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This dissertation presents an analysis of hadronic jet production from proton-
antiproton collisions at two center—of—mass energies. Measurements were per-
formed in the central region (|n| < 0.5) of the DO detector at Fermi National
Accelerator Laboratory (Batavia, IL). Results are compared to next—to-leading—
order QCD predictions generated with JETRAD and EKS Monte Carlo. Several
techniques reduce the uncertainty in the ratio of cross sections to as low as 5%.
The observed normalization difference results in a low probability that the data

and predictions describe the same distribution.
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Preface

“Listen, buddy, if I could tell you in a minute what [
did, it wouldn’t be worth the Nobel Prizel”

— Richard Feynman, to a journalist

High Energy Physics (HEP) is the search for, and description of, fundamental particles.
Protons and neutrons in the nuclei of atoms are not fundamental because they are composed
of smaller elements: quarks and gluons. This dissertation represents one of many possible
measurements of these proton constituents.

Analyses in experimental HEP may be split into two distinct enterprises: searches for
new phenomena and tests of theories that describe previously observed phenomena. This
analysis serves both purposes to a degree; it is a search for yet smaller components that may
comprise quarks, and it provides a benchmark for theories that describe the interactions
between quarks and gluons.

This dissertation is arranged in eight chapters, which could be grouped into three general
categories:

e Background material: introduction to the theory, the experiment, and data collection

e Primary analysis: the jet energy scale and details of the cross section analysis, includ-
ing all corrections

e Error analysis: calculation and cancellation of error, final results, and a quantitative
comparison to theoretical predictions.

Chapter 1 briefly introduces the field of high energy particle physics and the nature of

the measurement described in later chapters. Although many of the details of the theoret-

ical predictions for the inclusive jet cross section are too lengthy to present in this work,

XV



xvi

some of the tools used in the calculation are presented to clarify the different associated un-
certainties and to describe the open theoretical questions. Chapter 2 describes the research
laboratory and detector where the measurement was performed. It attempts to present,
with a reasonable degree of detail, the underlying principles and hardware specifications of
the Fermilab accelerator complex and the DO detector. The actual data collection process
is briefly described in Chapter 3, and illustrated with several event displays. (While im-
portant to a self-contained document, these first three chapters are quite standard in HEP
theses; readers already familiar with HEP and the D@ experiment may wish to skip them

entirely.)

In addition to providing the largest correction to the data set, the jet energy scale
correction produces the largest single source of uncertainty in the analysis. Chapter 4
is devoted to a detailed summary of this crucial determination. Chapter 5 describes the
calculation of the inclusive jet cross section, including luminosity and efficiencies. Chapter
6 describes the “unsmearing” process, by which the cross section distribution is corrected

for the effect of stochastic fluctuations in jet energy.

Chapter 7 calculates the uncertainty in the jet cross section ratio that results from all
of the effects and corrections of the prior chapters. Because the final result of the analysis
is a ratio of cross sections, uncertainties common to both the /s = 630 GeV and 1800 GeV
data sets will cancel to some degree. The cancellation of errors in the ratio is the true
strength of this analysis. Comparison of data to next-to-leading-order QCD predictions is
reserved for Chapter 8. The data sample in this dissertation is the largest sample collected
to date, spans a wider range of center—of-mass energy than any prior measurement, and

was collected with a single detector to minimize experimental uncertainties.

The appendices provide several parenthetical discussions. Definitions of coordinate sys-
tems, units, and variables that are useful in high energy physics are placed in Appendix A
for easy reference. The heavy emphasis on error analysis in this dissertation required sev-
eral discussions of statistical methods. Again for convenience in reference, these discussions

have been collected in Appendix B. Computation of the W boson cross section provides a



xvii

cross-check on the total integrated luminosity; a brief description of the results is available
in Appendix C.

Each chapter includes one or more summary sections. Readers unfamiliar with this
analysis may wish to read through the chapter summaries before reading the full document.
Readers unfamiliar with HEP will definitely want to look over Appendix A immediately, if

only to discover the meaning of “\/s.”
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Chapter 1

The Structure of Matter

“Why sometimes I've believed as many as six
impossible things before breakfast.”
— The Red Queen in Through the
Looking-Glass, by Lewis Carroll

As early as 1200 B.C., Indian philosophers formulated the concept of the granular structure
of matter. The idea was further developed in the fifth century B.C. by Leucippus and his
student Democritus, who proposed that matter consisted of indestructible atoms. Such
speculations remained purely philosophical in nature until 1811, when the Italian physicist
Avogadro developed a theory of atoms and molecules that would later form the basis of
chemistry.

Physicists believed atoms to be indivisible until 1897, when J. J. Thomson discovered
the electron. While measuring the velocity of cathode rays by directing them through
crossed electric and magnetic fields, he concluded the “rays” were in fact composed of
charged particles with very small mass. Thomson’s ability to liberate light—weight charged
particles from initially neutral atoms implied a heavy and positively charged remainder,
later revealed (by Rutherford) to be a tiny massive nucleus.*

Physicists believed atoms were indivisible until 1901, when Becquerel discovered the

source of natural radioactivity. His study of uranium indicated that the 3 rays he had

* Disappointingly, the most widespread description of the atom continues to be the “planetary” atomic
model that was developed in 1914.



observed were electrons, and, from energy considerations, they must originate from deep
within the nucleus. By 1932, Fermi had associated 3 radiation with neutron decay, which
produces a proton, an electron, and a new particle, the neutrino. Also, Dirac had predicted
the existence of antiparticles and received confirmation from cosmic ray experiments. Only
five years passed before the discovery of the muon; by 1956, the particle beastiary would
grow to include three pions, the A, the kaons, the X, and the p. The known particles were
classified into three groups, leptons (light—weight), mesons (middle—weight), and baryons
(heavy—weight), but a more cohesive understanding had to wait until 1961 with Gell-Mann’s

geometrical model, the Fightfold Way, and the group theory model that followed.

In one of several attempts to organize the ever—expanding family of “elementary” par-
ticles, in 1964, Gell-Mann and Zweig independently proposed [1] that all hadrons (i.e. the
mesons and baryons) were composed of several particles. These constituents, quarks, possess
fractional charge and seemed to violate Pauli’s exclusion principle. Initially, three quark
varieties, called flavors, were proposed to fully explain the decay mechanisms of the known
particles. A new quantum number, whimsically called color, was created to accommodate

the exclusion principle inconsistency.

Since the proposal of quarks, many experiments have investigated the structure of the
proton and other hadrons. To date, not one experiment has disproven a prediction of the
quark model. Despite some discomfort with the failure to isolate single quarks, this theory

has remained strong enough to be dubbed the Standard Model.

The remainder of this chapter describes the fundamental particles and forces! of the
Standard Model (SM), and introduces Feynman diagrams as a descriptive tool. The theory
of the strong subatomic forces will be described at some length, culminating in the concept
of a hadronic “jet.” Finally, a description of scaling behavior shall be presented to motivate

the physics analysis in later chapters.

T Although numerous extensions to the Standard Model have been proposed, their lack of confirmation
places them beyond the scope of this chapter.



Force Carrier Rest Mass | Spin ‘ Charge | Range | Strength
Strong gluon 0 1 0 1071 cm 1
FElectromagnetic photon 0 1 0 o0 1072
Weak W= 80.2 GeV 1 +1 107% cm | 10713
7 91.2 GeV 0
Gravitational | graviton (7) 0 2 (7) 0 00 10~42

Table 1.1: Parameters of the four forces of nature. Strengths are relative.

1.1 The Standard Model and Feynman Diagrams

At the most fundamental level, four distinct forces exist in nature. In descending order
of strength, these forces are: the strong (or nuclear) force, the electromagnetic force, the
weak force, and the gravitational force. Table 1.1 lists [2] the relative strengths of the forces
and the mediators of each. Despite its overwhelming role in the macroscopic world, the

gravitational force is negligible in the microcosm of particle physics.

Table 1.2 lists the six fundamental quarks and leptons of the Standard Model (SM here-
after). While the previously described force carriers are bosonic (integer spin), the quarks
and leptons are all fermions (half-integer spin). All matter is composed of a combination of
these fundamental particles, or their antimatter twins. By definition, any particle composed
of three quarks is a baryon, and any particle composed of a quark and an antiquark is a
meson. For instance, a bound state of two up quarks and a down quark (uud) forms a
proton. Similarly, the neutron is composed of two down quarks and an up (udd). Table 1.3
lists the composition and masses for these two hadrons and also for the lightest and most
common mesons, the pions. By convention, an antiquark is denoted with a bar over the
symbol. In contrast, antimatter leptons are denoted by specification of their charge; the

electron, denoted e~, complements the positron, e™.

The charged leptons interact via electromagnetic and weak forces. Neutrinos, having no
charge, can interact only through the weak force. Quarks primarily interact via the strong
force, though they also undergo weak and electromagnetic interactions. These interactions

are limited to particular topologies, easily described with Feynman diagrams.



Fundamental Particle | Symbol | Charge | Mass (MeV)
electron e~ -1 0.511
electron neutrino Ve 0 <5x 1076
muon o -1 106.6
Leptons muon neutrino vy 0 <0.17
tau T -1 1784
tau neutrino Ur 0 <30
down d —% 7.5
up u % 4.2
strange S —% 150
Quarks charm c % 1300
bottom b —% 4300
top t % 172000

Table 1.2: The six fundamental leptons and the six fundamental quarks. Antiparticles exist
for each table entry, differing only in the sign of their charge. Note: the d, u, and s quark
masses are highly speculative.

Particle | Composition | Mass (MeV) ‘

proton uud 938.28
neutron udd 929.57
at ud 139.57
T ud 139.57
70 (uti-dd)/v/2 134.96

Table 1.3: The most common hadronic particles.
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Figure 1.1: (a) The two primitive QED vertices, electron-photon scattering and e*e™ anni-
hilation. As indicated by the time arrow, initial conditions lie at the left edge of the diagrams
by convention. (b) Generally, solid arrow-lines can indicate either quarks or leptons while
the mediators of the three forces each have their own symbols.

To illustrate the use of Feynman diagrams, consider the basic quantum electrodynamics
(QED) vertex, where two fermion lines meet a photon line, and assume the most common
QED situation: let the fermion lines represent electrons or positrons. The rotational ori-
entation of the vertex indicates the two possible conditions: an electron interacts with a

virtual photon, or an electron and positron annihilate to form a photon.

Consider Figure 1.1(a), illustrating the two primitive vertices. Time flows from left to
right by convention, so the initial condition of the first diagram indicates a single electron.
The two lines in the diagram on the right show two fermions, but the top fermion arrow
points in the direction opposite the time flow. This reversed arrow indicates an antimatter
particle moving forward in time, not a matter particle moving backward through time. The

second diagram thus depicts an electron and a positron annihilating to form a photon. The



Figure 1.2: The lowest-order diagram for Moller scattering, and several higher-order con-
tributions.

photon can only mediate interactions between fermions with non—zero charge; therefore,
the fermion lines in the primitive QED vertices could also represent quarks, muons, or taus,
but not neutrinos. Use of the additional symbols in Figure 1.1(b) extends the formalism
from electromagnetism to include the strong and weak forces. Although some vertex com-
binations are forbidden, the solid arrow-lines can indicate any of the fermions listed in
Table 1.2 (or their antimatter counterparts). More than cartoon sketches, these diagrams
are real calculational tools that compactly represent four—dimensional quantum mechanics
scattering equations. By diagramming many variations of a particular process, one is really
computing a type of Taylor expansion of the scattering amplitude (the “matrix element”)
and the corresponding density of final states (the “phase space element”). The simplest
diagrams represent the leading—order terms and more complicated diagrams depict second—

and higher—order terms.

In the Feynman formalism, any real interaction must include at least two primitive



vertices to conserve energy and momentum. As an example, Figure 1.2 displays several
diagrams for Moller (ete™ — eTe™) scattering. In the simplest diagram (upper left), two
electrons interact elastically by exchanging a photon. Only lines that propagate to the ex-
terior of the diagram are observable; the photon describing the mechanism of the exchange,
completely contained within the diagram, cannot be observed. Non—observable particles in
an interaction are termed virtual. The other diagrams include more than one virtual photon
and the final case includes a virtual fermion pair. Not limited to electrons and positrons,
the fermion lines in the figure could represent other charged leptons or quarks.

In a full calculation of Moller scattering, all diagrams contribute, not only the ones in
the figure, but the infinity of diagrams that were not included. Fortunately, each additional
vertex carries a factor of a with it, where the coupling constant o = % Thus, in QED, the
more complicated a diagram becomes, the less it contributes to the final result. For most

applications, calculations achieve suitable accuracy using only the simplest few diagrams.

1.2 Characteristics of Strong Interactions

In direct analogy to the QED formalism, strong interactions between quarks are meditated
by gluons. Additional vertices are available in strong interactions because, unlike QED, the
strong force mediator is capable of coupling to itself (Figure 1.3) with important ramifica-
tions.

For strong interactions, a new quantum number, similar to electric charge, must be in-
troduced. This “strong charge,” originally used only as a bookkeeping device [2] to satisfy
the Pauli exclusion principle, later became an integral part of the theory with great predic-
tive power. Because there exist three orthogonal strong charges, the label color was applied
to them; the three colors for quarks are red, green, and blue, along with three corresponding
“anticolors” to indicate a negative strong charge on antiquarks.

The study of strong interactions, called quantum chromodynamics (QCD), initially con-
sisted of the search for bare quarks emerging from particle collisions. No quarks have ever

been observed, leading theorists to postulate [3] the principle of confinement. This prin-



Figure 1.3: The primitive QCD vertices. For these diagrams, the fermion lines represent
quarks only. Unlike the photon, the gluon is capable of interacting with other gluons.

ciple states that the net color charge of all macroscopically observable particles must be
zero. Following the (figurative) color formulation, a proton must contain a red quark, a
blue quark, and a green quark, resulting in a net color r+ b+ g = white. Of the two quarks
within a pion, one must carry the anticolor of the other, for instance, r + ¥ = white. Soli-
tary quarks cannot be observed because they each carry a single quantum of color. In the
QCD formalism, the confinement principle is explained by assigning color to gluons. When
the force mediators possess a “strong charge,” they can interact with themselves, making
QCD a non—Abelian formalism. The self-interactions of the gluons tend to anti—screen the
quark’s color charge and the strong force between two quarks increases with distance, as
opposed to QED, where photons posses no electric charge and the force between electrons

decreases with distance.

The confinement principle may be expressed mathematically in the value of the strong

coupling parameter, as, by the variance of its strength with distance (or, equivalently,



energy). For historical reasons, oy is called a running coupling constant rather than a
coupling variable or coupling parameter. At very short distances or very high energies,
the value of ay remains small, allowing quarks within hadrons to “rattle around” nearly
freely. As the distance between quarks becomes larger, the quickly—increasing coupling
strength causes the potential energy between them to grow very rapidly, trapping quarks
(and gluons) within the confines of the particle radius (N 10~15 m) The running coupling
constant takes the form:

o (1?)

Qs Q2 =
@) 1+ 58 (11c - 2ny) log (% )

; (1.1)

where Q is the magnitude of the momentum transferred in the interaction, n; indicates
the number of quark varieties (6 in the SM), and ¢ is the number of quark colors (3 in
the SM). The expression has been renormalized in terms of the coupling constant at some
reference energy p, called the renormalization scale. Without renormalization, calculation
of Feynman diagrams that contain loops result in divergent integrals. For the price of
introducing a new arbitrary parameter pu, these divergent integrals either become finite or
vanish entirely. Although the renormalization scale can differ for each divergent diagram,
in perturbative QCD calculations, the minimal subtraction scheme* requires a constant p
for all diagrams, and usually, p o< Q. Alternately, the strong coupling constant could be

re—expressed in terms of a scale factor A:

127
R Q2 = > (1.2)
(@) (11c — 2ny)log (%)

where

—12
A? = 2 exp { T } .

(11c — 2ny) ag (p2) (13)

Figure 1.4 depicts the inverse log behavior of the strong coupling constant. The most
recent analysis of all HEP results yields an optimum value at A = 0.3 GeV [4] (lower curve

in the figure). For Q? values above 15 GeV?, ag takes a value of ~ 0.1, and perturbative

* Specifically, QCD predictions employ a “modified minimum subtraction scheme,” denoted MS [4].
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The QCD Coupling Strength

For values of A between 0.3 and 0.5 GeV
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Figure 1.4: The “running” of ag as a function of Q2.

expansions in terms of ag become valid. Essentially, the usefulness of perturbative expan-
sions defines the high—energy regime of physics. At these energies, the stability and low
value of the coupling constant results in asymptotic freedom for quarks: the coupling to
the surrounding quarks and gluons may be neglected. For sufficiently low Q?2, perturbative
expansions no longer apply and quarks no longer exhibit free behavior; instead, the proton

acts like a single structureless particle.

The triumph of QCD lies in its ability to explain parton confinement and asymptotic
freedom simultaneously, as explicitly expressed in the running coupling constant. The diffi-
culties in QCD calculations result from their non-Abelian nature; the theoretical framework
is only valid where the coupling is perturbatively small. As should be evident from Fig-
ure 1.4, different choices of scale (either p or A) result in different values of the coupling
constant and change the threshold for free behavior. Additionally, different choices of renor-
malization scale change theoretical predictions of cross sections, as shall be illustrated in a

later section.
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1.3 Jet Production

In a collision with sufficient momentum transfer, quarks can be ejected from the proton
and antiproton. Because gluons carry color charge, they are also “objects” that can collide
and be ejected from a hadron. Sometimes quarks and gluons are collectively called partons,
to generically indicate a constituent of a hadron. As the distance between an ejected
parton and the parent hadron increases, the strong coupling potential grows large enough to
spontaneously generate dozens of new gluons and quark—antiquark pairs that subsequently
recombine into stable, colorless groupings. This process of hadronization ultimately results
in a “jet” of relatively stable particles with a total momentum vector nearly equal to the
initial parton momentum. In the limit of complete freedom of quarks and gluons within
the proton, particle masses much smaller than their momenta, and perfect collimation, the
jet vector is exactly equal to that of the final state parton. Figure 1.5 illustrates a common
leading—order (O(ag)) dijet mechanism. One quark from the proton and one quark from
the antiproton annihilate to form a virtual gluon. The gluon subsequently produces a

quark—antiquark pair which then hadronizes.

The expression for the momentum of each initial state quark or gluon in the primary
interaction is separated into two factors: the parton distribution function (PDF), and the
hard—scattering coefficient. The boundary between the two factors divides short—distance
effects from long-distance effects and is set with a scale parameter py. The factorization
scale, pug, is not to be confused with the renormalization scale, p; although they may con-
veniently be set to the same value, the two scales do not serve the same purpose. The
renormalization scale determines how divergent integrals are replaced with finite expres-
sions, the factorization scale isolates the non-perturbative cross section contributions (the

PDF) from the calculable perturbative portion (the hard-scattering coefficient).

A PDF describes the probability to observe a specific parton of given momentum. Each
PDF is specific to an initial hadron (e.g., the PDF for a proton differs from that of a pion);

the PDF contains all information that cannot be calculated perturbatively and must be
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Figure 1.5: An augmented Feynman diagram for a leading-order proton-anitproton inter-
action resulting in two jets.
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entirely determined by experiment. The PDF is independent of the specific interaction and
its momentum transfer, but does depend on choice of renormalization scale p, coupling
strength as(p), and the order of the theoretical calculation (leading—order, O(a3), etc.).
The PDF’s are best—fits to the results of preceding experiments; variations result from
the exclusion of conflicting results and from different extrapolations to momentum regions

where data does not exist.

In contrast, the hard-scattering coefficients, represented by Feynman diagrams, are
perturbatively calculable. The coefficients do not vary with respect to the identity of the
initial hadron, whether it be a proton, neutron, or pion. In essence, these coefficients are
the elastic scattering cross section for a given set of initial partons. The coefficients are

functions of momentum transfer Q2, renormalization scale, and coupling strength.

The details of hadronization are sometimes modelled with a fragmentation function and
associated coefficients, denoted f in Figure 1.5. Fragmentation functions have not been
studied in great detail, but operate contralaterally to PDF’s: they use empirical data to
parameterize the incalculable portions of hadronization. Because no distinction is made
between jets of differing compositions, fragmentation functions have no effect on the QCD

predictions of this dissertation.

Quarks and gluons interact non-perturbatively with one another within hadrons, so the
initial momentum of the partons in a hard-scattering interaction will vary according to
the PDF. Figure 1.6 depicts the momentum fractions carried by partons within the proton,

where

T = Pparton (14)
Pproton

This collection of parton distribution functions, one of several sets prepared by the CTEQ

group,* reflects the expected number of quarks at a given x for each flavor. Because the

* PDF’s are primarily prepared from global analyses by one of three collaborations: The Coordinated
Theoretical-Experimental Project on QCD (CTEQ), Martin, Roberts, and Stirling (MRS), or Gluck, Reya,
and Vogt (GRV). More information may be found in [5], [6], and [7].
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Figure 1.6: True distributions for the up quark (valence only), down quark (valence only),
and strange quark for Q% = 30 GeV?. Dashed line indicates the gluon distribution.

Figure 1.7: Parton distribution functions in standard form, = f(x). While less intuitive, this
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proton is composed of two up quarks and a down quark, by definition,

1.
/uv(ac) de =2 (1.5)
0

and
1

/ dy(z)de = 1. (1.6)
0
Additionally, there remains a non—zero possibility of virtual quark pair formation, as previ-
ously illustrated in the lower right diagram of Figure 1.2. These sea quarks may be any of
the six flavors, but up, down, and strange are most common due to their small masses. (The
requisite two up quarks and down quark are differentiated from the virtual types with the

term wvalence quark, hence the subscript v in Equations 1.5 and 1.6.) The light sea quarks

and antiquarks have nearly identical distributions, thus,
ss(7) = ug(z) = dg(2) = 55(2) ~ Ts(z) = ds(2). (1.7)

By direct integration of ss(x), the expected number of sea quarks in a proton is approxi-
mately 6 x 0.8 + h, where h, the contribution from heavy flavors (charm, bottom, and top),
is very small. Also shown in Figure 1.6, the gluon distribution dominates the quark distri-
butions at small x. This nearly divergent distribution indicates that a very large number
of gluons have vanishingly small momentum. The distribution of “soft gluons” is difficult
to measure and therefore poorly known at this time. The rarity of high-momentum gluons
(“hard gluons”) results in a large uncertainty in the high—z region of the gluon distribution
as well. For the parameterization in Figure 1.6, an average of 15 gluons exist in the proton
at any given moment. In summary, the proton consists of three valence quarks, a sea of
quark—antiquark pairs that “wink” into and out of existence, and a collection of gluons that
hold all the quarks together.

Because the many distributions are similar, authors normally present graphs of z - f(x)
versus x (Figure 1.7), a formulation that highlights the differences between the functional
forms. Only in this format is the term parton distribution function properly applied. De-

spite the confusion caused by the convention, the form x - f(x) is more useful in relating
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experimental results to theoretical predictions because the area under the curves represents

the total momentum fraction carried by a particular set of partons.

Given empirical determination of a PDF at one momentum scale, QCD determines the
evolution of the PDF to any other momentum scale with the Dokshitzer—Gribov—Lipatov—
Altarelli-Parisi (DGLAP) evolution equations.* In essence, the DGLAP equations quantify
the probability that a parton of given momentum will “split” by radiating one or more
partons. Naively, the number of partons at a given x would be the same without regard for
the momentum of the proton. In fact, as its momentum increases, a parton is more likely
to radiate a gluon; thus, the high-z region of the PDF becomes more depleted as proton
momentum increases. A second way to simplify the DGLAP result is to state that higher—
energy collisions “resolve” more substructure within the proton; a quark with z = 0.6
could resolve into an x = 0.55 quark and an x = 0.05 gluon when the absolute momentum

increases.

After a hard interaction, the initial hadrons have lost the color charge associated with the
interacting partons; therefore, the parent hadrons are no longer stable, colorless objects. As
a result, the remainders of the initial proton and antiproton undergo hadronization also. The
additional hadronic products resulting from the “spectator partons” are collectively called
the underlying event. To study jets, the additional energy deposits from the underlying

event must be removed, as shall be described in Chapter 4.

Figure 1.8 (a) depicts the two leading—order quark—quark dijet processes and a gluon—
quark dijet process. Part (b) shows two examples of next—to—leading—order (NLO) dijet
processes. Finally, part (c) describes two NLO mechanisms that result in a three—jet final
state (gluon bremsstrahlung diagrams). Many additional next—to—leading—order diagrams
exist, as well as analogous QED dijet mechanisms and weak dijet mechanisms where many
of the virtual gluons may be replaced with photons or Z bosons. At the time of this writing,
QCD predictions for inclusive jet production stop at NLO: calculations at the next level of

precision, O(a?%), have not yet been completed.

* Formerly known as the Altarelli-Parisi evolution equations.
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Figure 1.8: Selected Feynman diagrams for: (a) leading-order dijet events, (b) next-to-
leading-order dijet events, (c) three-jet events. By convention, underlying event and final-
state hadronization are omitted.
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Figure 1.9: Difference between the 0.7 jet cone definition (D@, present) and the 1.3 definition
(used by the UA2 Collaboration, 1991).

1.4 The Inclusive Jet Cross Section

Although any hadronic shower constitutes a jet, several non—equivalent definitions of jet
energy exist. When QCD predictions included only leading order contributions, jets were
defined [12] as the energy deposited in an 7 — ¢ cone of dimensionless radius 1.3. (Here,
¢ is an azimuthal angle and n is a measure of the colatitude; ¢f Appendix A for details
on DO coordinates and definitions.) The jet cone radius of 1.3 tends to reduce a many—jet
topology to a dijet topology, which is subject to a leading—order description. With NLO
predictions available, the cone size definition for inclusive measurements can be narrowed to
R = 0.7 (or less) to allow valid comparisons to both two— and three—jet events. Figure 1.9
illustrates the difference in azimuth subtended by the two jet cone definitions. The 1.3
radius cone encompasses nearly half the arc of a circle while the 0.7 cone can accommodate
the presence of many additional jets. In addition to changes in jet multiplicity, the 0.7
radius cone also results in increased precision of measurement (increased energy resolution)

and slightly lower energy for each jet.
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At DO, jet cone centroids are defined by the summed four-momenta of its cells. When
any two jet cones overlap, ambiguity is removed with a merging and splitting algorithm
(M/S hereafter), summarized in Table 1.4. Any study involving more than one jet in the
final state requires the use of M/S in the data analysis. For the theoretical predictions,
the energy—weighted center of the final-state partons defines the jet center (Snowmass
definition), and final state partons within the same 7—¢ cone form a single jet. To reproduce
theoretically the behavior of the M/S algorithm in the data the size of the theoretical cone
must be reduced. A new parameter, Rgep, defines the cone-size reduction necessary for
good matching, where the maximum allowed parton separation is then Ripeory = Rsep - R.
The best empirically determined value [8] for Rgep is 1.3, which is valid for all cone sizes.

The inclusive jet cross section may be expressed in several ways. While theoretical

calculations are normally expressed in terms of the invariant cross section

3o
E-d—pg, (1.8)

the measurable variables in collider physics are the transverse energy and the pseudorapidity

(cf Appendix A for definitions). In terms of these variables, the cross section is expressed

as )
d
_f7 (1.9)
dpr dn
where Equations 1.8 and 1.9 are related by
d 1 d?
? 7 (1.10)

dpF " 2mpr - dpr dn’
Figure 1.10 depicts the spectrum of the jet cross section, as defined by Equation 1.9. For
most measurements, the cross section is integrated over some range of pseudorapidity, in
this case, || < 0.5 (i.e. the central region). The cross section, kinematically limited to zero

at 315 GeV, decreases approximately exponentially over many orders of magnitude.

If the Overlap Region Contains: | Then:

> 50% of the smaller jet’s Ep Merge jets into one jet

< 50% of the smaller jet’s Ep Split jets into two jets

Table 1.4: Criteria of the merging and splitting algorithm.
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Inclusive Jet Cross Section
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Figure 1.10: QCD prediction for the spectrum of the inclusive jet cross section as a func-
tion of transverse jet energy. Discontinuities at high Ep values are caused by statistical
fluctuations, not by a feature of the theory.
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The inclusive jet cross section measures the probability of observing at least one hadronic
jet in a hard pp collision. The term inclusive indicates that the presence or absence of addi-
tional non-jet objects in an event does not concern this analysis. Moreover, an event which
contains three jets will appear in the cross section three times. The inclusive measurement
is sometimes denoted o(pp — Jet + x). Because it is measured many times over different
discreet intervals of pr, the measurement could also be described as a differential cross

section in the limit the bin widths approach zero.

The theoretical NLO prediction is generated event—by—event, much like the data the D@
experiment collects. For each generated event, the strength of the coupling constant a; has
been renormalized by p = 0.5 times the Et of the most energetic jet, denoted E***. (Note
that E%* is not the only possible measure of the momentum transfer Q and is thus not the
only possible choice for p.) The selected PDF, CTEQ3M, has demonstrated its ability [9]
to reproduce experimental results from D@, CDF, and the many fixed—target experiments
at Fermilab. The Monte Carlo event generator, a program [10] called JETRAD, can produce
fluctuations in the spectrum due to low statistics, especially at extreme values of jet Er,
as visible in Figure 1.10. Due to detector limitations and statistical limits in the data, the
cross section measurement performed at the D@ Experiment will have a lower domain limit
near 25 GeV and an upper limit near 160 GeV; thus, no increase in the statistical power of

the prediction will be required.

As mentioned in the previous section, different choices of theoretical parameters will
result in different spectra for the inclusive cross section. Defining the spectrum in Figure 1.10
as the standard, consider the variations in Figure 1.11, which depicts cross section differences
in the ratio. In part (a), two different PDF’s result in a shape change in the cross section.
Because the fit of PDF’s to experimental data includes a subjective component, different
fitting groups find different “best” fits. Alternately, different factorization scale choices
(b) could shift the cross section in the opposite direction. Parts (c¢) and (d) illustrate the
shifts that result from new selections of renormalization scale and effective cone size. The

uncertainty in the cross section from any given parameter can become as large as 30%.
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For the special case when the renormalization and factorization scales are set equal to
one another, the standard choice of = p; = 0.5 - E7** appears to be a saddle point, all
other choices [11] (both larger and smaller) result in smaller values for the cross section.
This effect, referred to as the principle of minimum sensitivity, provides the only reason to
prefer 0.5 as a scale over the other possibilities.

The large variance between the theoretical predictions indicates a potential for current
experiments to constrain the theoretical choices mentioned above. While direct cross section
measurements will accomplish this goal to some degree, a more powerful measurement can

be performed by comparing the jet Er spectra at two different collision energies.

1.5 The Ratio of Scaled Invariant Cross Sections

By expressing the cross section in terms of dimensionless variables, the inclusive jet spectrum
is, to first—order, independent of center—of-mass energy. A simple sketch of the scaled

invariant cross section (Figure 1.13) reveals the advantages of the new formulation. While
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it is possible to compare E-% versus Er for both energies, the data will differ greatly in both
magnitude and range in E1. In contrast, the cross sections as functions of E%E"Z%g versus
T = % are somewhat linearized and lie very close to one another; the dimensionless*
cross section is said to “scale” with center—of—mass energy. To yield an expression in terms
of collider variables, the scaled invariant cross section must be transformed according to
Equation 1.10.

Deviations from scaling behavior result from higher—order QCD effects, particularly
gluon emission processes, as described by the DGLAP evolution equations. Measurement
of the ratio of dimensionless invariant cross sections thus provides a sensitive and direct test
of NLO QCD without masking the high—order effects with the leading—order contribution.

As an additional benefit, much uncertainty in the cross section predictions cancels in the

ratio; most notably, the ratio is nearly insensitive to choice of PDF.

1.6 Summary

This chapter introduced the Standard Model of particle physics and illustrated the funda-
mental interactions with Feynman diagrams, a primary tool of high energy physics. Basic
terminology and specific features of the theory of strong interactions were described, in-
cluding the concepts of renormalization and factorization, the role of parton distributions,
and the cone definition of jets.

The jet cross section cannot be determined analytically: the theoretical calculations are
next—to—leading—order approximations. Even perturbative calculations require a renormal-
ization scale (p) to handle divergent integrals; the best value for the constant cannot be
determined from the theory alone, resulting in large theoretical uncertainties in the pertur-
bative QCD cross section calculation. Parton distribution functions, determined by prior
experiments, describe the incalculable initial states of the interacting partons. Incomplete
or contradictory data in PDF global analyses result in additional uncertainties in the pre-

diction. Freedom to select a factorization scale, which determines precise momentum where

* The cross section is dimensionless in terms of natural units (cf Appendix A).
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the PDF ends and the perturbative QCD calculations begin, adds additional uncertainty
to the calculation. Comparisons of NLO cross section predictions, with different choices
of renormalization scale and PDF, reveal the uncertainties inherent in the calculation (ap-
proximately 30%).

The high energy physics expression for the cross section differs slightly from the non—
relativistic quantum mechanics definition to better accommodate the physics of a collider
detector. The scaled invariant cross section varies slightly with center—of-mass energy as de-
scribed by the DGLAP evolution equations. The ratio of scaled invariant cross sections, the
measurement described in this dissertation, was presented as a powerful test of perturbative
QCD.

The following two chapters describe the laboratory, detector, and control systems used
to collect the jet data. The subsequent four chapters relate the analysis of the jet data,
including jet corrections, distribution corrections, and error analysis. The final chapter will

present the results of this work.



Chapter 2

The Experiment

To best probe proton substructure and search for new particles, collisions with high center—
of-mass energy (/s) are required. Consider the antiproton creation process p +p — 3p + p.
For a proton incident on a fixed target, much of the initial energy must remain in the form
of momentum relative to the lab frame. Thus, the total initial beam energy required [2] for
the process is

EFT =7 mpc?. (2.1)

Now consider two protons colliding with equal but opposite momenta. The threshold energy
condition for the antiproton creation process occurs when all products are produced at rest.

For this case, the initial energy for each proton is
EY =2 m,c?, (2.2)

a significant advantage over the fixed target result. Although the specific coefficients of
Equations 2.1 and 2.2 will vary for different processes, the threshold energy advantage of
the collider will always remain. Searches for new heavy particles require high center—of—mass
energies that can only be provided by a collider.

The first hadron accelerator complex, the Intersecting Storage Rings at CERN, collided
protons at /s = 63 GeV, later switching to pp collisions. The full center—of-mass energy
was insufficient [3] to produce real W bosons (M =~ 80 GeV) at the ISR, although jets were

eventually detected. The later CERN Super Proton Synchrotron improved matters in 1981,

27
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running first at /s = 540 GeV, and later increasing to 630 GeV. The UA2 experiment*
performed comprehensive measurements of the inclusive jet cross section at both CM ener-
gies and examined the ratio between them. This ratio, an early test of jet scaling, motivated
the D@ analysis presented in this thesis.

The DO experiment’ is located at Fermi National Accelerator Laboratory (FNAL, or
Fermilab), near Batavia, Illinois. At Fermilab, protons and antiprotons counter-rotate in
a superconducting collider ring 1 km in radius. As will be detailed in the first half of this
chapter, the 1800 GeV center—of-mass collision energy of the Fermilab Tevatron is attained
via a number of discrete steps. The following sections summarize the methods used to
generate antiprotons as well as the techniques used to accelerate protons and antiprotons to
900 GeV and collide them at the center of the two collider detectors resident at Fermilab.
The second half of this chapter describes the components of the D@ detector: the central
tracking region, the calorimeter, the muon spectrometer, and the Level () hodoscopes. Each
detector region consists of several subsystems designed to make specialized measurements.

Jet physics analyses focus on calorimetery; other detector subsystems play minor roles.

2.1 The Fermilab Accelerator Complex

“The road to truth has many turns.”

The Fermilab accelerator complex consists of several distinct devices, each with its own
effective energy regime (Figure 2.1). While the Tevatron is capable of accelerating particles
from 150 GeV to 900 GeV, it is not designed to manage particle energies below 150 GeV.
Starting with hydrogen gas, five different devices are needed to prepare protons for injection
into the Tevatron. The first two devices, the plasma source and the Cockcroft—Walton
generator, share the same housing and are often collectively called the preaccelerator system.
The remaining systems, the Linac, the Booster, and the Main Ring, will successively increase
particle momenta while narrowing momentum variance.

Successful Tevatron operation results in a collision between a proton and an antiproton

* The UA2 experiment was named for its location on the SPS collider ring, “Underground Area 2”...
t ...and the D@ Experiment was named in the same tradition, for its location on the Tevatron collider ring.
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Figure 2.1: Schematic overview of the Fermilab accelerator complex. The Main Ring and
the Tevatron have the same radius but have been drawn concentrically to reveal injection
system details.
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Figure 2.2: The magnetron plasma source. The magnetic field is perpendicular to the plane
of the image.

with a center—of-mass energy of 1800 GeV. The beams consist of discrete bunches rather
than a smooth continuum, so precise timing is essential. Because many of the more technical
details of the accelerator system are beyond the scope of this work, the interested reader

should consult Reference [13] for further discussion of the Fermilab accelerator complex.

2.1.1 The Plasma Source

Starting with hydrogen gas, the magnetron surface-plasma source generates negative hy-
drogen ions. The magnetron consists of an ovoid cathode, a surrounding anode, and an
external magnetic field (Figure 2.2). Pulses of hydrogen gas enter the 1 mm gap between
the anode and cathode with a typical pressure of ~ 100 mTorr. Many Hs molecules become
adsorbed to the cathode, while free electrons and positive ions travel in a helical path in
the anode—cathode gap. The crossed electric and magnetic fields ensure high—density for
this spiraling plasma. When positive ions and energetic particles collide with the adsorbed
hydrogen, they eject, or “sputter,” hydrogen atoms and a small number of H™ ions. A
charged plate extracts the produced H™ ions through an anode aperture with a typical en-

ergy of 18 keV. A small admixture of cesium vapor boosts operating efficiency by lowering
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Figure 2.3: A simplified view of an Alvarez drift tube linac.

the work function of the cathode: the likelihood of a sputtered hydrogen atom to associate
with an extra electron increases from 0.2% to 10%. A steering magnet directs the extracted
ions into a right—angle turn, filtering the beam of electrons.

Similar devices can create H' ions and eliminate the need to strip electrons from the ions
later, but positive ion sources require higher current and therefore longer pulse times. The
fast—pulsing negative ion source improves beam quality dramatically for the downstream
accelerators because a small spread in creation time will translate to precision in particle

position downstream.
2.1.2 The Cockcroft—Walton Generator

The Cockcroft—Walton high—voltage generator, a solid state device, generates high voltage
by charging capacitors in parallel and discharging them in series. With five stages of voltage
multiplication, the generator boosts the input voltage of 75 kV by a factor of ten with very
little fluctuation. Once H™ ions have been created by the magnetron, a positively charged

plate accelerates them to an energy of 750 keV.
2.1.3 The Linac

FEmerging from the Cockcroft—Walton generator, the hydrogen ions enter a linear accelerator.
The first stage, a 70 m long Alvarez drift—tube linac, employs five electrically resonant
copper—clad steel tanks. Fach tank contains 23 to 59 drift tubes configured as shown in

Figure 2.3. Particles in the narrow sections between drift tubes experience an accelerating
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Figure 2.4: Booster injection schematic. A carbon foil removes both electrons from the H™
ions. Beam merging is accomplished with two “orbital bump magnets.”

field whereas particles inside the tubes are shielded. The drift tubes within the tanks are
thus designed with successively increasing lengths to ensure that the applied electric field
(cycling at 201.24 MHz) maintains a constant phase angle with respect to the particle’s
position in the tubes. Because the oscillation frequency of the applied field lies in the radio
frequency range, the drift—tube assembly is often called an RF tank.

The second stage of the linac has a slightly different tube design but operates similarly.
The gaps between drift tubes are smaller and more efficient, and the tanks resonate at 805
MHz, with particles every fourth cycle. The entire length of the linac system is 146 m, the
H™ ions emerge with an energy of 400 MeV and drift an additional 46 m before injection

into the booster.

2.1.4 The Booster

H™ ions enter the Booster, a rapidly cycling synchrotron with a radius of 250 feet. Paired
bump magnets direct the ions through a carbon foil that strips the electrons, leaving bare

protons. Simultaneously, the magnets merge the new protons with any existing protons in
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the booster (Figure 2.4).

At maximum capacity, the Booster holds 84 proton bunches, each consisting of 6 merged
linac bunches. Once the Booster is full, it accelerates the protons from 400 MeV to 8 GeV.
As the protons become more relativistic, the electric and magnetic fields vary synchronously
with the changing particle momentum to maintain a closed orbit.

The proton’s destination must be designated as either the antiproton target or the
Tevatron. If antiprotons are required, all 84 bunches in the Booster are directed into the
Main Ring with a “kicker magnet.” Because of the finite rise time in the kicker, one bunch
is lost during this procedure. If the protons are destined for the Tevatron, only 11, 13, or

15 bunches will be injected into the Main Ring; the rest are directed into a beam dump.
2.1.5 The Main Ring

Prior to the construction of the Tevatron, the Main Ring was the highest energy synchrotron
in the world, accelerating particles to 400 GeV. The Main Ring has a 1000 m radius, uses
774 dipole magnets to bend the beam and maintain closed orbits, and refocuses the beam
with 240 quadrupole magnets. Within the Tevatron complex, the Main Ring serves two
purposes: it directs a proton beam to a target to create antiprotons, and it injects particles

into the Tevatron.
Antiproton Creation

Before the Tevatron can operate in collider mode, antiprotons must be created. Because
antiprotons accumulate slowly, the Main Ring continues the antiproton generation process
even while the Tevatron collides proton and antiproton beams. To generate antiprotons,
the Main Ring accelerates 83 proton bunches to an energy of 120 GeV and directs them
at a nickel target disk. This incident proton energy optimizes the number of antiprotons
generated with 8 GeV of energy (matching the Booster injection energy). The proton beam
strikes the target along the plane of the disk so the target depth along a chord may be easily
selected with small lateral movements (Figure 2.5). The yield is 107 antiprotons for every

10'2 protons.
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Figure 2.5: The antiproton creation process.
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All resulting particles pass through a lithium cylinder that carries a longitudinal pulsed
current of 0.5 MA. The induced azimuthal magnetic field focuses the charged particles
along the axis of the cylinder. An optimal material choice due to its low density and high
conductivity, Lithium provides little energy absorption or multiple scattering while still
accommodating a high magnetic field.

A pulsed dipole magnet selects 8 GeV antiprotons, directing them into a debuncher ring
that reduces the longitudinal and transverse spread of the beam. The “cooled” antiprotons
are then added to any antiprotons already stored in the Accumulator ring for later injection

into the Tevatron via the Main Ring.

Tevatron Injection

Once in the Main Ring, 11 to 15 proton or antiproton bunches destined for the Tevatron
are coalesced into a single bunch by superimposing phased RF waveforms. The resulting
waveform decelerates forward particles relative to the centroid of the bunches while accel-
erating the lagging bunches (Figure 2.6). Once the particles have been collected at the
centroid, new RF waveforms are applied to reposition the bunch in the ring for injection.
This “cogging” process ensures good time separation between the other bunches and allows
collisions to occur at the designated Tevatron ring positions.

The Tevatron, constrained by a need to fit within the existing beam tunnel, is suspended
two feet below the Main Ring. Because Main Ring operation would disturb detectors

studying collisions in the Tevatron, the Main Ring beam pipe was bent vertically upward
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to arch over ring location B@ (home of the CDF detector). A prototype “overpass” was
first built at location D) with the intent that a second collider detector would eventually
take advantage of the separation. Because there was no second detector at the time of
the overpass construction, the prototype had a separation of 89.2 inches and fit within the
existing beam tunnel. In contrast, the B@ overpass required major tunnel reconstruction,
achieving a separation of 19 feet. As a result of the design of the D@ overpass, the current

D@ calorimeter is perforated by the Main Ring beampipe, complicating physics analyses.

2.1.6 The Tevatron

Similar in design to the Main Ring, the Tevatron accelerates particles from 150 to 900 GeV,
steering and focusing the beams with dipole and quadrupole magnets. In contrast to the
water—cooled Main Ring, the superconducting Tevatron magnets require liquid helium to
achieve an operating temperature of 4.6 K. Due to their equal masses and opposite charges,
protons and antiprotons can share the same accelerating fields and thus the same beampipe,
permitting an elegant and economical design.

With the exception of several test runs in December of 1995, Fermilab has operated the
Tevatron with six proton bunches counter-rotating with six antiproton bunches. A small
vertical displacement between the beams minimizes the number of collisions at the 10 of 12

possible collision areas that are not occupied by a detector. At the occupied sites, specially
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designed quadrupole magnets placed on either side of the collision area focus the beams
together and reduce the beam spot size to 0,4 ~ 40 wm. These magnets, the “low-beta
quads,” maximize luminosity ([E} = W) at the center of the detectors and
subsequently defocus the beams after collisions to maximize beam lifetime.

In the Tevatron, small perturbations about the circular closed path tend to increase
in amplitude with time. The resulting particle displacements lead to collisions with the
beampipe, causing luminosity attenuation and “beam halo” (see Chapter 5). To maintain
beam quality, both beams are periodically directed into their respective dump sites and

fresh bunches are injected. A period of uninterrupted running, usually 12 to 18 hours, is

called a “store.”

Flexibility in the Tevatron design allowed the beam energy to be decreased during
December of 1995. The reduced center—of-mass energy, /s = 630 GeV, matches the
energy of the SPS accelerator used by the UA2 experiment. As discussed in later chapters,
a comparison of the “low—energy” data to the full energy data allows a powerful QCD

measurement that would not be possible with data from a single center—of-mass energy.

2.1.7 Future Prospects for Fermilab

Currently, magnet technology limits the center—of-mass energy of the beams. The super-
conducting bend magnets “quench” above a critical current load and therefore produce a
limited maximum angle of deflection per magnet. Because the maximum center—of-mass
energy is constrained by the need to keep the beam in a closed orbit, an increase would

require either a larger ring (as is being built in Europe) or more powerful magnets.

In the next several years, Fermilab will incorporate a new injection system into the
Tevatron accelerator complex, increasing both the number of particles per bunch and also
the number of bunches in each beam (from the current six to as many as 128). Additionally,
the center—of-mass energy limit will be finessed slightly: by squeezing more magnets into

the Tevatron ring the collision energy will be raised from 1800 GeV to 2000 GeV.
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Figure 2.7: Isometric view of the D@ detector.

2.2 The DO Detector

“The answer to any question starting ‘Why don’t
they...?’ is almost always, ‘Money.’”

— From “Shooting Destination Moon,” by Robert
A. Heinlein

During a store, protons and antiprotons collide near the center of the D@ detector. The
central detector and calorimeter are cylindrically symmetric in design; the surrounding
muon system was designed with a simpler box-like structure (Figure 2.7). Discussion of
detector components requires definition of coordinate systems. For convenience of reference,

a full discussion of all D@ coordinate systems is provided in Appendix A.
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The detector volume closest to the beampipe measures the position of collision prod-
ucts non—destructively. This central tracking region exploits two effects: ionization and
transition radiation. The drift chambers collect ionization electrons liberated when charged
particles pass through the active medium. The energy lost through ionization represents
a very small fraction of the total energy of a relativistic particle. The transition radia-
tion detectors measure X-rays produced when very relativistic charged particles cross the
boundary between materials with different dielectric constants. The tracking detectors are

collectively called the Central Detector (CD).

Surrounding the CD, the calorimeter is designed to measure particles destructively.
Particle energies are successively absorbed and remeasured by alternating layers of inert
and active material. Because of size constraints, optimization of this sampling technique
requires very dense absorbing materials, specifically radiation—depleted uranium, copper,
and stainless steel. The active ionization medium, liquid argon, requires well-insulated
cryostats. Bremsstrahlung and subsequent pair production, which occur when a particle
traverses the absorber plates, create showers of particles in the calorimeter. These processes
may proceed electromagnetically, via the usual Coulomb mechanism with photons and ete™
pairs, or hadronically, via the strong force with gluons that subsequently hadronize.

The outermost sections of the detector identify and measure muons. Because muons
do not interact via the strong force, have low photon bremsstrahlung probability, and (at
relativistic speeds) do not decay within the distance scale of the detector (c7 = 650 m), these
particles do not suffer significant energy loss in the calorimeter. Three layers of proportional
drift tube chambers measure muon position. Toroidal magnets between the first and second
layer induce a bend in muon trajectory, providing a method of measuring muon momentum.

A layer of scintillating material placed above the detector differentiates pp collisions
from cosmic ray activity. Additional scintillators placed between the calorimeter cryostats

increase instrumentation in the seams.

The following sections describe the detector subsystems in more detail, providing a

first—principles description of the way in which they work. Reference [14] is an excellent
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Figure 2.8: Side view of the central tracking system. The CD is composed of a transition
radiation detector and several drift chambers.

supplemental resource for the interested reader.

2.2.1 The Central Detector (CD)

Completely enclosed by the Calorimeter, the CD occupies a volume bounded by 3.7 cm <
r < 78 cm and |z| < 135 cm (Figure 2.8). The Vertex Detector, the innermost subsystem,
was designed to resolve tracks to 50 um. The Central and Forward Drift Chambers have
a resolving power of 150 — 200 pm. The subsystems in the CD were designed to non—

destructively measure particle positions.
The Vertex Detector (VTX)

The Vertex Detector provides fine vertex position resolution. The VTX consists of three
concentric cylindrical drift chambers, holding arrays of sense wires parallel to the beampipe.
The sense wires operate at an electrical potential of +2.5 kV. COg doped [15] with 5%

ethane and 0.5% H2O functions as the active medium. Drawn to the sense wires, ionization
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Figure 2.9: An r—¢ view of the VTX chambers, revealing sense wire configuration.

electrons provide r — ¢ information with their non—zero drift times, while their z positions
are determined using a charge division technique using pulse measurements from each end
of the sense wire. Because the electric field in the cells is strong enough to cause electron
cascades, no information can be gained from the magnitude of the collected charge.

The innermost layer of the VI'X employs 16 cells in azimuth and the other two layers
have 32 cells. The information from each cell inherently contains a left-right ambiguity;
thus, from one layer to the next, the cell positions are staggered in ¢ to improve resolution

and avoid uninstrumented regions (Figure 2.9).
The Transition Radiation Detector (TRD)

Although ionization electrons are liberated in the active medium, the TRD was designed
to collect electron pairs produced by transition X-rays. As a heuristic illustration, consider
a charged particle approaching a dielectric boundary. The image charge approaches the
interface from the opposite side, forming an electric dipole. When the particle crosses the
dielectric boundary, the image charge crosses in the other direction and the dipole has

oscillated. For ultra-relativistic particles, this strong dipole oscillation results in a radiated
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Figure 2.10: Detail of the Transition Radiation Detector. Transition X-rays typically pro-
duce electron pairs in the first few millimeters of the conversion gap.

X-ray with energy proportional [16] to the relativistic -y of the particle, allowing the TRD to
differentiate particles by their masses. The TRD is primarily used to distinguish electrons
from pions.

The energy spectrum of the X-rays is also dependent on the number and thickness of
the radiating foils. At D@, the radiator section of each TRD unit consists of 393 foils of
18 pm thick polypropylene suspended in nitrogen gas. 150 pm gaps were created between
the foils by embossing a mesh pattern onto each before wrapping them all into a cylinder.

The radiators and nitrogen gas are sealed within a mylar “

window” and surrounded by an
array of sense wires suspended in an active medium of [17] Xenon doped with 7% CH,4 and
2% CyHg. This pattern (Figure 2.10) is repeated for each of the three concentric layers of

the TRD.

Central Drift Chamber (CDC) and Forward Drift Chambers (FDC)

Four layers of structurally independent drift chambers comprise the CDC. Each layer con-

sists of 32 ¢ segments and is offset by one half cell from the previous layer (Figure 2.11).
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Figure 2.11: Central Drift Chamber detail. Sense wires, ground wires, and delay lines are
strung into and out of the plane of the image.

Each segment contains seven sense wires (the small wires in the figure) with two grounded
potential wires between them. Two delay lines lie inside the inner and outer cell walls.
Charge accumulated on the inner— and outer—most sense wires induces a charge on the
delay lines as well. Time measurement of the delay lines at both ends determines the z
position of the ionized track. An extra ground wire at the inner and outer positions ensures
induced charges originate only from the extreme sense wires. The CDC uses [17]| argon

doped with CHy(4%), CO2(3%), and H20(0.5%) as the active medium.

The Forward Drift Chambers measure 6 and ¢ position of charged tracks via delay lines
(Figure 2.12) much like the CDC. The cells of each module contain 16 sense wires and uses
the same active medium as the CDC. The first and third layers of the FDC measure the
0 position of particle trajectories, while the second layer measure the ¢ position. Because
the #-layers are four—fold symmetric, a 45° angle between them maximizes the position

resolution of the FDC.
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Figure 2.12: Exploded view of the Forward Drift Chamber modules. Interior construction
is similar to the CDC.

2.2.2 The Calorimeter

In the parlance of chemistry, a calorimeter is a well-insulated device that measures the en-
ergy stored within foods. By completely capturing all the heat energy released from burning
compounds, the calorimeter precisely measures the stored chemical energy. Analogously in
high energy physics, a calorimeter precisely measures the energy released in particle in-
teractions by completely containing all product particles (except muons, neutrinos, and
particles that escape down the beampipe).The DO calorimeter (Figure 2.13) consists of
many dense layers of material, interspaced with layers of ionization medium. The physics of
the calorimeter is most easily described in terms of radiation lengths and nuclear interaction
lengths for electromagnetic and hadronic particles, respectively. These quantities, Xg and

A, describe the energy loss of a particle versus distance according to

d

E(d) = FEpe *o and (2.3a)

E(d) = Epe 3. (2.3b)
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Figure 2.14: Thickness of the D) detector as a function of colatitude, expressed in number
of nuclear interaction lengths of material.

Radiation length, defined as the free path for emitting bremsstrahlung radiation, de-
pends on the Compton wavelength of the particle and therefore on the inverse square of
the particle mass. Because they are 200 times heavier than electrons, muons do not suffer
significant Compton losses while passing through the calorimeter; instead, they escape eas-
ily, leaving only a minimum ionization trail. Neutrinos, interacting only through the weak
force, also escape. In contrast, all electrons passing through the calorimeter will produce
copious electromagnetic showers. For electrons, radiation length may be parameterized [16]

in terms of atomic mass (A) and atomic number (Z), yielding

A
X ~ 180—. (2.4)

This rough 1/Z dependence justifies the use of depleted uranium (Xy &~ 3.2 mm) as an
absorbing material in the EM section of the calorimeter.

The nuclear interaction length scales as A%, reducing the advantage of exotic high—
density materials for hadronic measurements. In gluon bremsstrahlung, pions are the most
copiously produced secondaries because they are the lightest hadronic particles. Given
equal probability to produce 7°, 7%, 7~, the products should be % neutral and % charged.

The neutral pions quickly convert to two photons, which cascade electromagnetically. The
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charged pions continue through the calorimeter, producing more hadronic products, roughly
one third of which [16] are neutral pions. This process continues until the energy of the
charged products becomes insufficient to pass through the absorbing material into the next
active region. Except for the ionization energy deposited by the charged hadrons, only the
neutral portions of the hadronic shower are measured (because they result in an electro-
magnetic shower). As a result of fluctuations in 7 production relative to charged pions
(particularly in the first inelastic interaction), the energy measurement of hadronic particles
has a much larger inherent uncertainty than that of purely electromagnetic particles.

Additionally, a sizeable amount of the available energy in a hadronic shower is lost to
binding energy effects in the absorber plates. Energy expended to excite or break nuclei
apart in the absorbing material normally will not result in detectable energy. In most
materials, a small fraction of the energy is recovered when nuclei de—excite, but the resulting
slow neutron or photon may not be measured [16] until a later beam crossing. With uranium
238 as the absorber, it was thought that energy normally lost to nuclear effects would instead
yield neutron—induced fission products with their own signal in the calorimeter; then, the
resulting measured energy from the hadronic fraction of a shower would more closely match
the energy from the electromagnetic portion. Unfortunately, the expected fission products
materialized only in small numbers. The response was instead balanced by varying the
thicknesses of the absorbing plates and the active regions between them. Usually expressed
as the response ratio, the DO calorimeter value of

Relectrons ~1.1 (25)
Rhadrons

compares favorably [18] to the ratio of 1.4 for most other calorimeters. The small compen-
sation effect due to nuclear fission and the graduated thickness of the plate and gap layers
partially offsets the damage caused by neutral pion fluctuations. The stochastic nature of
pion production and the residual binding energy effects result in a loss of energy resolution,
to be discussed further in Chapter 5 in the context of its effect on the jet cross section.

Collision products from a pp interaction are contained within 20 radiation lengths (Xg)
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of material followed by 7.2 nuclear interaction lengths (A) of material (Figure 2.14); in this
sense, the calorimeter is very “well-insulated,” allowing less than 2% of all collision energy
to escape. The scales of the electromagnetic (Xo) and hadronic (\) interactions are quite
different; the 20 radiation length thickness of the EM calorimeter constitutes roughly half

of a nuclear interaction length.

The DO calorimeter was assembled in three pieces: a cylindrical central piece (the CC)
and two end caps (north EC and south EC), as shown in Figure 2.13. Each section is divided
into a large number of cells that are identified by location in azimuth, pseudorapidity, and
layer (roughly, the distance from the vertex). There are 64 divisions in ¢ and 80 divisions
in the pseudorapidity region —4.0 < 1 < 4.0; thus, each cell covers an area in n — ¢ of
approximately 0.1 x 0.1, with exceptions described in the following sections. Seventeen
unique layers in the calorimeter vary in thickness depending on the specific purpose of
the layer (electromagnetic particle detection or hadronic particle detection). A sampling
calorimeter by design, each layer consists of a dense absorption plate followed by a liquid
argon gap (Figure 2.15). During operation, copper readout pads, in the center of each gap
and 2.3 mm from the absorber plates on each side, are held at a potential of 2 kV while the

absorber plates are grounded. Drift time for ionization electrons across the gap is 450 ns.

The calorimeter was designed with a pseudo—projective geometry; cells are aligned so
their centers are arranged radially with respect to the interaction vertex, forming towers of
cells with identical positions in 7 and ¢ (Figure 2.16). By design, the seams between the CC
and EC’s cut across these towers rather than parallel with them to prevent uninstrumented
regions. The full instrumentation of the D) detector between —4.0 < 1 < 4.0 is sometimes
referred to as hermetic coverage. Although the material composition of the Central and

End Calorimeters differs slightly, the performance of the calorimeters is equivalent.

To accommodate the D@ detector, the Main Ring, normally within two feet of the Teva-
tron, arcs upward several meters. While the Main Ring overpass clears the central tracking
region, the pipe actually travels through the calorimeter, near the top (visible in Figure 2.16).

Activity in the Main Ring often interferes with normal operation of the outermost hadronic
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Figure 2.15: Two unit cells of the D@ calorimeter.

layer of the calorimeter, requiring special treatment during data analysis.

The following subsections detail the individual subsystems of the calorimeter, with con-
cise summaries in tabular form. The information in the tables (which originates primarily
from [19]) includes dimensions, segmentation, sampling weights, and the number of readout

channels for each subsystem.
Central Calorimeter (CC)

The Central Calorimeter is coaxially subdivided into the electromagnetic (EM) layers, sev-
eral fine hadronic (FH) layers, and a coarse hadronic (CH) layer (cf Figure 2.16). Because
maximum EM shower development occurs after 10 radiation lengths of material, the third
electromagnetic layer is more finely segmented than all others, increasing accuracy in the

measurement of shower location and shape.
End Calorimeter (EC)

The structure of the End Calorimeter differs slightly from the CC. The EM portion extends

radially [20] from 5.7 cm to 104 cm. The Inner Hadronic module, placed behind (larger
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Figure 2.16: One—quarter n—view of the calorimeter and Central Detector, illustrating the
pseudoprojective tower geometry. Radial lines indicate detector pseudorapidity. The Inter—
Cryostat Detectors are visible as thin tiles between 0.8 < n < 1.2. The Main Ring beampipe

pierces the calorimeter near the top.
CC Module EM FH | CH
Rapidity Range (|n| <) 1.2 1.0 0.6
Absorbing Material Uranium Uranium (1.7% Nb) | Copper
Absorber Plate Thickness 2.3 mm 2.3 mm 46.5 mm
Total Depth (Xg) 20.5 96 32.9
Total Depth () 0.76 3.2 3.2
Number of Layers 4 3 1
Depth per Layer 2,2,7,10 Xg 1.3, 1.0, 0.9 A 3.2 A
Segmentation 0.1x0.1 (Layers 1, 2, 4) 0.1x0.1 0.1x0.1
0.5x0.5 (Layer 3)
Sampling Fraction 11.79% 6.79% 1.45%
Channels 10, 368 3,000 1,224

Table 2.1:

Parameters for the Central Calorimeter.
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EC Module EM |  Inmner FH | Inner CH |
Rapidity Range + (1.3 — 3.7 + (1.6 — 4.5 +1]2.0 — 4.5|
Absorbing Material Uranium Uranium (1.7% Nb) Steel
Absorber Thickness 4.0 mm 6.0 mm 6.0 mm
Total Depth (Xo) 20.5 121.8 32.8
Total Depth () 0.95 4.9 3.6
Number of Layers 4 4 1
Segmentation 0.1x0.1 (Layers 1, 2, 4) 0.1x0.1 0.1x0.1
for |n| < 2.6 0.5x0.5 (Layer 3)
for 2.6 < |n| < 3.2 0.1x0.1 (all Layers) 0.1x0.1 0.1x0.1
for |n| > 3.2 0.2x0.2 or more 0.2x0.2 or more | 0.2x0.2 or more
Sampling Fraction 11.9% 5.7% 1.5%
Channels 7,488 5,216

Table 2.2: Parameters for the EM and Inner End Calorimeter modules.

EC Module |  Middle FH | Middle CH | Outer CH |
Rapidity Range +[1.0 — 1.7] (1.3 — 1.9 [ £]0.7 — 1.4]
Absorbing Material Uranium (1.7% Nb) Steel Steel
Absorber Plate Thickness 6.0 mm 46.5 mm 46.5 mm
Total Depth (Xo) 115.5 37.9 65.1
Total Depth () 4.0 4.1 7.0
Number of Layers 4 1 3
Segmentation 0.1x0.1 0.1x0.1 0.1x0.1
Sampling Fraction 6.7% 1.6% 1.6%
Channels 1,856 960

Table 2.3: Parameters for the Middle and Outer End Calorimeter modules.

z) the EM module, consists of four FH layers and one CH layer. Surrounding the Inner
Hadronic module coaxially, the Middle Hadronic module also consists of four FH layers and
a CH layer. The Outer Hadronic module in turn surrounds the Middle section; it possesses
only coarse hadronic layers and was designed with angled cells with respect to the beam
axis to improve 7 coverage (cf Figure 2.16).

Because the physical size of a 0.1 x 0.1 cell goes to zero as the cell’s pseudorapidity
location approaches infinity, the segmentation of all End Calorimeter cells changes near the

beampipe. The parameters of the End Calorimeters are summarized in Tables 2.2 and 2.3.
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Inter—Cryostat Region (ICR)

The pseudorapidity region between 0.8 and 1.4 suffers from depleted instrumentation be-
cause this volume is occupied by the insulating bulkheads of the calorimeters, the module
endplates, and necessary support structures. To improve sensitivity in this region, two in-
dependent systems were installed: the Inter—Cryostat Detector (ICD) and the Massless Gap
detectors (MG). Although these systems cannot replace the full sampling modules present
in other areas, they prevent the ICR from becoming “dead space.”

The ICD, visible between the two bulkheads in Figure 2.16, consists of two annular
scintillating tile arrays mounted on the outer EC walls. Grooves cut into each scintillating
tile (of dimension 0.1 x 0.1 in  — ¢) guide wavelength—shifting optic fibers that channel
the scintillation photons to photomultiplier tubes (PMT’s) for readout. The tile arrays,
symmetric in ¢, cover the entire rapidity range from 0.8 to 1.4.

The MG detectors, mounted on the inside bulkhead surface of both the CC and EC
cryostats, supplement the ICD coverage (again, Figure 2.16). Identical to the readout
pads in the standard calorimeter modules, the copper MG readout boards collect electrons
liberated from the liquid argon medium. Unlike the calorimeter cells, the absorber plates

are absent.

2.2.3 The Muon Spectrometer

Three layers of proportional drift tube chambers (PDT’s) surround the calorimeter, com-
prising the Muon Spectrometer. The innermost rack, the A layer, consists of four decks of
PDT surrounded by toroidal magnets. The iron toroids, carrying a magnetic field strength
of 2 Tesla, induce a bend in muon trajectory. Two additional PDT layers, B and C, measure
the muon direction after the bend. The initial vector, formed with the vertex and A layer
hits, combined with the final vector, formed with the B and C layer hits, determines the
muon momentum. Detection of a minimum ionization trace in the calorimeter can confirm
the presence of a muon. Timing information from the layer of scintillator above the detector

can reject spurious hits caused by cosmic ray showers.
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Figure 2.17: Muon chamber detail of the B layer. The C layer is identical but the A layer
has four decks instead of three.

2.2.4 Level @

A scintillating hodoscope array was placed between each end calorimeter and the central
calorimeter, approximately [24] 140 cm from the center of the detector and perpendicular to
the beam axis. In this forward position, the arrays intercept most collision products. The
tiled construction provides nearly full coverage in the pseudorapidity range 2.2 < |n| < 3.9
and partial n—coverage as low as 1.9 and as high as 4.3. With very high efficiency, these
hodoscopes identify inelastic pp collisions when both arrays detect charged particles within
a small time interval. Because inelastic collisions comprise the majority of the events DO
studies, the hits in coincidence within the hodoscopes are a prerequisite for physics triggers
(as described in Chapter 3). The hardware and software triggers are respectively named

Level 1 and Level 2, so the twin hodoscopes are called Level @.

By monitoring the interaction rate, the Level () system also provides a measure of the
instantaneous particle luminosity (£) within the Tevatron. Additionally, the hodoscopes
measure the rate at which spurious particles escape from the beam (such particles are

called “beam halo”). Details of the luminosity calculation are provided in Chapter 5, along
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Figure 2.18: The D@ detector, showing the placement of the Central Detector, the Calorime-
ter, the Muon Detector layers (A, B, and C), and the iron toroids (CF and EF).

with discussion of beam quality issues.
2.2.5 Detector Summary

The detector systems measure particle energies in different ways. Ionization products,
liberated primarily through elastic scattering with atomic electrons, are collected onto sense
wires. Transition photons convert to eTe™ pairs and are collected with a proportional wire
chamber. Absorbing plates in the calorimeter initiate showers of electrons. Scintillating
materials become excited by charged particles and emit photons which are subsequently
measured in photomultiplier tubes. Working in concert, the disparate systems comprise a

very versatile general purpose detector, capable of:

e Excellent identification and measurement of electrons and muons,

e Good measurement of jets with large E1 using highly segmented calorimetry and good
energy resolution,
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e Detection of neutrinos (and other non—-interacting particles) via [14] missing Er mea-
surement.

The fully assembled detector (Figure 2.18) stands approximately 13 m in height and 20
m in length. The total weight of the system is approximately 5500 tons. Two hydraulic
rams push the entire structure between assembly area and collision hall along hardened steel
tracks; the detector reaches a top speed of two inches per hour. Cooling the calorimeter

cryostats to operating temperature (78 K) requires approximately 10 days.



Chapter 3

Data Collection

“Divide each difficulty into as many parts as is
feasible and necessary to resolve it.”

— Rene Descartes

With every Tevatron bunch crossing inside the D@ detector, signals are sent to an array
of digital logic circuits. Consisting of logical AND/OR gates, these logic boards quickly
analyze the information of each beam crossing, searching for events that satisfy preset
criteria. The parameters of the events that pass the requirements are sent to one of many
VAX workstations, where a software search algorithm applies additional constraints to each
event. Any event that meets or exceeds the final requirements is written to tape. The set
of hardware and software event criteria is known as a trigger list.

During a collider run, the D@ detector collects data almost continuously. A crew of
five physicists mans the control room 24 hours per day, seven days per week. While the
Tevatron collides protons and antiprotons, the physicist in charge of data acquisition (the
DAQ shifter) loads predetermined trigger lists, monitors the hardware and software of the
DAQ system, and follows the flow of data from the detector to disk to tape. A detector
shifter ensures that all the individual systems of the detector behave as expected, resetting
high-voltage when necessary and looking for failing components. A Fermilab operator from
the Research Division monitors the cryogenic fluids and drift gasses of the detector, easing
the load of the detector shifter. The global monitor, sometimes called the “last line of

defense,” studies selected events in detail, looking for any hint of detector malfunction.

95
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Finally, a shift captain determines when trigger lists must change, when special runs should
occur, and acts as liaison between the experiment and Fermilab personnel. Even when the
Tevatron is idle, the crew collects data from cosmic rays to recalibrate the detector or test
new trigger lists. Other times, small maintenance tasks are performed. In the absence of
unusual failures, an eight-hour shift can be quite uneventful; when things go wrong, the
crew may not be enough. For this reason, one designated expert for each detector system

always remains on call.

The data collection process is entirely dependent on the trigger list in use. Because the
bandwidth (the rate at which events may be written to tape) is limited, the D@ collaboration
must decide the composition of the trigger list well in advance of the actual run. A typical
list selects a mixture of several classes of event; including events with high Er jets, photons,
electrons, or muons, events with large missing ET, or events with high multiplicity of jets.
Selection is performed in several stages, designated Level (), Level 1, and Level 2. The
raw event rate of nearly 300 kHz must be successively decreased after each stage, finally
meeting the bandwidth limit after Level 2 (approximately 2-10 events per second). A good
trigger must therefore identify and accept a particular class of event and yet reject enough
background events to yield an acceptable event rate. Trigger experts design the lists with

an eye for balance between the many physics processes worthy of study.

Despite data buffers between the trigger levels, occasionally a combination of high lumi-
nosity and loose trigger criteria results in more accepted events per second than the system’s
bandwidth can handle. When the bottleneck in the system occurs in the Level 1 stage the
condition is termed front-end busy. If the bottleneck occurs in Level 2, the condition is
called Level 2 disable. Both cases result in discarded events. Activity in the Main Ring will
veto many beam crossings as well, resulting in more discarded events. The final luminosity

calculations must reflect all of these conditions (collectively known as “dead time”).

The next sections of this chapter review the event triggering and data acquisition process
in terms of the three trigger stages. Afterward, the jet triggers used in this analysis will

be described, including the number of events collected for each. The number of events may
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be expressed in terms of the luminosity exposure, as described below. Many aspects of the
triggering and data acquisition process have direct consequences in the data analysis stage.

Full discussion of some details must therefore be reserved for Chapter 5.

3.1 The Level @ Trigger

The scintillating hodoscope arrays discussed in Chapter 2 serve as the prerequisite to the
majority of D@’s data triggers and from this use they take their name. Final state particles
from spectator partons in a pp collision tend to have low—angle trajectories. The scintillating
tiles are placed near the beampipe to intercept these collision products with high probability.
If both arrays detect particles within a small time window, most likely a pp collision has
occurred; thus, Level () passes the event to the Level 1 trigger system. During the run, a
small subset of the D@ trigger list bypassed the Level () requirement entirely, automatically
passing each beam crossing to Level 1. Data without the Level @ requirement plays a crucial
role in studies of trigger behavior. Additionally, some special triggers collect diffractive
events that have low probability of meeting the Level () requirement (see also Chapter 5
for details of diffractive cross sections and Level ().

If all triggers lacked the Level () requirement, the event rate into Level 1 would be equal
to the beam crossing rate, 286 kHz. With Level @, the rate is reduced to approximately 17
kHz for luminosities typical of the low energy run (ﬁ =0.5 X 1030w), a much

cm?-sec

more manageable level.

3.2 The Level 1 Trigger

Consisting of hardware logic circuits, the Level 1 trigger system quickly filters the data
stream, searching for potentially interesting physics events. Because tracking information
from the central detector requires too much time to generate and analyze before the next
beam crossing (3.5 usec), Level 1 uses only calorimeter tower information and muon hit
information as criteria. The calorimeter towers are ganged into 2x2 arrays, called a trigger

tower. A jet trigger might require a trigger tower with at least 2 GeV of transverse energy
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in the event. The vector sum of all trigger towers yields the missing Er magnitude, a re-
quirement of W boson triggers (see also Appendix C). The energy in the electromagnetic
portion of a trigger tower is used to make photon and electron triggers. As a recent innova-
tion, entire quadrants of the detector have been ganged together to form large tiles. Very
high Et jet triggers use large tile information rather than trigger tower information in the
Level 1 decision.

Events that pass the Level 1 decision are passed to Level 2, while events that fail to
meet the Level 1 requirement are discarded. A very simple muon selection is performed
at Level 1, and candidates are then passed to a special sublevel dubbed Level 1.5. This
system calculates muon momentum from the bend angle between the hit centroid in the
muon A layer and the centroids in the muon B and C layers. Unlike the rest of the Level
1 system, Level 1.5 cannot generate tracking information within the beam crossing time,
and therefore cannot make its event decision at the Level 1 rate; thus, the entire detector

suffers dead time during the Level 1.5 decision process.

3.3 The Level 2 Trigger

A “farm” of 48 VAX workstation nodes comprises the Level 2 system. Working in parallel,
the Level 2 nodes identify objects in an event as electrons, jets, muons, or photons, using
a host of custom-designed software algorithms. All detector information contributes to the
Level 2 decision, although the object reconstruction is somewhat approximate to minimize
the decision time. For example, offline a jet is defined as hadronic and electromagnetic
energy deposited in an 1 — ¢ cone with radius 0.7. For the fast online reconstruction, a jet
is any calorimeter energy deposit in a 7 X 7 tower square.

A trigger list at Level 2 (sometimes called the “Level 2 filters” to distinguish them
from the “Level 1 triggers”) contains up 128 independent sets of requirements. The filter
requirements could be as simple or complicated as required. For example, a jet filter might
require a single jet with Er greater than 30 GeV, while a W boson filter might require an

electromagnetic cluster with E1 greater than 25 GeV with a shower shape that matches the
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Trigger Name Level 1 requirement Level 2 requirement
Jet 12-LNR One trigger tower with 2 GeV Er One jet with 12 GeV Ep
Jet 12b-LNR | Two trigger towers, each with 2 GeV Et | One jet with 12 GeV Ep
Jet 30-LNR One large tile with 15 GeV Ep One jet with 30 GeV Er

Table 3.1: Triggers used in the inclusive jet cross section analysis.

electron shape determined with a test beam, and a missing E1 greater than 25 GeV.

The trigger list downloaded from the database implicitly includes a set of prescales.
These prescale sets manage the total output rate from Level 2 to disk. To achieve a balance
between common events and rare events, the trigger system is designed to deliberately
discard some fraction of otherwise acceptable events. A trigger for low Ep jet events will
receive a high prescale value so the common jet events will not consume the majority of
the available bandwidth. Each trigger receives a prescale roughly proportional to the total
cross section for its signal relative to the most rare process on the trigger list. Because the
event rate is a function of instantaneous luminosity, prescale sets are changed as Tevatron
luminosity attenuates over the course of a store.

Events that pass Level 2 are written to disk in partitions of 2000 events each, where each
event is approximately 500 kilobytes in size. A cluster of seven disk drives holding between
two and four gigabytes each serves as a buffer area from which partitions are written to
8mm tape. These tapes are transported to the Feynman Computing Center (near site BQ)

for processing and storage.

3.4 The Jet Triggers

This analysis makes use of three triggers from the low energy (630 GeV) run. Table 3.1
names each trigger and compactly specifies the Level 1 and Level 2 requirements for each.
All triggers required hits in both Level ) hodoscopes as usual. Note the simplicity of the
triggers in each case. As per D@ convention, the trigger suffix indicates the class of each
trigger; in this case, “LNR” indicates the low CM energy trigger set. The number designates

the nominal Er threshold above which jets are accepted.
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Trigger Name | Luminosity Exposure | Number of Events
Jet 12-LNR 4.82 nb1 439,769
Jet  12b-LNR 30.4 nb~! 1,673,259
Jet 30-LNR 537 nb~! 179,832

Table 3.2: Total luminosity exposure of the inclusive jet triggers and the number of events
collected for each.

The inclusive jet cross section, a steeply and monotonically falling function of Er, pro-

duces a much different event rate for each trigger. This can be expressed as

e dajet /OO doje
dET > 1= dEry. 3.1)
./12 Gev dEr J30 gev dET (

Without a prescale, the Jet 12 triggers would have a rate larger than Jet 30-LNR by
several orders of magnitude. During the run, Jet 12-LNR was prescaled by as much as a
factor of 630. Jet 30-LNR was never prescaled. At very low luminosities, the global event

rate was low enough to run all three jet triggers without prescales.

During the low energy running, the trigger rate from Jet 12-LNR took too large a share
of the bandwidth out of Level 1, only to have the majority of the events rejected by Level
2. A large prescale applied to the trigger would not afford a statistically significant number
of events by the end of the run, so a new algorithm was designed to be more selective in the
hardware portion of the trigger. While Jet 12b-LLNR has the same Level 2 requirement as
the original, the stricter Level 1 condition reduces the number of spurious events (caused
by noisy calorimeter cells) passed to Level 2. The result of the modification is a sacrifice in

trigger turn-on efficiency (discussed in Chapter 5).

Table 3.2 lists the luminosity ezposure for each trigger. The luminosity exposure reflects
the prescale of each trigger for each run and any deadtime caused by Main Ring activity
and front-end busy conditions. Because it was never prescaled, the Jet 30-LNR exposure

reflects the total luminosity collected by D@ at /s = 630 GeV.
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3.5 A Selected Data Event

The event displays in this section depict actual D@ data; they all display the same three-jet
event, selected from the Run 1b data set (/s = 1800 GeV). Although event displays do
not contribute to the data analysis, they provide an additional level of understanding to

the processes under study.

Consider Figures 3.1 and 3.2. These side and end views of the D@ calorimeter reveal a
very high Er jet with substructure in the +z central region, a high Er jet in the —x central
region, and a third jet in the —x ICR. Jet substructure is somewhat more obvious when
only the active cells are drawn, as in Figure 3.3, a three dimensional rendering of the same
event. Finally, a “lego plot” of the event is displayed in Figure 3.4; the grid represents the
calorimeter coordinates remapped from a cylinder to a plane. In the figure, IPHI and IETA

indicate calorimeter tower coordinates multiplied by ten; IPHI, the “integer phi,”

spans the
range 0 to 64 with each integer corresponding to a tower. Similarly, IETA ranges from —40
to 40; any given calorimeter tower is specified with two integers. The blocks in the figure
indicate the jet positions and energies, both hadronic and electromagnetic components. The

lego plot is the most useful display for analysis of events. Note that the z-axis in this figure

is energy and not Er.

3.6 Summary

The data acquisition system of the D) detector consists of three distinct subsystems. The
Level @ trigger, two simple scintillating hodoscope arrays, ensures the presence of a pp
interaction before other systems examine detector signals. The Level 1 trigger forms fast
sums of detector signals and applies minimal criteria to achieve fast rejection of common
events. Nearly full event reconstruction at Level 2 allows excellent rejection of common
events and background signals through the use of complicated software criteria. Working
in series, the three trigger systems reduce the event rate from nearly 300 kHz to less than

3 Hz.
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Figure 3.1: Calorimeter side view of a DO event.
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Inclusive jet triggers, simple by design, consider only the E1 deposited within a well
defined region. Because the probability of low ET jet events far exceeds the probability of
high Er jet events, several jet triggers with different E1 thresholds collect data simulta-
neously. Each trigger has its own prescale such that the trigger rate from each is roughly
comparable.

Event displays reproduce the appearance of a jet event as perceived by the D@ detec-
tor. Direct inspection of a representative sample of events ensures data quality and allows

optimization of jet selection criteria, which are discussed in Chapter 5.



Chapter 4

The Jet Energy Scale

“Smooth seas do not make skillful sailors.”

— African Proverb

While the DO detector was still under construction, the collaboration tested several calorime-
ter modules, directing particles of known energy into the cells. This “test beam data” was
used to calibrate the absolute scale of measured cell charge relative to true particle energy
in the calorimeter. Several effects prevent test beam data from completely describing the in
situ, behavior of the calorimeter: off-center cell hits, pileup, underlying event energy, noise
suppression, and out-of-cone showering. The algorithms in the online software and event
reconstruction software sacrifice these adjustments for the sake of expedience, so additional
corrections must be applied in the analysis stage.

Starting with reconstructed jet energy, E™¢** the corrected jet energy takes the form

Emeas _ ()
E=—r—F— 4.1

where R is the overall response correction, S is the out-of-cone showering correction, and
the offset O is the measured average jet energy resulting from noise and underlying events.
The remainder of this chapter describes each of these corrections in detail. Although the
majority of the energy scale correction is identical for both 1800 GeV and 630 GeV running,

the underlying event energy differs, as described in the next section.*

* Major portions of this chapter were originally published as D@ Note 3288, “Jet Energy Scale at DO for
v/s = 630 GeV,” A.Goussiou and J.Krane, August, 1997.
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0

Energy Distibution of Noise in a Calorimeter Cell

Figure 4.1: Example of a skewed Gaussian: the mean is zero despite the off—center peak. Re-
moval of the portion between the vertical lines results in a non—zero mean for the remaining
distribution.

4.1 The Offset Correction

Before scaling the reconstructed energy by multiplicative factors, the offset subtraction
must compensate for effects not present in test beam data and remove energy resulting
from spectator partons. The subtraction removes only the portion of a jet’s measured
energy which results from sources other than the final-state particles of the hard collision.
Four distinct processes contribute extraneous energy to the calorimeter cells: noise, pileup,
underlying event, and extra interactions.

Calorimeter noise, the first source of offset energy, results from two separate effects.
Suppression noise results from background nuclear activity in the uranium absorber plates.
To minimize the storage size and bandwidth needs of each event, the online system only

considers energy deposits from calorimeter cells that are not consistent with uranium noise.
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Calibration of the calorimeter sets the average uranium noise energy as the zero point for all
measurements, then during data taking, the cells consistent with noise are suppressed, and
not included in the data stream. Here, “consistent” indicates that the measured energy falls
within a two standard deviation window about the average noise in a cell. Because uranium
noise fluctuations do not quite follow a Gaussian distribution, the energy density outside
the suppression window centered on the mean is not symmetric. As a result, unsuppressed
noise fluctuations will not average to zero and noise will contribute a net positive energy
to the average jet. Figure 4.1 illustrates the origin of suppression noise. Suppression noise
is constant with respect to luminosity, but will vary with pseudorapidity differences in
the construction of the detector. FElectronics noise is generated in the calorimeter by the
presence of the p and p beams. Because calibration occurs during “quiet times” without
beam, the true zero point for all measurements becomes slightly offset when the Tevatron

is active.

Pileup, a second offset source, results from pp interactions in previous beam crossings.
The energy of each calorimeter cell is measured with a baseline subtraction scheme (BLS),
in which the accumulated charge on the cell readout pad is sampled both immediately
before and after a beam crossing. The change in charge density then maps to measured cell
energy. Unfortunately, the ionization electrons in each cell have a non-zero collection time;
some electrons liberated from the liquid argon during an event may linger for several beam
crossings. This capacitor-like discharge effect, coupled with the BLS measurement scheme,
results in a net negative energy contribution from prior events. Because the probability of
a physics event during the prior beam crossing varies with luminosity, the pileup effect is

both luminosity and pseudorapidity dependent.

Hadronization of spectator partons in the pp collision (the underlying event) also con-
tributes to the offset energy. Although the removal of underlying event energy has become
a standard procedure, some theorists argue [21] that the colliding partons interact with the
rest of the pp system in a non-negligible manner; thus, analyses that include underlying

event energy in the jet definition may contribute to theoretical understanding. In contrast,
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most theorists and experimenters agree that underlying event removal extracts the primary
physics from the nearly extraneous effects of the spectators. Because the fractional con-
tribution of underlying event energy is negligible at high Ep, but may be as large as 3%
at low Er, failure to remove the additional energy will impart a shape-change to the cross
section spectrum, which will be exacerbated by smearing effects (¢f Chapter 6). Because
underlying event energy was removed from the jet cross section analysis described in later

chapters, the determination of its energy contribution is detailed below.

The fourth and final offset energy source, the energy resulting from additional pp inter-
actions during a single beam crossing, exhibits a strong luminosity dependence. Multiple
interactions comprise a small fraction of the 630 GeV data set, but the high instantaneous
luminosity typical of 1800 GeV running resulted in a large fraction of multiple interactions
in the data. The second (third, etc.) interactions do not usually result in measurably large
jets; instead, smoothly distributed, low-energy particles contribute energy to jets from the
primary interaction. When single interactions can be differentiated from multiple interac-
tions, the luminosity dependence vanishes and an integer number of additional interactions

results in an integer number of additional underlying events.

Although the four offset contributions are easily identified, the quantities must be ex-
tracted from measurements that involve several of the effects at once. The following sub-
sections make use of two special data sets. “Minbias” data is collected when the Level O
hodoscopes indicate a hard pp collision has occurred. No additional trigger criteria are
applied. Very soft jets below reconstruction threshold (8 GeV) comprise the majority of
this data sample. “Zerobias” data is collected during a beam crossing without regard to
Level @ information. As a result, many zerobias events consist of “empty events” where no
hard collision occurred. While the D@ DAQ system primarily collected data in suppressed
mode, the special data types were collected in both suppressed and unsuppressed modes at

various instantaneous luminosities.

Experimenters at D@ developed several software algorithms to distinguish multiple inter-
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Figure 4.2: Difference in E1 density between suppressed and unsuppressed data.

actions from single interactions. These so-called M1 _TOOL algorithms* use vertex, tracking,
and calorimeter information to flag multiple interactions, with an efficiency [22] approaching
95%. The offset calculations exploit these tools to derive the extra interaction correction,

verify the underlying event result, and further restrict events for the remaining corrections.
4.1.1 Suppression Noise

Residual energy resulting from incomplete noise suppression is most easily modelled with
zerobias data. In the limit of zero instantaneous luminosity, the probability of a hard inter-
action during a beam crossing approaches zero and the effect of pileup becomes negligible.
The following requirements ensure each zerobias event under study reflects only the effects

of suppression noise:

e No hits in the Level ) hodoscopes

* Two software routines exist, one for each center-of-momentum energy:
MULTIPLE _ INTERACTION _ToOL_RUN1.FOR, and MULTIPLE _INTERACTION _ToOL_630.FOR.
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No jets in the event
e No main ring activity
e M1 TooL indicates zero interactions

e Lowest instantaneous luminosity available

Figure 4.2 depicts the Er distribution in “empty” beam crossings versus pseudorapidity.
The upper curve (filled triangles) represents both electronics noise and suppression noise
contributions, while the lower curve (unfilled squares) lacks suppression noise effects. Lack
of uranium absorber plates in the ICR result in low levels of suppression noise between
pseudorapidity values of 0.8 and 1.2.

Calibration ensures that cells with “real” energy deposits from particles have nearly zero
noise contribution on average; thus, the magnitude of the suppression noise correction is a
function of the number of cells without energy deposits from particles. Comparison of the
number of struck cells in zerobias data to the number in jet data (Figure 4.3) indicates that

the cell occupancy describes the difference in suppression noise with:

Occzerobias

Jets __ zerobias
Sup Ex*® = Sup EY oy e

(4.2)

Absolute confirmation of the occupancy model in Equation 4.2 is complicated by the large
statistical scatter of the jet data, resulting in a 250 MeV uncertainty to the suppression

noise calculation. This uncertainty dominates the error on the entire offset correction.

4.1.2 Underlying Event

Because minbias events primarily consist of below-threshold jets, they satisfactorily model
the underlying event in physics data. Subtracting the empty crossing noise (from zerobias
data) reveals the underlying event distribution.

In the limit of very low instantaneous luminosity, the distribution will accurately reflect
the average energy distribution resulting from spectator partons in the proton and an-
tiproton. Multiple interactions occur with higher frequency at high luminosity, and would
contribute to the observed energy. To verify the accuracy of the underlying event result,

MI TOOL differentiates single and double interactions in minbias data. The underlying
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Figure 4.3: Suppression noise in zerobias data (open circles) and jet data (open triangles).
Large statistical uncertainties in the jet data may be avoided by applying Equation 4.2 to
the zerobias data (solid triangles).
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result divided by two, showing good agreement with the single interaction result.

event energy density found in double interactions should be roughly twice that found in the
single interactions. Figure 4.4 depicts the result of this single versus multiple interaction
comparison for /s = 630 GeV.

The underlying event increases with increasing center—of-mass energy in two ways: the
average particle multiplicity in the event increases and the average energy of each particle
increases. The underlying event at /s = 1800 GeV is compared to that at 630 GeV in

Figure 4.5 and the ratio is given by Figure 4.6.

4.1.3 Extra Interactions and Pileup

Using the multiple interaction tools to divide the minbias data sample into single and
multiple interaction events isolates the contribution from extra interactions. The difference

between the distributions is identical to the underlying event, as expected from Figure 4.4.
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1.8

1.6

E; Density (GeV / An / Ag )

Figure 4.7: Data and fits to the combined noise, extra interaction, and pileup correction
(v/s = 630 GeV). Lower three curves: single interactions and three representative lumi-
nosities. Upper three curves (dashed): multiple interactions, same three luminosities.
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The total effect of noise, extra interactions, and pileup decreases with increasing pseu-
dorapidity (Figure 4.7). The lower set of curves indicates the correction for single inter-
actions while the upper curves (dashed lines) indicate the multiple interaction correction
(v/s = 630 GeV for both sets). Because the pileup effect is luminosity—dependent, three
curves in each set demark three representative luminosities for each correction. The correc-
tion at /s = 1800 GeV is the same at comparable (i.e. low) luminosities, but can become

twice as large at the highest luminosities.

The sum of Figures 4.5 and 4.7 results in the “total offset correction.” Figure 4.8
depicts the various uncertainties of the correction. The underlying event uncertainty is
the difference between the multiple and single interaction results in Figure 4.5. The Oc-
cupancy /Suppression uncertainty is valid only for /s = 630 GeV, and results from the
extrapolation of 1800 GeV jet results to the low center—of-mass energy. The dashed line in
Figure 4.8 indicates the covariant uncertainty from the fit to the pileup, noise, and extra
interaction curves of Figure 4.7. The solid line represents the quadrature total of all these
uncertainties. The largest uncertainty (not shown) results from a the parameterization of

suppression noise, as discussed in a prior subsection.

4.1.4 Proof of Principle

Although the individual underlying event, pileup, and noise components become inextrica-
ble, direct study of dijet events can verify the magnitude of the total offset. The Et deposits
far from the two jet centroids will not include energy from the primary interaction, only
the extraneous deposits that are azimuthaly homogeneous [23] throughout the calorimeter.
Given jets with pseudorapidites of 7, and 7,, and back—-to—back azimuths ¢, and ¢, define
“control cones” at positions:

Ny = mp=-1 ;772 + K (4.3a)

™

ba = ¢ (5 —rlm—ml). (4.30)
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Figure 4.9: Typical control cones (unfilled circles) for different dijet topologies.

where

4 1
\/W2 +(m —mp)® 4 4

These control cones are located 90° from each jet in ¢ and off the n—¢ line that runs between
the jets. In the limit of truly back—to—back jets, the prescription places each control cone
2.0 n — ¢ units from each jet. In the study sample, the dijet events were limited to single
interactions and the two jets were separated in ¢ by at least 2 radians. Of four possible
control cone positions (Figure 4.9), the two most central cones were selected.

The energy in the control cones compares favorably to the model used by the energy
scale correction (Figure 4.10), renewing confidence in the jet offset, even in the limit of low
jet Er where the correction becomes important. In the figure, the stars represent the energy
scale offset (as described prior this subsection) prediction for noise and underlying event in
a 0.7 radius cone, the error band results from the occupancy model, and the vertical error
bars include the rest of the CAFIX 5.1 uncertainties. The circles indicate the Et versus 7
distribution of the control cones as found in jet events. The statistical uncertainties of the

measurement are not visible on this scale.
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Stars: Underlying event and noise (CAFIX 5.1 correction) integrated over 0.7 cone. Circles:
Actual energy in “control cones” located far from jets in the /s = 630 GeV data sample.

4.1.5 Offset Summary

The offset correction removes the effects of calorimeter noise, underlying events, energy
from prior beam crossings (pileup), and extra interactions. Manipulation of two special
data sets isolates these individual components: minbias data, collected when L{) indicates
an interaction, and zerobias data, collected at random beam crossings. The data sets average
one or zero pp events per beam crossing, respectively; thus, the difference in calorimeter
energy between the two samples isolates the underlying event energy. The zerobias data
alone provides a measure of the noise and pileup. Small corrections scale the offset from

the special data sets to the correction necessary for jet data.

4.2 The Response Correction

Unlike test beam data, in pp collision data, resulting clusters of hadronic particles incident

on the calorimeter will not always strike the centers of the calorimeter cells, nor will they
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always strike at a 90° angle. Some particles may instead pass through a crack between cells
or travel diagonally through only a portion of a cell. In addition, low Et particles respond
non-linearly, in contrast to the more linear energy deposition of high Er particles. Finally,
the cryostat modules differ slightly in construction. The response correction adjusts the
reconstructed energy to remove these effects on average.

Because the energy variance of photons (and other electromagnetic particles) is negligible
compared to that from jets, events containing only one photon and one jet provide an
excellent measure the jet’s lost energy, the response. The photon energy scale is precisely set
by the well-measured Z (to ete™), J/1, and m( resonances. The response in the jet energy
scale demands that the transverse energy in the calorimeter balances the well-measured
photon on average, such that ]ZT = 0. Jet to jet fluctuations about the mean can still
result in mismeasured energy; this residual effect is called jet energy resolution, and shall

be discussed in Chapter 6.
4.2.1 The Missing E Projection Fraction Method

Using the transverse energies of the photon and jet as vector quantities, the response cor-

rection R, the missing K1 vector (ET), and the photon and jet Et’s are related by
El + RES = —Er. (4.5)

Defining the unit vector 7., along the transverse direction of the photon, Equation 4.5

becomes

R =it R —,

E}l + R fy - EfY = =iy - Br. (4.6)

For a two-body system, conservation of momentum in the transverse direction demands
A =jet

El = —n, - EIY, thus

R=1+22"L 14+ MPF. (4.7)

The Missing E1 Projection Fraction (MPF') expresses the response in terms of well-measured
photon quantities. Application of the response correction becomes complicated because

particle responses vary with energy rather than transverse energy. Additionally, photon-jet
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events may contain additional jets with sub-threshold energy, which result in mismeasured
]ZT. Finally, jet energy measurements can suffer from poor resolution, resulting in large
smearing effects (as discussed in Chapter 6). Simple topology cuts can remove the effect of
additional jets in the data sample, but the other biases must be removed in a less direct
manner.

To eliminate the smearing effects of jet resolution, the response correction must be
expressed in terms of a variable that is strongly correlated to jet E™°%%  yet is measured

with much higher accuracy. The jet energy estimator
E' =EI - cosh (’*) (4.8)

satisfies both criteria. Freed of resolution biases, the response as a function of E’ then
maps to E™¢% bin by bin. More specifically, the response on an interval [Ef, EY| equals the

Emeas

response at the average value of on that same E’ interval, as illustrated in Figure 4.11.

4.2.2 MPF Results

Calculated in each region of the calorimeter, the MPF response exhibits great stability
throughout the entire pseudorapidity range. Displayed as a function of jet energy, the
response curve (Figure 4.12) behaves in a highly linear manner above 100 GeV but decreases
sharply at lower energies. The uncertainty on the response parameterization (solid lines)
dominates the energy scale error at high energy.

Figure 4.12 derives from the /s = 1800 GeV data set. A comparison of 630 GeV data to
this larger sample (Figure 4.13) reveals no significant change with different center—of-mass

energy.
4.3 The Showering Correction

After the final-state partons of an interaction hadronize, the resulting particles strike the
D@ detector and initiate a cascade of secondary particles that propagates through the
calorimeter. A cone surrounding the initial particles may not be large enough to contain

all the secondaries. Conversely, particles with vectors outside the cone may initiate a
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cascade that ultimately deposits energy inside the cone. Because theoretical jet cross section
predictions consider jets without showering effects, the data must be corrected back to this
same level (the so—called “particle level”). The showering correction compensates for the
flow of energy into and out of the jet cone during the cascade through the calorimeter,
yielding only the energy of the particles that began within the cone.

The ratio of energy within a 0.7 cone to the energy in a larger cone determines the
fraction of energy escaping the jet cone definition, provided the second radius is sufficiently
large to encompass all shower energy. Test beam data demonstrates that on average a single
hadron will deposit more than 99.5% of its energy within a 0.4 radius cone (corresponding
to approximately 20° in azimuthal angle). This measurement and the RMS widths of jets
in physics data (Figure 4.14) indicate a second cone of radius 1.0 will contain all secondary
particles.

Physics data alone cannot reveal the amount of outriding energy due to particles outside
the cone before showering; instead, a Monte Carlo event generator (HERWIG) resolves the

ambiguity. Studying the data in two jet cone sizes, define

Ep_

FData - ERil'Oa (49)

R=0.7

such that the expression represents
J7 + true out—of—cone + net showering Loss

Fpata = T : & (4.10)

7

t+ L
_ Jr+Out+lL (4.11)
J7

Here, J7 is, by definition, the energy within the R = 0.7 cone. The term “true out—of-cone”
indicates the energy from particles whose vectors were not inside the cone boundary, and
thus should mot be recovered. Direct measurements of Fpg, indicate that 96.7% of all
energy in R = 1.0 lies within the 0.7 cone boundary.

To determine the showering correction with the form

1 _J7+L

S Jr

(4.12)
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the Monte Carlo events must provide

J7 4+ Out

- (4.13)

Fyc =

By adding and subtracting J and Qut from Equation 4.12, it may be transformed to

1
E = FData — F]VIC + 1. (414)

Figure 4.15 depicts the showering correction factor (S) for R = 0.7 cones at several pseu-
dorapidities (as determined at /s = 1800 GeV). At /s = 630 GeV, the observed average
width of jets decreases; thus, the expected showering correction is smaller than that at 1800
GeV. The small size of the correction factor in the central region indicates that little (if

any) change could occur with a change in /s energy.
4.4 Summary

The jet energy scale correction takes the form

Emeas _ ()

E =
R-S 7

(4.15)

where the detector energy is modified by the Offset, Response, and Showering terms. The
offset corrects for calorimeter effects, extra interactions, and underlying event energy. As
the primary correction, the response rescales measured jet energy to account for slightly
non-linear charge deposition in liquid argon and the effect of uninstrumented material in
the calorimeter. Finally, the showering correction returns to the jet any energy that may
have cascaded outside the nominal cone boundary.

The energy scale correction dominates the uncertainty of the final jet cross section. At
low E1, the ~ 250 MeV uncertainty on the offset correction drives the total error, while
at the other end of the spectrum, the uncertainty is driven by the response uncertainty.
(Extended discussions of the uncertainties in the cross section determination are reserved

for Chapter 7.)
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Figure 4.14: Jet RMS width versus measured jet energy, for both center—of-mass energies.
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Chapter 5

Cross Section Analysis

“Cowards can go no further.”
— Narukagami

This chapter focuses on the full analysis of jet data. For both /s = 630 and 1800 GeV,
events pass through the reconstruction, energy scale correction, and post—processing algo-
rithms. To minimize redundancy, the individual discussions in this chapter will focus on
data from either one /s energy or the other, describing the more complicated of the two.

The inclusive differential jet cross section describes the probability of producing a
hadronic jet with a given Er. Because data are collected as discrete events, the analy-
sis is performed in terms of histogram bins. The experimental formula for the cross section

is thus given by
B N
—0.5<n<0.5 JLdt-e AEp- Ay’

20
’ Ojet (5.1)

d?? dET

where the number of jets in a bin (V), is scaled by the time-integrated luminosity ([ £ dt),
the data selection efficiency (¢€), and the bin size in E1 and 7. This result yields the “raw”

cross section, which must subsequently be corrected for smearing effects (Chapter 6).

5.1 The Luminosity Calculation

This section* discusses the methodology used to calculate the instantaneous luminosity and

the time-integrated luminosity. The first quantity describes the number of pp crossings that

* Major portions of this section were originally published as Fermilab Technical Memorandum 2000, “The
D@ Luminosity Monitor Constant for /s = 630 GeV,” J.Krane, J.Bantly, D.Owen, Apr. 15, 1997 and as
D@ Note 3222 with same date and title.
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occur in the beam per second. The second quantity is a measure of the total number of
crossings that were potentially observable by the detector during the full data collection
period.

Because of the finite acceptance of the D@ detector and the finite total pp cross sec-
tion, not every pp crossing results in an observed event. The Luminosity Monitor Con-
stant, op,¢, scales the measured interactions per second into the luminosity (given in cross-

2.sec™!). As described in later chapters, the normalization uncertainty of the

mgs-cm=
inclusive jet cross section is primarily driven by op,. This constant represents both the
probability of an interaction and the likelihood of the detector to observe the interaction.

The Level @ detector consists of two arrays of scintillating tiles surrounding the Teva-
tron beampipe and placed 140 cm from the center of the detector along the beam axis.
These hodoscopes intercept low—angle particles generated by inelastic pp collisions. Nearly
simultaneous hits in the innermost tiles of Level @ (called “good FAST Z hits”) determine
the presence of a hard scattering interaction near the center of the D@ detector. The out-
ermost tiles increase the geometric acceptance of the hodoscopes slightly and “good SLOW
7Z hits” are used in offline analyses.

The instantaneous luminosity is given by

L= @, (5.2)

where R is the average number of (FAST Z) interactions per second and

Lo = €10 fhalo risD (€sDOSD + €DDODD + €EHCOHC). (5.3)

Here, the inelastic pp cross section has been split into three components (single diffractive,
double diffractive, and hard-core) because the geometric acceptance (¢;) for each process
differs greatly. The halo and multiple single diffractive correction factors (fu., and fusp)
are almost negligible in the range of low luminosities experienced during the low-energy
run, but they are included for completeness. Finally, the hardware efficiency (erp) was

calculated as a constant with respect to luminosity due to the limited luminosity range.
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The luminosity monitor constant may be interpreted as the portion of the inelastic cross
section observable by the D@ detector, thus oy is sometimes called the Level () visible
cross section.

During each bunch crossing, zero interactions, one interaction, or more than one interac-
tion may occur. Because the Level () hodoscopes cannot distinguish between one interaction
and several interactions, the actual event rate R must be inferred from the Level () count-
ing rate Ryy. From Poisson statistics, given the average number of interactions® per beam

crossing u, the probability of zero interactions in one crossing is
Py=e#, (5.4)

and Level () counting rate is then

Ri oy = 5.9
LO T 9 ( )

where 7 is the time between bunch crossings, 350 usec. Combining Equations 5.4 and 5.5,

the true rate may be expressed as

—In(l1-R
rot_ —In( LW), (5.6)
T T
and the instantaneous luminosity, in terms of measurable values, becomes
—In(1—-R
=== Rio7) (5.7)
oLpT

5.1.1 Calculation of pp Cross Section Values

Calculation of the Level () cross section requires a measurement of the single diffractive,
elastic, and total cross sections (0gp, 0gL, and oror) at the intended center of mass energy.
For /s = 1800 GeV, the world average cross section values were computed using published
data [25][26] from CDF and E710. Because the results of the two experiments do not
agree well, the uncertainty on the average value was increased [27] by a factor of x. The

calculation of the luminosity monitor constant for the low energy run, while similar [27][28]

* The actual number of interactions per beam crossing remains indeterminate for this calculation. Given an
instantaneous luminosity, the average number of expected visible interactions is u = L7or¢ .
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a b Cov(a,b)
orotr | 0.2447£0.0535 | 22.554 £8.711 —0.464
OEL 2.541+£0.545 | —19.070 £ 6.992 —3.84
osD 0.538 £ 0.413 1.471 £6.010 —2.48

Table 5.1: Fit parameters, errors, and covariance for the World Average cross sections.

oror | 63.223 £ 0.829 mb
OEL 13.683 £ 0.290 mb
osD 8.432 £ 0.641 mb

Table 5.2: Calculated cross sections and uncertainties at /s = 630 GeV.

to the 1800 GeV calculations, suffered from a slightly different complication: a complete
set of three cross sections does not exist at /s = 630 GeV.

The nearest complete set of measurements [25][29][30] was obtained at a center-of-mass
energy of 546 GeV. This section details the methodology used to interpolate the cross
section values between 546 and 1800 for use at 630 GeV.

In the literature, the total pp cross section is expected [30][31] to follow a In?s depen-
dence. In contrast, the elastic and single diffractive cross sections obey an observed [32] In s
dependence. A two parameter form (aln® s+ b) was used to interpolate each cross section,
where n had a value of 2 to fit the total cross section and 1 otherwise. Because the target
point of the interpolation is very close to one end-point of the fit, the error at 630 GeV is
largely driven by the error at 546 GeV. Figure 5.1 displays the results of the fits. Table 5.1
lists the fit parameters, the uncertainty on the parameters, and the covariance between a
and b for the three cross sections. Table 5.2 summarizes the values and uncertainties found
for ogp, 0gL, and oo at /s = 630 GeV.

The fit to the total cross section was compared to the result obtained by the UA4/2
Collaboration [31] using a more complicated 8 parameter fit. UA4/2 modeled the /s
evolution of the total pp cross section from 5 to 546 GeV with dispersion relations and 103
data points. They extrapolated their best fit to all data to LHC and SSC energies; their
intermediate points are shown in Figure 5.2. The UA4/2 best fit points at 546, 900, and

1800 GeV are in excellent agreement with the simpler fit to the total cross section used
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osp | 8.432 = 0.641 mb
opp | 1.299 &+ 0.238 mb
orc | 39.810 £ 1.113 mb

Table 5.3: The calculated components of the inelastic pp cross section.

for the op,p calculation. To estimate the uncertainty of interpolation due to the simple
functional form of the model used in the op calculation, the variance between the UA4/2
extrapolation and the simple interpolation (0.23%) is included as an error in quadrature

with the other fitting uncertainties..

As detailed in reference [27], the double—diffractive and hard—core components of the pp
cross section are calculated from the world average cross sections. The resulting values are

presented in Table 5.3.

5.1.2 Geometric Acceptance of Level O

Monte Carlo studies determine the acceptance of the Level ) hodoscopes by calculating the
probability that one or more charged particles will pass through the scintillating tiles. The
probabilities were calculated [25][33] with MBR and DTUJET, two minbias event generators.
Samples of 6000 events each were generated for each of the three inelastic processes and
passed through DOGEANT [34] and DORECO [35] (the DO detector simulator and recon-
struction algorithms, respectively). The results are summarized in Figure 5.4. The MBR
Monte Carlo program randomly selects a diffracted particle in SD interactions, while DTU-
JET generates events with either the proton or the antiproton diffracted each time. Some
events are “lost” during the GEANT or RECO stage, but the final sample size in each case

is nominally 6000 events.

The results indicate a small decrease in acceptance when compared to the results of
the /s = 1800 GeV study. For each subprocess, the geometric acceptance decreased by
1-3 percent. The decrease results from lower particle multiplicity of collision products at

V5 = 630 GeV.
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Final numbers from MBR and DTUJet
for Level 0 Acceptance at 630 GeV CM Energy

TOTAL EVENTS good FAST Z
IN SAMPLE number percent stat error

DTUJet
Single Diffractive, proton diffracted 5997 444 7.40% 0.34%
Single Diffractive, antiproton diffracted 6000 454 7.57% 0.34%
Double Diffractive 5999 4217 70.30% 0.59%
Hard Core 6000 5778 96.30% 0.24%

MBR
Single Diffractive 5957 1102 18.50% 0.50%
Double Diffractive 5979 3946 66.00% 0.61%
Hard Core 5997 5704 95.11% 0.28%

good SLOW Z
number percent stat error

DTUJet
Single Diffractive, proton diffracted 5997 514 8.57% 0.36%
Single Diffractive, antiproton diffracted 6000 527 8.78% 0.37%
Double Diffractive 5999 4324 72.08% 0.58%
Hard Core 6000 5829 97.15% 0.22%

MBR
Single Diffractive 5957 1186 19.91% 0.52%
Double Diffractive 5979 4005 66.98% 0.61%
Hard Core 5997 5743 95.77% 0.26%
AVERAGES FAST Z ACCEPTANCE SLOW Z ACCEPTANCE
SINGLE DIFFRACTIVE 12.99% +6.95% 14.35% +0.73%
DOUBLE DIFFRACTIVE 68.15% +0.85% 69.53% +0.84%
HARD CORE 95.71% +0.37% 96.46% +0.34%

Table 5.4: Summary of geometric acceptance studies. FAST Z indicates the number and
percentage of events with at least one particle passing through each Level @ hodoscope. (The
SLOW Z numbers, included for completeness, are germane to data triggers and luminosity
studies, but not to the instantaneous luminosity measurement.)
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5.1.3 Level @ Hardware Efficiency and Luminosity—Dependent Effects

Hardware Efficiency

The method used to evaluate the Level () hardware efficiency (er,q) is discussed at length
in reference [28]. The scintillating tiles are least likely to detect events with very low
particle multiplicity, resulting in a small luminosity dependence in €. Because the particle
multiplicity of inelastic collisions at /s = 630 GeV is smaller than comparable events at

1800 GeV, the observed decrease in hardware efficiency is to be expected.

In Figure 5.3, the hardware efficiency found at 630 GeV lies approximately seven percent
lower than the 1800 GeV points at similar luminosity. No attempt was made to include a
luminosity dependence in the 630 number; the single point is used throughout the luminosity

range (1-10% to 2.6 - 103 ecm=2 - sec™!).
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Discontinuities in the halo correction are caused by unusually high halo rates in several
isolated runs.

Multiple Single Diffractive Events

In Section 3, the calculation of the geometric acceptance assumed all events were single in-
teractions. A single diffractive event has a low probability of firing both Level ) hodoscopes
because the trajectory of the non—fragmented particle usually remains within the beampipe.
At high luminosities, two (or more) single diffractive events will occur simultaneously but
in opposite directions with a calculable probability. Such an occurrence mimics a double
diffractive event and shares the much higher acceptance. Although the expression for the
luminosity given previously accounts for multiple interactions, it does so in a simple way

that neglects the effect of multiple single diffractive events (MSD).

In high—luminosity environments, MSD effects can be significant. During the 630 GeV

running period, the effect of MSD was much less pronounced (see Figure 5.4 (a)).
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Figure 5.5: The combined MDS and Halo correction factor.

Beam Halo Correction

Particles orbiting within the Tevatron with a trajectory far from the nominal bunch center
comprise beam halo. When the proton and antiproton beams are focused at the center of
the detector, these halo particles can be deflected outside the beampipe and through the
detector, distorting physics measurements. For this reason, “halo events” are rejected at the
trigger level, with the unfortunate consequence of distorting luminosity measurements. The
correction derived from measured halo rates is shown as a function of instantaneous lumi-
nosity in Figure 5.4 (b). (The effect of beam halo depends on both beam characteristics and
luminosity, thus varying from run to run as highlighted by the discontinuities in Figure 5.4
(b). The correction is applied on a run—to-run basis, but the behavior of the correction is
best viewed as a function of the stronger luminosity dependence.) The combined MSD and
halo corrections are listed in Figure 5.5. The effect at all instantaneous luminosities is less

than 0.15%.
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€sposp + €ppopp + €aconc | 40.081 £ 1.282 mb

ELG 0.8232 £ 0.0257

Jualo * fmsD 0.99924 + 0.00200

oI GeV 32.97 + 1.05 mb

Lo
s= Ge
compare to 0\/_ 1800 GeV 46.7 &+ 2.5 mb
Lo

Table 5.5: Results for the calculation of the luminosity monitor constant at /s = 630 GeV.

5.1.4 Luminosity Monitor Constant Summary

The luminosity monitor constant was calculated for /s = 630 GeV, considering changes
in efficiency due to lower pp inelastic cross sections, differing particle kinematics, and
luminosity—dependent considerations. The small run—dependent halo effect was included
and the hardware efficiency of the scintillating hodoscopes was remeasured. A numeric
interpolation of pp cross sections between /s = 546 and 1800 GeV was performed be-
cause no direct measurements are available. We find a final luminosity—weighted average
oLg = 34.04 £ 1.05 mb, a fractional uncertainty of £ 0.0308.

The results of the individual components of the calculation are listed in Table 5.5 with
the final result. Note that only the central values are listed, the MSD and beam halo

corrections do vary slightly with instantaneous luminosity.

5.1.5 The Time-Integrated Luminosity

For cross section analyses, the integrated luminosity takes prime importance, setting the
scale of the measurement. Strictly speaking, “integrated luminosity” is something of a
misnomer, true only in the limit the time between beam crossings approaches zero. The lu-
minosity sum is calculated for each trigger to account for individual prescales and deadtimes
(cf Chapter 3).

The total time-integrated luminosity for the low—energy run, 537 nb~!, was accumulated
over three weeks. The individual luminosity exposure for the jet triggers of this analysis

were listed previously in Table 3.2.
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5.2 Data Selection Efficiency

Not all collected events contain valid jet data. Several different phenomena deposit energy

in the calorimeter and may imitate a jet event:

e cosmic rays passing through the calorimeter during a beam crossing

e activity in the Main Ring

beam halo (Tevatron noise)

e sparks or cascading noise in the calorimeter or read—out electronics

electrons or photons misidentified as jets.

A set of criteria remove these background “fakes” from the sample. Called event and
jet selection cuts, quality cuts, or simply “cuts,” these criteria also remove some portion of
the signal sample, resulting in a deficit in the measured cross section. With knowledge of
the jet cut efficiency (denoted €), a correction to the remaining jet sample eliminates the
deficit, as in Equation 5.1. The selection cuts may invalidate an entire event, or only one
of the jets within an event.

Each selection cut imposes a restriction on some jet or event variable. The efficiency
of each cut is determined by the distribution of each variable before and after the cut;
the binomial error formula (¢f Appendix B) describes the statistical uncertainties of the
efficiencies. The cut efficiencies are determined with a relatively pure jet sample to avoid
background contamination in each distribution. The following subsections describe the
selection criteria; a listing of the efficiencies is reserved for the summary at the end of this

section.

5.2.1 Event Selection

Two event criteria validate jet events: the missing E1 cut and the vertex cut. The most
powerful criterium in QCD physics at D@, the missing Et (FT) cut removes most of the
background due to cosmic rays and noise. The vertex cut does not remove background;

instead, it ensures good ET resolution for subsequent analysis.
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The Missing E1 Cut

Cosmic rays striking the D@ calorimeter deposit large amounts of energy in the cells, sim-
ilar to the energy deposits of hadronic jets. Unlike jets, the cosmic ray Er is normally
unbalanced. If, for instance, the cosmic ray strikes the calorimeter as in Figure 5.6, the
lack of activity on the left-hand-side of the calorimeter results in ¥t of equal magnitude to
the cosmic ray Ep. Even if the cosmic ray trajectory had passed through the exact center
of the calorimeter (and the beampipe), the energy deposition pattern (%) is inconstant,
and usually results in large Fr. Some physics events result in (valid) non—zero K, but the
dominant process in the inclusive jet cross section is the dijet channel (Fr= 0); decay chan-
nels with a single jet plus one other object (a photon, for instance) exhibit cross sections
that are several orders of magnitude smaller (also Fira 0). Exotic processes with expected
non-zero ¥t occur even less frequently. Because QCD events with Fp~ 0 dominate the
inclusive jet cross section, a cut that limits the Fp will not appreciably bias the data sample
but will effectively remove cosmic ray backgrounds and noise.

Figure 5.7, the E];,RT? distribution, reveals an excess at unity over the smooth under-
lying shape. Here, Ef*** refers specifically to the jet in the event with greatest Eq (the
“leading jet Ep”). Most events in the distribution lie to the right of the displayed region
of the figure. The arrow indicates the position of the Missing Er Fraction cut (sometimes
denoted METFR) at 1.43. The efficiency is determined with the area under a best—fit Gaus-
sian (which corresponds to the number of retained events, n), fit to the “signal interval”
[1.43,4.0]:

n+n

P (58)

EMETFR =

Here, n’ is the number of events with METFR greater than 4.0, and [ is the area under the
Gaussian between 0 and 1.43 (the estimated number of lost events). The binomial error
formula determines the statistical uncertainty.

To estimate the magnitude of any systematic biases, a second fit is performed on the in-

terval [0.0,4.0] with a double-Gaussian form, where the additional Gaussian is constrained
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Figure 5.6: Illustration of a cosmic ray event (calorimeter viewed along its axis, beampipe
in center). Some portion of the cosmic ray energy will be interpreted as a jet (or several

jets).
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Figure 5.7: The Missing Er Fraction
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to have a mean of one. The double-Gaussian yields a poor x?, but has the advantage
of modelling the observed distribution throughout the entire range. The efficiency is re-
calculated from the new curve, and the difference from the nominal result (Equation 5.8)
becomes the systematic error.

In events with very high-Er jets, the Fp cut loses some of its effectiveness. Occasionally,
an analysis requires a “tighter” cut than usual, but never higher than 3.33. Other analyses

require specific event topologies, rendering the Fr cut useless.

Revertexing and the Vertex Cut

Because the length of the proton and antiproton bunches is non-zero, the interaction vertex
frequently occurs off-center relative to the detector’s nominal z = 0 point. During the low
energy run, the Tevatron bunches maintained a typical length of 30 cm. The interaction
vertex position, well-modeled by a Gaussian distribution, appears in Figure 5.8 for each of
the three triggers used in the /s = 630 GeV analysis.

The high-luminosity environment at /s = 1800 GeV resulted in many multiple interac-
tion events in the data set. Inherent in the presence of additional vertices is the possibility
of selecting the wrong vertex as the primary for the event, resulting in an erroneous Er
calculation. The D@ reconstruction algorithm attempts to select the most likely primary
vertex (or vertices) based on the highest multiplicity of tracks in the Central Drift Chamber,
but the primary vertex does not always possess the highest multiplicity of tracks. To avoid
mistakes in the case of multiple primary vertices, an offline revertexing algorithm resolves
ambiguity by finding the vertex that minimizes the Fr. Because the K is recalculated only
approximately with jet balancing, the procedure is often called “(vector) Hr minimization,”
where the quantity 7-_[T is the vector sum* of all jet ET’S. Main Ring noise is usually not
identified as a jet (see Jet Selection below); thus, Hry is less sensitive to noise than the
full Bt calculation. In the limit that no electrons, photons, muons, or noisy cells appear

in the event, Hr = ¥r. As discussed in the previous subsection, the Bt in QCD events is

* Some D@ analyses require a scalar sum of all jet E1’s, denoted Hr. To avoid notational similarity, Hr is
sometimes denoted Srt.
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approximately zero; thus, the correct vertex will have the least ¥t and an incorrect vertex
will likely have significant Fip. The theoretical efficiency of revertexing is unity, and analysis
of jet data has been unable to distinguish the real efficiency from that value; thus, no error
is apportioned to this procedure. Revertexing decreases the /s = 1800 GeV cross section
by approximately 5% through most of the spectrum, but at high values of Er the decrease
can approach ~ 10 — 15%. Due to the paucity of multiple interactions at low luminosity,
the effect of revertexing at /s = 630 GeV is negligible.

D@’s event reconstruction algorithms calculate jet Er based on the event vertex; given
the correct vertex, the accuracy of Er measurements should not, in principle, be affected by
z position of the vertex. The three-piece construction of the detector, however, results in a
large change in material density near the ICR; an interaction far from z = 0 can result in a
low—pseudorapidity jet showering through that region. A restriction of |z| < 50 cm applied
to the data avoids degradation in jet Ep resolution (as discussed in the next chapter).
Although removal of events with off-center vertices improves the precision of the remaining
jet sample, the final cross section must account for all discarded events with an efficiency,
€vert -

Unlike the rest of the quality criteria, the vertex cut does not remove background;
therefore, the efficiency does not require a fit to the “signal” portion of the distribution.
Instead, the number of accepted events over the total determines the efficiency, and the

error is given by the binomial error formula without a systematic error estimate.

5.2.2 Jet Selection

The following criteria invalidate or accept single jets within an event. Rejection of one jet
in an event does not necessarily invalidate any other jets in the same event. By design,
these cuts remove both noise and physics objects which can imitate jets while retaining the
maximum number of true hadronic showers.

The efficiencies (¢;) for the following jet cuts are determined with a fit to the “signal”

portion of each distribution. When extrapolated into the “background” region, the fit
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provides an estimate of the number of good jets that are lost in the rejection region. The

efficiency is then

n
€ = n——|—l’ (59)

where [ is the estimated number of jets in the background region and n is the actual number
of jets that pass the cut. Statistical uncertainty of the efficiency is determined with the

binomial error formula

e-(1—e¢)

s oy

(5.10)

To estimate the systematic uncertainty, the deviation of the original result from that of a

second functional form in the signal region is added in quadrature to the binomial error.
The Electromagnetic Fraction Cut

Because electrons and photons interact with matter on relatively short distance scales, they
tend to deposit all of their energy in the first few layers of the calorimeter (c¢f radiation
lengths versus nuclear interaction lengths, Chapter 2). The fraction of all energy in the first
few layers of the calorimeter effectively discriminates between electromagnetic and hadronic
showers. The electromagnetic fraction (EMFR) of a jet candidate is defined as the fraction
of the total Er which lies in calorimeter layers EM1-EM4.

Jets emerge from the beampipe as clusters of hadronic particles, primarily composed
of 7* and 7 mesons. Unlike the charged pions, the uncharged pions interact electromag-
netically by rapidly decaying to two photons. Fluctuations may result in jets composed
primarily of 7g’s, thus resulting in losses of real jets with an EMFR cut.

Figure 5.9 displays the EMFR distribution for jet Er between 140 and 160 GeV. Jets
must possess an EMFR between 0.05 and 0.95 to satisfy the criteria. Very few jets lie in

the excluded region; the Gaussian fit indicates an efficiency of 99.77%.
The Coarse Hadronic Fraction Cut

The Main Ring beampipe pierces the D@ calorimeter near the top; while Fermilab stacks

protons and antiprotons, Main Ring beam losses appear as energy in the outermost layer of
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Figure 5.9: The EMFR distribution for a selected jet Er range.

the DO calorimeter (the coarse hadronic layer). The coarse hadronic Er fraction (CHFR)
is the ratio of the transverse energy in this outermost layer to that of the entire jet. The jet
CHFR distribution (Figure 5.10), while primarily exponential in shape, displays activity at
larger values. To eliminate jets contaminated with Main Ring energy, D@ analyses require

a jet to have less than 40% of its entire Er in the last layer.

The Hot—Cell Fraction Cut

Occasionally, electrical discharges in calorimeter cells contribute to jet Ex. These artificially
hot cells can severely distort the cross section spectrum. Unfortunately, a jet can occasion-
ally deposit a large fraction of its energy in a single cell. Hot—Cell Fraction (CelFR) is
the E1 ratio of the first and second “hottest” cells in a jet. Figure 5.11 reveals the CelFR
distribution as exponentially falling, with the cut criterium set at a value of ten. The two
curves indicate the results of fits with slightly different parameterizations (to determine the
systematic uncertainty). In low-statistics analyses, the cut criterium shifts from 10 to 20

to maximize jet statistics in the remaining sample, resulting in an increased efficiency.
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Figure 5.12: The cuts of the jet restoration procedure. (Top) Most AIDA cells lie within
the R = 0.7 jet cone definition. (Bottom) Restoration of AIDA cells typically increases jet
energy but never by more than a factor of two.

Cell Restoration

In an attempt to reduce the effect of hot cells during data—taking, the D@ collaboration
implemented an algorithm that flagged the most energetic cells within jets; during data
reconstruction, these “killed” cells were simply overlooked by the jet algorithm. The AIDA
routine™ successfully reduced the background rate for top quark and supersymmetry analy-
ses, but inappropriately distorted the inclusive jet cross section by removing valid cells from
high E1 jets. To correct the overzealous nature of the algorithm, the killed cells must be

restored offline.

Jet restoration is accomplished in three steps. First, AIDA cells outside each jet’s cone
radius are removed from consideration (i.e., they will continue to be ignored). This radius
criterium is abbreviated “Del R< 0.7.” Second, a table of typically noisy cells is consulted;

AIDA cells corresponding to known hot cells are removed from consideration. Third, each

* AIDA is both an acronym for Anomalous Isolated Deposit Algorithm and the name of an opera.



111

ATDA cell is added to the existing jet if the result will not exceed twice the original jet’s
Er. This criterium is expressed “R_FRAC< 2.0.” Figure 5.12 illustrates the measured
efficiency of the procedure. After restoration, the jets must still satisfy the EMFR and
CHFR cuts; the CelFR of a restored jet cannot be calculated without a new reconstruction,

so the CelFR criterium is released in the case of a restored jet.

5.2.3 Data Selection Efficiency Summary

As a prerequisite to appearance in the inclusive jet cross section, all jet events must satisfy
two criteria: the event must possess low K relative to the leading jet Et, and the vertex
position must lie within 50 cm of the geometric center of the detector. Each jet in the cross
section must satisfy three quality criteria: the jet must not have excessive EM activity, must
not have excessive Main Ring activity, and must not have too much energy concentrated in a
single calorimeter cell. Some jets, “damaged” during reconstruction, are restored according
to another recipe.

Tables 5.6 and 5.7 list the efficiency of each jet criterium as measured for specific energy
bins in the /s = 1800 GeV data set. The global jet efficiency is given by the product
of jet selection efficiencies (EMFR, CHFR, CelFR, Del R, R FRAC) and event selection
efficiencies (METFR), as listed in Table 5.8. By parameterizing the efficiency data, statis-
tical uncertainties are minimized and each jet is corrected as it is added to the histogram.

Figure 5.13 displays the parameterizations of the jet and event selection efficiencies.

5.3 The Raw Cross Section

The inclusive jet cross section at /s = 630 GeV consists of data collected with three triggers.
The jet spectra for each trigger are displayed in Figure 5.14. Each of the three distributions
exhibit two peaks. The trigger design causes the local maxima at high Ep: each trigger
sample includes only events with at least one jet above the trigger threshold. Although the
true jet distribution decreases monotonically in E1, inefficiencies in trigger “turn—on” result

in losses of jets with ET near or somewhat higher than the trigger threshold, causing the
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EMFR
Et bin r effic stat error  sys error  total error
60-80 21 75 38397 | 0.99875| 0.00018 | 0.000703 | 0.000726
80-100 6.7 44 8097 | 0.996869 | 0.000621 | 0.002303 | 0.002386
100-120 12.3 27 31492 | 0.999376 | 0.000141 | 0.000233 | 0.000273
120-140 7.2 17 10451 | 0.998842 | 0.000333 | 0.000469 | 0.000575
140-160 3.65 10 4054 | 0.998316 | 0.000644 | 0.000783 | 0.001014
160-180 17.7 26 19063 | 0.998854 | 0.000245 | 0.000218 | 0.000328
180-210 12.1 23 10783 | 0.998372 | 0.000388 | 0.000505 | 0.000637
210-250 9.3 17 6576 0.998 [ 0.000551 | 0.000585 | 0.000804
250-300 2.7 10 1862 | 0.99659 | 0.001351 0.00196 | 0.002381
300+ 2.8 9 615| 0.990407 | 0.003931 | 0.005041 | 0.006392

CHFR
Et bin r effic stat error  sys error  total error
60-80 162.4 300 31852 | 0.992741 | 0.000476 0.00216 | 0.002212
80-100 26.1 58 7580 | 0.994453 [ 0.000853 | 0.002104 [ 0.002271
100-120 83.3 103 28844 | 0.996771 | 0.000334 [ 0.000341 | 0.000478
120-140 26.5 31 10122 | 0.99716 | 0.000529 | 0.000222 | 0.000574
140-160 3.6 10 4049 | 0.998321 | 0.000643 0.00079 [ 0.001019
160-180 40 54 21640 | 0.997828 | 0.000316 | 0.000323 | 0.000453
180-210 341 45 12800 | 0.99691 | 0.000491 | 0.000426 0.00065
210-250 26.8 32 8344 | 0.996477 | 0.000649 | 0.000312 0.00072
250-300 8.6 14 2552 | 0.995572 [ 0.001314 | 0.001058 | 0.001687
300+ 3 7 779| 0.993582 [ 0.002861 | 0.002567 | 0.003844

CELFR
Et bin r effic stat error  sys error  total error
60-80 615 633 34278 | 0.981796 | 0.000722 | 0.000263 | 0.000768
80-100 126 146 7310| 0.981395 0.00158 | 0.001368 0.00209
100-120 554 645 28077 | 0.978648 | 0.000863 [ 0.001621 | 0.001836
120-140 201 206 9640 0.97889 [ 0.001464 | 0.000259 | 0.001487
140-160 82 99 3751 | 0.975873 | 0.002505 | 0.002266 | 0.003378
160-180 454 464 19277 | 0.976189 | 0.001098 | 0.000259 | 0.001128
180-210 251 271 11084 | 0.976453 0.00144 | 0.000902 0.0017
210-250 172 186 6992 | 0.974399 [ 0.001889 | 0.001001 | 0.002138
250-300 59 65 1844 | 0.966377 | 0.004198 [ 0.001627 | 0.004502
300+ 13 17 581| 0.974182 | 0.006579 | 0.003442 | 0.007426

Table 5.6: Jet cut efficiencies at /s = 1800 GeV.




METFR
Et bin r r' effic stat error  sys error  total error
60-80 1126 940 766850 | 0.998653 | 4.19E-05 | 0.000121 [ 0.000128
80-100 669 420 413975 | 0.998685 | 5.63E-05 | 0.000301 | 0.000306
100-120 748 410 508739 | 0.998862 | 4.73E-05 | 0.000332 [ 0.000336
120-140 802 270 225779 | 0.997626 | 0.000102 | 0.001178 [ 0.001183
140-160 545 225 107189 | 0.996408 | 0.000183 | 0.001493 | 0.001504
160-180 225 78 44011 | 0.996558 | 0.000279 | 0.00167 | 0.001693
180-210 125 62 23995 | 0.996103 | 0.000402 | 0.001313 | 0.001373
210-250 40 25 8698 | 0.996264 | 0.000654 | 0.000862 [ 0.001082
250-300 22 9 2333 | 0.993356 | 0.001682 | 0.002786 | 0.003254
300+ 5 12 733| 0.988404 | 0.003954 | 0.004775 0.0062

RFRAC
Et bin r r' effic stat error  sys error  total error
60-80 22.7 28 1134 | 0.977646 | 0.00439 | 0.002337 | 0.004973
80-100 4 9 347| 0.981268 | 0.007278 | 0.007205 [ 0.010241
100-120 33.12 40 1789 | 0.979564 | 0.003345 | 0.001923 | 0.003858
120-140 3.6 13 705| 0.988227 | 0.004062 | 0.006667 [ 0.007807
140-160 0.89 5 292| 0.989914 | 0.005847 | 0.007038 [ 0.00915
160-180 10.7 22 1874 | 0.991275 | 0.002148 | 0.003015 | 0.003702
180-210 10.4 13 1224 0.990441 | 0.002781 | 0.001062 | 0.002977
210-250 8 21 835| 0.982635 | 0.004521 | 0.007784 | 0.009002
250-300 3.1 8 307| 0.981922 | 0.007604 | 0.00798 | 0.011023
300+ 1.3 3 124| 0.982661 | 0.011722 | 0.006855 | 0.013579

DEL_R
Et bin r r effic stat error  sys error  total error
60-80 0.54 8 1756 | 0.997568 | 0.001175 | 0.002124 | 0.002428
80-100 0.21 1 380| 0.998408 | 0.002045 | 0.001039 [ 0.002294
100-120 1.34 5 1757 | 0.998196 | 0.001012 | 0.001042 | 0.001453
120-140 0.41 4 703| 0.996863 | 0.002109 | 0.002553 [ 0.003312
140-160 0.31 2 292| 0.996045 | 0.003673 | 0.002894 [ 0.004676
160-180 2.21 10 1856 | 0.996711 | 0.001329 | 0.002099 | 0.002484
180-210 1.4 4 1214 | 0.997776 | 0.001352 | 0.001071 | 0.001725
210-250 1.8 4 828| 0.996498 | 0.002053 | 0.001329 [ 0.002445
250-300 0.25 1 304| 0.997944 | 0.002598 | 0.001234 [ 0.002876
300+ 0.68 1 123| 0.993171 | 0.007426 | 0.001301 | 0.007539

Table 5.7: METFR efficiency and jet restoration efficiencies at /s = 1800 GeV.
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Figure 5.13: The jet and event cut efficiency for /s = 1800 GeV. Vertex cut efficiency is

not included.
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GLOBAL (all Jets) GLOBAL (all Jets) with MET
Et bin effic error +/- Et bin effic error +/-

60-80 97.3236 0.2569 60-80 97.1925 0.2572
80-100 97.2824 0.4205 80-100 97.1544 0.4216
100-120 97.4834 0.2035 100-120 97.3725 0.2062
120-140 97.5333 0.2083 120-140 97.3018 0.2395
140-160 97.3219 0.4086 140-160 96.9723 0.4354
160-180 97.3802 0.1492 160-180 97.0450 0.2257
180-210 97.2747 0.2052 180-210 96.8956 0.2469
210-250 96.9398 0.2943 210-250 96.5776 0.3136
250-300 95.9903 0.5882 250-300 95.3525 0.6722
300+ 95.8802 1.1135 300+ 94.7684 1.2745

Table 5.8: The global data selection efficiencies, before and after the missing Er cut.

rounded appearance of the high Ep peak. The maxima at low Ep (~ 8 GeV) result from

events that contain low E1 additional jets.

To form the inclusive jet cross section, a region of each trigger is selected to maximize
statistical power while maintaining full trigger efficiency. Any given cross section bin re-
ceives contributions from one and only one trigger. The luminosity in any given bin is
the luminosity exposure for that trigger, given in Table 3.2, page 60. The non—overlap of

triggers ensures an unambiguous luminosity determination.

The inclusive jet cross section at /s = 1800 GeV was determined prior to the 630
GeV analysis. To facilitate the ratio calculation in xT, the bin boundaries for the 630 GeV
analysis were selected such that

630 _ 315 1800

i.e., such that the bin edges match in xp—space. Most of the resulting bins are 3.5 GeV
wide, but some bins have a GeV width of 7.0, 10.5, or more.

Figure 5.15 displays the raw cross section at /s = 630 GeV. The three different markers
indicate the ET region for each jet trigger. Horizontal lines indicate the bin widths, and
vertical lines (mostly hidden by the markers) indicate the statistical uncertainty on each

point. Markers are located in the center of each bin.
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Figure 5.15: The “raw” inclusive jet cross section for /s = 630 GeV. Markers indicate the
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5.4 Summary

At the most basic level, the inclusive jet cross section analysis is a counting experiment,
where the number of jets on an interval of Er is scaled by the integrated luminosity, the
selection efficiency, and the width of the bin in Et and pseudorapidity. The end result
describes the probability of observing a jet with particular transverse energy; in the units
of high energy physics, this “differential cross section” has units of area/energy?.

The luminosity is determined by the Level () counting rate, scaled by the pp inelastic
cross section times the probability of detecting a pp interaction. The integrated luminosity
is thus a measure of the number of chances that D@ might observe a jet event.

The selection efficiency describes how often a single jet or entire jet event is rejected
on the basis that it appears to originate from noise or background effects. Several different
criteria differentiate “good” jets from contamination and the efficiency of each must be
calculated separately. The product of these efficiencies yield the total factor that corrects
the jet cross section.

To measure the ratio of cross sections on a bin—-by—bin basis, the width of the E1 “slices”
must match between center—of-mass energies. Because the bin sizes must match in xp units,

the bins at /s = 630 GeV are roughly one-third the size of those at 1800 GeV.



Chapter 6

Unsmearing

or, Correcting for the Effect of Finite Energy Resolution
in the Inclusive Jet Cross Section

Stochastic variations in jet energy result in a distortion of the cross section Et spectrum.
Although jets may be mismeasured above or below the true Er with equal frequency, a

Y

systematic shift in the cross section results. This effect, “smearing,” results from the steeply

falling nature of the E1 spectrum.

Consider a steeply falling distribution measured in five bins (Figure 6.1, top), assuming
that “nature” determines the numbers of events in each bin, and also in bins to the left and
right of the measured region. Assigning x as the measured quantity of each event, postulate
that z is always mismeasured by +0.1, with a 50% probability of being mismeasured as
larger than the true value and 50% probability of being mismeasured as smaller than the
true value. As a result, some fraction of the events in each bin migrate to neighboring
bins; both to the left and to the right (Figure 6.1, center). Because the bins decrease
sharply in population as x becomes larger, more events migrate to the right than to the left
across each bin border. The measured distribution may thus be significantly larger than
the distribution determined by nature (Figure 6.1, bottom). In this example, the measured
distribution differs from the true distribution by nearly a factor of two.

More realistically, a variable will be mismeasured to a randomized degree. The measured

value is then displaced about the true value in a Gaussian distribution, rather than shifted
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Figure 6.1: Tllustration of the smearing effect. If the distribution of some variable = (Top)
is mismeasured by 10%, a fraction of all events migrate across bin boundaries (Center). In
the case of a steeply falling distribution, the resulting measured distribution (Bottom, solid
line) is significantly larger than the true distribution (Bottom, dashed line).
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by 10% as in the example. As an additional complication, the average displacement (the
width of the Gaussian) need not remain constant as a function of the variable z. Such is the
case with the mismeasurement of jet Et in the inclusive jet cross section. The fractional
mismeasurement, called the jet Ep resolution, is expressed as %1, where o, is the width
of the Gaussian that describes the observed randomized displacements at a particular Er.

The following sections describe the methods used to measure jet resolution and introduce
the unsmearing technique. The error analysis follows the covariance techniques outlined in
Appendix B. The resolution analysis is based on Reference [36], which documents the reso-
lution calculations for the /s = 1800 GeV data. The reference also contains a preliminary
result for /s = 630 GeV based on 18% of the full data sample; this chapter builds on the

prior work.

6.1 Jet Energy Resolution

“The only limits are, as always, those of vision.”
— James Broughton
The /s = 1800 GeV data set provides ample statistics for jet resolution measurements.
Using the inclusive jet sample, the dijet asymmetry technique matches the two highest Er
jets in an event. Unfortunately, this data sample does not extend below 40 GeV, where
resolutions change rapidly. This limitation complicates comparisons to the /s = 630 GeV
sample.

In addition to stochastic calorimeter effects, the asymmetry measurement includes two
extraneous contributions: biases from additional jets in an event, and the particle-level
asymmetry inherent in the jet definition. The bias in the measurement is removed with an
Er—dependent correction as determined with data, while the particle-level asymmetry is

removed with a Monte Carlo simulation.
6.1.1 Dijet Asymmetry Measurements

Also called the dijet balance, the dijet asymmetry is a measure of the degree to which the

Et’s of the leading jets match. Because a pp collision initially has nearly zero transverse
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Figure 6.2: The observed dijet asymmetry for the central (|n| < 0.5) region, with /s =
1800 GeV. Scale is logarithmic. Simple Gaussian fits describe the data accurately.

momentum, a true dijet event must exhibit perfect Er balance between jets. The dijet

asymmetry provides a nearly direct measure of the Er spread expected from a typical jet.
For notational convenience, define x and y as the E1 of the two jets in the event. The

dijet asymmetry is then given by

A=""Y, (6.1)
r+y

In the limit that * =~ y = Ep and 6x =~ 0y = og,, the variance of the asymmetry in

Equation 6.1 is simply related to the fractional transverse energy resolution:

dijet I8r _ V20 4, (6.2)
Er

where 04 is the width of the A distribution, a smooth Gaussian (Figure 6.2).
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Figure 6.3: Asymmetry for different third—jet thresholds (/s = 1800 GeV).

6.1.2 The Soft Radiation Correction

Higher-order contributions can result in the production of three or more jets, destroying the
balance of the two leading jets. Because the DO reconstruction algorithm ignores jets with
Er less than 8 GeV, additional jets in an event may not be visible. Thus, the imbalance in
the two observed jets cannot be entirely attributed to jet resolution effects—the spectrum
of UELTT must be corrected for the effect of undetected jets. QCD three—jet events dominate
QCD events with four or more jets by factors of g, so this resolution analysis neglects

the effect of more than one additional jet. With this approximation, the soft radiation
correction is often termed the “third—jet bias” correction.

The correction is derived from an extrapolation [36] based on events with third jets of
known Er. The asymmetry of the leading two jets is measured as a function of the E1 of the
third jet. The asymmetry data are then extrapolated to E3T”i = (; the ratio of the asymmetry
in dijet events (with an unknown number of third jets below the 8 GeV reconstruction

threshold) and the extrapolated result provides a correction factor K. Figures 6.3, 6.4, and
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Figure 6.5: The soft radiation correction as a function of Jet Et at /s = 1800 GeV.
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6.5 show the results of this procedure for /s = 1800 GeV. Because third jets are relatively
uncommon at /s = 630 GeV, the correction factor is approximately unity for that data

set.

6.1.3 Particle-Jet Asymmetry

¢

As mentioned briefly in Chapter 4, jets should be corrected back to the “particle level,” a
concept closely tied to the cone definition of jets. A cluster of particles emerging from the
beampipe will have some spatial distribution and a cone drawn around their centroid may
not include all particles in that cluster. Although particles outside the cone boundary are
not by definition part of the jet, they nonetheless possess some fraction of the Er required to
balance other objects in the event. Occasional losses of particles outside the cone definition
result in a “natural” dijet imbalance, the effects of which should not be removed from the
cross section.

As with the showering correction in the energy scale chapter, the HERwWIG Monte Carlo
event generator provides a measure of the out—of-cone losses, and thus a measure of the
particle-level asymmetry. Measuring the particle—jet imbalance and subtracting the result
(in quadrature) from the data asymmetry (after the soft correction) isolates the true detector
resolution. Figure 6.6 compares the soft radiation—corrected resolution to the particle—jet
imbalance.

6.1.4 Resolution Parameterization

A three-parameter fit describes the final resolution data for /s = 1800 GeV,

oy n? s2
= + — 42, 6.3
Er \/(ET)2 Er (63

as depicted in Figure 6.7. Table 6.1 lists the values of the fit parameters and the elements
of their covariant uncertainty matrix. In this traditional fit, the first parameter simulates
fluctuations with a constant magnitude for all jet Er values; this “noise” term primarily
describes the low Ep resolution. The second term, “sampling,” describes the intermediate

Etr range. The third parameter defines the asymptotic minimum of the asymmetry at
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Figure 6.6: The jet Er resolution curve after the soft radiation correction (upper set of
points) with fit errors (shaded band) and systematic uncertainty (dash—dot line). The
particle—jet correction (bottom set of points) will be subtracted in quadrature.
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Parameter | Value | Error Matrix
c 0.033 3.6 x107° —3.62x10* 0.0037
s 0.686 | —3.62 x 104 0.004225 —0.0486
n 2.621 0.0037 —0.0486 0.6561

Table 6.1: The parameters and covariant uncertainties of the 1800 GeV resolution fit. The
fit yields x? = 16.87 for 9 degrees of freedom, or a 0.051% probability.

high Er. Motivated by test beam results, the traditional parameterization contains the
underlying assumption that jet ET resolutions may be parameterized as though they were

pion energy resolutions.

6.1.5 Modifications for 630 GeV

Although the 1800 GeV resolution data spans a wide range in E| and results in a well-
constrained fit, a fit to the sparse data at /s = 630 GeV cannot yield a similarly precise
result. Two modifications to the basic asymmetry method supplant the otherwise insuffi-
cient data at 630 GeV: the inclusion of asymmetry data from photon—jet events and the
“twin fit” technique. The former incorporates data from lower E1 than would be possible
with dijet data alone, and the latter links the behavior of the resolution curves between
center—of-mass energies. The following subsections detail these two modifications to the

standard method.

Inclusion of Photon—Jet Asymmetry Measurements

The relative rarity of photon-jet events compared to dijet events and the limited running
time at /s = 630 GeV provide low statistics for photon-jet asymmetry measurements above
30 GeV in Ep. The advantage of photon-jet measurements arises from trigger considera-
tions. Because photon triggers are more sensitive to low-E1 events than jet triggers, the
data sample can complement dijet measurements and extend knowledge of the jet resolution
to much lower E1 than otherwise possible.

As described in the calorimeter section of Chapter 2, the D@ detector measures purely

electromagnetic showers with much higher precision than hadronic showers. The energy res-
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Figure 6.7: Fully—corrected resolution data for /s = 1800 GeV. The three-parameter
fit (solid line) is well-constrained. Hatched lines indicate the systematic uncertainty, as
described in a later section.
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Figure 6.8: Distribution of photon-jet asymmetry for jet Ep between 15 and 20 GeV in the
central region. Inset are the number of events, the y/n, and the values of the fit parameters.

olution for photons is approximately 10 times better than that of a jet, allowing a convenient

redefinition of Equation 6.1. The photon-jet asymmetry is defined as

photon—jet A = %, (6.4)

where x and y are the photon and jet transverse energies, respectively. If one approximates
x =~ y = E7 as before, and lets & ~ 0, the standard deviation of the photon-jet asymmetry
identically becomes the fractional jet resolution:

photon—jet (;ELTT =04. (6.5)

Figure 6.8 displays a typical distribution of photon-jet asymmetry.

As described in previous sections, the measured resolution is adjusted to reflect third-jet
biases and the particle—jet asymmetry. The results bolster the low—statistics dijet results

at /5 = 630 GeV.
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The Twin Fit Technique

Although the resolution data at 1800 GeV provide a well-constrained fit, the larger uncer-
tainties of the 630 GeV data allow a large range of variation; independent parameterizations
for the two data sets can actually cross one another at high values of Ex. The three parame-
ters, ¢, s, and n, are highly correlated and can settle into this non—physical crossing behavior

”

despite their common interpretation as “noise,” “showering,” and “constant” terms. The
following method removes non-physical asymptotic behavior and much of the correlation
between parameters by fitting both data sets simultaneously with shared parameters.
Dijet events fall into one of three categories: quark—quark, quark—gluon, or gluon—gluon
final states. Gluons hadronize differently from quarks, having higher particle multiplicity
(and somewhat lower individual particle Ep’s). Variations in measured jet E1 depend on the
quadrature sum of the individual particle fluctuations; thus, the D@ calorimeter measures
jets with a different degree of precision, depending on whether the jet’s parent was a gluon

or a quark. Because the difference in resolution appears primarily at intermediate E1 and

not at the asymptotes, the s parameter is re—expressed in terms of three components,

s — s(xr) = Fgq (xT) - Sqq + Fag (x) - Sqg + Fyg (xT) - Sggs (6.6)

where each final state category has its own “sampling” term, weighted by the fraction of
all events represented by that final state. The final state fractions are functions of jet Er.
Alternatively, transformation to jet xp reveals the commonality between center—of-mass
energies (Figure 6.9), such that a single smooth curve describes the final state fractions of
both data sets. After incorporation of Equation 6.6, the new resolution function takes the
same form as previously, but with five parameters instead of three, and with three input
distributions that are determined from Monte Carlo. These modifications allow a single
parameterization to describe both /s data sets simultaneously.

The results of this “twin fit” and the individual (traditional) fits are listed in Table 6.2;
error matrices for these fits comprise Table 6.3. From the y? probabilities, none of the

fits exhibit overwhelming agreement, most likely because the point—to—point fluctuations



Fraction of all Events

A qq final state
W qqg final state

® g final state

Filled markers, 630 GeV

Unfilled markers, 1800 GeV

x?/n Parameter Value Simple Error

15.18/9 c 0.031 0.00453

1800 GeV | =1.69 s 0.704 0.0452
— 0.086% n 2.535 0.662

c 0.0494 0.00325

Twin Fit | 39.22/18 Sqq 2.93 x 107 0314
=218 Sqg 0.5448 106
— 0.002% Sgg 1.117 103

n 0.000383 1.632

16.93/8 c 0.048 0.0293

630 GeV =212 s 0.380 0.2776
— 0.031% n 2.836 0.635

Table 6.2: The parameters of the twin fit compared to individual fits.
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Figure 6.9: The fractional contribution of each final state to dijet events (HERWIG Monte
Carlo and best fit parameterizations).
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Figure 6.10: Results of the resolution fit procedure for both center—of-mass energies. Dashed
lines indicate the best three—parameter fit for each data set. The five—parameter twin fit
results in the solid lines.
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Figure 6.11: The uncertainty of the twin fit procedure. Solid lines demark the 1o covariant

fit uncertainty; dashed lines indicate the systematic shifts that result from a +5% change
in the dijet parton fractions.
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Error Matrix

2.05x107®  —1.93 x 10~* 0.0024
1800 GeV | —1.93 x 10~ 0.00204 —0.0282
0.0024 —0.0282 0.438
5.02x107%  —214x107* 186 x10™* —1.56x10"% 4.85x 1076
—214x107* 1.13x1072  —1.06 x 1072 —594x10"* —1.82x10~*
Twin 1.86 x 107* —1.06 x 102  1.06 x 1072 326 x 10™* —1.00 x 1073
Fit —156x10°6 —594x10%* 3.26x10%* 1.00x102% —2.66x10°6
4.85 x 106 —-1.82x107* —1.00x107° —2.66 x 106 2.66
8.6 x 1073 —0.00788 0.0164
630 GeV —0.00788 0.0771 —0.170
0.0164 —0.170 0.404

Table 6.3: Error matrices from the resolution fits.

are somewhat larger than the size of the statistical error bars. The parameterizations are
illustrated in Figure 6.10. The twin fit results in a barely perceptible shift in the 1800
GeV resolution at or near 35 GeV (much lower in Et than the 1800 resolutions have been
used), but the 630 GeV parameterization shifts more perceptibly. Figure 6.11 depicts the
uncertainties in the final parameterization. Solid lines indicate the fit errors, dashed lines
indicate the maximum effect of shifting the quark—gluon fractions by +5%. The semi-log

scale distorts the low—E portion, but enhances detail at high values.

6.1.6 Monte Carlo Closure

To verify the resolution extraction methods, a Monte Carlo study compares events before
and after the detector simulation. At the calorimeter level, jets experience simulated energy
fluctuations. The energy of these so—called “cajets” can be compared to the original Monte
Carlo jet at the particle level (a “pjet”). The difference between the pjet and the corrected
cajet directly measures the calorimeter energy resolution. Alternately, the full asymmetry
method determines the resolution indirectly, as described in the prior sections for data. The
difference between the direct and indirect resolutions determines the validity and stability
of the method.

¢

Figure 6.12 illustrates the “closure” of the asymmetry method. Here, “pjet data” is a
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direct resolution calculation,

o Epjet _ Ecajet
= =L -1 (6.7)
Er pjet EX
The “cajet data” is the full asymmetry method. The difference between the two calcu-
lations does not lie preferentially above or below zero, indicating lack of significant bias

in the method. Primarily less than 1%, the incomplete closure of the asymmetry method

determines the magnitude of the systematic uncertainty, which is parameterized as

2.2
A <”ﬂ> ~ 22 0021, (6.8a)
Er 630 GeV ET
14.1
A <”ﬂ> — - +0.0024. (6.8b)
Er 1800 GeV ET

The 68% probability curves do not enclose the points; rather, they enclose the residual

difference of the mean of the points from zero.
6.1.7 Jet Resolution Summary

The single jet resolution describes the precision (%) with which the Et of a jet may

be determined after the energy scale correction. A three parameter fit describes the final

resolution data for both /s = 630 and 1800 GeV,

OEp n? + Ssz L2 (6.9)
= =L 4 2, .
Eq (Er)>  Er

The first parameter simulates fluctuations with a constant absolute magnitude for all jet
Er values; this “noise” term primarily describes the low E1 resolution. The second term,
“sampling,” describes the intermediate E range; because the resolution varies with the
identities of the final state partons (quarks versus gluons) an effective sampling term must
accommodate the weighted sum of these events. The third parameter defines the asymptotic
minimum of the fractional resolution at high Er.

Because the data at /s = 630 GeV cannot satisfactorily constrain the three-parameter
fit alone, a “twin fit” technique links the resolutions between 630 and 1800 GeV. In this

fit, the parameters cannot vary between data sets, allowing only the final state quark and
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Figure 6.12: Resolution closure from HERWIG Monte Carlo simulation, both center—of-
mass energies. Cajets: the full detector simulation and asymmetry method. Pjets: direct
simulation of the particle level asymmetry. For most of the kinematic range, the degree of
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gluon fractions to describe any observed differences. Uncertainties in the resolution deter-
mination include the covariance matrix from the fit and systematic uncertainty estimates to
accommodate inaccuracies in the fractions of final state partons and inaccuracies inherent

in the method.
6.2 The Process of Unsmearing

To correct the jet cross section for resolution effects, a smearing model must be created.
To begin, postulate that the measured jet cross section results from the convolution of
the measured jet E1 resolution and some “true” jet Ep spectrum. If the true spectrum is

parameterized as

D
f(Er) =t (Bp) (1 - E—\/T_) , (6.10)

then this conjecture is expressed as

F(E) = [ g~ Er)- f (Er) dEq. (6.11)

Here, g is a Gaussian of width og,, as determined in the previous section. The integration
must cover a sufficiently large range of E1 to allow ample opportunity for jets to smear into
(or away from) the Er point under study; three o of the Gaussian should suffice. For 630
GeV, the integration ranges from 10 to 200 GeV; at 1800 GeV, the integration ranges from
10 to 600 GeV. To unsmear, the parameters of the ansatz f are varied to achieve the best
fit between jet data and the smeared function F. The unsmearing correction factor, Cspmear

is then given by

(6.12)

Binwise multiplication of the raw cross section by the correction factor yields the final

distribution.
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‘ NG ‘ Parameter | Value Error Matrix
A 3764 | 636 x1073  —1.64x1073 —9.58 x 1073
1800 (fb) B —5.122 | —1.64x 1073 4.24 x 1074 2.53 x 1073
D 2.621 | —9.58 x 1073 2.53 x 1073 1.62 x 1072
A 23.07 | 2.32x1072 877 x 1073 —5.84 x 1072
630 (nb) B —5.461 | =8.77 x 1073 3.35 x 1073 2.28 x 1072
D 6.175 | —5.84 x 1072 2.28 x 1072 0.165

Table 6.4: Unsmearing parameters and errors. The cross section units are indicated.

The double—precision MINUIT package [47]| performs the fitting and differentiation pro-
cedure. Data for each /s energy are fit separately. Table 6.4 includes the final ansatz

parameter values and the error matrix for both fits.

6.2.1 Unsmearing Uncertainties

Three sources contribute uncertainty to the unsmearing technique: the ansatz fit, the res-
olution parameter fit, and the resolution closure uncertainty. As described below, calcu-
lation of the uncertainty due to the ansatz fit follows the error matrix technique outlined
in Appendix B, Section 2. The resolution fit uncertainty propagates into the unsmearing
correction similarly, but less directly. Because, unlike the first two sources, the resolution
closure uncertainties do not originate from a fit, the standard error propagation techniques
will not accommodate them; thus a modification to the covariant error approach had to be

invented for this analysis.

Because the ansatz appears in both the numerator and denominator of Equation 6.12,
the fit uncertainty of the smeared ansatz alone is not relevant to the uncertainty in the
cross section. Instead, computation of the covariant uncertainty in the cross section due
to the ansatz fit requires knowledge of the partial derivatives of the correction factor. The
integration of Equation 6.11 must be performed numerically, so partial derivatives of Cysmeqr
are not available in analytic form. To determine the fit errors, the partial derivatives with

respect to each parameter are calculated numerically at each data point. The unsmearing
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uncertainty at each point is then determined with

A= D3 02-A2+2Couv; - 0; - 0 (6.13)

ioj<i
where the 0; are the partial derivatives with respect to parameter 7, the A; are the standard
deviations of each parameter in the fit, Cov;; is the covariance between parameters ¢ and
j, and the indices run over the ansatz parameters A, B, and D. In Table 6.4, the diagonal
elements are the A? and the off-diagonal elements are the covariances.

Next, the partial derivatives in the correction factor with respect to the resolution pa-
rameters are calculated at each point. Using Equation 6.13 again, these derivatives and
the error matrix in Table 6.3 determine the uncertainty in the correction factor due to the
resolution fit. For the resolution uncertainty propagation, the indices run over ¢, n, and
the three s terms. Note that the resolution error matrix and the partial derivatives of the

resolution parameters need not and do not originate from the same fit parameterization.

o

) + ds in the fractional resolution (fixed at
T

Finally, dummy constant terms of form
zero during the fit) are varied to find their partial derivatives. Specifically, the width of the

Gaussian in Equation 6.11 takes the form

d 2
o2 = <\/02w2 + 82 +n? 4 ?1 + d2$> (6.14)

for purposes of error propagation. The variances for these two dummy parameters are
precisely their magnitude in the Monte Carlo closure parameterization; thus, d; = 0.0 +2.0
and ds = 0.0 £ 0.01. A third dummy parameter is included in the quark—gluon final state

parameterizations, such that
Seff = (Faq (x1) = d3) - sqq + Fyg (x1) - 8¢9 + (Fyg (x1) + d3) - Sgg- (6.15)

The third dummy parameter, ds, changes the relative magnitudes of the final state distri-
butions. No variation is applied to the Fy, function because it does not vary as strongly as
a function of E1, nor does it vary with pseudorapidity range. The third parameter is set
to d3 = 0.0+ 0.05, to accommodate fluctuations of the points in Figure 6.9, and to account

for possible . Each dummy parameter is independent of all other parameters.
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In essence, the error matrix approach is applied to all three sources of uncertainty. The

technique outlined in this section is equivalent to defining an 11 x 11 error matrix

A% Cap Cac
Cap A% Cpe

Cac Cpc A%

A% Ces 99 Ces 99 Ccsqq Cen
Ccsgq Aggq ngqsgg ngqsqq ngq”
V= Ccsgg ngqsgg Aggg ngqsqq ngg” ’
Ccsqq Sg9q95qq ngqsqq quq quq”

2

Cen, ngqn nggn quqn An
2
AZ,

2
A,

)

(6.16)
where the diagonal contains the variance of all parameters, the off-diagonals hold the co-
variance between parameters (denoted C), and all unfilled cells are zero. The elements of
V, the partial derivatives of 6.12, and Equation 6.13 determine the unsmearing uncertainty

as a function of Er.

6.2.2 Final Correction Factor

Figure 6.13 depicts the unsmearing correction for both center—of-mass energies with the
covariant uncertainties from all fits. The solid bands indicate resolution fit uncertainty
alone; the hollow bands include the resolution fit and both systematic uncertainties. The
error contribution from the unsmearing process totals less than 3% over the entire 1800
GeV Er range, but for 630 GeV the errors become as large as 12%, the second-largest error
(after the energy scale). For both /s energies, the uncertainty in the ansatz fit alone yields

a negligible error.
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The results for 630 GeV and 1800 GeV differ dramatically for two reasons. First, the
630 GeV data set extends to lower E1 than does the 1800 GeV data set; at low Er, the
jet resolution worsens rapidly, resulting in a large smearing effect. Second, the 630 GeV
cross section spectrum falls more steeply than does the 1800 GeV cross section, so an equal

mismeasurement results in a larger distortion at 630 GeV.

6.3 Summary and Result

Whereas the energy scale corrects for the average jet mismeasurement, residual fluctuations
about the average continue to distort the measured jet cross section distribution. The
correction, called “unsmearing,” requires knowledge of the degree of expected fluctuation
for a given jet Ep. The jet Et resolution, derived from Et balance in dijet events, provides

this knowledge.

The convolution of an ansatz function and the measured resolution describes the “raw”
cross section. A best fit of the convolution to the observed jet cross section data estimates
the jet resolution effect; the ratio of the convoluted ansatz and the bare ansatz yields the
unsmearing correction factor. At /s = 1800 GeV, this correction is approximately 7%
throughout the jet spectrum; for 630 GeV, the correction factor is greater than 15% and
displays a strong E1 dependence. The change in the magnitude of the correction between
center—of—mass energies results from both the different E1 ranges and the different slopes of
the cross sections. The uncertainty on the procedure consists primarily of the uncertainties
in the jet resolution measurements, not the convolution fits. The error matrices of the fits
and a “constructed” error matrix for the resolution systematic combine to form a global
error matrix that describes the covariant uncertainty in the correction factor.

Application of the correction factor to the inclusive jet cross section yields the distribu-
tion shown in Figure 6.14 (/s = 630 GeV data set). The solid line traces the NLO QCD
prediction from JETRAD (with MRSA’ as the input PDF ). Similarly, Figure 6.15 depicts
the corrected distribution at /s = 1800 GeV. Tables 6.5 and 6.6 list the bin edges in E and

the corresponding cross sections and statistical uncertainties for each data set. The follow-
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Figure 6.13: The correction factor for unsmearing. Solid bands: resolution fit uncertianty.
Full band: fit and systematic uncertainties in quadrature.



Vs | Bin Edges (GeV) | Cross Section | Statistical
(nb/GeV) Error
21.0 24.5 290.6 3.7
24.5 28.0 120.5 24
28.0 31.5 55.2 1.7
31.5 35.0 27.60 0.49
35.0 38.5 14.19 0.35
38.5 42.0 8.15 0.27
42.0 45.5 4.28 0.20
45.5 49.0 2.90 0.16
630 49.0 52.5 1.82 0.13
52.5 56.0 1.098 0.024
56.0 59.5 0.702 0.019
59.5 63.0 0.485 0.016
63.0 66.5 0.317 0.013
66.5 70.0 0.230 0.011
70.0 73.5 0.1572 0.0092
73.5 77.0 0.1128 0.0078
77.0 80.5 0.0833 0.0067
80.5 87.5 0.0434 0.0034
87.5 94.5 0.0272 0.0027
94.5 101.5 0.0134 0.0019
101.5 112.0 0.0076 0.0012
112.0 196.0 0.00055 0.00011

Table 6.5: Inclusive jet cross section and statistical errors for 630 GeV.
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ing chapter discusses the systematic uncertainties of the cross section calculations; Chapter

8 provides a full data—to—theory comparison for each cross section and the dimensionless

ratio of cross sections.
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Vs | Bin Edges (GeV) | Cross Section | Statistical
(fb/GeV) Error
60 70 6.59x10° 0.04x10°
70 80 2.90x10° 0.03x106
80 90 1.41x10° 0.02x106
90 10 7.07x10° 0.04x10°
100 110 3.88x10° 0.03x10°
110 120 2.21x10° 0.02x10°
120 130 1.27x10° 0.02x10°
130 140 7.70x10* 0.04x10*
1800 140 150 4.86x10* 0.03x10*
150 160 3.07x10* 0.02x10*
160 170 2.00x10* 0.02x10*
170 180 1.34x10% 0.01x10%
180 190 9.12x103 0.10x103
190 200 6.15x103 0.09x103
200 210 4.29%x103 0.07x103
210 220 2.93x103 0.06x103
220 230 2.14x103 0.05%10?
230 250 1.30x10° 0.03x10?
250 270 6.54x10? 0.20% 102
270 290 3.77x10? 0.15%102
290 320 1.79%10? 0.08 %102
320 350 6.82x10! 0.52x101
350 410 1.89% 10! 0.19%10!
410 560 1.24x10° 0.31x10°

Table 6.6: Inclusive jet cross section and statistical errors for 1800 GeV.



Chapter 7

Uncertainties in the Ratio of
Jet Cross Sections

“Knowledge rests not upon truth alone,
but upon error also.”

— Carl Jung

Because jet cross section spectra decrease sharply as functions of E1, apparently small
uncertainties for a single jet become large in the measurement of the jet cross sections.
The advantage of a ratio calculation between the two center—of-mass (CM) energies is the
cancellation of large portions of the errors. In this case, “ratio” refers to the cross section
at 630 GeV over the cross section at 1800 GeV. Although error cancellation between jets
of like Et at different /s is conceptually simple, two considerations prevent a direct ratio
calculation. First, the limited run time at 630 GeV yielded a small number of jets above
60 GeV in Ep (where the 1800 GeV jet cross section begins); any ratio with 1800 GeV
would be statistically limited above 100 GeV, and (short of rebinning the 1800 data) would
consist of only six data points. Second, the ratio of dimensionless cross sections is easier to
explain theoretically, because the differences between parton distribution functions become
negligible in that framework. The dimensionless jet cross section is the spectrum of E% -BE ‘g—g
versus 7. In terms of collider variables, this spectrum is % . %ngn versus %ET. Cross
section comparison in this form also addresses the statistical limitations; in x, the statistics

in the bins at 630 GeV match those at 1800 with the exception of only the last few bins,

maximizing the measureable region of the distribution. In the xT measurement, however,
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uncertainties which might cancel identically for like F’s cancel less completely.

The cancellation of uncertianties in the ratio represents the true stength of this analysis;
all error considerations have been concentrated into this chapter.* The origins of the
following uncertainties may be found in prior chapters, so brief descriptions will appear
here in cases where errors are treated simply. Energy scale and luminosity errors, being
more complicated, receive fuller treatment. For reference, Appendix B provides a short
primer on error analysis.

For the uncertainty in the ratio, all errors are separated into one of three categories,
depending on the correlation (p) as a function of Er or, as importantly, the correlation
between /s energies:

e p = 1 : “Completely correlated,” indicating that a 1o fluctuation in an error at a
particular Ep implies a 1o fluctuation at all other Er (Figure 7.1). In the ratio, a
fractional error at 630 GeV, +A1, and its completely correlated analog at 1800 GeV,
+As, yield a fractional ratio uncertainty of magnitude

_ 1+ A
=1 1
gatio = 1j:A2 - 17 (71)

where the signs of the two cross section errors are always the same. Note that if Ag is
greater than Aj, the sign of the ratio uncertainty will be the opposite of the signs of
the cross section errors.

e p = p(Ep,,Er,) = [—1,1] : “Partially correlated,” possessing a varying degree of
correlation in Er, resulting from the covariance matrix of a fit. A 1o fluctuation thus
implies a less than unit fluctuation elsewhere (Firgure 7.2); negative p indicates the
shifts will have opposite directions at the two points. This type of error is the most
complicated to calculate and propagate through the ratio.

e p=0: “Uncorrelated,” statistical in nature or otherwise independent of one another.
Some small errors with unknown (but probably positive) Ep correlation are treated
as uncorrelated for simplicity and because such treatment is conservative. The simple
quadrature addition formula for the two fractional errors A1 and As is

EAPS = 1/(A1)? + (An)?. (7.2)

In most cases, complete correlation in E1 for one CM energy implies complete correlation

between /s energies, but exceptions exist and will be highlighted in the following sec-

* Major portions of this chapter were originally published as D@ Note 3423, “Calculation of Uncertainties
in the Ratio of Jet Cross Sections at 630 and 1800 GeV,” J.Krane, April 9, 1998.
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Nominal

Figure 7.1: Example of an error band relative to some nominal distribution (illustrated
here with a flat line). If the errors at points a and b are completely correlated, then a one
standard deviation (10) mistake A, at the first position necessarily results in a 1o mistake
Ay, at the second position.

tions. The final section includes a graphical depiction of the zp distributions of all ratio

uncertainties.

The end result of this chapter, an “uncertainty band” around the cross section data
points, represents one standard deviation of allowed shifts in the data points. Unlike the
statistical “error bars,” where any given point can fluctuate without affecting the likely
position of the other points, a systematic shift of one point implies a likely new position for
all other points. Although this covariance between points is difficult to present visually, it

can be described with a matrix, as in the final section.

This chapter is arranged in five parts. The first section discusses luminosity uncer-
tainties, including speculative results from Fermilab experiment E811. Sections two and
three incorporate the uncertainty from data selection criteria and the unsmearing proce-

dure. The most complicated portion of the error analysis resolves the interplay of the energy
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Figure 7.2: If the errors at points a and b are partially correlated, then a full 10 mistake

A, at the first position results in a smaller than 1o mistake Ay at the second position. As
illustrated here, the correlation factor is 0.55.
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scale correction between the two /s data sets. Although the discussion becomes lengthy,
sophisticated treatment of the energy scale uncertainty in section four yields more error
reduction than the combined total of all other uncertainties. Section five presents the final

covariance matrix.

7.1 Luminosity Uncertainties

The luminosity calculation at /s = 630 GeV shares many common uncertainties with
the calculation at 1800 GeV. Both calculations consist of three distinct ingredients: the
geometric acceptance of the Level () hodoscopes, the Level () hardware efficiency, and the
pp inelastic cross section. The magnitudes of these uncertainties are listed in Table 7.1.

The largest contribution to the luminosity uncertainty at 1800 GeV originates in the
World Average (WA) pp total cross section. The pp cross section at 630 GeV was determined
with a fit to the values at 1800 and 546 GeV; the covariant uncertainty from the fit (a
“partially correlated error”) determines the error on the 630 cross section (Figure 7.3).
A 10 shift in the mean value of the 1800 cross section directly impacts the central value
of the 630 cross section, resulting in a sympathetic shift of unequal magnitude but like
direction. The magnitude of the shift at 630 GeV, subtracted in quadrature from the
covariant interpolation error, defines two error components: the shift, which is completely
correlated with the 1800 cross section error, and the remainder, which will be added in
quadrature with the other independent luminosity errors. The uncertainty components in
the WA elastic and single-diffractive pp cross sections seperate with the same procedure.
Because the uncertainties of these three cross sections contribute to the total luminosity
uncertainty non—linearly, Table 7.1 reports only the final results; the special treatment of
the partially correlated luminosity uncertainty makes the result difficult to calculate from
the information in the table alone.

Two Monte Carlo minbias event generators (MBR and DTUJET) determined the geo-
metric acceptance of the Level () hodoscopes. The difference in acceptance between the

two MC results was cited as a source of systematic uncertainty for each /s. The consistent
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Source of Uncertainty (Percent)

Uncertainty /s = 1800 GeV | /s = 630 GeV | Ratio

‘ Original Uncertainty | 5.32 ‘ 3.17 ‘ ‘
World Average pp 4.41 1.48 +1.66
cross sections only —1.47

‘ Remaining Uncertainty | 2.97 ‘ 2.80 ‘ ‘
Hardware efficiency 2.10 2.47 +0.362
(systematic) —0.378
Geometric Acceptance 1.96 1.19 +0.785
(“hard—core” systematic) —0.755
Uncorrelated Remainder* 0.754 4+ 0.70 0.756 +1.64
All sources* 6.1 3.17 +2.49
—2.31

Table 7.1: Uncertainties in the luminosity calculation. *Includes filter matching error.

behavior of each generator relative to the other between CM energies indicates that the
systematic uncertainty may be considered completely correlated. The systematic error at
each CM energy yields the ratio error listed in Table 7.1 with the use of Equation 7.1. The
statistical portions of acceptance uncertainty must be added in quadrature for the ratio. Al-
though the geometric acceptance of the Level () hodoscopes to diffractive processes must be
considered in luminosity calculations, the uncertainty of the non-diffractive acceptance (the
so-called “hard—core” acceptance) dominates. The small uncertainty contributions from the
diffractive acceptances, despite their (positive) partial correlations, will be considered to be
independent of one another and added in quadrature for the ratio.

A zerobias study determined the hardware efficiency of Level (). Examination of the
analog charge sums from one Level () hodoscope when the other hodoscope received a hit
in coincidence with a beam crossing reveals a large pedestal peak and a smooth underlying
distribution. The analog sum from one hodoscope without hits in time on the other exhibits
only the pedestal peak. To estimate the efficiency, the (normalized) pedestal peak from the
second distribution is subtracted from the first. The uncertainty in the method lies in the
determination of the number of events that hit the hodoscope but produce a small signal,

such that the charge sum remains in the pedestal region. Because the same estimation of
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this number appears in the calculation of the luminosity at both /s energies, the errors are
completely correlated. Table 7.1 lists the systematic uncertainty in the hardware efficiency
for both CM energies and the ratio uncertainty as calculated with Equation 7.1.

Because of anomalies in the luminosity between sets of data collected by different trig-
gers, the 1800 GeV jet cross section differs slightly in normalization from trigger to trigger.
The cross section for each trigger was normalized [38] to JET MAX (trigger versions V9
and V10). This “trigger matching” procedure adds a linear 0.7% uncertainty to the lumi-

nosity calculation, as indicated in the bottom row of Table 7.1.

Summary of Luminosity Uncertainty

The partial correlation in the uncertainties of the three World Average cross sections (at
each CM energy) results from the interpolation procedure. The degree of correlation was
isolated by shifting the 1800 GeV points by 1o and finding the corresponding shift at 630
GeV. The hardware efficiency and geometric acceptances each had systematic uncertainties
that were considered to be completely correlated. The remaining uncertainties were added
in quadrature.

Presently, experiment E811 at Fermilab is processing their data for new determinations
of the total and elastic pp cross sections. Some sources indicate the results will agree with
E710 data and not with the CDF measurement, resulting in a small shift to the World
Average at /s = 1800 GeV and the fitted result at 630 GeV. Although the unpublished
E811 numbers should not be incorporated into the final result, an estimate of the effect
is warranted. Because the new results affect both the total and elastic cross sections,
competing effects result in a luminosity change at 1800 GeV of only —3%. The change in

630 GeV measurement is smaller yet; the final shift in the ratio is negligible.

7.2 Jet and Event Selection Uncertainties

For 1800 GeV, the total uncertainty for jet cut efficiencies, the By cut efficiency, and the

vertex cut efficiency totals 1%. An independent study at 630 GeV determined cut uncer-
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Uncertainty Value
1800 GeV all selection | 1% below 350 GeV
efficiencies | 2% above 350 GeV

630 GeV Jet cuts 0.12 to 0.41%
Fr cut 0.03%
vertex cut 0.006%

Table 7.2: Uncertainty from jet and event selection.

tainties that were smaller yet (Table 7.2). Despite some similarities in methodology, these
errors are all considered independent of one another in the ratio and are thus added in
simple quadrature (Equation 7.2). The selection criteria are described in Chapter 5, in [39],
and in [40].

7.3 Resolution and Unsmearing Uncertainties

Uncertainty in the unsmearing correction is dominated by the uncertainty in the jet resolu-
tion measurement, which is itself dominated by the systematic uncertainties. The systematic
uncertainties are assumed uncorrelated between the center—of-mass energies, as are the fit-
ting errors. The magnitudes of the resolution and unsmearing uncertainties are illustrated

in Figure 7.8 at the end of this chapter.

7.4 Energy Scale Uncertainties

When queried, the jet energy scale algorithm (CAFIX version 5.1) reports the uncertainty of
its correction, which is always less than ~ 3% for the Ep range of this analysis. Figure 7.4
illustrates the individual components of the per jet uncertainties from the energy scale for
both center—of-mass energies. The steeply falling nature of the inclusive jet cross section
magnifies the effect of energy scale uncertainties to at least 8%, and sometimes as large as
25%. Although the energy scale error estimates, as determined with the data, are statisti-
cally significant in many regions of the inclusive jet cross section, limited statistics in some
Er bins decrease the accuracy of the error estimate markedly. Additionally, cancellation of

errors in the ratio of jet cross sections requires more intimate knowledge of the initial states
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Figure 7.4: The jet-by—jet uncertainties in the energy scale correction. Filled markers
indicate the uncertainties in the 630 GeV data set; unfilled markers indicate 1800 GeV.

of the jets than provided by the data.

The Monte Carlo study described in this section addresses both concerns. The following
subsections describe the algorithm that generates the Monte Carlo sample, the analysis of
the Monte Carlo output, and the results of the analysis. This Monte Carlo technique
determines the total energy scale uncertainty of both the inclusive jet cross section and the

ratio of cross sections; i.e., the following algorithm handles all aspects of energy scale error.

7.4.1 Code Description

The event generator performs several steps for each /s and each cross section bin in xr,
fully described in list format below. First, it generates a sample of jets with a spectrum
that matches that observed in data. Second, it closely imitates true running conditions by

simulating luminosity, vertexing, and smearing effects; thus, the energy scale corrections of
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each Monte Carlo jet will closely match the corrections in real data. Third, the uncertainties
from the energy scale corrections are acquired. Finally, the weighted average errors and

correlations in each bin combine to form an error matrix.

Monte Carlo Jet Generation

The jet Ep distribution must be identical to the observed (smeared) jet cross section in

data. The routine:

1. Randomly generates the initial parton momenta x; and x5 to find the scale of the

collision (dijet mass = \/xy - x3 - s, for example).

2. Finds the corresponding p1 and other kinematic quantities for both of the final state
partons (which result in jets).

3. Smears the jets according to the known resolution functions and then selects one jet
at random.

4. Ensures that the selected jet falls within the desired x7 bin and —0.5 < 7;., < 0.5 (or
starts over)

5. Generates a weight for the jet, to reproduce the jet cross section’s steeply falling
spectrum, using either of

e a theoretical weight* based on CTEQ4M and the scale of the collision, or

e an experimental weight based on the ansatz from unsmearing

Simulation of Vertex Position, Luminosity, and Mi_Tool Values

These quantities are all required by the energy scale correction algorithm, called CAFIX

(v5.1), or NT CAFIX.
1. A Level 2 trigger is assigned to the jet based on its E1 (corresponding to the actual
Er region of each trigger in the data)
2. The vertex distribution from that trigger is sampled to find a vertex position

3. The instantaneous luminosity distribution for that trigger is sampled to assign a lumi-
nosity

4. The M1_RuUN1 or M1 630 distribution for that trigger and that luminosity is sampled
to find a random M1 _TooOL value.

* The theoretical weight is extracted from CERN’s PDF library.
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The Energy Scale Uncertainty

Because the generated jet distribution already represents the energy scale corrected jet Er,
and because the response correlation is given in terms of the energy before the response
correction, the energy scale algorithm must be run “in reverse” to find the uncertainty.

1. The jet is “uncorrected” to a best guess measured Er

2. NT CAFIX corrects the jet

3. If the new corrected Er is not the original Monte Carlo Et, the process is repeated
with a better guess for the measured Ep until convergence

4. N1 CAFIX is asked for the errors on the jet correction. The errors are categorized by
their degree of correlation in energy or E1. Again, the categories are:

e Uncorrelated errors (errors that are statistical in nature, or errors whose correla-
tions are not known)

e (Completely) correlated errors (typically “method” errors)

e partially correlated errors (from the fit of the response curve)
The Covariance of the Error

The published energy scale note [43] contains a correlation matrix for the response fit,
parameterized as a function of jet energy. Because the energy scale corrections for both CM
energies use the same response correction, the correlation matrix is valid at both energies.
The covariance between (for instance) a jet at 630 GeV and a jet at 1800 GeV is extracted
with a two-dimensional interpolation of this discrete matrix. The weighted average of the
jet correlations, the magnitude of the response uncertainty, and the magnitude of the jet
cross sections determine the covariance of the uncertainty in the ratio. A similar process
determines the completely correlated and uncorrelated error components in the energy scale.
The ratio of inclusive jet cross sections is given by

830

R= 1800

(7.3)

where the ¢ indices indicate the dimensionless cross sections in xy for 630 and 1800 GeV.
The elements of the covariance matrix are

Cij = (pij 6Ri 6R;) , (74)
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where p expresses the correlation between the xp bins ¢ and j, and the errors in the ratio

O R may be expressed as

81:1)4 630 8RZ 1800
6RZ = 80'?30 60'2 + 80'3800 60-2 , (75)

an expression similar to the total derivative of calculus. Here, the two partial derivatives

possess opposite signs:

8R1 1 Rq 8RZ —0'2630 RZ'
9030 = 1500 = 7930 and Do 50 = (0}800)2 = oS0 (7.6)

Defining x = xp for conciseness of notation, each éo in Equation 7.5 may be expanded in

terms of jet energy:

509 = 8—"%5953 = Zsin6; - 8”% SEC (7.7)

b Oz a z

The covariant cross section error is now expressed in terms of jet energy, the jet colatitude,
the center—of-mass energy (a), and the slope of the dimensionless cross section. The final
expression for the covariance matrix elements becomes

2 . 2 . Ry 00 R 0o} b b
Cyi = . Zsing. - 2 9.__.__.<‘15E“5E>, 7.8
y ;;q asm ke bsm 1 0% Oz (r%’ oz Pkl k 1 ( )

where a and b indicate center—of-mass energies, and p%’ is the correlation between the two
jets whose energies fall in bins k and [, originating from the data sets at /s = a and
b. A factor that accounts for the negative sign in Equation 7.6, ¢ = 1 when a = b, and
q = —1 otherwise. The bracket notation indicates the expectation over the entire bin; in
practical terms, the weighted average quantities of a large jet sample in each bin determine
the bracketed quantity. The summations indicate the four relevant correlations, visually
described in Figure 7.5.

As mentioned previously, interpolation of a correlation matrix determines the values of
p%’ for the response error. For the completely correlated errors, all p’s take the value of
unity; for the uncorrelated errors, all p’s are zero except for the special case a = b and k = [,

where the value is unity.
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The analysis code computes the covariance matrix for each of the three cases element
by element. The simulation results are reported in three 22 x 22 matrices whose diagonal
elements are the squared uncertainties at each xp point, and whose off-diagonal elements

determine the covariance between x1 points. Equation 7.8 represents the most complicated

aspect of the uncertainty calculation: cancellation in the ratio of the energy scale errors.

7.4.2 Energy Scale Uncertainty Results

The following results were generated with 280,000 events in each x bin. Figure 7.6 compares
the total Monte Carlo result with the uncertainty reported in the 630 GeV data set. The
results agree well, but the Monte Carlo points clearly exhibit a statistical advantage.

The energy scale uncertainties, divided by degree of correlation, are displayed in Fig-
ure 7.7; the curves include all cancellation effects observed in the ratio. The major con-
tribution originates from the partially correlated response error but receives a nearly equal

contribution from the completely correlated components at low values of xp. The full
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Error Source Correlation in Comments
Vs energy JetE
Luminosity partial 1
filter match 0 1 1800 GeV only
Event cuts 0 0
Jet cuts 0 0
Resolution
fits partial 1 Twin Fit
closure 0 0
quark/gluon fractions 1 1
Unsmearing fits 0 1
Energy Scale
Zsp model 1 1
response fit 1 partial
response at 630 GeV 0 1 Limit of verification
out-of-cone 1 1
response background 1 1
topology bias 1 1
MPF acceptance 1 1
underlying event 0 1
cryostat matching 1 1
Change of units 0 0

Table 7.3: Error correlations in the ratio of cross sections. “0” indicates no correlation, “1”
indicates complete correlation.

covariance matrix, presented in the next section, includes the energy scale, unsmearing,

luminosity, and all other uncertainties.

7.5 Final Uncertainty in the Ratio

The individual uncertainties of the earlier sections fall into several classifications, sum-
marized in Table 7.3. Cancelation of uncertainties only materializes when the errors are

completely correlated between center—of-mass energies.

To help interpret the total covariance matrix for the ratio of cross sections, Figure 7.8
depicts the square root of the diagonal elements, by individual component. The uncer-
tainty in the energy scale correction dominates at each end of the spectrum; resolution and

contributions from other sources (primarily luminosity uncertainty) become important at
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intermediate values of 7. The 22 x 22 covariance matrix itself takes the form

A% . 8% p12A1A28182 ,013A1A38183

p21A2A13281 A% . 8% ,023A2A38233

<l
Il
S
N
Nej
SN—

Dividing each row and column of the covariance matrix by the square root of its diagonal
element reveals the correlation matrix; the diagonal elements are by definition unity, and
the off-diagonals range from —1 to 1. Figure 7.9 represents the elements of the correlation
matrix with the height of its lego blocks.

The covariance matrix allows very discriminating comparisons to the NLO QCD pre-
dictions described in Chapter 1. Given a prediction for the ratio of cross sections or an

individual cross section, the level of agreement is determined with
Y=D-1r' V1 ((D-1). (7.10)

Armed with the covariance matrix for the ratio and both cross sections individually, the

next chapter presents the findings of this analysis.
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the bin numbers. The “ridgeline” is formed by the uncorrelated uncertainties, which appear

Figure 7.9: Rendition of the correlation matrix for the ratio of cross sections. Axes indicate
only on the diagonal of the matrix.
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Chapter 8

Results and Comparison to
Theoretical Predictions

“Many a beautiful theory is spoiled by an ugly fact.”
— Aldous Huxley

This final chapter reports the results of the inclusive jet cross section at /s = 630 GeV and
the ratio of dimensionless cross sections between /s = 630 and 1800 GeV. The first section
reintroduces the four parameters in the theoretical predictions; the second section compares
the observed jet cross section to NLO QCD predictions with several representative choices
of renormalization scales, fragmentation scales, PDF’s, and values of Rsep. Differences
between data and theory are qualitatively discussed and a full x? analysis is presented. The

final section provides some discussion of the results and summarizes this dissertation.

8.1 Theoretical Parameters

Recall that the QCD predictions of this dissertation extend to next—to-leading—order (O(a3)).
Although such calculations inherently contain many uncertainties, the usual practice in HEP
is to consider the theory to be errorless for any given set of input parameters; the variation
of the theory is explored by making several comparisons with different parameter values.
Four different parameters describe the choices available to the QCD prediction.

First, the prediction varies with different values of the renormalization scale, required

to replace divergent integrals with finite integrals in the calculation. Normally, the scale

it is set to some factor times the maximum jet Et in the event; i.e., p = c- Ef*. The

167
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inclusive jet cross section increases as the constant c varies from very low values to ¢ = 0.5,
then decreases again for larger values. Although there is no theoretical preference [44] for

¢ = 0.5, this saddle—point behavior in the cross section makes it attractive aesthetically.

The factorization scale, a second indeterminate parameter, determines what percentage
of the prediction is calculated perturbatively, versus the fraction that is determined empiri-
cally in the PDF. For simplicity, and because its variations result in lesser effects, this scale,

pg, is typically set equal to the renormalization scale.

The third source of theoretical uncertainty, the PDF depends on both renormalization
and fragmentation scales, on the input data from prior experiments (some of which con-
flicts), and on the collaborations responsible for preparing “commercial” PDF’s. Only two

of the purveyors of PDF’s, CTEQ and MRS, receive treatment in this chapter.

Finally, an empirical parameter, Rsep, determines the maximum separation permitted
between a parton and its radiated daughter parton before they result in separate jets. In
essence, this factor describes an effective cone diameter (d = Rsep - R) for parton “jets,”
which is smaller than the calorimeter definition of 2R. This parameter was determined by
the DO Collaboration to have a best value of Ryep = 1.3 because it best reproduces [8] the

event—by—event behavior of the calorimeter.

8.2 Results

The steeply falling cross section distributions for both /s energies span more than five
orders of magnitude. Because absolute comparisons become difficult over such large scales,

the comparisons of this section concentrate on the fractional deviation, defined
D(xi) = —=———, (8.1)

where the f(x;) are the cross section values in the data at bin points x;, and ¢(x;) are the

theoretical predictions at those same points.
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Figure 8.1: Fractional deviation of the inclusive jet cross section at /s = 1800 GeV and
selected NLO QCD predictions.

8.2.1 Results at /s = 1800 GeV

The 1800 GeV cross section, depicted in Figure 8.1, agrees well with the theoretical predic-
tions. Visually, the cross section is reasonably proximate to all predictions without regard
to variation in the theoretical details.* The covariance matrix for 1800 GeV quantifies the
level of agreement, as indicated in Tables 8.1 and 8.2. In most cases, the cross section and
NLO QCD prediction are at least 50% likely to be the same distribution. The second table
reports the results for a slightly different pseudorapidity range, to facilitate comparisons to
other publications.

The dichotomy between the normalization difference in the visual comparison to MRST

* Because the EKS predictions do not differ substantially, this subsection treats JETRAD predictions
exclusively.
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Renormalization | E'% E];t
Scale x> ‘ prob. | x? ‘ prob.
0.25 14.8 92.6% | 19.8 70.8%
0.5 19.4  73.0% | 22.2 56.7%
1.00 16.8  85.7% | 18.1 79.8%

Table 8.1: x? comparisons for the 1800 GeV cross section, varying the renormalization scale.

PDF In| <0.5 0.1 <|n| <0.7
x> ‘ prob. x> ‘ prob.
CTEQ3M 23.9 46.7% 284 24.4%
CTEQ4M 17.6 82.2% 23.3 50.2%
CTEQ4HJ 15.7 89.9% 20.5 66.8%
MRSA’ 20.0 69.7% 27.8 26.9%
MRST 17.0 84.9% 19.5 72.5%

Table 8.2: Additional x? comparisons for the 1800 GeV cross section, varying PDF.

and the acceptable y? result highlights the danger of visual methods in the case of highly
correlated uncertainties. In the case of the 1800 GeV cross section, the normalization of the
distribution changes with very little x? penalty, but the shape remains largely invariant.
As a result, the relative normalization of data and theory are less important than the final
shape of the spectrum once normalization has been established, allowing MRST to agree
more strongly with the data than CTEQ3M, which apparently requires no normalization

change.

8.2.2 Results at /s =630 GeV

Now consider the fractional deviation between theory* and the 630 GeV inclusive jet cross
section. Although Figure 8.2 exhibits a slight normalization difference, the large system-
atic uncertainties ensure satisfactory agreement with the NLO QCD prediction. Table 8.3
lists the resulting x? values for several PDF’s and renormalization scales. Here again, the
factorization scale has been set equal to the renormalization scale for convenience. As with
the cross section at /s = 1800 GeV, the prediction for p = %ET appears to be slightly
disfavored by the data, and CTEQ4HJ yields the best agreement.

* Again, all predictions in this subsection were generated with JETRAD.
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PDF Renormalization

Scale x? | prob.

2-E 18.5 55.4%

CTEQ3M Er 28.1 10.8%
Er/2 39.2 0.63%

Er/4 15.8 72.9%

CTEQ4HJ Er/2 24.4  22.5%
MRSA’ Er/2 44.1  0.14%
CTEQ4M Er/2 30.3 6.68%

Table 8.3: x? comparisons for the 630 GeV cross section, compared to several predictions.
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Figure 8.2: Comparison of the 630 GeV inclusive jet cross section and a NLO QCD predic-
tion. Shaded regions encompass the systematic errors, vertical bars indicate the statistical

uncertainty.
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8.2.3 Results for the Ratio of Dimensionless Cross Sections

The ratio of dimensionless cross sections enjoys several advantages over the individual mea-
surements. First, the error cancelation is significant, as seen in the previous chapter. Sec-
ond, the change in the ratio with varying PDF’s becomes smaller for EKS predictions and
becomes negligible (Figure 8.3) for the JETRAD predictions. As experimental data accumu-
lates, the best—fit PDF’s change; thus, this analysis is insensitive to the part of the NLO
prediction that lies in continuous flux. As an additional benefit, renormalization scale dif-
ferences are muted somewhat (Figure 8.4). The final result is very sensitive to shortfalls
inherent in the theory, whether they result from effects that are neglected in the calculations
or from new physics.

Table 8.4 lists the x? distributions for the ratio of cross sections and selected theoretical
predictions. In all cases, the factorization scales are equal to the listed renormalization
scale, which use the ET'%* convention. Unlike the individual cross sections, the ratio of
cross sections does not agree with any given NLO QCD prediction; the x? probability
is less than 8% in every case; for the choice E—QT, the probability corresponds to more than
three standard deviations. As was evident in Figure 8.3, the three listed PDF’s yield similar
results. The sole exception, EKS, with CTEQ3M, = p; = iE’T”a"”, yields a probability of
11%; this is the only combination of theoretical parameters that lies within one standard
deviation of the data. All other parameter sets for EKS result in predictions that yield poor
x? values (Figure 8.5). This single differing result may indicate that small renormalization
scales can pull the EKS calculation out of a perturbative region, and that the agreement

between data and prediction results more from chance than from accuracy.

8.3 Discussion

As evinced by the low probabilities in the previous section, the level of agreement between
data and NLO QCD predictions is less than satisfactory. Because there exist four free
parameters in the NLO QCD prediction, the predicted ratio of cross sections possesses some

flexibility that has not yet been explored. Figure 1.11, Page 22, depicts the fractional change
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PDF Renormalization

Scale X2 prob.

2-Er 29.9 7.19%

Er 41.8 2.91%

CTEQ3M SEr 51.1  0.02%
Er/2 50.8  0.02%

Er/4 30.9 5.66%

CTEQ4HJ Er/2 51.7  0.01%
MRSA'’ Er/2 56.6  0.002%
CTEQ3M, EKS Er/4 279 11.0%

Table 8.4: The x? comparisons for the ratio of cross sections.

25

Ratio of Cross Sections

L EKS predictions

0.5 —

P PN IR
0.05 0.1 015 02 025 0.

ol b by
3 035 04 045 05
Jet x;

Figure 8.5: Ratio of dimensionless cross sections generated with EKS and many combina-
tions of the four parameters. Only one combination yields an acceptable x? value (high-
lighted with markers).
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PDF Renormalization
630 1800 X% | prob.
2Br  Etp/2 | 109 94.7%
CTEQ3M Er  Ep/2 28.5  9.84%
Er/4 Ep/2 | 121 91.3%

Table 8.5: Additional x? comparisons for the ratio of cross sections. Here, the renormaliza-
tion scale is mismatched between CM energies.

in the cross section (y/s = 630 GeV) with respect to variations of any one of the parameters;
Figure 8.6 presents the analogous changes in the ratio. In each case, the fractional variation
is reduced in the ratio. (Note that none of the shifts in the figure reproduce the 15%
change observed with the specific choice u = py = Z—llE’{“””.) Although large shifts may still
be induced with parameter changes, none of the individual shifts reproduce the difference
observed between the predictions and the data. This section explores different possibilities

that may describe the data.

Different renormalization scales could be selected for the different center—of—mass ener-
gies: an unconventional solution that remains within the bounds of NLO QCD (Figure 8.7).
Theoretically, there is no implicit need for identical scales at /s = 630 GeV and 1800 GeV,
but a variable renormalization scale may be too inelegant for the scientific community to
accept. Nonetheless, the resulting x? probabilities indicate remarkably good agreement
(Table 8.5).

Alternately, new calculational techniques could remove possible deficiencies in the pre-
diction. The first of these methods has been proposed [45] by Balitskii, Fadin, Kuraev,
and Lipatov. The BFKL formalism treats the nonperturbative physics of soft hadronic
radiation by introducing a pomeron exchange diagram. The pomeron, a composite object,
consists of a gluon that radiates several final state gluons (Figure 8.8). This “gluon ladder”
represents a resummation of leading energy logarithms to all orders of QCD. Unfortunately,
the resummation procedure introduces yet another free parameter to the prediction: the
Regge scale, pp.

A recent BFKL calculation, applied to the leading—order QCD processes, [46] spans the
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Figure 8.6: Theoretical uncertainties in the NLO QCD predition for the ratio, resulting
from (a) changes in PDF, (b) changes in renormalization scale, (c) changes in factorization
scale, and (d) changes in the Ry, parameter.
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Figure 8.8: Tlustration of the BFKL “gluon ladder”. Although only three radiated gluons
appear in this diagram, the BFKL formalism sums over infinitely many radiated gluons.
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low z region. Computing—power limitations prevent analytic extension beyond z1 2 0.13,
but the BFKL prediction rapidly converges to the standard NLO prediction as xT increases.
Figure 8.9 compares the BFKL prediction to the measured ratio of cross sections; the dashed
line represents an extrapolation of the BFKL prediction throughout the region of data.
For this prediction, p = puy = Eg, pp = %ET, the PDF is CTEQ4L, and R, = 2.0.
This particular combination of parameters was not available for the NLO prediction, but
a similar PDF with the same p and p; is included in the figure for comparison. The
extrapolated prediction indicates that a fuller BFKL treatment could reproduce some of
the normalization differences between the data and NLO QCD, but may not model the low

xT behavior.

A second augmentation to NLO QCD, “kp smearing,” is currently a hypothesis and
not an analytic prediction. The low z1 behavior of the ratio may arise from soft gluon
radiation. Current NLO QCD calculations do not include soft radiative corrections, where
the partons can emit low—energy gluons nearly colinearly. This soft radiation can be in-
cluded with an ad hoc correction to the standard perturbative prediction by adding a small
quantity of transverse energy, called kr, to the outgoing partons during the calculation.
This randomized “kick” to the outgoing partons inflates the lowest portions of the inclusive
jet cross section in much the same way as the smearing from jet energy resolution. In Fig-
ure 8.9, the hatched line indicates the effect of a Gaussian—distributed kick with width 3
GeV. The normalization differences remain throughout most of the x range, but the rise in
the prediction at the low end is similar to the rise observed in the data. Because kt effects
would result in an observed dijet asymmetry, it is not clear how much k7 would survive the

unsmearing process, so the predicted change in Figure 8.9 may be an overestimate.

Because the ratio of cross sections isolates the high—order effects of QCD without mask-
ing them with the leading—order behavior, the final and possibly best explanation for the
deviation of the ratio from the QCD prediction stems from the truncation of the calcula-
tion at NLO. Although the augmentive techniques discussed in this section could explain

the observed difference to some degree, these additions at best approximate a full O(a?)
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Figure 8.10: The effect of the O(a?) term in the QCD jet cross section prediction, for both
center—of—mass energies. Distributions were generated with JETRAD.

calculation. Significant computational power requirements prohibit a NNLO calculation at
this time, but the ratio of NLO to leading—order could provide an insight to the magnitude
of the effect (Figure 8.10). For jet ap greater than 0.15, the O(a?) term generates the same
effect without regard to center—of—mass energy. The difference from LO is small, so an ad-
ditional perturbative term cannot induce much additional change. The behavior at low x
differs markedly, but only for /s = 630 GeV; because the jet energies become very small,
greater sensitivity to o, terms should be expected. Note that the z1 range spanned by the
Monte Carlo simulation in Figure 8.10 does not extend as low as the data, the difference
between LO and NLO in the first data bin could be as large as 70%. Although the shape
of the distributions in Figure 8.10 are suggestive, definitive conclusions must await a full
calculation.

A study of event topology provides additional evidence of the need for additional terms
in the QCD prediction. Consider Figure 8.11, which plots the fraction of events with two

jets (three jets, etc.) as a function of jet Ep (/s = 630 GeV). Approximately 10% of
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Figure 8.11: Number of jets per event as a function of Jet Ey. Lines indicate the HERWIG
Monte Carlo prediction.
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all events contain four jets. Because an additional (radiated) jet generally “steals” its Ep
from its parent jet, the predicted cross section would decrease if it could accommodate the
possibility of fourth jets. Note that NLO calculations cannot contain more than three jets;
thus, NLO QCD can neither describe the observed jet topology nor the normalization of the
cross section to better than 90%. In contrast, HERWIG models final-state radiation with
a fragmentation function, and initial-state radiation with a “reverse evolution” technique.
The internal workings of HERWIG are empirical and not analytic, so the output event
topology mimics data very closely (solid lines in the figure). Although HERWIG is useful
for detector studies, it cannot provide a meaningful comparison of basic theory to physics
results.

In Figure 8.11, the number of dijets increases at low values of jet Et while the number
of three—jet and four—jet events decreases over the same range. This effect results from
increased frequency of jet merging; low—Er jets tend to lie closer to their radiated jets.
Although this effect should, in principle, be modelled by the R,., parameter, no similar
behavior appears in Figure 8.6(d). The low—Er feature of the ratio may imply either a

failure of R,y or a severe underestimation of the number of radiated jets in NLO QCD.

8.4 Summary

This dissertation provides the most precise measurement of inclusive jet cross sections to
date. For the first time, a full error analysis describes the relationship of the binwise
uncertainties with one another. Use of the x? comparison test quantitatively describes the
level of agreement between the measured distribution and the NLO QCD predictions. For
both /s = 630 and 1800 GeV, the cross sections display no significant deviations from the
NLO QCD predictions.

The ratio of dimensionless cross sections enjoys significant error reduction relative to the
cross section measurement alone. While the cross section errors range from 10 to 25%, the
ratio uncertainties become as small as 5%. The uncertainties in the ratio of cross sections

are less correlated than the cross section uncertainties; therefore, the ratio measurement
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Bin Edges in zp Point Ratio | Statistical | Systematic

Position Error Error
0.067 0.077 0.072 1.87 0.029 0.339
0.077 0.089 0.083 1.75 0.041 0.239
0.089 0.100 0.094 1.64 0.057 0.188
0.100 0.111 0.105 1.64 0.032 0.148
0.111 0.122 0.116 1.54 0.042 0.126
0.122 0.133 0.127 1.56 0.055 0.115
0.133 0.144 0.139 1.43 0.070 0.104
0.144 0.156 0.150 1.60 0.091 0.093
0.156 0.167 0.161 1.60 0.115 0.087
0.167 0.178 0.172 1.53 0.038 0.083
0.178 0.189 0.183 1.51 0.046 0.081
0.189 0.200 0.194 1.55 0.056 0.081
0.200 0.211 0.205 1.50 0.066 0.081
0.211 0.222 0.216 1.62 0.083 0.084
0.222 0.233 0.228 1.59 0.099 0.085
0.233 0.244 0.239 1.67 0.122 0.089
0.244 0.256 0.250 1.69 0.144 0.092
0.256 0.300 0.271 1.64 0.107 0.101
0.300 0.356 0.319 1.73 0.189 0.136
0.356 0.622 0.434 1.75 0.354 0.209

Table 8.6: The ratio of dimensionless jet cross sections.

is more sensitive to normalization differences between data and the predicted result. The
observed normalization difference results in a less than 8% probability that the data and
NLO calculations describe the same distribution. The difference can be accommodated by
varying the renormalization scale between center—of-mass energies. Several augmentations
to the NLO prediction show some promise, but the perturbative behavior of QCD indicates
that an O(a?) prediction could provide satisfactory agreement without any additions to the
standard QCD formalism.

The size of the covariance matrix prevents publication, but an ASCII-format text file
will appear on the D@ Collaboration web page. The final ratio bins, ratio values, and

binwise uncertainties appear in Table 8.6.



Appendix A

Coordinate Systems, Units, and
Variables for HEP

“Differing weights and differing measures—the LORD
detests them both.”

— Proverbs 20:10

A collider detector requires several different coordinate systems to conveniently spec-
ify hardware locations, physics results, and beam mechanics. The D@ collaboration uses
four primary systems: Cartesian (x, y, z), cylindrical (r, ¢, z), spherical (r, ¢, #), and a
modified spherical system using transverse energy, pseudorapidity, and azimuth (Er, 7, ¢).
The fourth coordinate system defines direction and energy magnitude rather than three
dimensional position. In all cases, the systems are right-handed with positive z assigned to
the direction of the proton beam (south at the D@ collision point). Thus, the x-axis points
inward toward the center of the Tevatron and positive y-axis points vertically upward. The

colatitude # becomes zero along the z-axis, and ¢ becomes zero along the x-axis.

A.1 Natural Units

As a standard of high energy physics, all quantities are scaled by the two fundamental

constants of relativistic quantum mechanics: Planck’s constant
h —34
h= or = 1.055 x 107 °* J - sec (A.1)
7r
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| Quantity ‘ Units |
mass (m), momentum (mc), energy (mc?) GeV
length (h/mc), time (h/mc?) GeV~!
charge (v/he) (dimensionless)

Table A.1: Physical quantities expressed in terms of natural units.
and the speed of light in vacuum

¢ =2.998 x 10° —. (A.2)

secC

With the selection of units such that these quantities become dimensionless (i.e. h, ¢ = 1),
all quantities may be easily expressed in terms of energy (Table A.1), typically electron-Volts
because the mass of the proton is approximately 1 GeV.

As an exception to the convention, cross sections are expressed in terms of barns, where
1b=1x10"%2m2 (A.3)
This area-like quantity is related to natural units by the relation

1 GeV™2 = (0.389 mb. (A.4)

A.2 Variables for Collider Physics

For any two—body interaction, the initial 4-momenta* form the Mandelstam variable

s = (pa+pn)*, (A.5)

which is Lorentz invariant (i.e., the numerical value is independent of the frame of reference).
The total center—of-mass energy of the colliding system is given by /s, and each particle
has center—of—mass energy

s+ ma‘ — m2B

2V/s

At Fermilab, both colliding particles have the same mass, so each has energy 3@, which is

B = (A.6)

sometimes called the “beam momentum.”

* The four-dimensional momentum vector takes the form p = (E, pz, py, pz).
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Although the transverse component of a scalar quantity may at first seem like a strange
concept, Et is simply defined as the total energy of a particle or group of particles mul-
tiplied by the sine of the angle between the energy deposit and the beampipe; loosely,
the “transverse energy” is the component of the energy which is orthogonal to the beam
direction:

Er = Esin6. (A.7)

This quantity is used interchangeably with the more properly formulated transverse mo-
mentum, pr. Because the calorimeter measures energy rather than momentum, and because
the masses of the particles that comprise a jet are not measured, transverse energy better
describes the observed quantity. In some sections of Chapter 4, Er will be used as a vector
for convenience of notation to indicate the magnitude E1 with azimutial direction QAS

Because the initial particles in the beams have negligible transverse momentum compo-
nents, by conservation of momentum, the ET sum of all objects in an event is zero. Some
particles escape through the detector without depositing energy; thus creating “missing
ET,” denoted ]ZT-

The variable rapidity is defined as

—llnEijz
Y=o E o,

7 (A.8)

where E and p, indicate total energy and longitudinal momentum. While rapidity is not
Lorentz invariant, the first derivative of the rapidity does satisfy this condition; thus, the
shape of a rapidity distribution will not change with a boost* in the longitudinal direction.
This is a crucial consideration at a hadron collider because the fraction the beam momentum
possessed by the inital state partons varies from event to event.

In the limit that p > m, the rapidity may be re-written in terms of cos 8 = % to become

1 28 0
n==In Sl S (tan 5) . (A.9)

20
Sll’l2

While this expression is strictly identical to the rapidity only for massless particles (where

* “Boost” indicates that the rest frame of the collision is not identical to the laboratory frame.
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E = p), it is a good approximation for highly relativistic particles. Thus, 7 is called the
pseudorapidity.

In a pp collision, the vertex does not in general appear at the center of the detector.
As a result, coordinates must be redefined with the zero point at the vertex of the event,
not at the center of the detector. At times both detector and “physics” coordinates must
be used, the detector quantities are then differentiated with subscripts (e.g. 7, denotes
detector pseudorapidity).

For collider detectors, values of pseudorapidity close to zero (|| < {0.5 — 0.8} for DQ)
are referred to as central and large values are termed forward. Note that the term forward
usually applies to large negative pseudorapidity as well; in most analyses, the directions
are not distinguishable so there is no “backward” region of the detector. Refer to the

calorimeter schematic on page 49 (Figure 2.16) for a depiction of pseudorapidity.

A.3 Calculation of Jet Variables

The D@ experiment uses a “fixed cone” jet definition: each jet consists of all cell energies

within a radius

R=1/(¢0— 8)° + (g — )" (A.10)

where ¢, and 7, are the coordinates of the jet centroid. Because each jet deposits energy
in many detector cells, an algorithm for Etr summation must be defined. Additionally,
several non-equivalent methods exist to determine the pseudorapidity and azimuth of the
jet centroid. D@ adheres to the following conventions, where the summations occur over

calorimeter cells:

B =N " Ep. = E; sin 6, A1l
T i )

7

2 Ey

¢ =tan~! | 2 = | and (A.12)
@

1
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A.13
Z Ez,b ) ( )
where
E;, =E;sin0; cos ¢,
Ey, =E; sin6; sin ¢, (A.14)

E., =E;cos¥;.

The pseudorapidity of the jet is determined with Equations A.13 and A.9. Although other
algorithms (e.g., Snowmass) result in slightly different quantities, the differences are negli-

gible in the central region. For completeness, the Snowmass definitions are included below.

Snowmass E%Et = ZETi = E;sin6;, as above, but (A.15)
Z ET@' ’ ¢z
Snowmass ¢’¢ = t———— and A.16
o= (A.16)
' Z ET@' M
Snowmass 7/ = — . (A.17)

2B,
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Appendix B

Propagation of Errors

“Sometimes we may learn more from a man’s errors,
than from his virtues.”

— Henry Wadsworth Longfellow

With any measurement, the degree of certainty to which the nominal value is known
is as important as the value itself. The following sections detail the steps necessary to
properly calculate the uncertainty of many quantities and several methods of propagating
error through a calculation. In the discussion, y; represents the measured values of some
quantity at generalized x; positions. The “true” distribution being measured is sometimes

represented by f(z), although f and g are also used more generally in other discussions.

B.1 Statistical Errors and Binomial Errors
In a standard counting experiment, the statistical uncertainty on a number N is simply
AN =+ N. (B.1)

The fractional error on the number is given by

VN
. (B.2)

For a quantity derived from the number (e.g., an event rate, given by N per unit time),
the statistical portion of the fractional uncertainty remains the same, as given by Equation

B.2. The absolute statistical uncertainty would be given by Equation B.1, divided by the
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time. Such a calculation also requires a systematic uncertainty that expresses the precision
of the time measurement.

A different method describes the uncertainty of a data selection. Given an event sample
with IV events where some number of events a pass a selection criteria, the efficiency is

expressed as

and the statistical error is given by the binomial error formula

e-(1—e¢)

Ae = .
¢ N_—1

(B.4)

By Equation B.4, the uncertainty range about the efficiency remains bounded by the phys-
ical region (i.e., never leaves the interval [0,1]). Unfortunately, even for small values of N
the errors can be too small to accommodate possible method biases. Usually, experimenters
add a systematic error to the binomial uncertainty to avoid underestimation of errors (as

in Chapter 5).
B.2 Quadrature Addition of Errors

This simple procedure requires knowledge of the degree of correlation between errors. The

formula for the uncertainty on a function f(x), based on the known variances of parameters

a, b, c, ..., is given by
(Af(x)* = AN (Aa)? + AN (Ab)* + AN (Ac)? + - - (B.5)
Oa Ob oc '
ofof ofof of of
+204 5a 9b AaAb + 2p,, 5 Da AcAa + 2py,. 9% De AbAc + ,

where p;; is the correlation between parameters ¢ and j, and the one-sigma standard devia-

tions are Aa, etc. In the case of uncorrelated parameters (p,; = 0), Equation B.5 simplifies

Af(z) = \/<%>2 (Aa)? + <%>2 (Ab)* + <%>2 (Ac)® +---. (B.6)

to
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With Equation B.6, it is easy to verify that for a simple ratio R (x) = % with uncor-

ARG [(AF@N° . (Dg(@)\?

R(x) ‘\/< f(x)) +<g<x> ) (B7)

_ J@)g)
g(x)

related uncertainties,

and for the comparative fractional deviation D(x) , the uncertainty is similarly

expressed as

wo- BB G8)

The formulae in this section apply equally well to discrete functions f(x;) as to continuous
functions.

When fitting functions to data points, software packages frequently use a chi-square
minimization algorithm. Most fitting packages will produce a covariance matrix (an “error
matrix” ), whose diagonal elements are the squares of the parameter errors (the variances),
and whose off-diagonal elements are the covariances of the parameters. For a three param-

eter fit, the error matrix is given by

(Aa)2 PapAaAb  p,.AaAc
V=1 p.AbAa  (AD)?  pAbAC |- (B.9)

PeaDcAa  puAcAb  (Ac)?

In the (usual) case of parabolic errors, the error matrix is symmetric about the diagonal,
because pp, = pgp- (For the diagonal elements, p,, is identically unity.) The matrix form
is easily generalized to additional parameters. When combined with a function’s partial

derivatives, the matrix elements of V are precisely the factors required by Equation B.5.

B.2.1 Advanced Work with Covariance

In some cases, an analysis requires the covariance of a function to itself. Then, the individual
elements of a matrix V may be expressed as the product of two total derivatives and a

correlation. Here the overbar notation indicates inclusion of the derivatives in the matrix;
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additionally, the rows and columns indicate different values of x in some function f(z):

(Af))? (BED)' iy Af(an) Af(an) ) 2faa
Vi = | pra Af(an) Af(e) 22 2ol (A f(a))? (2%2)” - (B.10)

The formulation of the error matrix in this section should not be confused with Equation
B.9.

To illustrate the technique, suppose that the error matrix for the inclusive jet cross
section is required for a systematic error that varies as a function of jet energy.* If the
cross section consists of 20 points, then the matrix must have 20 rows and 20 columns; the
square roots of the diagonal elements are identically the errors of each cross section point.
In the matrix, the correlations describe the dependence between different E1 points rather
than between different parameters. For any given bin in the cross section, o(E7), the total

derivative with respect to the energy is

80 8ET gtr s 80

oo (E E=_—sinf 6F, B.11
1) = 38, 98 E; " (B-1)
and the elements of the covariance matrix in Equation B.10 may be expressed
- oo oo
Vij = (p;;00:60;) = PEE, - R sinf; 6 E; o Er sinf; 6E;. (B.12)

For a less elementary example, consider the dljet mass, M = \/2E1E2 (1 —cosbq2), a
function of two jet energies and the angle between the jets. Assuming the uncertainty is

only a function of jet energy, the “total derivative” is

M M
oM = g_ﬂ6E1+g_ﬂ6El (B.13a)
= (6 + BaEy) (1~ costn) (B.13b)

where the 6 cos 015 term has been set to zero. The matrix elements are then

1
M; M;
(EliElj . <,022]-25E215E2j> + EQiElj . <,021]-25E115E2j> +

\7ij = <p¢j5]Vfi5]ij> = (1 — COS 912~;) (1 — COS(912j) X (B.14)

EliEQj . <p12j1(5E2i5E1j> + EQiEQj . <p11]16E1i6E1j>>'

* This scenario is a simplified example of the energy scale uncertainty described Chapter 7: the response is
correlated in jet energy, but the jet cross section is a function of Er.
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The principle difficulty in the use of Equation B.10 lies in the acquisition of the correlations

between bin points. This information is not readily available from most fitting routines.

B.3 Useful Formulae

Very often a weighted average value describes a sample more accurately than a simple

average. Given a set of weights w; and measurements y;, the average is found with

1
S ;wz Yi- (B.15)

The uncertainty on the average is given by

Ap= — (B.16)

i
This technique was used extensively in Chapter 8, where the w; represented the values of the
jet cross section at each z;, and the y; were (for instance) the uncertainties of jet energies
due to the response correction. Use of Equation B.15 allowed events generated with a flat
distribution to properly model bins with steeply falling distributions.
Another use for Equation B.15, the so—called “World Average,” estimates the mean value

of several measurements with different uncertainties. The average p of several measurements

2

y; with different variances o7 is calculated with

1 i
= N2 (B.17)

and the resulting (one standard deviation) uncertainty on the mean is

Ap=—t (B.18)

7

S

This technique determined the pp cross sections and errors for the luminosity determination

in Chapter 5.
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Least Squares (the x> Goodness of Fit Test)

To perform simple consistency checks, one may use a x? test. To test the agreement between
a set of N data points y;(z;) with uncertainties o; versus some function f(x), the simple

chi-square is given by

N

i i

For a more elaborate comparison, use the error matrix and vectors containing the differences:
T v—
== Viy-f). (B-20)

where V~1 is the inversion of Equation B.12. This form for y? correctly accounts for any
correlations between errors and is used to good effect in Chapter 8. If the correlations of o;
between the ; are zero, the matrix V is diagonal, and Equation B.20 is equivalent to the
simpler form of Equation B.19.

An often useful quantity, the reduced chi-square may be computed with

2
X X
o = . B.21
d ( )

Here, d = N —p represents the number of degrees of freedom in the problem; N is the number
of points y;, and p is the number of parameters in the functional form f(z). A lookup table,
an example of which can be found in the PRD manual, describes the confidence level
associated with a given X72. While smaller values of a reduced chi-square indicate better
agreement, for d > 10, statistical fluctuations normally prevent a reduced chi-square value
much smaller than unity; values between 0.75 and 1.25 are normal and expected. Many

software routines (including Microsoft Excel) can compute the likelihood precisely from x?

and d, but the XTZQ ~ 1 rule provides a useful order—of-magnitude gauge.
The Log Likelihood

An alternative to the x? likelihood, the log likelihood is largest when the agreement is best.

Unlike the chi-square value, the numerical value of the log likelihood has no meaning at
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the best—fit point [47] and can change with a change of the units in which the problem is
expressed.

In most cases, errors follow a Gaussian distribution—they are symmetric about the
nominal value. In the case of small numbers of events, a Poisson distribution yields a better
estimate of the uncertainty. To the eye, the Poisson distribution appears to be a Gaussian
skewed to the left. For both distributions, the log likelihood that a number of data points
are consistent with a function f(z) is the natural logarithm of their respective probability

distributions:

N2
Gaussian G = ! exp ( = ) , (B.22)
o

2
Gaussian likelihood Lg = — Z (ln ((72- -V 27r> + u) ; (B.23)

- 202
and
. e H
Poisson P = , (B.24)
n!

N
Poisson likelihood Lp = Z (n; - Inp — p—1In(n!)) (B.25a)

N
= Z(ni-lnu—u—lnf(n+l)). (B.25Db)

i
Here, N is the total number of measurements, i is the average y value of the measurements,
and n (Poisson) is the number of events on a particular interval of x. In the best fit
calculation, the substitution p — f(x;) compares the measured values (y or n) to the

function. For the Poisson distribution, the variance 02 = p. For large values of N, the

expressions for the Gaussian and the Poisson distributions become equivalent.
B.4 For Further Reading

While many textbooks present statistical methods at various levels of difficulty, relatively
few frame their discussions in terms which are useful to experimenters. Two exceptions are

worth mentioning here.
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The Physical Review D Review of Particle Physics contains a section on probability
and a section on statistical inference. Both sections relate their discussions to specific
problems encountered in HEP.

The most useful and surprising resource was the MINUIT user’s manual, available from
the CERN webpages (Reference [47] of this dissertation). It clearly and concisely described
difficult concepts, such as the covariance matrix and how it is calculated. Because the
manual describes the use of a software package, its discussions are results—oriented and

framed in terms of the FORTRAN computing code.



Appendix C

The Total W Boson Cross Section

“Here is the simple but powerful rule: always give
people more than they expect to get.”

— Nelson Boswell

The brevity of /s = 630 GeV running at the Tevatron limited the integrated luminosity
and total number of events collected. Despite statistical limitations, a D@ calculation of
the total W boson cross section contributes to the precision of the World Average value and
provides corroborative weight to the luminosity measurement of Chapter 5.

For simplicity, only the W — erv channel was investigated, using techniques developed
during the prior full-energy running period. The signature for W boson events in this
channel is a single electron and large missing Er, the presence of a jet is allowed. Figure C.1
presents a sample of W boson production mechanisms.

The total W — ev cross section is given by

N (1— focp) — Nz fake
erp- A1+ A=gobe ) [ £t

(C.1)

OW —ev =

where the number of W candidate events, IV, less background events from QCD and Z boson
sources, is scaled with the integrated luminosity (L), the electron identification efficiency
(erp), and the fiducial acceptance (A) of the DO detector. A small acceptance correction
accommodates W decays in the tau channel that might mimic the electron signal. The
luminosity calculation for the W events is completely equivalent to the discussion in Chapter

5; the remaining elements of the cross section calculation are briefly described below.
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Figure C.1: Some possible W— er mechanisms. Although the diagrams specify W™ pro-
duction, there exists a conjugate set of diagrams that result in W~ production.

C.1 Run Conditions

All W events were collected with the EM1 EISTRKCC MS-LNR trigger. The complicated
name reflects the various trigger criteria:

e EIS: Electromagnetic object in the calorimeter, shape consistent with an electron,

isolated from other objects
e TRKCC: If the electron is in the CC, require associated track in CD
e MS: missing Er greater than 15 GeV in the event
e EMI1: electron with Er greater than 20 GeV

The D@ detector collected a total of 376 events with this trigger, which had a total
luminosity exposure of 490.0 nb—!. Although the W trigger was never prescaled, it was not

present on the trigger list throughout the run.

C.2 Data Selection and Efficiencies

Three offline criteria select W boson events from the collected sample: there must exist

one and only one electron (Ep > 25 GeV ) in the event, the electron must lie in a fiducial
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region of the detector, and the event must possess at least 25 GeV of missing Er. The
following subsection describes the efficiencies associated with the electron cuts and the Er
cut. Because W boson events trigger the Level () detector somewhat less reliably than do
minbias or QCD events, the luminosity measurement requires a small correction: the Level

O trigger efficiency*. The fiducial cut will be described in a later section.

C.2.1 Electron Identification Efficiency

The electron efficiency reflects the detector’s ability to resolve tracks and electromagnetic
clusters. The most powerful criterium demands that the electron shower develop similarly
to test—beam electrons, as described by the shower’s energy “shape” in the electromagnetic
portion of the calorimeter. To remove contamination from jets, the energy deposit must lie
primarily in the first few calorimeter layers and have little energy outside a narrow region.
Electrons only distinguish themselves from photons by their ionization trail through the
central detector, so a tracking requirement demands an track CD that points from the

vertex to the energy deposit.
H-Matrix Chi-Squared (X12{M)

Electrons passing through the EM calorimeter layers leave characteristic energy signatures.
A template for typical electrons was built from a combination of test-beam data and Monte

Carlo electron simulations. This template is expressed in terms of 41 electron observables:

e the energy fraction in EM layers 1, 2, and 4,
e the energy fraction in each cell of a 6x6 grid in EM layer 3,
e the logarithm of the cluster energy,

e vertex z position.

A covariance matrix M expresses the typical electron shower shape, where

N
M, = % nzl (2" — ) (a7 — 7;) (C.2)

* The Level @ trigger efficiency defined here should not be confused with the Level @ hardware efficiency
of Chapter 5.
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for each combination of observable i and j. All electron candidates are rated according to
the inverse of the covariance matrix, denoted H = M~!:
41
X = D (af — &) Hyj (25 — 75) . (C.3)
i, j=1
A cleanly measured electron yields a very small value [48] for xZ,;. As a DO standard,

electrons candidates must have a chi-squared value less than 100.0.

Electromagnetic Energy Fraction (EMFR)

Electromagnetic interactions consume an electron’s energy within the first few layers of
the calorimeter. Because the resulting shower should be almost entirely contained in the
EM section, the EMFR for electrons is required to be greater than 0.95. This cut is the

complement of the requirement defined in Chapter 5 for jets.

Isolation

The isolation fraction cut restricts the amount of energy that can surround an electromag-
netic cluster, removing the possibility that a cluster of 7 mesons within a jet can mimic
an electron. The isolation fraction is defined as
Tot EM
ERiOA — ER:O,Q

f’iso - EM )
ER:O.Q

(C.4)

where Egito.zl is the total energy in a 0.4 radius cone and EEZZV{).Q is the energy in the first
eight layers of the calorimeter (lying within a smaller “isolated cone” of radius 0.2). For

good electrons, fis, < 0.15.

Track match significance

For electrons, a track in the CD should align with the EM energy deposit. The level
of agreement between track and energy cluster is calculated by projecting the track into
the calorimeter and comparing its position with that of the EM shower centroid. Using

cylindrical coordinates, the track match significance is expressed as
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2 2
S = \/(r A¢> +<£> or (C.5a)
Org¢ Oz
2 2
St = \/(%> +<£>. (C.5b)
(T¢ (%

Here, the A terms represent the differences in positions and the o terms describe the

uncertainties in the positions. The uncertainties result from calorimeter position resolution,
tracking resolution, and the track extrapolation procedure. For good electrons in the CC,

SEC < 5.0; in the EC, SE¢ < 10.0.
Fitting the Efficiencies

Traditionally, a study of Z boson events determined the electron efficiency. Because the short
run time produced only ten to twenty Z boson events, the efficiency of the electron selection
criteria could not be studied independently at /s = 630 GeV; instead, the efficiencies were
drawn from the well-measured [?] 1800 GeV data sample. The W boson identification
efficiency, ey, consists of the product of the efficiencies of the selection criteria above and
a small correction factor that removes correlation™ biases.

The efficiency, ey, varies as a function of the instantaneous luminosity, electron pseu-
dorapidity, and the number of jets in the event. Figure C.2 (top) displays the measured
efficiencies for /s = 1800 GeV. The value of ey is higher in the central calorimeter than
in the end calorimeters, and ey is larger for “clean” events (when no jets are present). At
1800 GeV, jets with Er greater than 25 GeV accompany approximately 8% of all W events;
at 630 GeV, all events are clean. With the assumption that the efficiency for the inclusive

sample may be written

"o jets ot Nat least 1 jet ¢ least 1 iet
ew =~ ew C + —~ eI (C.6)
simple algebra isolates the clean—event efficiency, enwo J ets, as depicted in Figure C.2, bottom.

Note the change in labeling of the z—axis. Neglecting pileup effects in the calorimeter, sup-

* 7 boson events contain two electrons; the identification probability of one electron is correlated with the
probability of identifying the other.
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Figure C.2: Efficiency of W event selection criteria. (Top) Efficiencies versus luminosity
for the CC and EC, for all events and for the subset of events with an accompanying jet.
(Bottom) The extracted efficiency for W event selection with zero accompanying jets. Stars
indicate the efficiency for the 630 GeV data set.
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pression noise, underlying event, and additional interactions provide the extraneous energy
of an event. Because noise and underlying event are constant, the luminosity—dependent
behavior must result from additional interactions. The number of expected interactions per
beam crossing rises linearly with luminosity; thus, using the measurements [43] of the DO
energy scale correction, the luminosity values map linearly to extraneous energy densities.
In the figure, the efficiencies have been extrapolated to the average extraneous energy den-
sity found at /s = 630 GeV. Comparison of the x—axes in the bottom and top of the figure
reveal that a simple zero—luminosity limit would not be sufficient.

The uncertainty on the extrapolated point results from the covariant fit uncertainty.
As an additional check, the inclusive efficiencies were extrapolated to 630 GeV (dashed
line in the figure). The result exhibits complete consistency with the nominal technique,
the residual difference forms the systematic uncertainty. The final W selection efficiency is

0.808 £ 0.0241.

C.2.2 Trigger Efficiencies

Additional event losses can result from requirements in the trigger. First, the online Level
() requirement mistakenly excludes some W boson events because the beam remnants fail
to trigger the hodoscope arrays. For the 1800 GeV data set, the Level ) trigger efficiency
is 0.986. At 630 GeV, the average Level () hardware efficiency differs, as depicted in Figure

5.3, page 97. The Level O trigger efficiency should scale with the ratio of the values in the

1030 Ccrossings
cm? sec

figure. Evaluating the function at a luminosity of 7 x the Level O trigger

efficiency becomes

.82
er, = 0.986 - % = 0.897 4 0.00854%"* £ 0.00619°¥* (C.7)

The systematic uncertainty dominates the size of the error bar on each point in Figure
5.3, the inner marks delineate the statistical portion of the total. Because the source of
the systematics is identical [28][37] for both center—of-mass energies, the uncertainties are

completely correlated and mostly cancel in the ratio.



206

As with the offline selection, the trigger requirements for electrons should become more
efficient at /s = 630 GeV than at 1800 GeV, where the efficiency is 0.995%. Possible
improvement in this efficiency was neglected but the uncertainty was tripled, from 0.001
to 0.003. The K cut efficiency receives the same treatment: no change in nominal value
(0.9928), tripled error (now 0.0033).

A simple vertex requirement near |z| < 100 cm ensured proper Er calculation. The
precise vertex position could be determined by any of three methods: reconstruction algo-
rithms, PELC bank, or a cluster algorithm. Because low luminosity minimizes mis-vertexing
effects, all three methods yield the same result for the 630 GeV data set; thus, the differences

in the vertexing methods need not be discussed.

C.3 Backgrounds

Due to the rarity of W events, significant numbers of background events contaminate the
sample, as categorized [49] in Table C.1. QCD multijet events, the most copious contam-
inant of the W sample, result from one jet depositing a large fraction of its energy in the
EM calorimeter while the detector mismeasures the Et of a second jet. Such events imitate
the electron-plus-F1 signature of the W boson. Additionally, if a Z boson decays to two
electrons, sometimes one of the leptons will be lost in a poorly instrumented region of the
calorimeter, resulting in a second way to imitate the W signal. Alternately, if the Z boson
decays to two 7 leptons, the decay process 7 — er can result in a fake signature. The
third background arises from real W bosons decaying in the tau channel with the lepton
misidentified as an electron. Although the intermediate state was indeed a W boson in this
case, the event would be inappropriately included in the W— er channel.

The values in Table C.1 were calculated for the /s = 1800 GeV data sample and would
be somewhat inappropriately applied at /s = 630 GeV. Although the shift in center-of-
mass energy should cause little change in the background fractions, the shift is most likely
non-zero and should, in principle, be reexamined. The W boson data at 630 GeV will be

statistics-limited, and so recalculation of backgrounds was deemed too time consuming to
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Background Source | Location | Fraction of sample
Multijet CC (4.1+£1.00%

EC (12.8+3.0) %
Z—ee, 7T (0.983 £+ 0.295)%
W— v (2.14+£0.21)%

Table C.1: List of background sources to W events for the 1800 GeV data sample.

Central Cross Sections | 1800 GeV 630 GeV
O Jet, By >25 (1b) 8056 £ 1710 | 700.4 £+ 148.5
OW_ev (0b) 2.382 +£0.058 | 0.747 + 0.05
ratio 3382 937.6

Table C.2: The predicted total cross sections for W boson production and jet production
at two center-of-momentum energies.

be worthwhile. Because the Z and W background cross sections scale with /s in exactly the
same way as does the W — ev, signal, the background fraction from these sources should
remain entirely unchanged.

The QCD background is, to first approximation, proportional to the ratio of the QCD
jet cross section to the W cross section. Because finite energy resolution in the calorimeter
distorts jet cross sections, a theoretical QCD prediction was smeared with the measured jet
energy resolution values of the D@ detector. Table C.2 lists the relevant total cross sections
at the two center-of-momentum energies. The theoretical jet cross sections were created
with the CTEQ4M parton distribution function. The D@ Collaboration determined [49]
the W boson cross section at /s = 1800 GeV; the value for 630 GeV is a NLO prediction.

The ratio %\;t changes by a factor of 0.28 4+ 0.1132, indicating the multijet background
for \/s = 630 GeV should be 1.15% in the central region and 3.58% in the EC. Most of
the uncertainty in this scaled jet background results from the uncertainty in the QCD cross

section predictions.

C.4 Fiducial Acceptance

Electrons in the ICR are frequently mismeasured or lost due to the coarseness of EM

segmentation or lack of EM modules; therefore, candidates in the area subtended by the
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ICR are excluded from consideration. Generated during a Monte Carlo study, Figure C.3
shows the fraction of electrons lost in the detector as a function of physics pseudorapidity.
The ICR losses, while quite evident, are softened by the mismatch between 1 and 1, due to
non-zero vertex positions. The high—pseudorapidity regions of the end calorimeters are also
excluded because segmentation becomes coarse [50] in that region. Further, longitudinal
seams between EM modules in the CC distort electron measurements; therefore, electrons
within 0.01 radians of a module boundary are excluded from the data sample. Losses in
these so-called “¢-cracks”, of order 10%, do not vary with pseudorapidity but rather with the
azimuthal position within a cell (Figure C.4). Because the incomplete EM coverage of the
calorimeter results in non-unity acceptance, the cross section measurement is performed only
in the well-behaved regions of the calorimeter, with a smooth correction for the electrons
that fall outside the fiducial region.

A Monte Carlo study determines the acceptance of the D@ calorimeter. First, a the-
oretical prediction for the W cross section, as a function of both rapidity and transverse
momentum, defines a “grid” of cross sections. A detector simulation processes events drawn
from this smooth cross section distribution to determine the final number of events that
are “visible” to the analysis. The fraction of electrons from W decays that remains in the

fiducial region is 0.5213, nearly 10% higher than the acceptance at /s = 1800 GeV.

C.5 Result

Searches of the 630 GeV data set reveal 130 candidate events. The luminosity (490.0
nb~!) and parameters in previous sections determine the total W boson cross section in the

electron channel:
OCw—er = 0.6585 £ 0.0583%“* 4 0.0301%Y° nb. (C.8)

In terms of percentage error, the statistical and systematic components are £8.9% and
+4.6% respectively, for a quadrature total of £10.0%. The systematic error reported in

Equation C.8 includes the +3.04% uncertainty contribution from the luminosity determi-
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Figure C.3: Lost electrons as a function of pseudorapidity. The most inefficient portions of
the detector will not be included in the fiducial region.
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Source OwW—ev at /s =630 GeV (nb)
UAL (1987) 0.630 £ 0.11
UA2 (1992) 0.711 £+ 0.04
Prior World Average 0.702 + 0.038
DO (1998) 0.6585 £+ 0.0657
World Average 0.691 £ 0.032
| Theory | 0.714 to 0.762

Table C.3: Total W cross section times branching ratio compared to prior experiments.

nation. Without considering luminosity, the systematic error reduces to £0.0225 nb or
+3.4%.

With or without the reduced uncertainty, the total W boson cross section is consistent
with both theory and previous experiments; thus validating the D@ luminosity calculation
at /s = 630 GeV. Figure C.5 compares the cross section results with NLO theoretical
predictions and the results of the UA1 [51] and UA2 [52] experiments, while Table C.3 lists
the numerical values of these results. The D) measurement shifts the “World Average”
total W— ev cross section lower by 1.5%, while improving the precision of the measurement

by 15%.
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Figure C.5: The DO W— ev cross section measurement at /s = 630 GeV compared to
the results from UA1, UA2, and theory (shaded band). The open circles indicate the world
average before and after inclusion of D@’s result.
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THE RATIO OF INCLUSIVE JET CROSS SECTIONS AT
/s = 630 GeV AND +/s = 1800 GeV
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This dissertation presents an analysis of hadronic jet production from proton-antiproton
collisions at two center—of—mass energies. Measurements were performed in the central re-
gion (|n| < 0.5) of the DO detector at Fermi National Accelerator Laboratory (Batavia, IL).
Results are compared to next—to—leading—order QCD predictions generated with JETRAD
and EKS Monte Carlo. Several techniques reduce the uncertainty in the ratio of cross sec-
tions to as low as 5%. The observed normalization difference results in a low probability
that the data and predictions describe the same distribution.



