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USER DOCUMENTATION FOR PVODE, AN ODE SOLVER FOR 
PARALLEL COMPUTERS* 

GEORGE D BYRNEt AND ALAN C HINDMARSHt 

1. Introduction. PVODE is a general purpose ordinary differential equation (ODE) 
solver for stiff and nonstiff ODES It is based on CVODE [5] [S], which is written in ANSI- 
standard C PVODE uses MPI (Message-Passing Interface) [S] and a revised version of the 
vector module in CVODE to achieve parallelism and portability PVODE is intended for 
the SPMD (Single Program Multiple Data) environment with distributed memory, in which 
all vectors are identically distributed across processors In particular, the vector module 
is designed to help the user assign a contiguous segment of a given vector to each of the 
processors for parallel computation The idea is for each processor to solve a certain fixed 
subset of the ODES 

To better understand PVODE, we first need to understand CVODE and its histori- 
cal background The ODE solver CVODE, which was written by Cohen and Hindmarsh, 
combines features of two earlier Fortran codes, VODE [l] and VODPK [3) Those two 
codes were written by Brown, Byrne, and Hindmarsh. Both use variable-coefficient multi- 
step integration methods, and address both stiff and nonstiff systems (Stiffness is defined 
as the presence of one or more very small damping time constants ) VODE uses direct 
linear algebraic techniques to solve the underlying banded or dense linear systems of equa- 
tions in conjunction with a modified Newton method in the stiff ODE case On the other 
hand, VODPK uses a preconditioned Krylov iterative method [2] to solve the underlying 
linear system User-supplied preconditioners directly address the dominant source of stiff- 
ness Consequently, CVODE implements both the direct and iterative methods Currently, 
with regard to the nonlinear and linear system solution, PVODE has three method options 
available. functional iteration, Newton iteration with a diagonal approximate Jacobian, and 
Newton iteration with the iterative method SPGMR (Scaled Preconditioned Generalized 
Minimal Residual method) Both CVODE and PVODE are written in such a way that 
other linear algebraic techniques could be easily incorporated, since the code is written with 
a layer of linear system solver modules that is isolated, as far as possible, from the rest of 
the code Further, the code is structured so that it can readily be converted from double 
precision to single precision This precludes the maintenance of two versions of PVODE 

PVODE has been run on an IBM SP2, a Cray-T3D and Cray-T3E, and a cluster of 
workstations It is currently being used in a simulation of tokamak edge plasmas at LLNL 
(We are grateful to Dr Michael Minkoff at Argonne National Laboratory for assistance 
in the use of the IBM SP2 there ) Recently, the PVODE solver was incorporated into the 
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t Computer Science and Applied Mathematics Department, Illinois Institute of Technology, Chicago, IL 
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t Center fol Applied Scientific Computing, Lawrence Livermore National Labcnatory, Livermore, CA 
94551 
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PET% package (Portable Extensible Toolkit for Scientific computation) [9] developed at 
Argonne 

The remainder of this paper is organized as follows Section 2 sets the mathematical 
notation and summarizes the basic methods Section 3 summarizes the organization of the 
PVODE solver, while Section 4 summarizes its usage Section 5 describes a preconditioner 
module, and Section 6 describes a set of Fortran/C interfaces Section 7 describes two 
example problems, and Section 8 gives some test results 

2. Mathematical Considerations. PVODE solves initial-value problems (IVPs) for 
systems of ODES Such problems can be stated as 

Y = f(f, Y)? Y@o) = YOO, yeRN 

where y = dy/dt and RN is the real N-dimensional vector space That is, (1) represents 
a system of N ordinary differential equations and their initial conditions at some to The 
dependent variable is y and the independent variable is t. The independent variable need 
not appear explicitly in the N-vector valued function f 

The IVP is solved by one of two numerical methods These are the backward dif- 
ferentiation formula (BDF) and the Adams-Moulton formula Both are implemented in a 
variable-stepsize, variable-order form The BDF uses a fixed-leading-coefficient form These 
formulas can both be represented by a linear multistep formula 

K, K2 
(2) C h,iYn-i + hn C A,&-i = 0 

ix0 i=O 

where the N-vector y/n is the computed approximation to y(t,), the exact solution of (1) at t, 
The stepsize is h, = t, - t,-i The coefficients LY,,~ and ,& are uniquely determined by the 
particular integration formula, the history of the stepsize, and the normalization cy,,s = -1 
The Adams-Moulton formula is recommended for nonstiff ODES and is represented by (2) 
with Kr = 1 and Ks = 4 - 1 The order of this formula is 4 and its values range from 1 
through 12 For stiff ODES, BDF should be selected and is represented by (2) with Kr = 4 
and 1(2 = 0 For BDF, the order 4 may take on values from 1 through 5 In the case of 
either formula, the integration begins with p = 1, and after that 4 varies automatically and 
dynamically 

For either BDF or the Adams formula, yn denotes f(tn, yn) That is, (2) is an implicit 
formula, and the nonlinear equation 

(3) G(Y/,) = in - hn&of(tn, yn) - a, = o 
an = pn,iYn-i + hn&iYn-i) 

must be solved for yin at each time step For nonstiff problems, functional (or fixpoint) 
iteration is normally used and does not require the solution of a linear system of equations 
For stiff problems, a Newton iteration is used and for each iteration an underlying linear 
system must be solved This linear system of equations has the form 

(4 WY,(,,+I) - ~ncm,l = -G(y+q) 
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where yn(,,,) is the mth approximation to y,,, and M approximates dG/ay 

M-I--J, J=af 

8Y’ 
Y = w%I,o 

At present, aside from the diagonal Jacobian approximation, the only option implemented 
in PVODE for solving the linear systems (4) is the iterative method SPGMR (scaled, pre- 
conditioned GMRES) [2], which is a Krylov subspace method In most cases, performance 
of SPGMR is improved by user-supplied preconditioners. The user may precondition the 
system on the left, on the right, on both the left and right, or use no preconditioner 

The integrator computes an estimate En of the local error at each time step, and strives 
to satisfy the following inequality 

Here the weighted root-mean-square norm is defined by 

where E,,i denotes the ith component of En, and the ith component of the weight vector is 

1 
Wi = 

TtOl(&( + atO& 

This permits an arbitrary combination of relative and absolute error control The user- 
specified relative error tolerance is the scalar rtol and the user-specified absolute error tol- 
erance is atol which may be an N-vector (as indicated above) or a scalar. The value for 
rtol indicates the number of digits of relative accuracy for a single time step The spec- 
ified value for atoli indicates the values of the corresponding component of the solution 
vector which may be thought of as being zero, or at the noise level In particular, if we 
set atoli = rtol x floor: then floori represents the floor value for the ith component of the 
solution and is that magnitude of the component for which there is a crossover from relative 
error control to absolute error control Since these tolerances define the allowed error per 
step, they should be chosen conservatively Experience indicates that a conservative choice 
yields a more economical solution than error tolerances that are too large 

In most cases of interest to the PVODE user, the technique of integration will involve 
BDF, the Newton method, and SPGMR 

3. Code Organization. One way to visualize PVODE is to think of the code as 
being organized in layers, as shown in Fig 1 The user’s main program resides at the 
top level This program makes various initialization calls, and calls the core integrator 
CVode, which carries out the integration steps Of course, the user’s main program also 
manages input/output At the next level down, the core integrator CVode manages the time 
integration, and is independent of the linear system method CVode calls the user supplied 
function f and accesses the linear system solver At the third level, the linear sl stem solver 
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CVSPGMR can be found, along with the approximate diagonal solver CVDIAG Actually, 
CVSPGMR calls a generic solver for the SPGMR method, consisting of modules SPGMR 
and ITERATIV CVSPGMR also accesses the user-supplied preconditioner solve routine, 
if specified, and possibly also a user-supplied routine that computes and preprocesses the 
preconditioner by way of the Jacobian matrix or an approximation to it Other linear system 
solvers may be added to the package in the future Such additions will be independent of 
the core integrator and CVSPGMR Several supporting modules reside at the fourth level 
The LLNLTYPS module defines types real, integer, and boole (boolean), and facilitates 
changing the precision of the arithmetic in the package from double to single, or the reverse 
The LLNLMATH module specifies power functions and provides a function to compute the 
machine unit roundoff Finally, the NVECTOR module is discussed below 

The key to being able to move from the sequential computing environment to the parallel 
computing environment lies in the NVECTOR module The idea is to distribute the system 
of ODES over the several processors so that each processor is solving a contiguous subset of 
the system This is achieved through the NVECTOR module, which handles all calculations 
on N-vectors in a distributed manner For any vector operation, each processor performs the 
operation on its contiguous elements of the input vectors, of length (say) Nlocal, followed by 
a global reduction operation where needed In this way, vector calculations can be performed 
simultaneously with each processor working on its block of the vector Vector kernels are 
designed to be used in a straightforward way for various vector operations that require the 
use of the entire distributed N-vector These kernels include dot products, weighted root- 
mean-square norms, linear sums, and so on The key lies in standardizing the interface 
to the vector kernels without referring directly to the underlying vector structure This 
is accomplished through abstract data types that describe the machine environment data 
block (type machEnvType) and all N-vectors (type N-Vector) Functions to define a block 
of machine-dependent information and to free that block of information are also included in 
the vector module 

The version of PVODE described so far uses the MPI (Message Passing Interface) system 
[8] for all inter-processor communication This achieves a high degree of portability, since 
MPI is becoming widely accepted as a standard for message passing software In addition, 
however, we have prepared a version for the Cray-T3D and -T3E using the Cray Shared 
Memory (SHMEM) Library This involves a separate version of the vector module based on 
SHMEM instead of MPI 

Foi a different parallel computing environment, some rewriting of the vector module 
could allow the use of other specific machine-dependent instructions 

4. Using PVODE. This section is concerned with the use of PVODE and consists of 
three subsections These treat the header files, the layout of the user’s main program, and 
user-supplied functions or routines For further details not specific to the parallel extensions, 
the reader should see the CVODE User G&e [5] The listing of a sample program in the 
Appendix may also be helpful That code is intended to serve as a template and is included 
in the PVODE package 
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FIG 1 Overall structure of the PVODEpackage Modules comprising the central solver are distinguished 
by rounded boxes, while the uses progmm, generic linear solvers, and auxiliary modules are in unrounded 
bozes 
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4.1. Header Files. The calling program must include several header files so that var- 
ious macros and data types can be used The header files that are always required are 

. llnltyps h, which defines the types real, integer, boole (for boolean), and 
constants FALSE and TRUE 

l cvode h, the header file for CVODE, which defines the several types and various 
constants, and includes function prototypes 

l nvector .h, the header file for the NVECTOR module outlined above 
. mpi . h, the MPI header file 

If the user chooses Newton iteration together with the linear system solver SPGMR, 
then (minimally) the following header file will be required by CVODE 

. cvspgmr . h, which is used with the Krylov solver SPGMR in the context of PVODE 
This in turn includes a header file (iterativ.h) which enumerates the kind of 
preconditioning and the choices for the Gram-Schmidt process 

Other headers may be needed, according as to the choice of preconditioner, etc In one of 
the examples to follow, preconditioning is done with a block-diagonal matrix For this, the 
header smalldense. h is included 

4.2. A Skeleton of the User’s Main Program. The user’s program must have the 
following steps in the order indicated 

l MPI-Init (&argc, &argv) , to initialize MPI if used by the user’s program Here 
argc and argv are the command line argument counter and array received by main 

. Set Nlocal, the local vector length (the sub-vector length for this processor), neq, 
the global vector length (the problem size N, and the sum of all the values of 
Nlocal), and the active set of processors 

. machEnv = PVecInitMPI(comm, Nlocal, neq, &argc, &argv), to initialize the 
NVECTOR module Here coma is the MPI communicator, set in one of two ways 
If a proper subset of active processors is to be used, comm must be set by suitable 
MPI calls. Otherwise, to specify that all processors are to be used, comm must be 
either MPI-COMM-WORLD or NULL 

. Set the vector y of initial values Use the macro N-VMAKE(y, ydata, machEnv) , 
if an existing array ydata contains the initial values of y Otherwise, make the 
call y = N_VNeu(neq, machEnv) ; and load initial values into the array defined by 
N-VDATA(y) 

. cvodemem = CVodeMalloc( ) , which allocates internal memory for CVODE, 
initializes CVODE, and returns a pointer to the CVODE memory structure (See 
details below ) 

. CVSpgmr( ) , if Newton iteration is chosen (See details below ) 

. ier = CVode(cvodemem, tout, y. &t, itask), for each point t = tout at which 
output is desired Set itask to NORMAL to have the integrator overshoot tout and 
interpolate, or ONE-STEP to take a single step and return 

l N-VDISPOSE, or N-VFree, upon completion of the integration, to deallocate the 
memory for the vector y, allocated by N-VMAKE or N-VNew, respectively 

. CVodeFree (cvode-mem) , to free the memory allocated for CVODE 
l PVecFreeMPI (machEnv) , to free machine-dependent data 
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The form of the call to CVodeMalloc is 
cvodeaoem = CVodeMalloc(neq, f, to, y0, lmm, iter, itol, &rtol, 

atol, f-data, errfp, optIn, iopt, ropt, machEnv) 
where neq is the number of ODES in the system, f is the C function to compute j in the 
ODE, t0 is the initial value oft and y0 is the initial value of y (which can be the same as 
the vector y described above) The flag lmm is used to select the linear multistep method 
and may be one of two possible values ADAMS or BDF. The type of iteration is selected 
by replacing iter with either NEWTON or FUNCTIONAL The next three parameters are used 
to set the error control The flag itol is replaced by either SS or SV, where SS indicates 
scalar relative error tolerance and scalar absolute error tolerance, while SV indicates scalar 
relative error tolerance and vector absolute error tolerance The latter choice is important 
when the absolute error tolerance needs to be different for each component of the ODE The 
arguments &rtol and atol are pointers to the user’s error tolerances, and f-data is a pointer 
to user-defined space passed directly to the user’s f function The file pointer errfp points 
to the file where error messages from CVODE are to be written (NULL for stdout). iopt 
and ropt are integer and real arrays for optional input and output If optIn is replaced by 
FALSE, then the user is not going to provide optional input, while if it is TRUE then optional 
inputs are examined in iopt and ropt The final argument, machEnv, is a pointer to machine 
environment-specific information. 

The form of the call to CVSpgmr is 
CVSpgmr(cvodemem, pretype, gstype, maxi, delt, Precond, PSolve, P-data) 

Here pretype specifies the preconditioning type, with values NONE, LEFT, RIGHT, or BOTH, 
and gstype specifies the Gram-Schmidt orthogonalization type, with values MODIFIED-GS or 
CLASSICALXS The arguments maxl and delt are optional inputs for the maximum Krylov 
dimension and the SPGMR convergence test constant, respectively P-data is a pointer to 
user-defined space which PVODE passes to the user’s preconditioning functions for use there 

4.3. User-Supplied Functions. The user-supplied routines consist of one function 
defining the ODE, and (optionally) one or two functions that define the preconditioner for 
use in the SPGMR algorithm The first of these C functions defines j in (1) and must be of 
type RhsFn The form of this C function is 

void f(integer N, real t, N-Vector y. N-Vector ydot, void *f-data) 
This function has as input the number of ODES N, the value of the independent variable t, 
and dependent variable vector y The computed value of j(t, y) is stored in the N-vector 
ydot The pointer f-data was seen previously in the call to CVodeMalloc in Section 4 2 and 
points to data required in the computation of j(t, y) There is no return value for a RhsFn 

If preconditioning is used, then the user must provide a C function to solve the linear 
system Pz = r where P may be either a left or a right preconditioner matrix This C 
function must be of type CVSpgmrPSolveFn The Psolve function has the following form 

int PSolve(integer N, real t, N-Vector y, N-Vector fy, N-Vector vtemp, 
real gamma, N-Vector ewt, real delta, long int *nfePtr, 
N-Vector r, int lr, void *P-data, N-Vector z) 

Its input is N, the number of ODES and the length of all vectors, t, the current value of the 
independent variable, y, the cmrent value of the dependent variable vector, fy, the current 
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vector f(t, y), vtemp, a pointer to memory allocated as an N-vector workspace, and gamma, 
the current value of the scalar y in the Newton matrix (5) Further input parameters are ewt, 
the error weight vector; delta, an input tolerance if Psolve is to use an iterative method, 
nfePtr, a pointer to the PVODE data nfe, the number of calls to the f routine, r, the right 
hand side vector in the linear system, lr, an input flag set to 1 to indicate a left preconditioner 
or 2 for a right preconditioner. P-data is the pointer to the user preconditioner data passed 
to CVSpgmr The only output argument is z, the vector computed by Psolve The integer 
returned value is to be negative if the Psolve function failed with an unrecoverable error, 0 
if Psolve was successful, or positive if there was a recoverable error 

If the user’s preconditioner requires that any Jacobian related data be evaluated or 
preprocessed, then this needs to be done in the optional user-supplied C function Precond. 
Most of the arguments for this function have been seen above The Precond function has 
the form. 

int Precond (integer N, real t, N-Vector y. N-Vector fy, boole jok, 
boole *jcurPtr, real gamma, N-Vector ewt, real h, real “round, 
long int *nfePtr, void *P-data, 
N-Vector vtempl, N-Vector vtemp2, N-Vector vtemp3) 

The arguments which have not been discussed previously are the following The input flag 
jok indicates whether or not Jacobian-related data needs to be recomputed If jok == 
FALSE, then it is to be recomputed from scratch If jok == TRUE, and Jacobian-related data 
was saved from the previous call to Precond, then the data can be reused with the current 
value of gamma The parameter jcurPtr is a pointer to a boolean output flag to be set by 
Precond Set *jcurPtr == TRUE if the Jacobian data was recomputed, and set *jcurPtr 
== FALSE if the Jacobian data was not recomputed and saved data was reused The last 
three arguments are temporary iv-vectors available for workspace The current stepsize h 
and unit roundoff “round are supplied for possible use in difference quotient calculations 

4.4. Use by a C++ Application. PVODE is written in a manner that permits it to 
be used by applications written in C++ as well as in C For this purpose, each PVODE header 
file is wrapped with conditionally compiled lines reading extern “C” { }, conditional 
on the variable --cplusplus being defined This directive causes the C++ compiler to 
use C-style names when compiling the function prototypes encountered Users with C++ 
applications should also be aware that we have defined, in llnltyps h, a boolean variable 
type, boole, since C has no such type The type boole is equated to type int, and so 
arguments in user calls, or calls to user-supplied routines, which are of type boole can be 
typed as either boole or int by the user The same applies to vector kernels which have a 
type boole return value, if the user is providing these kernels 

5. A Band-Block-Diagonal Preconditioner Module. A principal reason for using 
a parallel ODE solver such as PVODE lies in the solution of partial differential equations 
(PDEs) Moreover, the use of a Krylov iterative method for the solution of many such 
problems is motivated by the nature of the underlying linear system of equations (4) that 
must be solved at each time step The linear algebraic system is large, sparse, and structured 
However, if a Krylov iterative method is to be effective in this setting, then a nontrivial 
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preconditioner needs to be used Otherwise, the rate of convergence of the Krylov iterative 
method is usually unacceptably slow Unfortunately, an effective preconditioner tends to be 
problem-specific 

However, we have developed one type of preconditioner that treats a rather broad class of 
PDE-based problems It has been successfully used for several realistic, large-scale problems 
[ll] and is included in a software module within the PVODE package This module generates 
a preconditioner that is a block-diagonal matrix with each block being a band matrix The 
blocks need not have the same number of super- and sub-diagonals and these numbers 
may vary from block to block This Band-Block-Diagonal Preconditioner module is called 
PVBBDPRE. 

One way to envision these preconditioners is to think of the domain of the computa- 
tional PDE problem as being subdivided into M non-overlapping subdomains Each of these 
subdomains is then assigned to one of the M processors to be used to solve the ODE system 
The basic idea is to isolate the preconditioning so that it is local to each processor, and 
also to use a (possibly cheaper) approximate right-hand side function This requires the 
definition of a new function g(t, y) which approximates the function f(t, y) in the definition 
of the ODE system (1) However, the user may set g = f Corresponding to the domain 
decomposition, there is a decomposition of the solution vector y into M disjoint blocks ym, 
and a decomposition of g into blocks gm The block gm depends on ym and also on compo- 
nents of blocks ~~8 associated with neighboring subdomains (so-called ghost-cell data) Let 
grn denote grn augmented with those other components on which gm depends Then we have 

(9) 9(hY) = [91(t,~1),92(t,s12), , 9A&h4)17 

and each of the blocks gm(t, &) is uncoupled from the others 
The preconditioner associated with this decomposition has the form 

(10) P = dicLg[P~, P2, ,pMl 

where 

(11) P ,=I-yJ,,, 

and J, is a difference quotient approximation to ag,/ay,. This matrix is taken to be 
banded, with upper and lower half-bandwidths mu and ml defined as the number of non- 
zero diagonals above and below the main diagonal, respectively The difference quotient 
approximation is computed using mu + ml + 2 evaluations of gm The parameters ml and 
mu need not be the true half-bandwidths of the Jacobian of the local block of g, if smaller 
values provide a more efficient preconditioner Also, they need not be the same on every 
processor The solution of the complete linear system 

(12) Px = b 

reduces to solving each of the equations 

(13) Pms,,, = b, 
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and this is done by banded LU factorization of P,,, followed by a banded backsolve 
To use this PVBBDPRE module, the user must supply two functions which the module 

calls to construct P. These are in addition to the user-supplied right-hand side function f 
l A function gloc(Nloca1, t, ylocal, glocal, f-data) must be supplied by the 

user to compute g(t, y) It loads the real array glocal as a function oft and ylocal 
Both glocal and ylocal are of length Nlocal, the local vector length 

l A function cfn(Nloca1, t, y, f-data) which must be supplied to perform all 
inter-processor communications necessary for the execution of the gloc function, 
using the input vector y of type N-Vector 

Both functions take as input the same pointer f-data as that passed by the user to 
CVodeMalloc and passed to the user’s function f, and neither function has a return value 
The user is responsible for providing space (presumably within f-data) for components of y 
that are communicated by cfn from the other processors, and that are then used by gloc, 
which is not expected to do any communication 

The user’s calling program should include the following elements 
. #include ’ ‘pvbbdpre h’ ’ for needed function prototypes and for type PVBBDData 
l PVBBDData p-data; 
. machEnv = PVecInitMPI(comm, Nlocal, N, argc, argv), 
. N-VMake(y, ydata, machEnv, 
l cvodemem = CVodeMaloc(N, f, . .I, 
l p-data = PVBBDAlloc(Nloca1, mu, ml, gloc, cfn, f-data), where the upper 

and lower half-bandwidths are mu and ml, respectively, gloc and cfn are names of 
user-supplied functions, and f-data is a pointer to private data 

. CVSpgmr(cvodernem, pretype, gstype, maxi, delt, PVBBDPrecon, 
PVBBDPSol, p-data), with the memory pointers cvode_mem and p-data returned 
by the two previous calls, the four SPGMR parameters (pretype , gstype, maxi, 
delt) and the names of the preconditioner routines (PVBBDPrecon, PVBBDPSol) 
supplied with the PVBBDPRE module 

0 ier = CVode(cvodemem, tout, y, &t, itask), to carry out the integration to 
t = tout 

. PVBBDFree (p-data), to free the PVBBDPRE memory block 
l CVodeFree (cvode-mem), to free the CVode memory block 
l PVecFreeMPI CmachEnv), to free the PVODE memory block 

Three optional outputs associated with this module are available by way of macros 
These are 

l PVBBD-RPWSIZE(p_data) = size of the real workspace (local to the current processor) 
used by PVBBDPRE 

l PVBBDIPWSIZE(p_data) = size of the integer workspace (local to the current pro- 
cessor) used by PVBBDPRE 

l PVBBD-NGE(p-data) = cumulative number of 9 evaluations (calls to gloc) so far 
The costs associated with PVBBDPRE also include nsetups LU factorizations, nsetups 

calls to cfn, and nps banded backsolve calls, where nsetups and nps are optional CVODE 
outputs 
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Similar block-diagonal preconditioners could be considered with different treatment of 
the blocks Pm For example, incomplete LU factorization or an iterative method could be 
used instead of banded LU factorization 

6. The Fortran/C Interface Package. We anticipate that many users of PVODE 
will work from existing Fortran application programs To accommodate them, we have 
provided a set of interface routines that make the required connections to PVODE with a 
minimum of changes to the application programs Specifically, a Fortran/C interface package 
called FPVODE is a collection of C language functions and header files which enables the 
user to write a main program and all user-supplied subroutines in Fortran and to use the 
C language PVODE package This package entails some compromises in portability, but we 
have kept these to a minimum by requiring fixed names for user-supplied routines, and by 
using a name-mapping scheme to set the names of externals in the Fortran/C linkages The 
latter depends on two parameters, set in a small header file, which determine whether the 
Fortran external names are to be in upper case and whether they are to have an underscore 
character prefix 

The usage of this module is summarized below Further details can be found in the 
header file fpvode h Also, the user should check, and reset if necessary, the paramaters in 
the file f cmixpar h The functions which are callable from the user’s Fortran program are 
as follows 

. FPVINITMPI interfaces with PVecInitMPI and is used to initialize the NVECTOR 
module 

l FPVMALLOC interfaces with CVodeMalloc and is used to initialize CVode 
. FCVDIAG interfaces with CVDiag and is used when the diagonal approximate Jacobian 

has been selected 
. FCVSPGMRO, FCVSPGMRI, FCVSPGMR2 interface with CVSpgmr when SPG34R has 

been chosen as the linear system solver These three interface routines correspond 
to the cases of no preconditioning, preconditioning with no saved matrix data, and 
preconditioning with saved matrix data, respectively 

l FCVODE interfaces with CVode 
l FCVDKY interfaces with CVodeDky and is used to compute a derivative of order k, 0 5 

I; 5 qu, where qu is the order used for the most recent time step The derivative is 
calculated at the current output time 

. FCVFREE interfaces with CVodeFree and is used to free memory allocated for CVode 
l FVFREEMPI interfaces with PVecFreeMPI and is used to free memory allocated for 

14PI 
The user-supplied Fortran subroutines are as follows The names of these routines are 

fixed and are case-sensitive 
. PVFUN which defines the function j, the right-hand side function of the system of 

ODES 
l PVPSOL which solves the preconditioner equation, and is required if preconditioning 

is used 
. PVPRECO which computes the preconditioner, and is required if preconditioning in- 

volves pre-computed matrix data 
11 



The Fortran/C interfaces have been tested on a Cray-T3D and a cluster of Sun work- 
stations 

A similar interface package, called FPVBBD, has been written for the PVBBDPRE precon- 
ditioner module It works in conjunction with the FPVODE interface package The three 
additional user-callable functions here are FPVBBDIN, which interfaces with PVBBDAlloc 
and CVSpgmr, FPVBBDOPT, which accesses optional outputs, and FPVBBDF, which interfaces to 
PVBBDFree. The two user-supplied Fortran subroutines required, in addition to PVFUN to de- 
fine f, are PVLOCFN, which computes g(t, y), and PVCOMMF, which performs communications 
necessary for PVLOCFN 

7. Example Problems. Two test problems are described here The first is a non-stiff 
problem which is included to demonstrate the capability of solving such problems and to 
show that PVODE can be applied with varying numbers of processors The second problem 
is a stiff problem and illustrates the capability of solving that class of problems Both 
problems involve the method of lines solution of a partial differential equation (PDE) 

7.1. Example problem 1 - A nonstiff PDE problem. This problem begins with 
a prototypical diffusion-advection equation fo1 u = u(t, z) 

for 0 < t < 5, 0 < z 5 2, and subject to homogeneous Dirichlet boundary conditions and 
initial values given by 

(15) u(t,O) = 0 
4t,2) = 0 

u(O,z) = ~(2 -x) exp(2z) 

A system of MX ODES is obtained by discretizing the z-axis with MX + 2 grid points 
and replacing the first and second order spatial derivatives with their central difference 
approximations Since the value of u is constant at the two endpoints, the semi-discrete 
equations for those points can be eliminated The resulting system of ODES can now be 
written with ui the approximation to u(t,zi), zi = i(Az), and Ax = Z/(MA’ + 1) 

ui = %+I - 2% + Q-1 %+l - ?li-l 

(Al 1” +0’5 2(Arc) 

The above equation holds for i = 1,2, , MX with the understanding that u0 = u,+~A+~ = 0 
In the parallel processing environment, we may think of the several processors as being 

laid out on a straight line with each processor to compute its contiguous subset of the 
solution vector Consequently the computation of the right hand side of (16) requixes that 
each interior processor must pass the first component of its block of the solution vector to 
its left-hand neighbor, acquire the last component of that neighbor’s block, pass the last 
component of its block of the solution vector to its right-hand neighbor, and acquire the first 
component of that neighbol’s block If the processor is the first (0th) or last processor, then 
communication to the left or light (respectively) is not required 
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The file pvnx c is included in the PVODE package and is the code for this problem It 
uses the Adams (non-stiff) integration formula and functional iteration The intent of this 
problem is to illustrate the basic user-supplied code and to show that for a fixed problem 
size the number of processors can be varied As it stands, it is an unrealistically small, 
simple problem Using more than one processor simply demonstrates that this can be done 
The output shown below is for 10 grid points and four processors Varying the number of 
processors will alter the output, only because of roundoff-level differences in various vector 
operations 

1-D advection-diffusion equation, mesh size = IO 

Number of PEs = 4 

At t = 0 00 
At t = 0 50 
At t = 1 00 
At t = 1 50 
At t = 2 00 
At t = 2 50 
At t = 3 00 
At t = 3 50 
At t = 4 00 
At t = 4 50 
At t = 5 00 

max.norm(u) = 1 569909e+Ol 
max norm(u) = 3.052881e+OO 
max norm(u) = 8 753188e-01 
max norm(u) = 2 494926e-01 
max. norm(u) = 7 109674e-02 
max.norm(u) = 2.026039e-02 
max norm(u) = 5 7727868-03 
max.norm(u) = 1.644895e-03 
max norm(u) = 4 690811e-04 
max norm(u) = 1.343719e-04 
max norm(u) = 3 852882e-05 

nst = 113 
nst = 191 
nst = 265 
nst = 333 
nst = 404 
nst = 490 
nst = 608 
nst = 727 
nst = 801 
nst = 878 

Final Statistics 

nst = 878 nfe = 1358 nni = 0 ncfn = 90 netf = 5 

7.2. Example problem 2 - A stiff PDE system. This test problem is based on 
a two-dimensional system of two PDEs involving diurnal kinetics, advection, and diffusion 
The PDEs can be written as 

a2 
(17) -:&Z 

at 
+v~+~li,(y)~-iR’(cl,cz,t) (2=1,2), 

where the superscripts i are used to distinguish the chemical species, and where the reaction 
terms are given by 

(18) R’(c’, 2, f) = -qlclcJ - q2c1c2 + 2Q(t)C3 + q4(t)cZ 
P(c’, 2, t) = q1c’c3 - q&c* - q4(t)? 

The spatial domain is 0 2 x < 20, 30 < 1/ 5 50 The constants and parameters for 
this problem are as follows I(h = 4 0 x lo@, \I = lo@, K,, = 10-*exp(y/5), g1 = 
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163 x 10-16, q* = 4 66 x lo-=, ca = 3 7 x lOi6 , and the diurnal rate constants are defined 
as follows 

qi(t) = exp[-ai/sinwt], for sinwt > 0 
qi(t) = 0, for sinwt 5 0 

where i = 3,4, w = r/43200, aa = 22 62, a4 = 7 601. The time interval of integration is 
[0,86400], representing 24 hours measured in seconds 

Homogeneous Neumann boundary conditions are imposed on each boundary and the 
initial conditions are 

2(x-, z,O) = 106a(z)p(y), C”(zz, z,O) = lo’*c+)p(y) 

0% a(x) = 1 - (0 lz - 1)Z + (0 lr - 1)4/2 
/3(y) = 1 - (0 ly - 4)2 + (0 ly - 4)4/2 

These equations represent a simplified model for the transport, production, and loss of 
the oxygen singlet and ozone in the upper atmosphere 

As before, we discretize the PDE system with central differencing, to obtain an ODE 
system u = f(t,u) representing (17) For this example, we may think of the processors as 
being laid out in a rectangle, and each processor being assigned a subgrid of size MXSUB x 

MYSUB of the z - y grid If there are NPEX processors in the z direction and NPEY 
processors in the y direction then the overall grid size is MX x MY with MX = NPEX x 

MXSUB and IVW = NPEY x MYSUB There are 2x MX x MY equations in this system 
of ODES To compute f in this setting, the processors pass and receive information as follows 
The solution components for the bottom row of grid points in the current processor are passed 
to the processor below it and the solution for the top row of grid points is received from 
the processor below the current processor The solution for the top row of grid points for 
the current processor is sent to the processor above the current processor, while the solution 
for the bottom row of grid points is received from that processor by the current processor 
Similarly the solution for the first column of grid points is sent from the current processor to 
the processor to its left and the last column of grid points is received from that processor by 
the current processor The communication for the solution at the right edge of the processor 
is similar If this is the last processor in a particular direction, then message passing and 
receiving are bypassed for that direction 

The code listing for this example is given in the Appendix, while the code itself is in the 
file pvkx c in the PVODE package The purpose of this code is to provide a more complicated 
example than Example 1, and to provide a template for a stiff ODE system arising from a 
PDE system The solution method is BDF with Newton iteration and SPGMR The left 
preconditioner is the block-diagonal part of the Newton matrix, with 2 x 2 blocks, and the 
corresponding diagonal blocks of the Jacobian are saved each time the preconditioner is 
generated, for re-use later under certain conditions 

The organization of the pvkx c program deserves some comments The right-hand side 
routine f calls two other routines uconun, which carries out inter-processor communication, 
and fcalc which operates on local data only and contains the actual calculation of f(t, u) 
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The ucomm function in turn calls three routines which do, respectively, non-blocking receive 
operations, blocking send operations, and receive-waiting All three use MPI, and transmit 
data from the local u vector into a local working array uext, an extended copy of u The 
fcalc function copies u into uext, so that the calculation of f(t, U) can be done conveniently 
by operations on uext only 

Sample output from pvkx. c follows Again, the output will vary if the number of 
processors is changed The output is for four processors (in a 2 x 2 array) with a 5 x 5 
subgrid on each processor. 

2-species diurnal advection-diffusion problem 

t = 7 20e+03 no. steps = 219 order = 5 stepsize = 1 59et02 
At bottom left: cl, c2 = l.O47e+04 2.527e+ll 
At top right: cl, c2 = 1 119e+04 2 700e+ll 

t = 1 44e+04 no steps = 251 order = 5 stepsize = 3.77e+02 
At bottom left cl, c2 = 6.659e+06 2.582e+ll 
At top right Cl, c2 = 7.301e+06 2 833e+ll 

t = 2.16e+04 no steps = 277 order = 5 stepsize = 2 75e+02 
At bottom left. cl, c2 = 2.665e+07 2 993e+ll 
At top right Cl, c2 = 2 93le+07 3 313e+ll 

t = 2 88e+04 no. steps = 301 order = 5 stepsize = 2 23e+02 
At bottom left cl, c2 = 8 702e+06 3 380e+ll 
At top right Cl, c2 = 9.650e+06 3 751e+ll 

t = 3 60et04 no steps = 347 order = 4 stepsize = 4 37e+Ol 
At bottom left cl, c2 = 1 404e+04 3 387e+ll 
At top right Cl, c2 = 1 56le+04 3 765e+ll 

t = 4 32e+04 no steps = 411 order = 4 stepsize = 4 64e+02 
At bottom left cl, c2 = 1 OOle-08 3 382e+ll 
At top right Cl, c2 = 8 489e-08 3 804e+ll 

t = 5.04et04 no steps = 430 order = 4 stepsize = 2 82e+02 
At bottom left cl, c2 = 1 592e-08 3 358e+ll 
At top right Cl, c2 = 2 259e-08 3 864e+il 

t = 5 76e+04 no steps = 444 order = 5 stepsize = 4 60e+02 
At bottom left cl, c2 = 1 257e-10 3 320e+ll 
At top right. cl, c2 = 1 766e-10 3 909e+ll 
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t = 6.48e+04 no steps = 456 order = 5 stepsize = 6 97e+02 
At bottom left cl, c2 = 6 114e-12 3.313etil 
At top right Cl, c2 = 9 739e-12 3.963e+ll 

t = 7.20et04 no. steps = 467 order = 5 stepsize = 6 97e+02 
At bottom left. cl, c2 = 7 140e-12 3.330e+ll 
At top right Cl, c2 = 1 .OlOe-11 4.039e+ll 

t = 7.92e+04 no steps = 477 order = 5 stepsize = 6 97e+02 
At bottom left: cl, c2 = -2.748e-13 3.334e+il 
At top right. cl, c2 = -3.909e-13 4 120e+ll 

t = 8.64e+04 no steps = 487 order = 5 stepsize 5 6 97e+02 
At bottom left cl, c2 = ,-2 804e-15 3 352e+ll 
At top right. cl, c2 = -3.875e-15 4 163e+ll 

Final Statistics 

lenrw = 2000 leniw = 0 
llrw = 2046 lliw = 0 
nst = 487 nfe = 1278 
nni = 636 nli = 639 
nsetups = 84 netf = 32 
npe = 8 “Ps = 1213 
ncfn = 0 ncfl = 0 

A third example is provided with the PVODE package, in the file pvkxb c It uses the 
same ODE system as in the above stiff example, but a slightly different solution method It 
uses the PVBBDPRE pxeconditioner module to genelate a band-block-diagonal preconditioner, 
using half-bandwidths equal to 2 

8. Testing. The stiff example problem described in Section 7 2 has been modified and 
expanded to form a test problem for PVODE This work was largely carried out by M 
Wittman and reported in (101. 

To stalt with, in order to add realistic complexity to the solution, the initial profile for 
this problem was altered to include a rather steep front in the vertical direction Specifically, 
the function p(y) in Eq (19) has been replaced by 

(20) /3(v) = 75 + 25 tanh(lOy - 400) 

This function rises from about 5 to about 1 0 over a g interval of about 2 (i e l/100 of 
the total span in y) This vertical variation, together with the horizonatal advection and 
diffusion in the problem, demands a fairly fine spatial mesh to achieve acceptable resolution 
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In addition, an alternate choice of differenci ng is used in order to control spurious 
oscillations resulting from the horizontal advection In place of central differencing for that 
term, a biased upwind approximation is applied to each of the terms ki/dx, namely 

With this modified form of the problem, we performed tests similar to those described 
above for the example Here we fix the subgrid dimensions at MXSUB = MYSUB = 50, so that 
the local (per-processor) problem size is 5000, while the processor array dimensions, NPEX 
and NPEY, are varied In one (typical) sequence of tests, we fix NPEX = 8 (for a vertical mesh 
size of MY = 400), and set NPEX = 8 (MX = 400), NPEX = 16 (MX = 800), and NPEX = 32 (MX 
= 1600). Thus the largest problem size N is 2.400.1600 = 1,280,OOO For these tests, we 
also raise the maximum Krylov dimension, maxi, to 10 (from its default value of 5) 

For each of the three test cases, the test program was run on a Cray-T3D (256 processors) 
with each of three different message-passing libraries. 

. MPICH an implemenation of MPI on top of the Chameleon library [7] 
l EPCC an implemenation of MPI by the Edinburgh Parallel Computer Centre [4] 
. SHMEM Gay’s Shared Memory Library 

The following table gives the run time and selected performance counters for these 9 runs 
In all cases, the solutions agreed well with each other, showing expected small variations with 
grid size In the table, M-P denotes the message-passing library, RT is the reported run time 
in CPU seconds, nst is the number of time steps, nf e is the number of j evaluations, nni is 
the number of nonlinear (Newton) iterations, nli is the number of linear (Krylov) iterations, 
and npe is the number of evaluations of the preconditioner 

[i 16 1 MPICH 1 676 1 2513 1 14,159 1 2583 1 11.573 1 42 1 L 
14;159 11;573 

J 
16 EPCC 494 2513 2583 42 
16 SHMEM 471. 2513 14,160 2581 11,576 42 
32 MPICH 1367 2536 20,153 2696 17,454 43 
32 EPCC 737 2536 20,153 2696 17.454 43 
32 1 SHMEM 1 695 1 2536 1 201121 1 2694 1 171424 1 43 

TABLE 1 
PVODE test results us problem size and message-passing library 

Some of the results weIe as expected, and some were surprising For a given mesh 
size, variations in performance counts were small or absent, except for moderate (but still 
acceptable) variations for SHMEM in the smallest case The increase in costs with mesh size 
can be attributed to a decline in the quality of the preconditioner, which neglects most of the 
spatial coupling The preconditioner quality can be inferled from the ratio nli/nni, which 
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is the average number of Krylov iterations per Newton iteration The most interesting (and 
unexpected) result is the variation of run time with library SHMEM is the most efficient, 
but EPCC is a very close second, and MPICH loses considerable efficiency by comparison, as 
the problem size grows This means that the highly portable MPI version of PVODE, with 
an appropriate choice of MPI implementation, is fully competitive with the Cray-specific 
version using the SHMEM library While the overall costs do not prepresent a well-scaled 
parallel algorithm (because of the preconditioner choice), the cost per function evaluation is 
quite flat for EPCC and SHMEM, at 033 to 037 (for MPICH it ranges from 044 to 068) 

For tests that demonstrate speedup from parallelism, we consider runs with fixed problem 
size MX = 800, MY = 400 Here we also fix the vertical subgrid dimension at MYSUB = 50 and 
the vertical processor array dimension at NPEY = 8, but vary the corresponding horizontal 
sizes We take NPEX = 8, 16, and 32, with MXSUB = 100, 50, and 25, respectively The 
runs for the three cases and three message-passing libraries all show very good agreement 
in solution values and performance counts The run times for EPCC are 947, 494, and 278, 
showing speedups of 1 92 and 1 78 as the number of processors is doubled (twice) For the 
SHMEM runs, the times were slightly lower and the ratios were 1 98 and 1.91 For MPICH, 
consistent with the earlier runs, the run times were considerably higher, and in fact show 
speedup ratios of only 1 54 and 1.03 

9. Availability. At present, the PVODE package has not been released for general dis- 
tribution However, plans are in progress for a release that is limited to non-commercial use 
of the package Interested potential users should contact Alan Hindmarsh, alanh@llnl gov 
The CVODE package, however, on which PVODE is based, is freely available from the Netlib 
collection See for example the listing cvode tar qz at the web site 

http //www netlib erg/ode/index html 
The Netlib version of the CVODE package includes the CVODE User Guide [5] in the form 
of a PostScript file 
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10. Appendix: Listing of Stiff Example Pmgram. 

/**t**+**+******+*************+t*+St****~*~*~~~~~~*~~~***~~~~~~**~~~~***~ 
* * 
* File: pvkx.c * 
* Programmers: S. D. Cohen, A C. Hindmarsh, M. FL. Wittman @ LLNL * 
* Version of 14 May 1998 * 
*----------------------------------------------------------------------* 
* Example problem. * 
* An ODE system is generated from the following 2-species diurnal * 
* kinetics advection-diffusion PDE system in 2 space dimensions: * 
* * 
* dc(i)/dt = Kh+(d/dx)*2 c(i) + V+dc(i)/dx + (d/dy)(Kv(y)*dc(i)/dy) * 
* + Ri(cl,cZ,t) for i = 1,2, where * 
* Rl(cl,c2,t) = -ql*cl*c3 - q2*cl*c2 + 2*q3(t)*c3 + q4(t)*c2 , * 
* R2(cl,c2,t) = q1*cl*c3 - q2*cl*c2 - q4(t)*c2 , * 
* Kv(y) = KvO*exp(y/5) , * 
* Kh, V, KvO, ql, q2, and c3 are constants, and q3(t) and q4ct.j * 
* vary diurnally. The problem is posed on the square * 
* 0 <= x c= 20, 30 <= y <= 50 (all in km), * 
* with homogeneous Neumann boundary conditions, and for time t in * 
* 0 <= t <= 86400 set (1 day). * 
* The PDE system is treated by central differences on a uniform * 
* mesh, with simple polynomial initial profiles. * 
* * 
* The problem is solved by PVODE on NPE processors, treated as a * 
+ rectangular process grid of size NPEX by NPEY, with NPE = NPEX*NPEY. + 
* Each processor contains a subgrid of size MXSUB by MYSUB of the * 
* (x,y) mesh. Thus the actual mesh sizes are MX = MXSUB*NPEX and * 
* MY = MYSUB+NPEY, and the ODE system size is neq = 2*MX+MY. * 
* * 
* The solution with PVODE is done with the BDF/GMRES method (i e * 
* using the CVSPGMR linear solver) and the block-diagonal part of the * 
* Newton matrix as a left preconditioner A copy of the block-diagonal * 
* part of the Jacobian is saved and conditionally reused within the * 
* Precond routine * 
* * 
* Performance data and sampled solution values are printed at selected + 
* output times, and all performance counters are printed on completion * 
* * 
+ This version uses MPI for user routines, and the MPI-PVODE solver + 
* Execution: pvkx -npes N with N = NPEX*NPEY (see constants below) + 
**+tt***++**t*+******+C***+*********t***~~~*~*~~~~~~*~z~~~*~~~~~~~~~*~~~/ 

#include <stdio h> 
#include <stdlib.h> 
#include <math h> 
#include "llnltyps h" /* definitions of real, integer, boole, TRUE,FALSE */ 
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#include "mode h" /* main CVODE header file */ 
#include "iterativ.h" /* contains the enum for types of preconditioning */ 
#include "cvspgm.h" /* use CVSPGMR linear solver each internal step */ 
#include "smal1dense.h" /* use generic DENSE solver in preconditioning */ 
#include 9wector.h" /* definitions of type N-Vector, macro N-VDATA */ 
#include "1lnlmath.h" /* contains SQR macro */ 
#include 9npi.h" 

/* Problem Constants */ 

#define NVARS 
#define KH 
#define VEL 
#define KVO 
#define Ql 
#define Q2 
#define C3 
#define A3 
#define A4 
#define Cl-SCALE 
#define C2-SCALE 

2 
4.0e-6 
0.001 
l.Oe-8 
1.63e-16 
4 66e-16 
3.7e16 
22.62 
7.601 
l.Oe6 
1 Oel2 

/* number of species */ 
/* horizontal diffusivity Kh */ 
/* advection velocity V */ 
/* coefficient in Kv(y) */ 
/* coefficients ql, q2, c3 */ 

/* coefficient in expression for q3(t) */ 
/* coefficient in expression for q4(t) */ 
/* coefficients in initial profiles */ 

#define TO 00 /* initial time */ 
#define NOUT 12 /* number of output times */ 
#define TWOHR 7200.0 /* number of seconds in two hours */ 
#define HALFDAY 4.32e4 /* number of seconds in a half day */ 
#define PI 3.1415926535898 /* pi */ 

#define XMIN 
#define XMAX 
#define YMIN 
#define YMAX 

0.0 
20 0 
30.0 
50.0 

/* grid boundaries in x */ 

/* grid boundaries in y */ 

#define NPEX 
#define NPEY 

2 
2 

#define MXSUB 
#define MYSUB 

5 
5 

/* no. PEs in x direction of PE array */ 
/* no. PEs in y direction of PE array */ 
/* Total no PEs = NPEX*NPEY */ 
/* no. x points per subgrid *I 
/* no. y points per subgrid */ 

#define MX (NPEX*MXSUB) 
#define MY (NPEY*MYSUB) 

/* MX = number of x mesh points */ 
/* MY = number of y mesh points */ 
/* Spatial mesh is MX by MY */ 

/* CVodeMalloc Constants */ 

#define RTOL l.Oe-5 /* scalar relative tolerance */ 
#define FLOOR 100 0 /* value of Cl or C2 at which tolerances */ 
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/* change from relative to absolute */ 
#define ATOL (RToL*FLOOR) /* scalar absolute tolerance */ 

/* User-defined matrix accessor macro: 13th */ 

/* IJth is defined in order to write code which indexes into small dense 
matrices with a (row,column) pair, where 1 C= row,column <= NVARS. 

IJth(a,i,j) references the (i,j)th entry of the small matrix real **a, 
where 1 <= i,j <= NVARS. The small matrix routines in dsnse.h 
work with matrices stored by column in a 2-dimensional array. In C, 
arrays are indexed starting at 0, not 1. */ 

#define IJth(a,i,j) tacj-II [i-II) 

/* Type : User&&a 
contains problem constants, preconditioner blocks, pivot arrays, 
grid constants, and processor indices */ 

typedef struct I 
real q4, om, dx, dy, hdco, haco, vdco; 
real uext[NVARS*(MXSUS+2)*(MYSUB+2)1; 
integer my-pe, isubx, isuby, nvmxsub, nvmxsub2; 
MPI-Comm comm; 

> *UserData; 

typedef struct C 
void *f-data; 
real ++P[MxS~BI [MYSUB], ++J~~CMXSUBI [MYSUB] ; 
integer *pivot CMXSUBI CMYSUBI ; 

> *PraconData; 

/* Private Helper Functions */ 

static PreconData AllocPreconData(UserData data) ; 
static void InitUserData(integer my-pe, MPI-Comm comm, UserData data); 
static void FreePreconData(PreconData pdata); 
static void SetInitialProfiles(N_Vector u, UserData data); 
static void PrintOutput(integer my-pe, MPI-Comm comm, long int iopt[l, 

real ropt [I, N-Vector u, real t); 
static void PrintFinalStats(long int ioptC1); 
static void BSend(MPI-Comm comm, integer my-pe, integer isubx, integer isuby, 

integer dsizex, integer dsizey, real udata[l); 
static void BFiecvPost(MPI-Comm comm, MPI-Request requestcl, integer my-pe, 

integer isubx, integer isuby, 
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integer dsizex, integer dsizey, 
real uext[l, real buffer[l); 

static void BRecvWait(MPIJtequest. request[l, integer isubx, integer isuby, 
integer dsizex, real uextll, real bufferO); 

static void ucomm(integer N, real t, N-Vector u, UserData data); 
static void fcalccinteger N, real t, real udata[l, real dudataC1, UserData data); 

/* Functions Called by the CVODE Solver */ 

static void f(integer N, real t, N-Vector u, N-Vector udot, void *f-data); 

static int Precondcinteger N, real tn, N-Vector u, N-Vector fu, boole jok, 
boole tjcurPtr, real gamma, N-Vector ewt, real h, 
real uround, long int *nfePtr, void *P-data, 
N-Vector vtempl, N-Vector vtemp2, N-Vector vtemp3); 

static int PSolve(integer N, real tn, N-Vector u, N-Vector fu, N-Vector vtemp, 
real gamma, N-Vector ewt, real delta, long int *nfePtr, 
N-Vector r, int lr, void *P-data, N-Vector 2); 

/*$************+******+******* Mai= Program *************************t*/ 

main(int argc, char *argvCl) 
c 

real abstol, reltol, t, tout, roptCOPT_SIZEI; 
long int ~~~~COPT-SIZEJ; 
N-Vector u; 
UserData data; 
PreconData predata; 
void +cvode-man; 
int iout, flag; 
integer neq, local-N, my-pe, npes; 
machEnvType machEnv; 
MPI-Comm comm; 

/* Set problem size neq */ 

neq = NVARS*MX+MY; 

/* Get processor number and total number of pe's */ 

MPI-Init(&argc, &argv); 
comm = MPI-COMM-WORLD; 
MPI-Comm-size(comm, &npes), 
MPI-Comm-rank(comm, &my-pe); 

if (npes != NPEX+NPEY) ( 
23 



if (my-pe == 0) 
printf(“\n npes=%d is not equal to NPEX*NPEY=%d\n", npes,NPEX*NPEY); 

return(l); 
) 

/* Set local length */ 

local-N = NVARS*MXSUB*MYSUB; 

/* Allocate and load user data block; allocate preconditioner block */ 

data = (UserData) malloccsizeof *data); 
InitUserData(my-pe, comm, data); 
predata = AllocPreconData (data); 

/* Set machEnv block */ 

machEnv = PVecInitMPI(comm, local-N, neq, &argc, &argv); 
if (machEnv == NULL) return(l); 

/* Allocate u, and set initial values and tolerances */ 

u = N..VNew(neq, machEnv); 
SetInitialProfiles(u, data); 
abstol = ATOL; reltol = RTOL; 

/* Call CVodeMalloc to initialize CVODE: 

neq is the problem size = number of equations 
f is the user's right hand side function in u'=f(t,u) 
TO is the initial time 
u is the initial dependent variable vector 
BDF specifies the Backward Differentiation Formula 
NEWTON specifies a Newton iteration 
SS specifies scalar relative and absolute tolerances 
&reltol and &abstol are pointers to the scalar tolerances 
data is the pointer to the user-defined block of coefficients 
FALSE indicates there are no optional inputs in iopt and ropt 
iopt and ropt arrays communicate optional integer and real input/output 

A pointer to CVODE problem memory is returned and stored in cvode-mem */ 

cvode-mem = CVodeMalloc(neq, f, TO, u, BDF, NEWTON, SS, &reltol, 
&abstol, data, NULL, FALSE, iopt, x-opt, machEnv); 

if (cvode-mem == NULL) { printf("CVodeMalloc failed "); return(l); > 

/* Call CVSpgmr to specify the CVODE linear solver CVSPGMR with 
left preconditioning, modified Gram-Schmidt orthogonalization, 
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default values for the maximum Krylov dimension maxl and the tolerance 
parameter delt, preconditioner setup and solve routines Precond and 
PSolve, and the pointer to the preconditioner data block */ 

CVSpgmr(cvode-mem, LEFT, MODIFIED-GS, 0, 0 0, Precond, PSolve, predata); 

if (my-pe == 0) 
printf("\n2-species diurnal advection-diffusion problem\n\n"); 

/* In loop over output points, call CVode, print results, test for error */ 

for (iout=l, tout = TWOHR; iout <= NOUT; iout++, tout += TWOHR) C 
flag = CVode(cvode-mem, tout, u, &t, NORMAL); 
PrintOutput(my-pe, comm, iopt, x-opt, u, t); 
if (flag != SUCCESS) C 

if (my-pe == 0) printf("CVode failed, flag=%d \n", flag); 
break; 

3 
3 

/* Free memory and print final statistics */ 

N-VFree(u); 
FreePreconData(predata); 
CVodeFree(cvode_mem); 
if (my-pe == 0) PrintFinalStats(iopt); 
PVecFreeMPI(machEnv); 
MPI-Finalized; 

return(O) ; 
3 

/**t*t**+*tt*+*:***$**t* Private Helper Functions +**t**+*:**t*~*******+**/ 

/* Allocate memory for data structure of type UserData */ 

static PreconData AllocPreconData(UserData fdata) 
I 

int lx, ly; 
PreconData pdata; 

pdata = (PreconData) malloc(sizeof *pdata); 

pdata->f-data = fdata; 

for (lx = 0; lx < MXSUB; lx++) ( 
for (ly = 0; ly < MYSUB; ly++) ( 
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(pdata->P) Clxl [lyl = denalloc(NVARS); 
(pdata->Jbd)ClxlClyi = denalloc(NVARS); 
(pdata->pivot) [lx] [lyl = denallocpiv(NVARS); 

) 

return(pdata); 
> 

/* Load constants in data */ 

static void InitUserData(integer my-pe, MPI-Comm comm, UserData data) 
c 

integer isubx, isuby; 

/* Set problem constants */ 
data->om = PI/HALFDAY; 
data->dx = (XMAX-XMIN)/((real)(MX-1)); 
data->dy = (YMAX-YMIN)/((real)(MY-1)); 
data->hdco = KH/SQFi(data->dx); 
data->haco = VEL/(2.O*data->dx); 
data->vdco = (l.O/SQR(data->dy))*KVO; 

/* Set machine-related constants */ 
data->comm = comm; 
data->my-pe = my-pe; 
/* isubx and isuby are the PE grid indices corresponding to my-pe */ 
isuby = my-pe/NPEX; 
isubx = my-pe - isuby*NPEX; 
data->isubx = isubx; 
data->isuby = isuby; 
/* Set the sizes of a boundary x-line in u and uext */ 
data->nvmxsub = NVAFWMXSUB; 
data->nvmxsub:! = NVARS*(MXSUB+2); 

/* Free data memory */ 

static void FreePreconData(PreconData pdata) 
( 

int lx, ly; 

for (lx = 0; lx < MXSUB, lx++) ( 
for (ly = 0; ly < MYSUB; ly++) < 

denfree((pdata->P) Clxl Clyl); 
denfree((pdata->Jbd) [lx] [lyl); 
denfreepiv((pdata->pivot)iklClyl); 
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freecpdata); 
) 

/* Set initial conditions in u */ 

static void SetInitialProfiles(N-Vector u, UserData data) 
f 

integer isubx, isuby, lx, ly, jx, jy, offset; 
real dx, dy, x, y, cx, cy, xmid, ymid; 
real *udata; 

/* Set pointer to data array in vector u */ 

udata = N-VDATA(u); 

/* Get mesh spacings, and subgrid indices for this PE */ 

dx = data->dx; dy = data->dy; 
isubx = data->isubx; isuby = data->isuby; 

/* Load initial profiles of cl and c2 into local u vector. 
Here lx and ly are local mesh point indices on the local subgrid, 
and jx and jy are the global mesh point indices */ 

/* Print current t, step count, order, stepsize, and sampled ~1.~2 values */ 
27 

offset = 0; 
xmid = .5+(XMIN + XMAX); 
ymid = 5+(YMIN + YMAX); 
for (ly = 0; ly < MYSUB; ly++) < 

jy = ly + isuby*MYSUB; 
y = YMIN + jy'dy; 
cy = SQR(O l+(y - ymid)); 
cy = 1 0 - cy + 0.5+SQR(cy); 
for (lx = 0; lx < MXSUB; lx++) ( 

jx = lx + isubx*MXSUB; 
x = XMIN + jx*dx; 
cx = SQR(O 1*(x - xmid)); 
cx = 1 0 - cx + 0.5+SqR(cx); 
udataroffset 1 = Cl-SCALE*cx*cy; 
udata[offset+ll = C2_SCALEtcx+cy; 
offset = offset + 2; 

> 
) 
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static void PrintOutput(integer my-pe, MPI-Comm comm, long int ioptC1, 
real roptC1, N-Vector u, real t) 

I 
real *udata, tempuC21; 
integer npelast, i0, ii; 
MPI-Status status; 

npelast. = NPEX*NPEY - 1; 
udata = N-VDATA(u); 

/* Send ~1.~2 at top right mesh point to PE 0 */ 
if (my-pe == npelast) < 

i0 = NVARS*MXSUE*MYSUS - 2; 
il = i0 + 1; 
if (npelast != 0) 

MPI-Send(&udata[iOl , 2, PVEC-REAL-MPI-TYPE, 0, 0, comm); 
else c 

tempu[Ol = udata[iOl ; 
tempu[il = udata[ill ; 

3 
3 

/* On PE 0, receive cl,c2 at top right, then print performance data 
and sampled solution values */ 

if (my-pe == 0) I 
if (npelast != 0) 

MPI-Recv(&tempu[Ol , 2, PVEC-REAL-MPI-TYPE, npelast, 0, comm, &status); 
printf(“t = %.2e no steps = %d order = %d stepsize = % 2e\n”, 

t , iopt CNSTI , iopt CQUI , ropt [Hul ) ; 
printf (ItAt bottom left: cl, c2 = %12.3e %12.3e \n”, udata[Ol, udata[l]); 
printf (“At top right: cl, c2 = %12.3e %12.3e \n\n”, tempu[Ol, tempuC11); 

3 
3 

/* Print final statistics contained in iopt */ 

static void PrintFinalStats(long int iopt[]) 
c 

printf (“\nFinal Statistics \n\n”) ; 
printf (“lenrw = %51d leniw = %51d\n”, iopt [LENRWI , iopt CLENIWI ) ; 
printf (“llrw = %51d lliw = %51d\n”, iopt [SPGMR-LRWI , iopt CSPGMR-LIWI ) ; 
printf (“nst = %51d nfe = %5ld\n~~, iopt CNST~ , iopt [NFE] ) ; 
printf (“nni = %51d nli = %5ld\n~~, iopt CNNI~ , iopt CSPGMR-NLII ) ; 
printf (“nsetups = %51d netf = %51d\n”, iopt CNSETUPS~ , iopt [NETFI ) ; 
printf (“npe = %51d “Pa = %51d\n”, iopt [SPGMR-NPEI , iopt CSPGMR-NPS] ) ; 
printf (“ncfn = %51d ncf 1 = %5ld\n \n”, iopt CNCFNI , iopt CSPGMR-NCFLI 1 ; 

3 
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/* Routine to send boundary data to neighboring PEs */ 

static void BSend(MPI-Comm comm, integer my-pe, integer isubx, integer isuby, 
integer dsizex, integer dsizey, real udataC1) 

c 
int i, ly; 
integer offsetu, offsetbuf; 
real bufleftCNVARS*MYSUBl, bufrightENVARS*MYSUBI; 

/* If isuby > 0, send data from bottom x-line of u */ 

if (isuby != 0) 
MPI-Send(&udata[O], dsizex, PVECJIXAL-MPI-TYPE, my-pe-NPEX, 0, comm); 

/* If isuby < NPEY-1, send data from top x-line of u */ 

if (isuby != NPEY-1) I 
offsetu = (MYSUB-l)*dsizex; 
MPI_Send(&udata[offsetul, dsizex, PVEC-REAL-MPI-TYPE, my-pe+NPEX, 0, comm); 

3 

/* If isubx 7 0, send data from left y-line of u (via bufleft) */ 

if (isubx != 0) C 
for (ly = 0; ly < MYSUB; ly++) C 

offsetbuf = ly*NVARS; 
offsetu = ly+dsizex; 
for (i = 0; i < NVARS; i++) 

bufleftCoffsetbuf+il = udata[offsetu+il; 
3 
MPI3and(&bufleftCO], dsixey, PVECJLEAL-MPI-TYPE, my-pe-1, 0, comm); 

3 

/* If isubx < NPEX-1, send data from right y-line of u (via bufright) */ 

if (isubx != NPEX-1) { 
for (ly = 0; ly < MYSUB; ly++) { 

offsetbuf = ly*NVARS; 
0ffset.u = offsetbuf*MXSUB + (MxsuB-~)*NVARS; 
for (i = 0; i < NVARS; i++) 

bufright[offsetbuf+i] = udata[offsetu+il; 
3 
MPI-Send(&bufrightCOl, dsizey, PVEC-REAL-MPI-TYPE, my-pe+l, 0, comm); 

3 

3 
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/* Routine to start receiving boundary data from neighboring PEs 
Notes: 
1) buffer should be able to hold 2*NVARS*MYSUB real entries, should be 
passed to both the BRecvPost and BRecvWait functions, and should not 
be manipulated between the two calls. 
2) request should have 4 entries, and should be passed in both calls also. */ 

static void BRecvPost(MPI-Comm comm, MPI-Request request[l, integer my-pe, 
integer isubx, integer isuby, 
integer dsizex, integer dsizey, 
real uext[], real bufferC1) 

I 
integer offsetue; 
/* Have bufleft and bufright use the same buffer */ 
real *bufleft = buffer, *bufright = buffer+NVARS+MYSUB; 

/* If isuby > 0, receive data for bottom x-line of uext */ 
if (isuby != 0) 

MPI-Irecv(&uext[NVARSl, dsizex, PVEC-REAL-MPI-TYPE, 
my-pe-NPEX, 0, coma, &request.[O]); 

/* If isuby C NPEY-1, receive data for top x-line of uext */ 
if (isuby != NPEY-1) C 

offsetue = NVARS+(l + (MYSUB+l)*(MXSUB+2)); 
MPI-Irecv(&uext[offsetue], dsizex, PVEC-REAL-MPI-TYPE, 

my-pe+NPEX, 0, coma, &request[ll); 
3 

/* If isubx > 0, receive data for left y-line of uext (via bufleft) */ 
if (isubx != 0) i 

MPI-Irecv(&bufleft[Ol, dsizey, PVEC-REAL-MPI-TYPE, 
my-pe-1, 0, corn, &request[21); 

3 

/* If isubx < NPEX-1, receive data for right y-line of uext (via bufright) */ 
if (isubx != NPEX-1) C 

MPI-Irecv(&bufright[O], dsizey, PVEC-REAL-MPI-TYPE, 
my-pe+l, 0, comm, &requestL31); 

3 

3 

/* Routine to finish receiving boundary data from neighboring PEs 
Notes : 
1) buffer should be able to hold 2tNVARDMYSUB real entries, should be 
passed to both the BRecvPost and BRecvWait functions, and should not 
be manipulated between the two calls 
2) request should have 4 entries, and should be passed in both calls also +/ 
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static void BRecvWait(MPI-Request request[l, integer isubx, integer isuby, 
integer dsizex, real uextC1, real bufferC1) 

c 
int i, ly; 
integer dsizex2, offsetue, offsetbuf; 
real *bufleft = buffer, *bufright = buffer+NVARS*MYSUB; 
MPI-Status status; 

dsizex2 = dsizex + 2*NVARS; 

/* If isuby > 0, receive data for bottom x-line of uext */ 
if (isuby != 0) 

MPI-Wait(&requestCOl,&status); 

/* If isuby < NPEY-1, receive data for top x-line of uext */ 
if (isuby != NPEY-1) 

MPI_Wait(&requestCll,&status); 

/* If isubx > 0, receive data for left y-line of uext (via bufleft) */ 
if (isubx != 0) { 

MPI-Wait(&requestC2l,&status); 

/* Copy the buffer to uext */ 
for (ly = 0; ly < MYSUB; ly++) C 

offsetbuf = ly*NVARS; 
offsetue = (ly+l)*dsizex2; 
for (i = 0; i < NVARS; i++) 

uext[offsetue+il = bufleft[offsetbuf+il; 
> 

) 

/* If isubx < NPEX-1, receive data for right y-line of uext (via bufright) */ 
if (isubx != NPEX-1) { 

MPI-Wait(&request[31,&status); 

/* Copy the buffer to uext */ 
for (ly = 0; ly < MYSUB; ly++) C 

offsetbuf = ly*NVARS; 
offsetue = (ly+2)*dsizex2 - NVARS; 
for (i = 0; i < NVARS; i++) 

uext[offsetue+i] = bufright[offsetbuf+i]; 
3 

/* ucomm routine This routine performs all communication 
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between processors of data needed to calculate f */ 

static void ucomm(integer N, real t, N-Vector u, UserData data) 
c 

real *udata, *uext, buffer[2*NVARS*MYSUBl; 
MPI-Corm corn; 
integer my-pe, isubx, isuby, nmxsub, nmysub; 
MPI-Request requestC41; 

udata = N-VDATA(u); 

/* Get comm, my-pe, subgrid indices, data sizes, extended array uext */ 

comm = data-Xom; my-pe = data-Xny-pe; 
isubx = data->isubx; isuby = data->isuby; 
nvmxsub = data->nvmxsub; 
nvmysub = NVARS*MYSUB; 
uext = data->uext: 

/* Start receiving boundary data from neighboring PEs */ 

BRscvPost(comm, request, my-pe, isubx, isuby, nvmxsub, nmysub, uext, buffer); 

/* Send data from boundary of local grid to neighboring PEs */ 

BSend(comm, my-pe, isubx, isuby, nvmxsub, nvmysub, udata); 

/* Finish receiving boundary data from neighboring PEs */ 

BRecvWait(request, isubx, isuby, nvmxsub, uext, buffer); 

/* fcalc routine Compute f(t,y) This routine assumes that communication 
between processors of data needed to calculate f has already been done, 
and this data is in the work array uext */ 

static void fcalccinteger N, real t, real udata[l, real dadatar], UserData data) 
c 

real *uext; 
real q3, cl, c2, cldn, c2dn, clup, c2up, cllt., c21t; 
real clrt, c2rt, cydn, cyup, hordl, hord2, horadl, horad2, 
real qql, qq2, qq3, qq4, rkinl, rkin2, s, vertdl, vertd2, ydn, yup; 
real q4coef, dely, verdco, hordco, horaco; 
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int i, lx, ly, jx, jy; 
integer isubx, isuby, nvmxsub, nvmxsub2, offsetu, offsetue; 

/* Get subgrid indices, data sizes, extended work array uext */ 

isubx = data->isubx; isuby = data->isuby; 
nvmxsub = data->nvmxsub; nvmxsub2 = data->nvmxsub2; 
uext = data->uext; 

/+ Copy local segment of u vector into the working extended array uext +/ 

offsetu = 0; 
offsetue = n-sub:! + NVARS; 
for (ly = 0; ly < MYSUB; ly++) C 

for (i = 0; i < nvmxsub; i++) uext[offsetue+i] = udataCoffsetu+il; 
offs&u = offs&u + nvmxsub; 
offsetue = offsetue + nvmxsub2; 

1 

/* To facilitate homogeneous Neumann boundary conditions, when this is 
a boundary PE, copy data from the first interior mesh line Of u to uext */ 

/* If isuby = 0, copy x-line 2 of u to uext */ 
if (isuby == 0) C 

for (i 5 0; i < nvmxsub; i++) uext[NVARStil = udata[nvmxsub+il; 
1 

/* If isuby = NPEY-1, copy x-line MYSUB-I of u to uext */ 
if (isuby == NPEY-1) C 

offsetu = (MYSUB-2)*nvmxsub; 
offsetue = (MYSUB+l)*nvmxsub2 + NVARS; 
for (i = 0; i < nwutsub; i++) uext[offsetue+i] = udata[offsetu+il; 

1 

/* If isubx = 0, copy y-line 2 of u to ,uext */ 
if (isubx == 0) C 

for (ly = 0; ly < MYSUB; ly++) I 
offsetu = ly*nvmxsub + NVARS; 
offsetue = (ly+l)*nvmxsub2; 
for (i = 0; i < NVARS; i++) uext[offsetue+il = udataCoffsetu+il; 

1 
3 

/* If isubx = NPEX-1, copy y-line MXSUB-1 of u to uext */ 
if (isubx == NPEX-1) I 

for (ly = 0; ly < MYSUB; ly++) { 
offsetu = (ly+l)rnvmxsub - 2+NVARS; 
offsetue = (ly+2)*nvmxsub2 - NVARS; 
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for (i = 0; i < NVARS; i++) uext[offsetue+il = udata[offsetu+il; 
1 

> 

/* Make local copies of problem variables, for efficiency */ 

dely = data->dy; 
verdco = data->vdco; 
hordco = data->hdco; 
horaco = data->haco; 

/* Set diurnal rate coefficients as functions of t, and save q4 in 
data block for use by preconditioner evaluation routine */ 

s = sin((data->om)*t); 
if (s > 0.0) C 

q3 = exp(-A3/s); 
q4coef = exp(-A4/s); 

1 else I 
q3 = 0 0; 
q4coef = 0 0; 

) 
data->q4 = q4coef; 

/* Loop over all grid points in local subgrid a/ 

for (ly = 0; ly < MYSUB; ly++) C 

jy = ly + isuby+MYSUB; 

/* Set vertical diffusion coefficients at jy +- l/2 */ 

ydn = YMIN + (jy - .5)*dely; 
yup = ydn + dely; 
cydn = verdco+exp(0.2+ydn); 
cyup = verdco*exp(0.2*yup); 
for (lx = 0; lx c MXSUB; IX++) { 

jx = lx + isubx*MXSUB; 

/* Extract cl and c2, and set kinetic rate terms */ 

offsetue = (l~+i)*NvARs + (ly+i)*nvmxsub2; 
cl = uext[offsetue]; 
c2 = uext[offsetue+ll; 
qql = q1*c1*c3, 
qq2 = q2*c1*c2; 

34 



qq3 = q3*c3; 
qq4 = q4coef*c2; 
rkinl = -qql - qq2 + 2.o*qq3 + qq4; 
rkin2 = qql - qq2 - qq4; 

/* Set vertical diffusion terms */ 

cldn = uext[offsetue-nvmsub21; 
c2dn = uextroffsetue-nvmxsub2+11; 
clup = uext[offsetue+nvmxsub21; 
c2up = uextCoffsetue+nvmxsub2+11; 
vertdl = cyup*(clup - cl) - cydn*(cI - cldn); 
vertd2 = cyup*(c2up - C2) - Cydn*(c2 - c2dn); 

/* Set horizontal diffusion and advection terms */ 

cllt = uext[offsetue-21; 
c21t = uext[offsetue-11; 
clrt = uextCoffsetue+21; 
c2rt = uext[offsetue+31; 
hordl = hordco*(clrt - 2.O*cI + cllt); 
hord2 = hordco+(c2rt - 2 O*c2 + C2lt); 
horadl = horaco*(clrt - cllt); 
horad2 = horaco*(c2rt - c21t); 

/* Load all terms into dudata */ 

offs&u = lx+NVARS + ly*nvmxsub; 
dudataCoffsetu1 = vertdl + hordl + horadl + rkinl; 
dudataCoffsetu+II = vertd2 + hard2 + horad2 + rkin2; 

1 
> 

/t*+**t++***+***** Functions Called by the CVODE Solver *l**S*t***ff***f**/ 

/* f routine Evaluate f(t.,y). First call ucmm to do communication of 
subgrid boundary data into uext Then calculate f by a call to fcalc */ 

static void fcinteger N, real t, N-Vector u, N-Vector udot, void *f-data) 
C 

real +udata, *dudata; 
UserData data; 

udata = N-VDATA(u); 
dudata = N-VDATA(udot); 
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data = (UserData) f-data; 

/* Call ucomm to do inter-processor communicaiton */ 

ucomm (N, t, u, data); 

/* Call fcalc to calculate all right-hand sides */ 

fcalc (N, t, udata, dudata, data); 

/* Preconditioner setup routine. Generate and preprocess P. */ 

static int Precond(intsger N, real tn, N-Vector u, N-Vector fu, boole jok, 
boole *jcurPtr, real gamma, N-Vector ewt, real h, 
real uround, long int *nfePtr, void *P-data, 
N-Vector vtempl, N-Vector vtemp2, N-Vector vtemp3) 

c 
real cl, c2, cydn, cyup, diag, ydn, yup, q4coef, dely, verdco, hordco; 
real w(*P)[MYsUB], **(*J~~)[MYsuB~; 
integer nvmxsub, *(*pivot)CMYSUBI, ier, offset; 
int lx, ly, jx, jy, isubx, isuby; 
real wdata, **a, **j; 
PreconData predata; 
UserData data; 

/* Make local copies of pointers in P-data, pointer to u's data, 
and PE index pair */ 

predata = (PreconData) P-data; 
data = (UserData) (predata->f-data); 
P = predata->P; 
Jbd = predata->Jbd; 
pivot = predata->pivot; 
udata = N-VDATA(u); 
isubx = data->isubx; isuby = data->isuby; 
nvmxsub = data->nvmxsub; 

if (jok) I 

/* jok = TRUE: Copy Jbd to P */ 

for (ly = 0; ly < MYSUB; ly++) 
for (lx = 0; lx C MXSUB; lx++) 

dencopy(JbdClx1 Clyl, Pi%lClyl, NVARS); 
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*jcurPtr = FALSE; 

3 

else c 

/* jok = FALSE: Generate Jbd from scratch and copy to P */ 

/* Make local copies of problem variables, for efficiency */ 

q4coef = data->q4; 
dely = data->dy; 
verdco = data->vdco; 
hordco = data->hdco; 

/* Compute 2x2 diagonal Jacobian blocks (using q4 values 
computed on the last f call). Load into P. */ 

for (ly = 0; ly < MYSUB; ly++) { 
jy = ly + isuby*MYSUB; 
ydn = YMIN + (jy - .5)*dely; 
yup = ydn + dely; 
cydn = verdco*exp(0.2*ydn); 
cyup = verdco*exp(0.2*yup); 
diag = -(cydn + cyup + 2 O+hordco); 
for (lx = 0; lx < MXSUB; lx++) ( 

jx = lx + isubxrMXSUB; 
offset = lx*NVARS + ly*nvmxsub; 
cl = udataCoffset1; 
c2 = udataCoffset+ll; 
j = JbdClxl Clyl; 
a = P[lxl[lyl; 
IJth(j,l,l) = (-QI*C3 - Q2*c2) + diag; 
IJth(j,l,2) = -Q2*cl + q4coef; 
IJth(j,2,1) = QI*C3 - Q2*c2; 
IJth(j,2,2) = (-42~1 - q4coef) + diag; 
dencopy(j, a, NVARS); 

> 

*jcurPtr = TRUE; 

/* Scale by -gamma :/ 

for (ly = 0; ly < MYSUB; ly++) 
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for (lx = 0; lx < MXSUB; lx++) 
denscale(-gamma, PClrl Clyl, NVARS); 

/* Add identity matrix and do LU decompositions on blocks in place +/ 

for (lx = 0; lx C MXSUB; lx++) I 
for (ly = 0; ly < MYSUB; ly++) C 

denaddI(PClx1 Clyl, NVARS); 
ier = gefa(PClxlCly1, NVARS, pivotClxlCly1); 
if (ier != 0) return(I); 

) 
1 

return(O) ; 
1 

/* Preconditioner solve routine */ 

static int PSolve(integer N, real tn, N-Vector u, N-Vector fu, N-Vector vtemp, 
real gamma, N-Vector ewt, real delta, long int *nfePtr, 
N-Vector r, int lr, void *P-data, N-Vector z) 

c 
real +*(+P) [MYSUB]; 
integer nvmxsub, *(*pivot)[MYSUBl; 
int lx, ly; 
real +zdata, *v; 
PreconData predata; 
UserData data; 

/* Extract the P and pivot arrays from P-data */ 

predata = (PreconData) P-data; 
data = (UserData) (predata-7f-data); 
P = predata-7P; 
pivot = predata->pivot; 

/* Solve the block-diagonal system Px = r using LU factors stored 
in P and pivot data in pivot, and return the solution in z. 
First copy vector r to z */ 

N-VScaleCl 0, r, z); 

nvmxsub = data->nvmxsub; 
zdata = N-VDATA(z); 

for (lx = 0; lx < MXSUB; lx++) ( 
for (ly = 0; ly < MYSUB; ly++) C 
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v = t(zdataClx*NVARS + ly*nvmxsubl); 

It 
gesl(P [lx1 Clyl, NVARS, pivot llxl~lyl, v); 

3 

return(O); 
) 
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