem The first and simplest is the Inexact Newton strategy. A more advanced 
technique is implemented in the second strategy, called Linesearch The so-called ‘Forcing 
Term’ algorithms of Eisenstat and Walker [4] to control the linear convergence tolerance are 
also implemented 

A fundamental set of mathematical operations on N-vectors has been written for both 
CVODE/PVODE and KINSOL This set of computational kernels exists in a distinct code 
module called NVECTOR By separating these frequent operations from the rest of the code, 
almost all operations in KINSOL with significant potential for parallel computation have 
been isolated Then, two different sets of kernels, both with the same routine names and a 
common interface, allow parallel computation to be very simply implemented in these codes 
The operations done by this set of kernels are vector addition, scaling, and copy, vector 
norms, scalar products, and so forth 

3. Code Organization. A way to visualize KINSOL is to think of the code as being 
organized in layers, as shown in Fig 1 Here, a module’s name is used to indicate the 
general function of the module’s contents Viewed this way, the user’s main program is at the 
top level This program, with associated user-supplied routines, makes various initialization 
calls, manages input/output, and calls the KINSOL main module which carries out the system 
solution At the next level down, the KINSOL main module controls the iterative solution 
process, and is independent of the linear system method KINSOL calls the user-supplied 
function F, known as func internally, and accesses the linear system solver. At the third level 
is found the linear system solver KINSPGMR, which provides an interface to a generic solver for 
the SPGMR method, consisting of modules SPGMR and ITERATIV, KINSPGMR also accesses the 
user-supplied preconditioner solve routine psolve, if specified, and, if supplied, also accesses 
a user-supplied routine precondset that computes and preprocesses the preconditioner. 
The precondset routine is usually implemented by way of an approximate Jacobian matrix 
Other linear system solvers may be added to the package in the future Such additions will 
be independent of the KINSOL and KINSPGMR modules Several supporting modules reside at 
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the fourth level These include LLNLTYPS, LLNLMATH, and NVECTOR The first of these defines 
types real and integer The second specifies power functions, and the third is discussed 
further below 

The key to being able to move from the sequential computing environment to the parallel 
computing environment lies in the NVECTOR module This was briefly mentioned in the previ- 
ous section The idea is to distribute solution of the nonlinear system over several processors 
so that each processor is solving a contiguous subset of the system This is achieved through 
the NVECTOR module, which handles all calculations on N-vector in a distributed manner, 
when the parallel version is compiled with parallel libraries For any vector operation, each 
processor performs the operation on its contiguous elements of the input vectors, of length 
(say) Nlocal, followed by a global reduction operation where needed In this way, vector 
calculations can be performed simultaneously with each processor working on its block of 
the vector Vector kernels are designed to be used in a straightforward way for various vector 
operations that require the use of the entire distributed N-vector These kernels include dot 
products, various norms, linear sums, and so on The key to simply handling both parallel 
and serial applications of a code lies in standardizing the interface to the vector kernels 
both sequential and parallel versions of NVECTOR have an identical interface In this way, one 
can access the kernels without referring directly to the underlying vector structure. This 
is assisted by using abstract data types that describe the machine environment data block 
(type machEnvType) and all N-vectors (type N-Vector) Functions to define a block of 
machine-dependent information and to free that block of information are also included in 
the vector module Because the KINSOL interface to the vector kernels is independent of 
the vector structure, the user could supply their own kernel to best fit their application data 
structures All references to parallelism are in the kernel, thus, the user would handle all 
parallel aspects in this case 

As the algorithms used in NKSOL had several unique features, notably the way that 
constraints were handled [3], several new vector kernels were written and added to the 
module NVECTOR The changes, completely transparent to CVODE/PVODE, have now been 
incorporated in the ‘common’ version of NVECTOR. 

The parallel version of KINSOL uses the MPI (Message Passing Interface) system [8] 
for all inter-processor communication This achieves a high degree of portability, since MPI 
is becoming widely accepted as a standard for message passing software For a different 
parallel computing environment, some rewriting of the vector module could allow the use of 
other specific machine-dependent instructions 

The coding style and structme of KINSOL was based on both style and structure of 
the preexisting CVODE/PVODE codes This was predicated upon the requirement that the 
same vector kernel implementation and GMRES solvers be used in both codes At the same 
time, those features somewhat unique to the Fortran language (e g , those constructs used in 
the original code NKSOL), were placed appropriately in a C language setting Considerable 
simplification of the calling sequences resulted from this process Of course, the resulting C 
language structure maintains relative privacy for definitions for each portion of the code. The 
resulting code has proven to be readily adaptable to either sequential or parallel execution 
by means of two versions of the module NVECTOR 
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4. Using KINSOL. This section is concerned with the use of KINSOL and consists of 
five subsections Those subsections treat the user-callable routines constituting the KINSOL 
interface in an overview and then in detail, give a layout or skeleton of the user’s main 
program, and user-supplied functions or routines, and discusses C++/C interfacing The 
listing of the sample program KINXP (a Predator-Prey PDE problem, P is for parallel 
version) in the Appendix may be particularly helpful That code is intended to serve as a 
template to assist in preparations to use KINSOL and is included in the KINSOL distribution 
package The sequential equivalent of KINXP, called KINXS, and other variations and 
examples are found with KINSOL in the distribution package 

4.1. Overview of Routines and Their Usage. The source code is organized in files 
(modules) as shown in Table 1 For each module there are two corresponding files For 
example,.KINSOL requires both the files kinsol c and kinsol h 

Module name 1 User-callable routines 

==Jzzp= 

LLNLMATH 
19 other vector kernels 

LLNLTYPS 

[ other contents 
system function type SysFn, linear solver 
function pointers linit, lsetup, 
lsolve, lfree 
KINSpgmrPrecondFntype 
KINSpgmrPrecondSolveFntype 
KINSoemrAtimesFntvne 

1” “I 

SpgmrMalloc, SpgmrSolve, SpgmrFree 
Routines in support of SPGMR 
Type N-Vector; vector macros 
N-VMAKE, N-VDATA, etc 

UnitRoundoff,RPowerI,RPowerR,RSqrt, 
Macros MIN. MAX, ABS. SQR 
Types real, integer, boole 

] 

TABLE 1 
Modules in the KINSOL package 

In addition to routines supplied with KINSOL, there are several routines either required 
or optional that the user can supply They are outlined in Table 2 Details and use of the 
last two routines listed there are discussed in Section 5 

4.2. Detailed description of routines. This subsection uses extracts from header 
files for KINSOL and KINSPGMR to detail the arguments of user-callable routines For each 
routine, the declaration with arguments is followed by a section of comments Please note 
that the system function F(u) is called func (uu) in the actual KINSOL and KINSPGMR source 
code The independent variable 11 is called uu in those code modules as well 

4.2.1. Memory allocation routine KINMalloc. 
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void *KINMalloc(integer Neq, FILE *msgfp, void *machEw); 

* * 
+ Function : KINMalloc * 
* * 
* This function allocates main memory for the KINSol + 
* package. It also allocates several vectors of size * 
* Neq used by the package. Other N-Vectors are also * 
* to be allocated by the user and supplied to KINSol * 
* __------------------------ * 
* Neq size of vectors being handled by the current memory + 
* allocation call to KINMalloc * 
* * 
* msgfp pointer to a FILE used to receive error messages from * 
* KINMalloc * 
* * 
***************************************************************** 

4.2.2. Main solver KINSol. 

int KINSolCvoid *kinmem, integer Neq, 
N-Vector uu, SysFn func, int globalstrategy, 
N-Vector uscale, N-Vector fscale, 
real fnormtol, real scsteptol, N-Vector constraints, 
boole optIn, long int ioptC1, real ropt[l, void *f-data, 
FILE +msgfp, void *machEnv); 

/***********************************++++::~~~~~*****~~~~~~~~~~~**~~ 
* * 
* Function : KINSol * 
*----------------------------------------------------------------* 
* KINSol initializes memory for a problem previously allocated by* 

typedef name (* - optional) purpose of user-supplied routine 
SvsFn 1 the function F(U). also known as func (uu) 

\  I I  

KINSpgmrPrecondFn* setup routine for pleconditioner 
KINSpgmrPrecondSolveFn* solve routine for preconditioner 
KINSwmruserAtimesFn* user-sutmlied Atimes function 

I” 

KINLocalFn* 

KINCgmmFn* 

I_ 

1 local computation function 
(BBD preconditioner) 
interprocessol communication function 
(BBD preconditioner) 

TABLE 2 
User-supplied routines for KINSOL 
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* a call to KINMalloc. It also checks the initial value of uu * 
* (the initial guess) against the constraints and checks if the * 
* initial guess is a solution of the system. It then attempts to * 
* solve the system func(uu) = 0. , where the function func is * 
* supplied by the user The input arguments for KINSol and their* 
* function are described below: * 
* * 
+ Neq is the number of equations in the algebraic system or, * 
* for a parallel problem, the number of variables * 
* assigned to the current processor * 
* * 
* kinmem pointer to KINSol memory block returned by the * 
* preceding KINMalloc call * 
* 
* uu is the solution vector for the system func(uu) = 0. + 
* uu is to be set to an initial value if other * 
* than 0. vector starting value is desired * 
* * 
* func is the system function for the system: func(uu) = 0. * 
* * 
* globalstrategy is a variable which indicates which global + 
* strategy to apply the computed increment delta in the * 
* solution uu. Choices are : * 
* INEXACT-NEWTON or LINESEARCH * 
* * 
* uscale is an array (type N-Vector) of diagonal elements of the* 
* scaling matrix for uu. The elements of uscale must be * 
* positive values. The scaling matrix uscale should be + 
* chosen so that uscale * uu (as a matrix multiplication)* 
* should have all its components with roughly the same * 
* magnitude when uu is close to a root of func. * 
* * 
* fscale is an array (type N-Vector) of diagonal elements of the* 
* scaling matrix for func. the elements of fscale must be* 
* positive values. The scaling matrix fscale should be * 
* chosen so that fscale * func(uu) (as a matrix * 
* multiplication) should have all its components with * 
* roughly the same magnitude when uu is NOT too near a + 
* root of flux. * 
* * 
* fnormtol is a real (scalar) value containing the stopping * 
* tolerance on maxnorm( fscale * func(uu) 1 * 
* If fnormtol is input as O., then a default value of * 
* (wound) to the l/3 power will be used. * 
* wound is the unit roundoff for the machine * 
* in use for the calculation. (see UnitRoundoff in * 
* llnlmath module * 
* * 
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* scsteptol is a real (scalar) value containing the stopping * 
* tolerance on the maximum scaled step uu(k) - uu(k-1) * 
* If scsteptol is input as O., then a default value of * 
* (wound) to the 2/3 power will be used * 
* uround is the unit roundoff for the machine * 
* in use for the calculation. (see UnitRoundoff in * 
* llnlmath module * 
* * 
* constraints is a pointer to an array (type N-Vector) of * 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* optIn 
* 
* 
* 
* 
* 
* 
* iopt 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* ropt 
* 
* 
* 
* 
* 
* 
* 
* 

constraints on uu If the pointer passed in is NULL, * 
then NO constraints are applied to uu . A NULL pointer * 
also stops application of the constraint on the max * 
relative change in uu , controlled by the input * 
variable relu which is input via roptCRELU1 * 
a positive value in constraintsCi1 * 
implies that the ith* component of uu is to be * 
constrained > 0 * 
A negative value in ConstraintsCil implies that the ith* 
component of uu is to be constrained < 0. * 
A zero value in constraints[i] implies there is no * 
constraint on uuCi1. * 
is a flag (boole) indicating whether optional inputs * 
from the user in the arrays iopt and r-opt are to be * 
used. Pass FALSE to ignore all optional inputs and TRUE* 
to use all optional inputs that are present. 
Either choice does NOT affect outputs in other 
positions of iopt or ropt. 

is the user-allocated array (of size OPT-SIZE) that 
will hold optional integer inputs and outputs. 
The user can pass NULL if he/she does not 
wish to use optional integer inputs or outputs 
If optIn is TRUE, the user should preset to 0 those 
locations for which default values are to be used 
Elements of iopt which have significance for either 
input or output parameters are: 
PRINTFL, MXITER, PRECOND-NO-INIT. NNI ,NFE ,NBCF, 
NBKTRK, MXKRYL, and ETACHOICE 

is the user-allocated array (of size OPT-SIZE) that 
will hold optional real inputs and outputs. 
The user can pass NULL if he/she does not 
wish to use optional real inputs or outputs. 
If optIn is TRUE, the user should preset to 0 0 the 
optional input locations for which default values are 
to be used. 
Elements of iopt which have significance for either 
input or output parameters are: 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
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* 
* 
* 
* 
* 
* 
* f-data 
* 
* 
* 
* 
* msgfp 
* 
* 
* 
* 
* 
* 
* 

MXNEWTSTEP, RELFUNC , RELU , FNORM , STEPL, ETACONST, * 
ETAGAMMA, and ETAALPHA * 

* 
Permissible iopt and ropt input parameters are given + 
in a section below. * 

* 
is a pointer to work space for use by the user-supplied* 
function func The space allocated to f-data is * 
allocated by the user’s program before the call to * 
KINMalloc * 

* 
is the file pointer for a message file where all KINSol* 
warning, error and informational messages will be * 
written. This parameter can be stdout (standard output)+ 
, stderr (standard error), a file pointer to a user * 
created file, or NULL. If NULL is passed, then stdout * 
(standard output) is used as a default * 

* 
* 

* machEnv is a pointer to machine environment-specific * 
* information. Pass NULL for the sequential case * 
* (see nvector.h) * 
* * 
* If successful, KINMalloc returns a pointer to initialized * 
+ problem memory. This pointer should be passed to KINSol If * 
* an initialization error occurs, KINMalloc prints an error * 
* massage to the file specified by msgfp and returns NULL. * 
* * 
****************************************************************** 

4.2.3. Main solver KINSol optional inputs and outputs. The input of several 
optional input parameters is handled by placing their values in appropriate elements of 
either iopt or ropt arrays. Those optional input parameters and their permissible input 
values are now discussed 

****************************************************************** 
* * 
* Optional Inputs and Outputs * 
*----------------------------------------------------------------* 
* The user should declare two arrays for optional input and * 
* output, an iopt array for optional integer input and output * 
* and an ropt array for optional real input and output. These * 
* arrays should both be of size OPT-SIZE. * 
* So the user’s declaration should look like: * 
* * 
+ long int iopt [OPT-SIZE] ; * 
* real r0pt [~PT-sI~EI ; * 
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* * 
* The following definitions are indices into the iopt and rapt * 
+ arrays A brief description of the contents of these positions * 
* follows * 
* * 
* iopt [PRINTFL] (input) allows user to select from 4 levels * 
* of output to FILE msgfp. * 
* =0 no statistics printed (DEFAULT) * 
* =l output the nonlinear iteration count, the * 
* scaled norm of fonc(un), and number of + 
* func calls. * 
* =2 same as 1 with the addition of global + 
* strategy statistics: * 
* fl = 0 5+norm(fscale+func(uu))+*2 and * 
* flnew = 0 5*norm(fscale*func(unew))**2 . * 
* =3 same as 2 with the addition of further + 
* Krylov iteration statistics. * 
* * 
* iopt [MXITER] (input) maximum allowable number of nonlinear * 
* iterations. The default is MXITER-DEFAULT . + 
* * 
* iopt[PRECOND-NO-INIT] (input) Set to 1 to prevent the initial * 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* iopt CETACHOICEI 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

call to the routine precondset upon a given * 
call to KINSol. Set to 0 or leave onset to * 
force the initial call to precondset * 
Use the choice of 1 only after beginning the* 
first of a series of calls with a 0 value * 
If a value other than 0 or 1 is encountered,* 
the default, 0, is set in this element of * 
iopt and thus the routine precondset will * 
be called upon every call to KINSol, unless * 
ioptCPRECOND~NO~INIT1 is changed by the user* 

* 
(input) a flag indicating which of three * 
methods to use for computing eta, the * 
coefficient in the linear solver * 
convergence tolerance eps given by * 

eps = (eta+u_round)*norm(func(uu)) * 
here, all norms are the scaled L2 nofm * 
The linear solver attempts to produce a step* 
p such that norm(fnnc(u)+J(uu)*p) <= eps * 
Two of the methods for computing eta * 
calculate a value based on the convergence * 
process in the routine KINForcingTerm * 
The third method does not require * 
calculation; a constant eta is selected * 

* 
The default if iopt[ETACHOICEl is not 
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* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

specified is ETACHOICEl, (see below) * 
* 

The allowed values (methods) are: * 
ETACONSTANT constant eta, default of 0 1 or user* 

supplied choice, for which see roptCETACONSTl,* 
* 

ETACHOICE [default] which uses choice 1 of * 
Eisenstat and Walker's paper of SIAM J Sci. * 
Cornput., (19961, pp 16-32 wherein eta is: + 

eta(k) = * 
ABS( norm(func(uu(k))) - norm(func(uu(k-i))+J(uu(k-l))*p) ) * 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* ioptl~~11 
* 
* ioptC~~~1 
* 
* 

/ norm(func(uu(k-1))) * 
* 

ETACHOICE which uses choice 2 of * 
Eisenstat and Walker wherein eta is: * 
eta(k) = egamma * * 

( norm(func(uu(k))) / norm(func(u(k-1))) )^ealpha * 
* 

egamma and ealpha for choice 2, both required,* 
are from either defaults (egamma = 0.9 , * 
ealpha = 2) Or from user input, * 
see ~~~~[ETAALPHA~ and ~~~~CETAGAMMA~, below. * 

* 
For eta(k) determined by either Choice 1 or + 
Choice 2, a value eta-safe is determined, and * 
the safeguard eta(k) <- max(et.a-safe,eta(k))+ 
is applied to prevent eta(k) from becoming too* 
small to quickly. * 

For Choice 1, * 
eta-safe = eta(k-l)^((l.+sqrt(5.))/2 ) * 

and for Choice 2, * 
eta-safe = egamma*eta(k-I)-ealpha. * 

(These safeguards are turned off if they drop * 
below 0.1 Also, eta is never allowed to be + 
less than eta-min = l.e-4 . * 

* 
* 

(output) total number of nonlinear iterations * 
* 

(output) total number of calls to the user- * 
supplied system function func. * 

* 
* iopt[~~~~] (output) total number of times the beta * 
* condition could not be met in the linesearch * 
* algorithm. The nonlinear iteration is halted * 
* if this value ever exceeds MXNBCF (10) * 
* * 
* ~~~~[NBKTRK] (output) total number of backtracks in the * 
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* linesearch algorithm * 
* * 
* ropt[MXNEWTSTEPl (input) maximum allowable length of a newton * 
* step. The default value is calculated from * 
* 1000*max(norm(uscale*uu(O),norm(uscale)) * 
* * 
* ~~~~[RELFUNC~ (input) relative error in computing func(nu) * 
* if known. Default is the machine epsilon * 
* * 
* rapt [RELU] (input) a scalar constraint which restricts * 
* the update of uu to del(uu)/un < ropt[RELUl * 
* The default is no constraint on the relative * 
* step in uu. * 
* * 
* ~~~~[ETAGAMMAI (input) the coefficient egamma in the eta + 
* computation. See routine KINForcingTerm * 
* (SEE ioptCETACHOICE1 above for additional info) * 
* * 
* ~~~~CETAALPHA] (input) the coefficient ealpha in the eta + 
* computation. See routine KINForcingTerm * 
* (SEE ioptCETACHOICE1 above for additional info) * 
* * 
* ~~~~[ETACONST] (input) a user specified constant value for * 
* eta, used in lien of that computed by * 
* routine KINForcingTerm * 
* (SEE ioptCETACHOICE1 above for additional info) * 
* Permissible ETACHOICE values are * 
* ETACHOICE (the default), ETACHOICE2, and * 
* ETACONST * 
* * 
* ~~~~[FNoRM] (output) the scaled norm at a given iteration:+ 
* norm(fscale(func(uu)) * 
* * 
+ Iopt [STEPL] (output) last step length in the global * 
* strategy routine: * 
* KINLineSearch or KINInexactNewton) * 
* * 

4.2.4. Main solver (KINSol) return codes. The return code values for the routine 
KINSol, both for success and a variety of possible failures, are given next 

* * 
* KINSol returns an integer-valued termination code with the set+ 
* of possible values: * 
* KINSOL-NO-MEM,KINSOL_INPUT_ERROR, * 
* KINSOL-SUCCESS, KINSOL-SCALED-LT-FNORM, * 
* KINSOL-LNSRCH-NONCONV, KINSOL-MAXITER-REACHED, * 
* KINSOL_MXNEWT_5X_EXCEEDED, KINSOL-LINESEARCH-BCFAIL, * 
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KINSOL-KRYLOV-FAILURE, KINSOL-PRECONDSET-FAILURE, * 
KINSOL-PRECONDSOLVE-FAILURE, * 
KINSOL-INITIAL-GUESS-OK * 

* 
The meanings of these return codes are now given, each by * 
the suffix portion of the respective code That is, * 
KINSOL-NO-MEM is listed in the descriptions below as NO-MEM* 

* 
* * 

* SUCCESS : means maxnorm(fscale+func(uu) <= fnormtol, where * 
* m.axnorm() is the maximum norm function N-VMaxNorm* 
* uu is probably an approximate root of func. * 
* * 
* SCALED-LT-FNORM: means the scaled distance between the last * 
* two steps is less than scsteptol. uu may be an * 
* approximate root of func, but it is also possible* 
* that the algorithm is making very slow progress 1 
* and is not near a root or that scsteptol is too * 
* large * 
* * 
* LNSRCH-NONCONV: means the LineSearch module failed to reduce * 
* norm(func) sufficiently on the last global step * 
* Either uu is close to a root of f and no more * 
* accuracy is possible, or the finite-difference * 
* approximation to j*v is inaccurate, or scsteptol * 
* is too large. Check the outputs ncfl and nni: if * 
* ncfl is close to nni, it may be the case that the* 
* Krylov iteration is converging very slowly. In * 
* this case, the user may want to use precondition-* 
* ing and/or increase the maxi value in the * 
* KINSpgmr input list (that is, increase the max * 
* dimension of the Krylov subspace by setting maxi * 
* to nonzero (thus not using the default value of * 
* KINSPGMR-MAXL, OI if maxi is being set, increase * 
* its value * 
* * 
* MAXITER-REACHED: means that the maximum allowable number of * 
* nonlinear iterations has been reached This is by* 
* default ZOO, but may be changed through optional * 
* input ~~~~CMXITER~. * 
* * 
* MXNEWT-5X-EXCEEDED: means 5 consecutive steps of length mxnewt* 
* (maximum Newton stepsize limit) have been taken. * 
* Either norm(f) asymptotes from above to a finite * 
* value in some direction, or mxnewt is too small. * 
* Mxnewt is computed internally (by default) as * 
* mxnewt = 1000*max~no~(uscale*uuO),1), where * 
* uu0 is the initial guess for uu, and norm0 is * 
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* the Euclidean norm N-VWrmsNormO. Mxnewt can be * 
* set by the user through optional input * 
* r0pt CMXNEWTSTEP~ . * 
* * 
* LINESEARCH-BCFAIL: means that more than the allowed maximum * 
* number of failures (MXNBCF) occurred when trying * 
* to satisfy the beta condition in the linesearch * 
* algorithm It is likely that the iteration is * 
* making poor progress. * 
* * 
* KRYLOV-FAILURE: means there was a failure of the Krylov + 
* iteration process to converge * 
* * 
* PRECONDSET-FAILURE: means there was a nonrecoverable * 
* error in PrecondSet causing the iteration to halt* 
* * 
* * 
* PRECONDSOLVE-FAILURE: means there was a nonrecoverable * 
* error in PrecondSolve causing the iteration to halt.* 
* * 
* NO-MEM: the KINSol memory pointer received was NULL * 
* * 
* * 
* INPUT-ERROR: one or more input parameters or arrays was in * 
* eror. See the listing in msgfp for further info + 
**************************************************************** */ 

4.2.5. Deallocation routine KINFree. The next material describes the routine KINFree 
Note that it need not be called after a specific KINSol call but only when the memory used 
by the KINSOL package is to be released 

void KINFree(void *kin-mem); 

/******++++*****************************~~~~~~~~~~~~~~~~~~******~~~ 
* * 
* Function : KINFree * 
*----------------------------------------------------------------* 
* KINFree frees the problem memory kinsol-mem allocated by * 
* KINMalloc Its only argument is the pointer kinsol-mem * 
+ returned by KINMalloc . * 
* * 
+*++*+****************************+++*++~~~~~~~~~~*~*~**~*~***~*~~/ 

4.2.6. Linear solver interface function definitions. The linear solver package to 
be used with KINSOL interfaces with it via four routines of the type given below Note that 
at present there are only the four routines (KINSpgmrInit, KINSpgmrSetup, KINSpgmrSolve, 
and KINSpgmrFree) from the KINSPGMR package available In the following, each routine 
is named, followed by the generic description If a user wishes to implement another linear 
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solver within KINSOL, the calling conventions given below need to be followed as well as 
the entire interface as used in KINSPGMR 

KINSpgmrInit: 

/+z*************++*****+****************~~~~*****~;~~~~~~*~**~~~~~~~ 
* * 
* int (*kin-linit)(KINMem kin-mem, boole +setupNonNull); * 
*-----------------------------------------------------------------* 
* The purpose of kin-linit is to allocate memory for the * 
* solver-specific fields in the structure *(kin-mem->kin-lmem) and* 
* perform any needed initializations of solver-specific memory, * 
* such as counters/statistics. The kin-Unit routine should set * 
+ *setupNonNull to be TRUE if the setup operation for the linear * 
* solver is non-empty and FALSE if the setup operation does * 
* nothing An LInitFn should return LINIT-OK (== 0) if it has * 
* successfully initialized the KINSol linear solver and LINIT-ERR * 
+ (== -1) otherwise. These constants are defined above. If an * 
* error does occur, an appropriate message should be sent to * 
* (kinmem->msgfp). * 
* * 
++***************+*******+++********++**~***~~~~:~~***~~~~~~~***~~*/ 

KINSpgmrSetup: 

/+**************++*****++*********++******~~~~~~*~~*~~~~~~~~*~~*~~:~ 
* + 
* int (*kin-lsetup)(KINMem kin-men); * 
*-----------------------------------------------------------------* 
* The job of kin-lsetup is to prepare the linear solver for * 
* subsequent calls to kin-lsolve * 
* * 
* kin-mem - problem memory pointer of type KINMem. See the big * 
* typedef earlier in this file. * 
* * 
* The kin-lsetup routine should return 0 if successful, * 
* a positive value for a recoverable error, and a negative value * 
* for an unrecoverable error. * 
* * 
**********+****t********t********+++*****~~~~~~~~~~~~~~~~~~~*~~~~~~~ 

KINSpgmrSolve: 

/*++********++********+*********++******~~~~~~~~**~~~:~~~~*~~*~~~~~~ 
* * 

* int (*kin-lsolve)(KINMem kin-mem, N-Vector bb, N-Vector xx, * 
* real *res-norm); * 
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*-----------------------------------------------------------------* 

* kin-lsolve must solve the linear equation .I x = b, where * 
* 3 is an approximate Jacobian matrix, x is the approximate system* 
* solution, and the RHS vector b is input. The solution is to be + 
* returned in the vector b. kin-lsolve returns a positive value * 
* for a recoverable error and a negative value for an * 
* unrecoverable error. Success is indicated by a 0 return value. * 
* * 
**************+++**++*******************~~~:~~~~~~~~~*~~~~~~:~:~~j~/ 

KINSpgmrFree: 

/++*********************+*+**+++++++*+**~~~***~*~~~~~~~~~~~***~~~~~~ 
* * 
* void (*kin-lfree)(KINMem kin-mem); * 
*-----------------------------------------------------------------* 
* kin-lfree should free up any memory allocated by the linear * 
* solver This routine is called once a problem has been * 
* completed and the linear solver is no longer needed * 
* * 
****+*+*+********************+****+*+***~~~**~~**~*~~~~:~~~~**~~~~~/ 

4.2.7. Linear solver routine KINSpgmr and its optional outputs. Pointers to the 
loutines just described for the linear solvex KINSPGMR are ‘set’ in the KINSOL memory 
structure by the call to KINSpgmr No other action to prepare for those routines is required 
KINSpgm is now described 

void KINSpgmr(void *kin-mem, int maxi, int maxlrst, int msbpre, 
KINSpgmrPrecondFn precondset, 

KINSpgmrPrecondSolveFn precondsolve, 
KINSpgmruserAtimesFn userAtimes, 

void *P-data); 

/*+++++******************++*++++++******~*~~~~~~~~~~~~*~*~~**~~~~~~ 
* * 
* Function : KINSpgmr * 
*----------------------------------------------------------------* 
t A call to the KINSpgmr function links the main KINSol solver * 
* with the KINSpgmr linear solver. Among other things, it sets * 
* the generic names linit, lsetup, Isolve, and lfree to the * 
* specific names for this package: * 
* KINSpgmrInit * 
* KINSpgmrSetup * 
* KINSpgmrSolve * 
* KINSpgmrFree * 
* * 
* kin-mem is the pointer to KINSol memory returned by * 
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* 
* 
* maxi 
* 
* 
* 
* maxlrst 
* 
* 
* 
* 

KINSolMalloc. 

is the maximum Krylov dimension. This is an 
optional input to the KINSpgmr solver. Pass 0 to 
use the default value MIN(Neq, KINSPGMR-MAXL=iO) 

is the maximum number of linear solver restarts 
allowed Values outside the range 0 to 2+Neq/maxl 
will be restricted to that range. 0, meaning no 
restarts is a safe starting value. 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* msbpre is the maximum number of steps calling the solver * 
* precondsolve without calling the preconditioner * 
* precondset. (The default is KINSPGMR-MSBPRE = 10) * 
* * 
* precondset is the user's preconditioner routine. It is used to* 
* evaluate and preprocess any Jacobian-related data * 
* needed by the precondsolve routine. See the * 
* documentation for the type KINSpgmrPrecondFn for + 
* full details. Pass NULL if no such setup of * 
* Jacobian data is required. A precond routine is * 
* NOT required, but rather provided when needed by + 
* user's precondsolve routine * 
* * 
* precondsolve is the user's preconditioner solve routine It * 
* is used to solve Px=b, where P is a preconditioner * 
* matrix. See the documentation for the type * 
* KINSpgmrPrecondSolveFn for full details The only * 
* case in which psolve is allowed to be NULL is when* 
* no preconditioning is to be done The NULL is taken* 
* as a flag that preconditioning is not desired. * 
* * 
* userAtimes is an optional routine supplied by the user to * 
* perform the matrix-vector multiply J v, where J is * 
* an approximate Jacobian matrix for that iteration. * 
* Enter NULL if no such routine is required. If one * 
* is supplied, conforming to the definitions given + 
* in this file, enter its filename. * 
* * 
* P-data is a pointer to user preconditioner data. This * 
* pointer is passed to precondset and precondsolve * 
* every time these routines are called. * 
* * 
****+*******++*******++*************++**~*~*~~~~~~~***~~~~~~*~***~/ 

Four elements in the KINSOL array iopt are used to return KINSPGMR statistics Those iopt 
elements ale indexed by constants SPGMR_NLI, SPGMR_NPE, SPGMR_NPS,and SPGMRiWFL,which are 
defined in file kinspgmr.h The meaning of each output parameter available for KINSpgmr is 
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explained next 

* * 
* KINS~W solver statistics indices * 

* The following enumeration gives a symbolic name to each * 
* KINSpgmr-specific statistic The symbolic names are used as * 
+ indices into the iopt and ropt arrays and values of both arrays* 
+ are set in this module * 
* * 
* The KINSpgmr statistics are: * 
* * 
* iopt[SPGMR-NLI] (output) number of linear iterations * 
* * 
+ iopt[SPGMR-NPE] (output) number of preconditioner evaluations * 
* * 
* iopt[SPGMR-NPS] (output) number of calls made to user’s psolve* 
* function. * 
* * 
* iopt[SPGMR-NCFL] (output) number of linear convergence failures* 
* * 

4.3. A Skeleton of the User’s Main Program. The user’s program must have the 
following steps in the order indicated 

1. MPI_Init (&argc, &argv) ; to initialize MPI if used by the user’s program Here 
argc and argv are the command line argument counter and array received by main 

2 Set n, the local vector length (the sub-vector length for this processor), Neq, the 
global vector length (the problem size N, and the sum of all the values of Nlocal), 
and the active set of processors 

3 machEnv = PVecInitMPI(comm, n, Neq, &argc, &argv) , to initialize the NVEC- 
TOR module Here comm is the MPI communicator, which may be set in one of two 
ways If a proper subset of active processors is to be used, corms must be set by 
suitable MPI calls Otherwise, to specify that all processors are to be used, comm 
must be either MPI-COMM-WORLD or NULL. 

4 Set the vector u of initial values Use the macro N-VMAKE(u, udata, machEnv) , 
if an existing array udata contains the initial values of 21 Otherwise, make the 
call u = N_VNew(Neq, machEnv) ; and load initial values into the array defined by 
N-VDATA(u) 

5 kmem = KINMalloc(. .) , which allocates internal memory for KINSOL and re- 
turns a pointer to the KINSOL memory structure 

6 KINSpgmr( .), 
7 ier = KINSol(kmem, u, . ) , performs the solve 
8 N-VDISPOSE, or N-VFree, upon completion of the integration, to deallocate the 
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memory for the vector u, allocated by N-VMAKE or N-VNeu, respectively 
9 KINFree(kmem) ; to free the memory allocated for KINSOL 

10 PVecFreeMPI (machEnv) ; to free machine-dependent data 

A summary of these in practice, for both the serial and parallel case, is given next 

Summary of Serial Usage of KINSOL 

1 msgfile=fopen(“*** out”,“w”), 
2 Allocate and initialize vectors and structures, as required 
3 kmem= KINMalloc(SystemEize, msgfile, NULL), 
4 KINSpgmr (kmem, . .) , 
5 retcode=KINSol(kmem, ..), 
6 KINFree (mem) , 

Summary of Parallel Usage of KINSOL 

1 msgfile = fopen(“test.out”, “w”) , Open message file, if desired 
2 MPI-Init 0 , as PVecInitMPI, below, also calls MPI-Init, this call is only required 

if the user’s program uses MPI before step 3 
3 Set local length n and global length Neq, and the active set of processors 
4 machEnv = PVecInitMPI(comm, n, Neq, argc, argv); comm=MPIcommunica- 

tor (if set up by user), or comm = MPI-COMM-WORLD or NULL (specifying all processors) 
if (machEnv == NULL) return(l) ; 

5 N-VMAKE(u, udata, machEnv) ; or u = N..VNew(Neq,machEnv) , user sets up vec- 
tors, structures, etc 

6. kmem = KINMalloc( Neq, msgfile, machEnv) , initializes KINSOL if stdout is to 
be used instead of a specific error message file, enter NULL in place of msgfile 

7 KINSpgmr ( . ), call the setup routine for the linear solver to be used Note that 
only KINSpgmr is available at present 

8 flag= KINSol(kmem, Neq, u, func, . , machEnv) ; call the KINSOL main 
routine - can be called repetitively with different functions func and other options 
A linear solver choice made in step 7, when another choice is available, cannot be 
changed between KINSol calls 

9. N_VDISPOSE( ), or N-VFree( ), call, as appropriate 
10. KINFree (kmem), Free KINSOL memory, independent of machine 
11 PVecFreeMPI (machEnv) , Free machine-dependent data. 

Every usage of KINSOL requires at least the inclusion of the following header files 
kinsol.h, kinspgmr h or a future alternate solver, math h, llnltyps h, and nvector h 
If the BBD preconditioner is used, additional header files are required kinbbdpre h and 
band h The header file mpi h is required for parallel applications of KINSOL 
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4.4. User-Supplied Functions. The function defining the nonlinear system, called 
F(U) in this report, but func(uu) in KINSOL and KINSPGMR internal usage, must be of the 
form described by the following typedef extracted from KINSOL 

typedef void (*SysFn)(integer Neq, N-Vector uu, 
N-Vector fval, void *f-data 1; 

/********************+******************~*~~~~~~~~~~:::~~~~~~~~~~~*~ 
* * 
* Type : SysFn * 
*----------------------------------------------------------------* 
* The func function which defines the system to be solved : + 
* func(uu) = 0 must have type SysFn. * 
* func takes as input the problem size Neq and the dependent * 
+ variable vector uu The function stores the result of func(uu) * 
* in fval The necessary work space, besides uu and fval, is * 
* provided by the pointer f-data. * 
+ The uu argument is of type N-Vector. * 
* A SysFn function does not have a return value * 
* * 
***************************************+**************************/ 

Preconditioning is an important step in using ICINSOL with any linear solver The 
interface for the routines defining the preconditioner setup and solve routines for KINSPGMR 
are given next 

typedef int (*KINSpgmrPrecondFn)(integer Neq, 
N-Vector uu, N-Vector uscale , 
N-Vector fval, N-Vector fscale, 
N-Vector vtempl, N-Vector vtemp2, 
SysFn func, real wound, 
long int +nfePtr, void *P-data); 

/***************++*+++*++*+**+*+**********~*************~~~~~~~~:~~ 
* * 
* Type : KINSpgmrPrecondFn * 
*----------------------------------------------------------------* 
+ The user-supplied preconditioner setup function precondset and + 
* the user-supplied preconditioner solve function precondsolve * 
* together must define the right preconditoner matrix P chosen * 
* so as to provide an easier system for the Krylov solver * 
* to solve. precondset is called to provide any matrix data * 
* required by the subsequent call(s) to precondsolve The data is* 
* stored in the memory allocated to P-data and the structuring of* 
* that memory is up to the user More specifically, * 
* the user-supplied preconditioner setup function precondset * 
* is to evaluate and preprocess any Jacobian-related data * 
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* needed by the preconditioner solve function precondsolve. * 
* This might include forming a crude approximate Jacobian, * 
* and performing an LU factorization on the resulting * 
* approximation to J. This function will not be called in * 
* advance of every call to precondsolve, but instead will be * 
* called only as often as necessary to achieve convergence * 
* within the Newton iteration in KINSol. If the precondsolve * 
* function needs no preparation, the precondset function can be * 
* NULL. * 
* * 
* precondset should not modify the contents of the arrays * 
* uu or fval as those arrays are used elsewhere in the * 
* iteration process * 
* * 
* Each call to the precondset function is preceded by a call to * 
* the system function func. Thus the precondset function can use * 
+ any auxiliary data that is computed by the func function and * 
* saved in a way accessible to precondset. * 
* * 
+ The two scaling arrays, fscale and uscale, and unit roundoff * 
* wound are provided to the precondset function for possible use* 
* in approximating Jacobian data, e.g. by difference quotients. * 
* These arrays should also not be altered * 
* * 
* A function precondset must have the prototype given below. + 
* Its parameters are as follows: * 
* * 
* Neq is the length of all vector arguments. * 
* * 
* uu an N-Vector giving the current iterate for the system. * 

an N-Vector giving the diagonal entries of the uu- 
scaling matrix. 

an N-Vector giving the current function value 

an N-Vector giving the diagonal entries of the func- 
scaling matrix. 

* 
* uscale 
* 
* 
* fval 
* 
* fscale 
* 
* 
* vtempl 
* 
* vtemp2 
* 
* func 
* 
* 
* 
* wound 

an N-Vector temporary 

an N-Vector temporary 

the function func defines the system being solved: 
func(uu) = 0 ) and its name is passed initially to 
KINSol in the call to KINMalloc 

is the machine unit roundoff. 
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* 
* nfePtr 
* 
* 
* 
* 
* 
* 
* 

* 
is a pointer to the memory location containing the * 

KINSol problem data nfe = number of calls to func * 
The precondset routine should update this counter by * 
adding on the number of func calls made in order to * 
approximate the Jacobian, if any For example, if * 
the routine calls func a total of W  times, then the * 
update is *nfePtr += W  * 

* 
* P-data is a pointer to user data - the same as the P-data + 
* parameter passed to KINSpgmr. * 
* * 
* * 
* Returned value: * 
* The value to be returned by the precondset function is a flag * 
+ indicating whether it was successful This value should be + 
* 0 if successful, * 
* 1 if failure, in which case KINSol stops * 
* * 
* * 

typedef int (*KINSpgmrPrecondSolveFn)(integer Neq, 
N-Vector uu, N-Vector uscale, 
N-Vector fval, N-Vector fscale, 
N-Vector vtem, N-Vector ftem, 
SysFn func, real u-round, 
long int *nfePtr, void *P-data); 

/*********************i*****+++++*******~~~~~~~~~~~~~~~*****~*~~~~ 
* * 
* Type : KINSpgmrPrecondSolveFn * 
*----------------------------------------------------------------* 
* The user-supplied preconditioner solve function precondsolve + 
* is to solve a linear system P x = r in which the matrix P is * 
+ the (right) preconditioner matrix P * 
* * 
* precondset should not modify the contents of the iterate * 
* array uu or the current function value array fval as those * 
* are used elsewhere in the iteration process * 
* * 
* A function precondsolve must have the prototype given below. * 
* Its parameters are as follows: * 
* * 
* Neq is the length of all vector arguments. * 
* * 
* uu an N-Vector giving the current iterate for the system. * 
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* * 
* uscale an N-Vector giving the diagonal entries of the uu- * 
* scaling matrix * 
* * 
* fval an N-Vector giving the current function value * 
* * 
* fscale 
* 
* 
* vtem 
* 
* 
* ftem 
* 

an N-Vector giving the diagonal entries of the func- * 
scaling matrix * 

* 
an N-Vector work array, holds the RHS vector on input + 

and the result x on output/return * 
* 

an N-Vector work array, usually set on input as vtemp * 
* 

* func the function func defines the system being solved: + 
* func(uu) = 0. * 
* * 
* uround 
* 
* nfePtr 
* 
* 
* 
* 
* 
* 
* 

is the machine unit roundoff. * 
* 

is a pointer to the memory location containing the * 
KINSol problem data nfe = number of calls to func. The* 
precondsolve routine should update this counter by * 
adding on the number of func calls made in order to * 
carry out the solution, if any For example, if the * 
routine calls func a total of W times, then the update* 
is *nfePtr += w * 

* 
+ P-data is a pointer to user data - the same as the P-data + 
* parameter passed to KINSpgmr. * 
* * 
* Returned value: * 
+ The value to be returned by the precondsolve function is a flag* 
* indicating whether it was successful. This value should be * 
* 0 if successful, * 
* 1 if failure, in which case KINSol stops * 
* * 
********+*******$*+******++*******+*****~~~~~**~~~~~~~~~~~~~~**~~~/ 

The matrix-vector multiply Jv may be done more efficiently on occasion by an algorithm 
supplied by the user This option is handled by supplying a routine of type next described 
to KINSPGMR, the routine KINSpgmr, in particular 

typedef int (*KINSpgmruserAtimesFn)(void *f-data, N-Vector v, 
N-Vector z, boole *new-w, 
N-Vector uu) ; 
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* * 
* type : KINSpgmruserAtimesFn * 
* * 
* The user-supplied A times x routine (optional) where A is * 
* the Jacobian matrix dF/du or an approximation to it and v * 
* is a vector z = (.I v) is computed * 
* * 
* f-data is a pointer to the structure used to handle data for * 
* the user-supplied system function and also to contain data + 
* for evaluation of the Jacobian of func * 
* * 
* v is the N-Vector to be multiplied by J * 
* (preconditioned and unscaled as received) * 
* * 
* z is the N-Vector resulting from the application of J to v * 
* * 
* new-w is a flag indicating if a new-uu has been * 
* processed or not * 
* * 
* ul is the N-Vector of the current iterate * 
* * 
******+**++*********************+++++*+*~~~~~~~~~***~*~*~~~~~:~~~/ 

4.5. Use by a C++ Application. KINSOL has been written in so that it permits 
use by applications written in C++ as well as in C For this purpose, each KINSOL header 
file is wrapped with conditionally compiled lines reading extern “C” { . } , conditional 
on the variable --cplusplus being defined This directive causes the C++ compiler to 
use C-style names when compiling the function prototypes encountered Users with C++ 
applications should also be aware that we have defined, in llnltyps .h, a boolean variable 
type, boole, since C has no such type The type boole is equated to type int, and so 
arguments in user calls, or calls to user-supplied routines, which are of type boole can be 
typed as either boole or int by the user The same applies to vector kernels which have a 
type boole return value, if the user is providing these kernels 

5. A Band-Block-Diagonal Preconditioner Module. A principal reason for using 
a parallel nonlinear system solver such as KINSOL lies in the solution of nonlinear systems 
arising in a partial differential equations (PDE) context Moreover, the use of a Krylov 
iterative method for the solution of many such problems is motivated by the nature of the 
underlying linear system of equations that must be solved at each time step The linear 
algebraic system is large, sparse, and structured However, if a Krylov iterative method 
is to be effective in this setting, then an effective preconditioner needs to be used Other- 
wise, the rate of convergence of the Krylov iterative method is usually unacceptably slow 
Unfortunately, an effective preconditioner tends to be problem-specific 

However, we have developed one type of preconditioner that treats a rather broad class 
of problems It has been successfully used for several realistic, large-scale problems and 
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is included in a software module within the KINSOL package This module generates a 
preconditioner that is a block-diagonal matrix with each block being a band matrix The 
blocks need not have the same number of super- and sub-diagonals and these numbers 
may vary from block to block This Band-Block-Diagonal Preconditioner module is called 
KINBBDPRE 

One way to envision these preconditioners is to think of the domain of the computa- 
tional PDE problem as being subdivided into M non-overlapping subdomains Each of these 
subdomains is then assigned to one of the M processors to be used to solve the PDE system 
The basic idea is to isolate the preconditioning so that it is local to each processor, and also 
to use a (possibly cheaper) approximate system function. This requires the definition of a 
new function g(u) which approximates the function F(u) in the definition of the nonlinear 
system (1) However, the user may set g = F Corresponding to the domain decomposition, 
there is a decomposition of the solution vector u into M disjoint blocks u,, and a decompo- 
sition of g into blocks gm The block gm depends on u, and also on components of blocks 
u,r asssociated with neighboring subdomains (so-called ghost-cell data) Let tilm denote u, 
augmented with those other components on which g,,, depends Then we have 

and each of the blocks gm(t, Urn) is uncoupled from the others 
The preconditioner associated with this decomposition has the form 

(5) P = diag[Pl, Pz, ,pM] 

where 

(6) P, N J, 

and & is a difference quotient approximation to dg,/du, This matrix is taken to be 
banded, with upper and lower half-bandwidths mu and ml defined as the number of non- 
zero diagonals above and below the main diagonal, respectively The difference quotient 
approximation is computed using mu + ml + 2 evaluations of gm The parameters ml and 
mu need not be the true half-bandwidths of the Jacobian of the local block of g, if smaller 
values provide a more efficient preconditioner Also, they need not be the same on every 
processor The solution of the complete linear system 

(7) Px = b 

reduces to solving each of the equations 

(8) P,a, = b, 

and this is done by banded LU factorization of Pm followed by a banded backsolve. 
To use this KINBBDPRE module, the user must supply two functions which the module 

calls to construct P These are in addition to the user-supplied system function func 
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l A function glocfn(Nloca1, ulocal, glocal, f-data) must be supplied by the 
user to compute g(u) It loads the real array glocal as a function oft and ulocal 
Both glocal and ulocal are of length Nlocal, the local vector length 

. A function gcomm(Nloca1, u, f-data) which must be supplied to perform all inter- 
processor communications necessary for the execution of the glocfn function, using 
the input vector u of type N-Vector 

Both functions take as input the same pointer f-data as that passed by the user to 
KINMalloc and passed to the user’s function func, and neither function has a return value 
The user is responsible for providing space (presumably within f-data) for components of 
u that are communicated by gcomm from the other processors, and that are then used by 
glocfn, which is not expected to do any communication. 

The user’s calling program should include the following elements 
. #include “kinbbdpre. h” for needed function prototypes and for type KBBDData 
l KBBDData p-data, 
. machEnv = PVecInitMPI(comm, Nlocal, N, argc, argv), 
l N-VMake (II, udata , machEnv) , 
l kmem = KINMallocCN, F, . ), 
. p-data = KBBDAlloc(Nloca1, mu, ml, . , glocfn, gcomm, . . ), where the 

upper and lower half-bandwidths are mu and ml, respectively, and glocfn and gcomm 
are user-supplied functions 

. KINSpgmr(kmem, maxi, maxlrst, msbpre, KBBDPrecon, KBBDPSol, 
userAtimes, p-data), with the memory pointers kmem and p-data returned by the 
two previous calls, the parameters (maxi, maxlrst, and msbpre) and the names 
of the preconditioner routines (KBBDPrecon, KBBDPSol) supplied with the KINBB- 
DPRE module If a user-supplied matrix-vector multiply routine,userAtimes, is 
supplied, it also is entered here 

. ier = KINSolfcvodemem, u . . .), to carry out the KINSOL solution 

. KBBDFree (p-data), to free the KBBDPRE memory block 

. KINFree (kmem), to free the KINSOL memory block 

. PVecFreeMPI (machEnv), to free the KINSOL MPI memory block 
Three optional outputs associated with this module are available by way of macros 

These are 
KBBD_RPWSIZE(p_data) = size of the real workspace (local to the current processor) used 

by KINBBDPRE 
KBBD-IPWSIZE(p-data) = size of the integer workspace (local to the cmrent processor) used 

by KINBBDPRE 
KBBD_NGE(p-data) = cumulative number of g evaluations (calls to glocfn) so far 

The costs associated with KINBBDPRE also include npe LU factorizations, npe calls to 
gcomm, and nps banded backsolve calls, where npe and nps are optional KINSOL outputs 

Similar block-diagonal preconditioners could be considered with different treatment of 
the blocks Pm For example, incomplete LU factorization or an iterative method could be 
used instead of banded LU factorization 
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6. The Fortran/C Interface Package. We anticipate that many users of KINSOL 
will work from existing Fortran application programs To accommodate them, we have 
provided a set of inteiface routines that make the required connections to KINSOL with a 
minimum of changes to the application programs Specifically, a Fortran/C interface package 
called FKINSOL is a collection of C language functions and header files which enables the 
user to write a main program and all user-supplied subroutines in Fortran and to use the C 
language KINSOL package This package entails some compromises in portability, but we 
have kept these to a minimum by requiring fixed names for user-supplied routines, and by 
using a name-mapping scheme to set the names of externals in the Fortran/C linkages The 
latter depends on two parameters set in a small header file 

Since a user cannot successfully link a program where any routine calls a Fortran routine 
not supplied, it is necessary that there be six choices for the FKINSPGMR routine FKINSPGMROO 
is found in fkinsol. c but the others are in separate files to simplify linking Each calls the 
routine KINSpgmr (a C module) but with different options The first of two suffix digits 
indicates whether the number of routines supplied is 0 (no preconditioning), 1 (precondi- 
tioner solve only), or 2 (both preconditioner setup and solve routines) The second digit 
indicates whether or not a userAtimes ioutine routine is supplied in Fortran For example, 
if FKINSPGMRII is called from the Fortran main, it will be necessary that the user supply as 
well the routines FPSOL and FATIMES In this way, dummy routines named FPSOL, FATIMES, 
etc , are not required 

The l?ortran/C interfaces have been tested on a Cray-T3D, a DEC ALPHA, and a cluster 
of Sun workstations 

A similar interface package, called FKINBBD, has been written for the KINBBDPRE pre- 
conditioner module It works in conjunction with the FKINSOL interface package The addi- 
tional user-callable functions here are FKBBDINITO and FKINBBDINITI, which inteiface with 
KBBDAlloc and KINSpgmr, FKINBBDOPT, which accesses optional outputs, and FKINBBDFREE, 
which inteifaces with KBBDFree The two user-supplied Fortran subroutines required, in ad- 
dition to KFUN to define F, are KLOCFN, which computes g(u), and KCOMMFN, which performs 
communications necessary for KLOCFN 

An overview of the Fortran interface and a skeleton program illustrating their use follow 

6.1. Overview of Fortran interface routines. The routines used to interface with 
a Foitran main program and with Fortran user-supplied routines are summarized below 
Further details can be found in the header file fkinsol . h Also, the user should check, and 
reset if necessary, the parameters in the file fcmixpar h The functions which are callable 
from the user’s Fortran program are as follows: 

l FKINITMPI interfaces with PVecInitMPI and is used to initialize the NVECTOR 
module 

. FPKINMALLOC interfaces with KINMalloc and is used to initialize KINSol. 

. FKINSPGMROO, FKINSPGMROl, FKINSPGMRIO, FKINSPGMRII, FKINSPGMR20, and 
FKINSPGMR21 interface with KINSpgmr when SPGMR has been chosen as the linear 
system solver (the only choice at present) These six interface routines correspond 
to the cases of no preconditioning, preconditioning with no saved matrix data, and 
preconditioning with saved matrix data, respectively, each without or with a user- 
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supplied Jacobian-vector multiply (FATIMES) routine For example, FKINSPGMRII 
uses conditioning but no setup routine (psolve but no precondset) and also the 
user has supplied a routine FATIMES that performs the Jacobian-vector multiply 
used in the GMRES solver 

. FKINSOL interfaces with KINSol 

. FKINFREE interfaces with KINFree and is used to free memory allocated for CVode 

. FKFREEMPI interfaces with PVecFreeMPI and is used to free memory allocated for 
MPI 

Fortran interface modules and routines 

MODULE Fortran-callable routine 
FKINSOL FKINITMPI, FKFREEMPI, FPKINMALLOC, 

FKINFREE, FKINSPGMROO, FKINSOL 
FKINSPGMROl FKINSPGMROI 
FKINSPGMRlO FKINSPGMRlO 

1 FKINSPGMRII 1 FKINSPGMRll 
I 

FKINSPGMR20 1 FKINSPGMRPO 
FKINSPGMR21 1 FKINSPGMR21 

The user-supplied Fortran subroutines are as follows. The names of these routines aie 
fixed and are case-sensitive 

KFUN which defines the function, F, that described the system to be solved F(u) = 0 
KPSOL which solves the preconditioner equation, and is required if preconditioning 
is used 
KPRECO which computes the preconditioner, and is required if preconditioning in- 
volves pie-computed matrix data 
FATIMES which performs a Jacobian-vector product paralleling the C routine user- 
Atimes 
KLOCFN which performs the local computation of the system function as required for 
the BBD preconditioner 
KCOMMFN which performs the communication of function values between processors 
as required for the BBD preconditioner 

I 1 Routines to be provided by the user 
(* indicates optional) 

KFUN user-supplied Fortran system function 
KPRECO* user-supplied Fortran preconditioner setup * 
KPSOL* user-supplied Fortran preconditioner solve * 
FATIMES* user-supplied Fortran Atimes * __ 
KLOCFN* 1 foi BBD preconditioner/Fortran interface* 
KCOMMFN* 1 for BBD preconditioner/Fortran interface* 
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6.2. Skeleton of Fortran usage. The two summaries of usage in a Fortran context 
are brief but follow the pattern established above for the C interface 

Summary of Parallel Usage of KINSOL, using the Fortran inteiface 
1 call MPI-INIT( 1 Initialize MPI 
2 call FKINITMPI(nloca1, neq, ier) Initialize the NVECTOR interface to MPI 

Here, nlocal and neq are the local and global sizes of vectors to be used 
3 call MPI..COMM_SIZE(. ) or call MPIXOMMRANK( . .) Optional calls to deter- 

mine logical processor number and count, part of MPI, proper 
4 call FPKINMALLOCC . ) Allocate space for KINSOL 
5 call FKINSPGMFl20(.. . ) Set up the linear solver The choice illustrated here is for 

both a setup and solve preconditioner routine to be supplied by the user in Fortran, 
but no user-supplied FATIMES ioutine 

6 call FKINSOL( . . ) Call KINSol, through the Fortran interface 
7 call FKINFREE Free memory usage by KINSOL and its Fortran interface 
8 call FKFREEMPI Free MPI interface 

Summary of Serial Usage of KINSOL, using the Fortran interface 
1 call FPKINMALLOCC . ) Allocate space for KINSOL 
2 call FKINSPGMR20 ( . ) Set up the linear solver The choice illustrated here is for 

both a setup and solve preconditioner routine to be supplied by the user in Fortran, 
but no user-supplied FATIMES routine 

3. call FKINSOLC . ) Call KINSol, through the Fortran interface 
4 call FKINFREE Free memory usage by KINSOL and its Fortran interface 

7. Example Problems. Although a trivial diagonal example is supplied with the 
distribution package, the following example, the so-called predator-prey PDE system, is 
more illustrative of the power of KINSOL with real problems This particular problem, 
outlined below, was solved by both a sequential and parallel implementation of KINSOL 
(kinxs c and kinxp. c being the C program source) It was also solved using the Band- 
Block-Diagonal Preconditioner supplied with KINSOL (kinxbbd. c) The PDE problem to 
be solved is now briefly presented 

This example problem is a model of a multi-species food web [l], in which mutual 
competition and/o1 predator-prey relationships in a spatial domain are simulated For this 
problem the dependent variable c replaces the generic dependent variable u used above 
Here we considei a model with s = 2p species, where both species 1,. ,p (the prey) and 
p+l, > s (the predators) have infinitely fast reaction rates 

(9) 
1 

o=fi(5,y,c)+di(c~~+cciy,) (i=1,2;..,p), 
o=fi(z,y,c)+di(c:,+CSy) (i=p+l,.. ,s), 

with 

The interaction and diffusion coefficients (nzj, bi, di) could be functions of (x, y) in general 
The choices made for this test problem are foi a simple model of p prey and p predator 

30 



species, arranged in that order in the vector c We take the various coefficients to be as 
follows 

(11) 
i 

aii = -1 (all i) 
aij=-05 lo@ (i<p,j>p) 
aij = lo4 (i > p,j 5 p) 

(all other aij = II), 

(W 
i 

bg = bi(Z,Y) = (1+ ““Y) (2 I P) 
bg = b&c, y) = -(l + cvay (i > P) 

and 

The domain is the unit square 0 5 z,y 5 1. The boundary conditions are of Neumann 
type (zero normal derivatives) everywhere The coefficients are such that a unique stable 
equilibrium is guaranteed to exist when (Y is zero [l] Empirically, for (9) a stable equilibrium 
appears to exist when (;Y is positive, although it may not be unique In this problem we take 
01 = 1 The initial conditions used for this problem are taken to be constant functions by 
species type These satisfy the boundary conditions and very nearly satisfy the constraints, 
given by 

Ci = 1 16347 (i = 1; ,p) 
ci = 349031 (z=p+l, as) 

The PDE system (9) (plus boundary conditions) was discretized with central differencing 
on an L x L mesh, with the resulting nonlinear system has size N = sL2 

The main program source solving this problem (kinxs c) is given in its entirety in the 
Appendix The output for this case is also included in the Appendix 

8. Availability. At present, the KINSOL package has not been released for general dis- 
tribution However, plans are in progress for a limited release, and interested potential users 
at DOE Laboratories can obtain KINSOL on request from Allan Taylor or Alan Hindmarsh 
(at agtaylorQlln1 gov or alanh@llnl gov, resp) 
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9. Appendix: Listing of Predator-Prey PDE Example Program. 

+ Example problem for KINSol, parallel machine case 
* This example solves a nonlinear system that arises from a system of 
* partial differential equations. The PDE system is a food web 
* population model, with predator-prey interaction and diffusion on the 
* unit square in two dimensions. The dependent variable vector is 
* 
* 12 IIS 

*c=(c,c, . . ..c ) 
* 

(denoted by the variable cc) 

* and the pde's are as follows: 
* 
* i i 
* 0 = d(i)*(c +c ) + f (x,y,c) (i=i ,.. pas) 
* xx YY i 
* 
* where 
* 
* i IIS j 
* f (~,y,c) = c * (b(i) + sum a(i,j)*c 1 
* i j=l 
* 
+ The number of species is ns = 2 * np, with the first np being prey and 
* the last np being predators. The number np is both the number of prey and 
* predator species The coefficients a(i,j) , b(i) , d(i) are 
* 
* a(i,i) = -AA (all i) 
* a(i,j) = -GG (i <= np , j > np) 
* a(i,j) = EE (i > np, j <= np) 
* b(i) = BB * (1 + alpha * x + y) (i <= np) 
* b(i) =-BB * (1 + alpha * x + y) (i >= np) 
* d(i) = dprey (i <= np) 
* d(i) = dpred ( i > np) 
* 
* The various scalar parameters are set using define's 
* or in routine InitUserData 
* The boundary conditions are normal derivative = 0. 
* The initial guess is constant in x and y. although the final 
* solution is not 
* 
* The PDEs are discretized by central differencing on a mx by my mesh 
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* 
* The nonlinear system is solved by KINSol using the method specified in 
* local variable globalstrat 
* 
* The preconditioner matrix is a block-diagonal matrix based on the 
* partial derivatives of the interaction terms f (in the above equation) only 
* 
* 
* 
+ Execution: mpirun -np N -machinefile machines kinxp 
* {with N = NPEX+NPEY, total number of processors, see below3 
* 
* references.. 
* I. 
* Peter N Brown and Youcef Saad, 
* Hybrid Krylov Methods for Nonlinear Systems of Equations 
* LLNL report UCRL-97645, November 1987 
* 
* 2. 
* Peter N Brown and Alan C. Hindmarsh, 
t Reduced Storage Matrix Methods in Stiff ODE systems, 
* Lawrence Livermore National Laboratory Report UCRL-95088, Rev. 1, 
* June 1987, and Journal of Applied Mathematics and Computation, Vol. 31 
* (May 1989), pp 40-91 ( for a description of the time-dependent 
* version of this test problem ) 
* 
* 
+ run command line: mpirun -np N -machinefile machines kinxp 
* where N = NPEX * NPEY is the number of processors to use. 
****$*f*******?+f**********+*+*********+~~~~~~**~;~~:~~****~~~~~~~~*~~*~/ 

#include <stdio.h> 
#include <stdlib.h> 
#include <math h> 
#include "llnltyps h" 
#include "kinso1.h" 
#include "iterativ.h" 
#include "kinspgmr.h" 
#include "dense h" 
#include "nvector h" 
#include "llnlmath h" 
#include "mpi h" 

/* definitions of real, integer, boole, TRUE, FALSE*/ 
/* main KINSol header file */ 
/* contains the enum for types of preconditioning */ 
/* use KINSpgmr linear solver */ 
/* use generic DENSE solver for preconditioning */ 
/* definitions of type N-Vector, macro N-VDATA */ 
/* contains RSqrt and UnitRoundoff routines */ 
/* MPI include file */ 

/* Problem Constants */ 

#define NW-SPECIES 6 /* must equal Z*(number of prey or 
predators) number of prey = 
number of predators */ 

34 



#define PI 3.1415926535898 /* pi */ 

#define NPEX 
#define NPEY 
#define MXSUB 
#define MYSUB 
#define MX 
#define MY 
#define NSMXSUB 
#define NSMXSUBZ 
#define NEQ 

#define AA 
#define EE 
#define GG 
#define BB 
#define DPREY 
#define DPRED 
#define ALPHA 
#define AX 
#define AY 
#define FTOL 
#define STOL 
#define THOUSAND 
#define ZERO 
#define ONE 

2 /* number of processors in the x-direction */ 
2 /* number of processors in the y-direction */ 
10 /* MXSUB = number of x mesh points per subgrid */ 
10 /* MYSUB = number of y mesh points per subgrid */ 
(NPEX*MXSUB) /* number of grid points in the x-direction */ 
(NPEY*MYSUB) /* number of grid points in the y-direction */ 
(N~~~~PECIES + MxsuB) 
(NuM-SPECIES * (MXSUB+~)) 
(NUN-SPECIES * MX + MY) 

/* number of equations in the system */ 

RCONST(l.0) /* value of coefficient a, above eqns +/ 
RCONST(10000 ) /* value of coefficient a, above eqns */ 
RCLlNST(0.5e-6) /* value of coefficient g, above eqns */ 
RCONST(l.O) /* value of coefficient b, above eqns */ 
RCONST(1 0) /* value of coefficient dprey, above eqns */ 
RCONST(0.5) /* value of coefficient dpred, above eqns +/ 
RCONST(l.O) /* value of coefficient alpha, above eqns */ 
RCONST(I.0) /* total range of x variable */ 
RCONST(1 0) /* total range of y variable */ 
RCONST(1 e-7) /* ftol tolerance */ 
RCONST(1 e-13) /* stol tolerance */ 
RCONST(lOOO.0) /* one thousand */ 
RCONST (0.1 /* 0 */ 
RCONST(1 0) /* 1 */ 

/* User-defined vector accessor macro: IJ-Vptr t/ 

/* IJ-Vptr is define in order to isolate the underlying 3-d structure of the 
dependent variable vector from its underlying l-d storage (an N-Vector). 
IJ-Vptr returns a pointer to the location in vv corresponding to 
ns = 0 , jx = i, jy = j */ 

#define IJ-Vptr(vv,i,j) (&(((vv)->data)[(i)+NUM_SPECIES + (j)*NSMXSUB])) 

/* Type : UserData 
contains preconditioner blocks, pivot arrays, and problem constants */ 

typedef struct C 
real ++P CMXSUBI [MYSUB] ; 
integer *pivot CMXSUBI [MYSUB] ; 
real **acoef, *bcoef; 
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N-Vector rates; 
real *cox, *coy; 
real cext[NUM-SPECIES * (MXSUB+Z)*(MYSUB+z)]; 
integer my-pe, isubx, isuby, nsmxsub, nsmxsub2; 

MPI-Comm comm; 

real ax, ay, dx, dy; 
real wound, sqruround; 
integer Neq, mx, my, ns, np; 

) *UserData; 

/* Private Helper Functions */ 

static UserData AllocUserData(void); 
static void InitUserData(integer my-pe, MPI-Comm comm, UserData data); 
static void FreeUserData(UserData data); 
static void SetInitialProfiles(N-Vector cc, N-Vector SC); 
static void PrintOutput(integer my-pa, MPI-Comm comm, N-Vector cc); 
static void PrintFinalStats(long int *iopt); 
static void WebRate(rea1 xx, real yy, real *cxy, real watesxy, void *f-data); 
static real DotProdcinteger size, real *xl, real *x2); 
static void BSend(MPI-Comm comn, integer my-pe, integer isubx, integer isuby, 

integer dsizex, integer dsizey, real +cdata); 
static void BRecvPost(MPI-Comm comm, MPI-Request request[], integer my-pe, 

integer isubx, integer isuby, 
integer dsizex, integer dsizey, 
real wext, real *buffer); 

static void BRecvWait(MPI-Request requestC1, integer isubx, integer isuby, 
integer dsizex, real *text, real *buffer); 

static void ccomm(integer Neq, real *cdata, UserData data); 
static void fcalcprprcinteger Neq, N-Vector cc, N-Vector fval, 

void *f-data); 

/* Functions Called by the KINSol Solver */ 

static void funcprpr(integer Neq, N-Vector cc, N-Vector fval, 
void *f-data); 

static int Precondbdcinteger Neq, N-Vector cc, N-Vector cscale, 
N-Vector fval, N-Vector fscale, 
N-Vector vtem,N-Vector vtempi, SysFn func, real around, 
long int *nfePtr, void *P-data); 
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static int PSolvebd(integer Neq, N-Vector cc, N-Vector cscale, 
N-Vector fval, N-Vector fscale, N-Vector vv, N-Vector ftem, 
SysFn func, real uround, 
long int *nfePtr, void *P-data); 

main(int argc, char *argv[l) 

c 
FILE *msgfile; 
integer Neq=NEQ; 
integer globalstrategy, i, local-N; 
real fnormtol, scsteptol, roptCOPT_SIZEl; 
long int iopt[OPT-SIZE]; 
N-Vector cc, SC, constraints; 
UserData data; 
int iout, flag; 
int npelast = NPEX*NPEY-1; 
int my-pa, npes; 
boole optIn; 
void *men; 
KINMem kmem; 
machEnvType machEw; 
MPI-Comm comm; 

/* Allocate memory, and set problem data, initial values, tolerances */ 

msgfile = fopen("PredPrey out",??'); 

/* Get processor number and total number of pe's */ 

MPI-Init(&argc, &argv); 
comm = MPI-COMM-WORLD; 
MPI-Comm-size(comm, &npes); 
MPI-Comm-rank(comm, &my-pe); 

if (npes != NPEX*NPEY) c 
if (my-pe == 0) 

printf("\n npes=%d is not equal to NPEX*NPEY=%d\n", npss,NPEX*NPEY); 
return(l); 

) 

/* Set local length */ 
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local-N = NUM-SPECIES*MXSUB*MYSUB; 

/* allocate and initialize user data block */ 

data=(UserData)AllocUserData(); 
InitUserData(my-pe, comm, data); 
machEnv = PVecInitMPI(comm, local-N, Neq, &argc, &argv); 
if(machEnv==NULL) return(l); 

/* example of changing defaults using iopt */ 
optIn = TRUE; for(i=O;i<KINSOL-IOPT-SIZE;i++)iopt[i]=O; 

for(i=O;i<KINSOL-ROPT-SIZE;i++)ropt[i]=ZERO; 
iopt[MXIT~~]=250; 

/* choose global strategy */ 
globalstrategy = INEXACT-NEWTON; 

/* allocate (initialize) vectors */ 
cc = N-VNew(Neq, machEnv); 
SC = N-VNew(Neq, machEnv); 
data->rates=N-VNew(Neq,machEnv); 

constraints = N-VNew(Neq, machEnv); 
N-VConst(O.,constraints); 

SetInitialProfiles(cc, SC); 

fnormtol=FTOL; scsteptol=STOL; 

/* Call KINMalloc to allocate KINSol memory block: 

A pointer to KINSol problem memory is returned and stored in kmem.*/ 

men = KINMalloc(Neq, msgfile, machEnv); 
if(my-pe==O && men == NULL) I printf("KINMalloc failed."); return(l); 3 
kmem = (KINMem)mem; 

/* Call KINSpgmr to specify the KINSol linear solver KINSpgmr with solve 
routines Precondbd and PSolvebd, and the pointer to 
the user-defined block data */ 

KINSpgmr(kmem, 
16, /* a zero in this position forces use of the KINSpgmr default 

for maxi, dimension of the Krylov space*/ 
2, /* if zero in this position forces use of the KINSpgmr default 

for maxlrst, the max number of linear solver restarts allowed*/ 
0, /* a zero in this position forces use of the KINSpgmr default 
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for msbpre, the number of calls to the preconditioner allowed 
without a call to the preconditioner setup routine +/ 

Precondbd, /* user-supplied preconditioner setup routine */ 
PSolvebd, /* user-supplied preconditioner solve routine */ 

NULL, /* user-supplied ATimes routine -- Null chosen here */ 
data); 

if(my-pe==O)printf(" \n predator-prey test problem -- KINSol\n\n"); 

/* first,print out the problem size and then the 
initial concentration profile */ 

if(my-pe==O)C 
printf("Mesh dimensions %d X %d\n",MX,MY); 
printf("Tota1 system size %d\n",Neq); 
printf("Preconditioning uses interaction-only block-diagonal matrix\n"); 
printf("tolerance parameters: fnormtol = %g scsteptol = %g\n", 

fnormtol,scsteptol); 

printf("\nInitial profile of concentration\n"); 
3 
if(my-pe==O I I my-pe==npelast) PrintOutput(my-pe, comm, cc); 

/* call KINSol and print output concentration profile */ 

flag = KINSol(kmem, /* KINSol memory block */ 
Neq, /* system size -- number of equations */ 
cc, /* solution cc of funcprpr(cc)=O is desired +/ 
funcprpr, /* function describing the system equations */ 
globalstrategy, /* global stragegy choice */ 
SC, /* scaling vector, for the variable cc +/ 
SC, /* scaling vector for function values fval */ 
fnormtol, /* tolerance on fnorm funcprpr(cc) for sol’n */ 
scsteptol, /* step size tolerance */ 
constraints, /* constraints vector */ 
optIn, /* optional inputs flat: TRUE or FALSE */ 
iopt, /* integer optional input array */ 
rapt, /* real optional input array */ 
data, /* pointer to user data */ 
msgfile, /* file pointer to message file */ 
machEw); /* machEnv pointer */ 

if(my-pe==O)C 
if (flag != KINSOL-SUCCESS) i 

printf("KINSo1 failed, flag=%d.\n", flag); 
return(flag); 3 
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printf("\n\n\nComputed equilibrium species concentrations:\n\n"); 
3 

if(my-pe==O I I my-pe==npelast)PrintOutput(my-pe, comm, cc); 

/* cc values are available on each processor */ 
if(my-pe==O) PrintFinalStats(iopt); 

/* Free memory and print final statistics */ 
N-VFree(cc); 
N-VFree(sc); 
N-VFree(constraints); 
KINFree(kmem); 
FreelJserData(data); 

MPI-Finalize(); 
return(O); 

3 

/+******++***********+*t Private Helper Functions **+********+*++*********/ 

/* Allocate memory for data structure of type UserData */ 

static UserData AllocUserData(void) 
f 

int jx, jy; 
UserData data: 

data = (UserData) malloc(sizeof *data); 

for (jx=O; jx < MXSUS; jr++) C 
for (jy=O; jy < MYSUS; jy++) C 

(data->P) [jxl [jyl = denalloc(NUM-SPECIES); 
(data->pivot)[jx][jyl = denallocpiv(NUM-SPECIES); 

3 
3 

(data->acoef) = denalloc(NUM-SPECIES); 
(data->bcoef) = (real *~~~oc(I~uM~TECE~ * sizeof(rea1)); 
(data->cox) = (real *)malloc(NUM-SPECIES + sizeof(rea1)); 
(data->coy) = (real +)malloc(NUM-SPECIES + sizeof(rea1)); 

ret.urn(data); 
3 
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/* readability constants defined */ 

#define acoef (data->acoef) 
#define bcoef (data->bcoef) 
#define cox (data->cox) 
#define coy (data->coy) 

/+ Load problem constants in data */ 

static void InitUserData(integer my-pe, MPI-Comm comm,UserData data) 
c 

int i, j, np; 
real +al,+aZ, *a3, *a4, *b, dx2, $3; 

data->mx = MX; 
data->my = MY; 
data->ns = NUM-SPECIES; 
data->np = NUM-SPECIES / 2; 
data-%x = AX; 
data->ay = AY; 
data->dx = (data->ax)/(MX-1); 
data->dy = (data->ay)/(MY-I); 
data->Neq= NEQ; 
data->my-pe = my-pe; 
data->comm = comm; 
data->isuby = my-pe / NPEX; 
data->isubx = my-pe - data->isuby*NPEX; 
data->nsnxsub = NUM-SPECIES * MXSUB; 
data->nsmxsubZ = NUM-SPECIES * (MXSUB+Z); 

data->uround = UnitRoundoffO; 
data->sqruround = RSqrt(data-suround); 

/* set up the coefficients a and b plus others found in the equations */ 
np = data->np; 

dx2=(data->dx)*(data->dx); dyZ=(data->dy)*(data->dy); 

for(i=O;i<np;i++)C 
al= &(acoefCil Cnpl); 
a2= &(acoefCi+nplCOl); 
a3= k(acoefCilC01); 
a4= &(acoefCi+npl[npl); 
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/* fill in the portion of acoef in the four quadrants, row by row */ 
for(j=O;j<np;j++){ 

*ai++ = -GG ; 
*az++ = EE; 
*a3++ = ZERO; 
*a4++ = ZERO; 

3 

/* and then change the diagonal elements of acoef to -AA a/ 
acoef[i] [i]=-AA; 
acoef[i+np] [i+np] = -AA; 

bcoef[i] = BB; 
bcoefCi+np] = -BB; 

coxCi]=DPREY/(dxZ); 
coxCi+np]=DPRED/(dxZ); 

coyCi]=DPREY/(dyZ); 
coyCi+np]=DPRED/(dyZ); 

3 

static void FreeUserData(UserData data) 
( 

int jx, jy; 

for (jx=O; jx < MXSUB; jx++) C 
for (jy=O; jy < MYSUB; jy++) f 

denfree((data->P)[jx] [jy]); 
denfreepiv((data->pivot)[jX][jy]); 

3 
3 

denfree(acoef); 
free(bcoef); 
free(cox); 
N-VFreeCdata-w&es); 

free(data): 

3 
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/* Set initial conditions in cc +/ 

static void SetInitialProfiles(N_Vector cc, N-Vector SC) 
c 

int i, jx, jy; 
real *ct1, *st1, *ctz, *stz; 
real ctemp[NUM-SPECIES], stempCNUM_SPECIESI; 

/* Initialize temporary arrays ctemp and stemp to be used 
in the loading process +/ 

for(i=O;i<NUM-SPECIES;i++) 
if(i<NUM-SPECIES/Z){ 

ctemp[il=RCONST(1.16347); 
stemp[i]=ONE;) 

else c 
ctemp[il=RCONST(34903.1); 
stemp[i]=RCONST(O.OOOOl);~ 

/* Load initial profiles into cc and sc vector from temporary arrays */ 

for (jy=O; jy < MYSUB; jy++) ( 
for (jx=O; jx < MXSUB; jx++) ( 

ctl = IJ-Vptr(cc,jx,jy); 
ct2 = ctemp; 
stl = IJ-Vptr(sc,jx,jy); 
St2 = stemp; 
for(i=O;i<NUM-SPECIES;i++)< 

*cti++=*ct2++; 
*sti++=*st2++; 

3 
3 

3 

3 /* end SetInitialProfiles */ 

/* Print sample of current cc values */ 

static void PrintOutput(integer my-pe, MPI-Comm comm, N-Vector cc) 
( 

int is, jx, jy, i0, npelast; 
real +ct, tempc[NUM-SPECIES]; 
MPI-Status status; 
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npelast = NPEX+NPEY - 1; 

ct = N-VDATA(cc); 

/* send the cc values (for all species) at the top right mesh point to PE 0 */ 
if(my-pe == npelast)C 
i0 = NUM-SPECIES*(MXSUB*MYSUB-1); 
if(npelast!=O) 

MPI~Send~&ctCiOl,NUM~SPECIES,PVEC~REAL~MPI~TYPE,O,O,comm); 
else /* single processor case */ 

for(is=O;is<NUM-SPECIES;is++) tempc[isl=ct[iO+is]; 
3 

/* On PE 0, receive the cc values at top right, then print performance data 
and sampled solution values */ 

ifkay-pe == 0) C 

ifcnpelast != 0) 
MPI-Recv(&tempc[Ol,NUM-SPECIES,PVECJEAL-MPI-TYPE, npelast,O,co~,&status); 

printf("\n"); 
printf("At bottom left::\*"); 
for(is=O;is<NUM-SPECIES;is++)C 

if((is%6)*6== is)printf("\n"); 
printf (" %g",ct Cisl) ; 

3 

printf("\n\n"); 
printf("At top right:\*"); 
for(is=O;is<NUM-SPECIES;is++)( 

if((is%6)*6 == is)printf("\n"); 
printf(" %g",tempcCisl); 

3 
printf("\n\n"); 

3 
3 

/* Print final statistics contained in iopt */ 

static void PrintFinalStats(long int *iopt) 
c 

printf("\nFinal Statistics . \n\n"); 
printf("nni = %51d nli = %51d\n", ioptC~~11, ioptCSPGMR_NLII); 
printf("nfe = %51d w = %51d\n", ioptC~~~1, iopt[SPGMR-NPEI); 
printf("nps = %51d ncfl = %51d\n", ioptCSPGMR_NPSl, ioptESPGMR_NCFLl); 

3 
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/* Routine to send boundary data to neighboring PEs */ 

static void BSend(MPI-Comm comm, integer my-pe, integer isubx, integer isuby, 
integer dsizex, integer dsizey, real *cdata) 

( 
int i, ly; 
integer offsetc, offsetbuf; 
real bufleft[NuM-SPECIES*MYSuB], bufright[NUM-SPECIES*MYSUB]; 

/* If isuby > 0, send data from bottom x-line of u */ 

if (isuby != 0) 
MPI-Send(&cdata.[O], dsizex, PVEC-REAL-MPI-TYPE, my-pe-NPEX, 0, COmm); 

/* If isuby C NPEY-1, send data from top x-line of u t/ 

if (isuby != NPEY-1) c 
offsetc = (MYSUB-l)*dsizex; 
MPI-Send(&cdata[offsetc], dsizex, PVEC-REAL-MPI-TYPE, my-pe+NPEX, 0, Comm); 

3 

/* If isubx > 0, send data from left y-line of u (via bufleft) */ 

if (isubx != 0) C 
for (ly = 0; ly < MYSUB; ly++) C 

offsetbuf = ly*NLJM-SPECIES; 
offsetc = ly*dsizex; 
for (i = 0; i < NUM-SPECIES; i++) 

bufleft[offsetbuf+i] = cdata[offsetc+i]; 
3 
MPI-Send(&bufleftCO], dsizey, PVEC-REAL-MPI-TYPE, my-pe-1, 0, comm); 

3 

/a If isubx < NPEX-1, send data from right y-line of u (via bufright) */ 

if (isubx != NPEX-1) ( 
for (ly = 0; ly < MYSUB; ly++) C 

offsetbuf = ly+NUKSPECIES; 
0ffsetc = offsetbuf+MXSUB + (MXSUB-~)+NIJM-SPECIES; 
for (i = 0; i < NUM-SPECIES; i++) 

bufright[offsetbuf+i] = cdataCoffsetc+il; 
3 
MpI-Send(&bufright[O], dsizey, PVEC-REAL-MPI-TYPE, my-pe+'l ', c0mm); 

3 
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3 

/* Routine to start receiving boundary data from neighboring PEs. 
Notes: 
1) buffer should be able to hold Z*NUM-SPECIES*MYSUB real entries, should be 
passed to both the BRecvPost and BRecvWait functions, and should not 
be manipulated between the two calls. 
2) request should have 4 entries, and should be passed in both calls also. */ 

static void BRecvPost(MPI-Comm comm, MPI-Request request[l, integer my-pe, 
integer isubx, integer isuby, 
integer dsizex, integer dsizey, 
real *text, real *buffer) 

c 
integer offsetce; 
/* Have bufleft and bufright use the same buffer */ 
real *bufleft = buffer, *bufright = buffer+NUM-SPECIES*MYSUB; 

/* If isuby > 0, receive data for bottom x-line Of text */ 
if (isuby != 0) 

MPI-Irecv(&cext[NUM-SPECIES], dsizex, PVEC-REAL-MPI-TYPE, 
my-pe-NPEX, 0, comm, &request[Ol); 

/* If isuby < NPEY-1, receive data for top x-line of text */ 
if (isuby != NPEY-1) { 

offsetce = NUM-SPECIES*(l + (MYSUB+l)*(MXSUB+Z)); 
MPI-Irecv(&cext[offsetcel, dsizex, PVEC-REAL-MPI-TYPE, 

my-pe+NPEX, 0, comm, &requestCll); 
I 
J 

/* If isubx > 0, receive data for left y-line of text (via bufleft) */ 
if (isubx != 0) C 

MPI-Irecv(&bufleft[Ol, dsizey, PVEC-REAL-MPI-TYPE, 
my-pe-1, 0, conus, &requestCZl); 

3 

/* If isubx < NPEX-1, receive data for right y-line of text (via bufright) */ 
if (isubx != NPEX-1) { 

MPI-Irecv(&bufright[Ol, dsizey, PVEC-REAL-MPI-TYPE, 
my-pe+l, 0, comm, &request[31); 

3 

3 
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/* Routine to finish receiving boundary data from neighboring PEs. 
Notes: 
1) buffer should be able to hold Z*NUM-SPECIES*MYSUB real entries, should be 
passed to both the BRecvPost and BRecvWait functions, and should not 
be manipulated between the two calls 
2) request should have 4 entries, and should be passed in both calls also. %/ 

static void BRecvWait(MPI-Request request[l, integer isubx, integer isuby, 
integer dsizex, real wext, real *buffer) 

c 
int i, ly; 
integer dsizex2, offsetce, offsetbuf; 
real *bufleft = buffer, *bufright = buffer+NUM-SPECIES%MYSUB; 
MPI-Status status; 

dsizex2 = dsizex + Z*NUM-SPECIES; 

/* If isuby > 0, receive data for bottom x-line of text */ 
if (isuby != 0) 

MPI-Wait(&requestCOl,&status); 

/* If isuby < NPEY-1, receive data for top x-line of text */ 
if (isuby != NPEY-1) 

MPI_Wait(&request[il,&status); 

/* If isubx > 0, receive data for left y-line of text (via bufleft) */ 
if (isubx != 0) C 

MPI_Wait(&requestI21,&status); 

/* Copy the buffer to text */ 
for (ly = 0; ly c MYSUB; ly++) C 

offsetbuf = ly*NUM-SPECIES; 
offsetce = (ly+l)*dsizexZ; 
for (i = 0; i < NUM-SPECIES; i++) 

cext[offsetce+il = bufleft[offsetbuf+il; 
3 

3 

/* If isubx < NPEX-1, receive data for right y-line of text (via bufright) */ 
if (isubx != NPEX-1) C 

MPI_Wait(&request[31,&status); 

/* Copy the buffer to text */ 
for (ly = 0; ly < MYSUB; ly++) C 
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offsetbuf = ly*NUM-SPECIES; 
offsetce = (ly+Z)+dsizexZ - NUM-SPECIES; 
for (i = 0; i < NUM-SPECIES; i++) 

Cext [offsetce+i] = bufsight[offsetbuf+i]; 
3 

3 

3 

/* ccomm routine. This routine performs all communication 
between processors of data needed to calculate f. */ 

static void ccomm(integer Neq,real *cdata, UserData data) 
c 

real *text, bufferCZ+NUM-SPECIES*MYSUBl; 
MPI-Conm comm; 
integer my-pe, isubx, isuby, nsmxsub, nsmysub; 
MPI-Request requestC41; 

/* Get comn, my-pe, subgrid indices, data sizes, extended array text +/ 

corm = data->comm; my-pe = data->my-pe; 
isubx = data->isubx; isuby = data->isuby; 
nsmxsub = data->nsmxsub; 
nsmysub = NUM-SPECIES*MYSUB; 
text = data-kext; 

/* Start receiving boundary data from neighboring PEs +/ 

BRecvPost(comm, request, my-pe, isubx, isuby, nsmxsub, nsmysub, text, buffer); 

/* Send data from boundary of local grid to neighboring PEs */ 

BSend(comm, my-pe, isubx, isuby, nsmxsub, nsmysub, cdata); 

/* Finish receiving boundary data from neighboring PEs */ 

BRecvWait(request, isubx, isuby, nsmxsub, text, buffer); 

3 
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/* system function for predator - prey system calculation part */ 

static void fcalcprpr(integer Neq, N-Vector cc, N-Vector fval, 
void *f-data) 

c 
real xx, yy, *cxy, *rxy, *fxy, dcydi, dcyui, dcxli, dcxri; 
real *text, dely, delx, *cdata; 
integer i, j, is, ly; 
integer isubx, isuby, nsmxsub, nsmxsub2; 
integer shifty, offsetc, offsetce, offsetcl, offsetcr, offsetcd, offsetcu; 
UserData data; 

data=(UserData)f-data; 
cdata = N-VDATA(cc); 

/+ Get subgrid indices, data sizes, extended work array text */ 

isubx = data->isubx; isuby = data->isuby; 
nsmxsub = data->nsmxsub; nsmxsub2 = data->nsmxsubZ; 
text = data-Xext; 

/* COPY local segment of cc vector into the working extended array text %/ 

offsetc = 0; 
offsetce = nsmxsub2 + NUM-SPECIES; 
for (ly = 0; ly < MYSUB; ly++) I 

for (i = 0; i < nsmxsub; i++) cextCoffsetce+il = cdataCoffsetc+il; 
offsetc = offsetc + nsmxsub; 
offsetce = offsetce + nsmxsub2; 

3 

/* To facilitate homogeneous Neumann boundary conditions, when this is 
a boundary PE, copy data from the first interior mesh line of cc to text */ 

/* If isuby = 0, copy x-line 2 of cc to text */ 
if (isuby == 0) C 

for (i = 0; i < nsmxsub; i++) cextCNUM_SPECIES+il = cdataCnsmxsub+i]; 
3 

/* If isuby = NPEY-1, copy x-line MYSUB- of cc to text */ 
if (isuby == NPEY-1) ( 

offsetc = (MYSUB-Z)*nsmxsub; 
offsetce = (MYSUB+i)*nsmxsubZ + NUM-SPECIES; 
for (i = 0; i C nsmxsub; i++) cext[offsetce+il = cdataCoffsetc+i]; 

3 
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/* If isubx = 0, copy y-line 2 of cc to text %/ 
if (isubx == 0) ( 

for (ly = 0; ly < MYSUB; ly++) { 
offs&c = lymsmxsub + NUM-SPECIES; 
offsetce = (ly+l)*nsmxsubZ; 
for (i = 0; i < NUM-SPECIES; i++) cext[offsetce+i] = cdata[offsetc+i]; 

3 
1 

/* If isubx = NPEX-1, copy y-line MXSUB-1 of cc to text %/ 
if (isubx == NPEX-1) ( 

for (ly = 0; ly < MYSUB; ly++) I 
offsetc = (ly+l)*nsmxsub - Z+NUM-SPECIES; 
offsetce = (ly+Z)*nsmxsubZ - NUM-SPECIES; 
for (i = 0; i < NUM-SPECIES; i++) cext[offsetce+i] = cdata[offsetc+i]; 

3 
3 

/* 100~ over a.11 grid points, evaluating for each species at each */ 

delx = data->dx; 
dely = data->dy; 
shifty = (MXSUB+Z)+NUM-SPECIES; 
for(j=O; j<MYSUB; j++) C 

yy = dely*(j + isuby * MYSUB); 
for(i=O; i<MXSUB; i++)C 

xx = delx % ( i + isubx + MXSUB); 
cxy = IJ-Vptr(cc,i,j); 
rxy = IJ-Vptr(data->rates,i,j); 
fxy = IJ-Vptr(fval,i,j); 

WebRat.e(xx, yy. cxy, rxy, f-data); 

offsetc = (i+l)*NUM-SPECIES + (j+l)%NSMXSUB2; 
offsetcd = offsetc - shifty; 
offsetcu = offsetc + shifty; 
offsetcl = offsetc - NUM-SPECIES; 
offsetcr = offsetc + NUM-SPECIES; 

for(is=O; is<NUM-SPECIES; is++){ 

/* differencing in x */ 

dcydi = cextCoffsetc+is] - text Coffsetcd+isl; 
dcyui = cext[offsetcu+is] - Cext[OffsetC+iS]; 
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/* differencing in y */ 

dcxli = cext[offsetc+isl - cext[offsetcl+isl; 
dcxri = cext[offsetcr+isl - cext[offsetc+isl; 

/* compute the value at xx , yy */ 

fxy[isl = (coy)[isl + (dcyui - dcydi) + 
(cox)[is] % (dcxri - dcxli) + rxy[isl; 

3 /* end is loop */ 

3 /* end of i or x loop */ 

3 /* end of j or y loop */ 

3 /* end of routine fcalcprpr +/ 

/%+%%%%%%%%***%%** Functions Called by the KINSol Solver +**+*+*+**+*+***%*/ 

/* system function routine. Evaluate funcprprccc). First call ccomm to do 
communication of subgrid boundary data into text Then calculate funcprpr 
by a call to fcalcprpr */ 

static void funcprprcinteger Neq, N-Vector cc, N-Vector fval, void *f-data) 
I 

real wdata, *fvdata; 
UserData data; 

cdata = N-VDATA(cc); 
fvdata = N-VDATA(fval); 
data = (UserData) f-data; 

/* Call ccomm to do inter-processor communicaiton */ 

ccomm (Neq, cd&a, data); 

/* Call fcalc to calculate the system function */ 

fcalcprpr (Neq, cc, fval, data); 

3 
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/* Preconditioner setup routine. Generate and preprocess P. */ 

static int Precondbdcinteger Neq, N-Vector cc, N-Vector cscale, 
N-Vector fval, N-Vector fscale, 
N-Vector vtem, N-Vector vtempl, SysFn func, real wound, 
long int *nfePtr, void *P-data) 

c 
real I, r0, sqruround; 
real XX, yy, *cxy, +scxy, cctemp, **Pxy, *ratesxy, *Pxycol; 
real fat, perturb-ratesCNUM_SPECIESl; 

integer i, j, jx, jy, ret; 

UserData data: 

data = (UserData)P-data; 

sqruround = data->sqruround; 
fat = N-VWLZNorm(fva1, fscale); 
r0 = THOUSAND * wound * fat * Neq; 

if(r0 == ZERO) r0 = ONE; 

for(jy=O; jy<MYSUB; jy++)c 

yy =data->dy %(jy + data->isuby * MYSUB); 

for(jx=O; jx<MXSUB; jx++)C 

xx = data->dx * (jx + data->isubx * MXSUB); 
Pxy = (data->P)[jx] [jy]; 
cxy = IJ-Vptr(cc,jx,jy); 
sexy= IJ-Vptr(cscale,jx,jy); 
ratesxy = IJ-Vptr((data->rates),jx,jy); 

for(j=O; j<NUM-SPECIES; j++)( 

cctemp=cxyCj]; /* save the j,jx,jy element of cc */ 
r=MAX(sqruround * ABS(cctemp),rO/scxyCjl); 
cxy[j] += r; /* perturb the j,jx,jy element of cc */ 
fat = ONE/r; 
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WebRate(xx, yy, cxy, perturb-rates,data); 

Pxycol = PxyCjl; 

for(i=O; iCNUM_SPECIES; i++) C 
Pxycol[i]=(perturb_rates[il-ratesxyCi1) * fat; 

3 

/* restore j,jx,jy element of cc */ 
cxyCj1 = cctemp; 

3 /* end of j loop */ 

/* lu decomposition of each block */ 

ret = gefa(Pxy, NUM-SPECIES, (data->pivot)Cjxl[jyl); 

if(ret!=O)return(l); 

3 /* end jx loop +/ 

3 /* end jy loop */ 
return(O): 

3 /* end of routine Precondbd */ 

/* Preconditioner solve routine */ 

static int PSolvebd(integer Neq, N-Vector cc, N-Vector cscale, 
N-Vector fval, N-Vector fscale, N-Vector vv, N-Vector ftem, 
SysFn func, real wound, 
long int *nfePtr, void *P-data) 

c 
real **Pxy, *vxy; 
integer *pivot, jx, jy; 
UserData data; 

data = (UserData)P-data; 

for( jx=O; jx<MXSUB; jx++) f 
for(jy=O; jy<MYSUB; jy++)C 

/% for a given jx,jy block, do the inversion process */ 
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/* vvxy is the address of the portion of the vector to which the 
inversion process is applied, and Pxy is the first address for the 
jx,jy block of P */ 

pivot=(data->pivot) Cjx] Cjyl; 
Pxy = (data->P)Cjx] [jy]; 
vxy = IJ-Vptr(vv,jx,jy); 
gesl(Pxy, NUM-SPECIES, pivot, vxy); 

) /* end of jy loop +/ 

> /* end of jx loop */ 

return(O) ; 

ib /* end of PSolvebd */ 

static void WebRate(real xx, real yy, real *cxy, real eratesxy, void *f-data) 
c 

integer i; 
integer j; 
real fat; 
UserData data; 

data = (UserData)f-data; 

for(i=O;i<NUM-SPECIES;i++) 
ratesxy[i]= DotProd0TUM-SPECIES, cxy, acoef[i]); 

/* above, ratesxy is used as an intermediate array. see below */ 

fat = ONE + ALPHA * XX * yy; 

for(i=O; i<NUM-SPECIES; i++){ ratesxy[i] = cxy[i] * 
( bcoefCi1 * fat + ratesxyCi1 ); 
) 

1 /* end WebRate */ 

static real DotProd(integer size, real *xl, real *x2) 
-c 

integer i; 
real *xxi, *xx2, temp = ZERO; 
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Sample output for the sample case KINXP 

predator-prey test problem -- KINSol 

Mesh dimensions 20 X 20 
Total system size 2400 
Preconditioning uses interaction-only block-diagonal matrix 
tolerance parameters: fnormtol = la-07 scsteptol = la-13 

Initial profile of concentration 

At bottom left:: 

1.16347 1.16347 1.16347 34903 1 34903 1 34903.1 

At top right: 

1.16347 1 16347 1.16347 34903 1 34903.1 34903.1 

Computed equilibrium species concentrations: 

At bottom left:: 

1.165 1.165 1.165 34949 34949 34949 

At top right: 

1.25552 1.25552 1.25552 37663.2 37663.2 37663.2 

Final Statistics.. 

nni = 68 nli = 1339 
nfe = 1476 npe = 6 
"Ps = 1407 ncf1 = 16 

56 



T
echnical Inform

ation D
epartm

ent  • Law
rence Liverm

ore N
ational Laboratory

U
niversity of C

alifornia • Liverm
ore, C

alifornia  94551


