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Scalable Pattern Recognition 

1 Goals 

We are proposing a research effort within CASC in the area of data-mining, in particular, 
pattern recognition for large, multi-dimensional, scientific data sets. These techniques are 
extremely useful in improving the way scientists interact with data to construct and validate 
computational models of physical events. This project would: 

l Enhance the ability of pattern recognition algorithms to accurately and efficiently model 
complex phenomena by integrating ideas from scientific computing (SVD and wavelets) 
and soft computing (neural nets and decision trees). 

l Scale pattern recognition techniques to large scientific data sets by applying techniques 
from high performance computing, such as efficient algorithms and parallel processing. 

l Support the use of interactive exploration of large data sets by employing techniques such 
as dimension reduction, random sampling, and multi-resolution data. 

l Enable the user to control the tradeoff between computational effort, and the accuracy of 
the models derived from the pattern recognition process. The application and extension 
of techniques from stochastic modeling and machine learning will provide a mathematical 
basis for this work. 

2 Mot ivat ion 

Our ability to generate data far outstrips our ability to explore and understand it. The true 
value of this data lies not in its final size or complexity, but rather in our ability to exploit the 
data to achieve scientific goals. 

The data generated by programs such as ASCI have such a large scale that it is impractical 
to manually analyze, explore, and understand it. As a result, useful information is overlooked, 
and the potential benefits of increased computational and data gathering capabilities are only 
partially realized. The difficulties that will be faced by ASCI applications in the near future 
are foreshadowed by the challenges currently facing astrophysicists in making full use of the 
data they have collected over the years. For example, among other difficulties, astrophysicists 
have expressed concern that the sheer size of their data restricts them to looking at very small, 
narrow portions at any one time. This narrow focus has resulted in the loss of ‘(serendipitous” 
discoveries which have been so vital to progress in the area in the past. 

To solve this problem, a new generation of computational tools and techniques is needed to help 
automate the exploration and management of large scientific data. This whitepaper proposes 
applying and extending ideas from the area of data mining, in particular pattern recognition, 
to improve the way in which scientists interact with large, multi-dimensional, time-varying 
data. 
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Data-mining is a process concerned with uncovering patterns, associations, anomalies, and sta- 
tistically significant structures and events in data. It is a multi-disciplinary area, incorporating 
techniques from statistics, machine learning, scientific computing, data management, and vi- 
sualization. One of the key areas in data-mining is pattern recognition, namely, the discovery 
and characterization of patterns in image and other high-dimensional data. 

Pattern recognition has a wide variety of applications to programs throughout the Laboratory, 
as explored below. A research-oriented team focused in this area would have strong program- 
matic influence. Furthermore, as large-scale data mining is currently in its infancy, any results 
related to scaling pattern recognition techniques to large-scale data would be of great interest 
to the research community in general. 

2.1 Programmatic Interest 

Pattern recognition and data-mining will be invaluable in helping sort through the large, com- 
plex data sets generated or collected by programs across the Laboratory. A sample of some 
projects that have already expressed strong interest in these ideas is indicated below. The 
following two examples, discussed in detail, are representative of several potential projects 
identified in multiple discussions held with Drs. Gary Carlson, Hank Shay, Morry Aufderheide 
(B Division), Charles Alcock (IGPP), and Dan Schikore (CASC). 

2.1.1 Synthetic Radiographs 

Understanding and modeling shock propagation is one of the tasks that is central to LLNL’s 
stockpile stewardship mission. Radiographs are essentially a series of images similar to x-rays 
images. They are used to provide experimental data on detonation fronts passing through 
multiple materials. One of the critical steps in developing accurate models of this phenomenon 
requires the scientist to distinguish between multiple computational models based on compar- 
ison to the experimental data. This involves producing several series of synthetic radiographs 
from the computational models, then identifying which series is the best match to the experi- 
mental data. 

The experimental images, however, are noisy representations of shock fronts passing through 
a variety of materials of different densities. They are difficult to interpret in a precise man- 
ner. Currently, comparisons between experimentally and computationally generated images 
are made based on the experience, or the “gut feeling” of the designer. It can be difficult or 
impossible for the scientist to quantify his or her gut feeling in precise mathematical terms. 

The application and extension of pattern recognition techniques could be quite valuable in this 
domain. Expected contributions include: 

1. Extension of the set of features being used to describe radiographs, potentially including 
pixel-based features, higher-level features that describe the shape and form of the shock 
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front, as well as features based on SVD and wavelets. Some of this work would involve 
clustering techniques to determine the shape and form of the shock front. 

2. Expression of the experimental shock front as a set of fuzzy, or probabilistic, features to 
account for the noise in the image and the natural variability in its topography. We may 
be able to reduce the imprecision by measuring and eliminating certain types of sensor 
error (similar to band-pass filtering). 

3. Automatically build a quantitative figure of merit that can be used to compare radiographs 
alongside of, or in place of, the scientist’s gut feeling. 

The construction of a figure of merit would provide a metric on the degree of radiograph 
similarity, as well as an improvement in the quality and repeatability (over time, and between 
scientists) of radiograph comparisons. Furthermore, a computable figure of merit can help 
speed overall model evaluation by automatically filtering out large sets of images that are not 
close enough to experimental data to warrant the scientist’s attention. The end result of this 
exploration should be shock wave models that are more accurate, and scientists that have a 
deeper understanding of the physics involved. 

The major computer science research focus here revolves around robust statistical methods 
for describing “fuzziness” in the experimental data, and relating that to the accuracy of the 
corresponding computational models. This research will be important in understanding how 
to measure the accuracy of pattern recognition techniques, and could play an important role 
in controlling the tradeoff between accuracy and effort. 

2.1.2 Micro-lensing 

Astrophysics is a program that contributes greatly to the public scientific legacy produced by 
LLNL. Its importance is underscored by its relevance to ASCI (note that one of the 5 ASCI 
alliance centers is on astrophysics). 

Charles Alcock, head of the IGPP, has developed a world-renowned effort for detecting galactic 
dark matter in the form of MAssive Compact Halo Objects. Machos are detected via gravita- 
tional microlensing, an event that occurs when a Macho, in close alignment with a background 
star, acts as a gravitational lens, magnifying and distorting the stellar image. Microlensing 
refers to the situation in which the image distortion is not detectable, and the only visible 
effect is an apparent amplification. This increase in intensity is transient, lasting from 20-60 
days. 

The MACHO collaboration seeks to identify microlensed stars by taking two color CCD images 
of upto 10 million stars per night in the region of the sky that is of interest. This image data is 
processed in real time, generating reduced photometry data, and possible microlensed events are 
reported. The actual identification of microlensed events is done by a human after examining 
the light curves and the original images. The probability of observing such events is very low, 
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for example, two years of photometry on 8.5 million stars in the Large Magellanic Cloud has 
revealed 8 candidate microlensed events. 

The MACHO project currently has five terabytes of image data on tape, as well as 500 GB of 
photometry data that is on-line. The work done so far has targeted the reduced photometry 
data as it is of a manageable size. Unfortunately, the sheer volume of the image data has made 
any form of unassisted human analysis all but impossible. As a result, a large part of the data 
that has been gathered is still unexplored. 

Large-scale pattern recognition techniques could be extremely beneficial in this domain. For 
example, the current sensitivity of micro-lensing detection, based on the photometry data, 
is low, implying that many such events are passing by unnoticed. Analysis of the feature- 
rich image data would be very useful in improving this sensitivity. Typically, when given 
a reasonable quantity of relevant data and a rich set of descriptive features, classification 
techniques from data mining and statistics have built models that are much more sensitive 
and accurate than humans. Applying these techniques to increase the current micro-lensing 
detection capacity is the first task. 

Applying clustering techniques on the image data in a directed knowledge discovery mode is a 
second, highly attractive goal. It would help the astrophysicists find patterns that they have 
not thought of previously, for example, a correlation between spatial and temporal phenom- 
ena. These directions would represent the first steps towards an automated data exploration 
capability that should help add the element of serendipity back into the science of astrophysics. 

From the computer science perspective, major research issues include scaling the clustering 
and classification algorithms to cope with the sheer size of the data available, pre-processing 
the data to remove various errors without losing useful information, and investigating ways of 
enabling interactive exploration of the data. 

2.1.3 Other Areas 

Many other projects and programs at LLNL could derive great benefit from large-scale data 
mining. Briefly, some of these are: 

l ASCI: This domain is replete with examples of complex data analysis that is carried 
out through images. Some examples include pin dome and PINEX experirnental data. 
This program will be generating large amounts of computational data, and currently has 
limited support for automated analysis of any form. 

l ASCI Advanced Visualization: Pattern recognition techniques can be used as an aid to 
visualization, enabling improved navigation and discovery in large data sets, as discussed 
in a recent joint proposal for the establishment of an ASCI Advanced Visualization Tech- 
nology Center. Locating and tracking features through transient data is an important 
part of this proposal. Work is also needed to make these techniques more interactive, 
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perhaps by using smaller representative samples of the data being visualized, or by using 
multi-resolution data. 

l Verification and Validation: Computational models are evaluated by measuring how well 
they model the actual physical phenomena, and how sensitive they are to model errors, 
or variations in the input parameters. The predictiveness of the model is determined by 
comparing the model data to experimental data, when available. The work in representing 
and comparing to fuzzy classes, as described in the synthetic radiographs example, involves 
robust statistics, and stochastic modeling. This provides a good foundation for addressing 
verification and validation concerns. 

l Global Climate Change: This domain has large amounts of data that must be analyzed 
for trends that occur over time. The modeling done here is very similar to the work 
described above. 

l Genome: There are several interesting applications in this area as well. For example, 
spectrograph readings are an important source of information for determining protein 
function. These images again share characteristics very similar to the radiographs dis- 
cussed above. Also, pattern recognition techniques can be used to determine the factors 
that influence 3-dimensional structures in proteins, as well as help predict these structures. 

The problem of effectively exploring and characterizing large scientific data is not specific to any 
one domain. Indeed, as hinted at above, it is important to a wide range of programs supported 
by the Computation Directorate. Currently, there is no coordinated center of activity at LLNL 
that is looking for possible solutions to this problem. Furthermore, commercial data mining 
products do not scale to large, high dimensional data sets, and the research community is only 
beginning to address these issues - primarily in the context of business data. 

3 Technical Issues 

3.1 Overview of the Data Mining Process 

The process of exploring and analyzing data, as formalized by the data-mining community, 
is an iterative multi-step process involving data preparation, search for patterns, knowledge 
evaluation, and refinement. This interactive process typically involves the following steps: 

Data preparation: This includes understanding the application domain, possibly selecting 
and integrating a subset of the datasets, cleaning the data to remove noise or imput 
missing fields etc. This step is very dependent on the problem domain, and requires close 
interaction with the domain experts. 
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Search for patterns: This step includes feature extraction or finding important attributes 
to describe the objects of interest in the data, data and dimensional reduction to reduce 
the effective number of instances or variables under consideration, then selection and 
application of a data mining algorithm. 

Knowledge evaluation: This includes interpreting the discovered patterns, visualization of 
the patterns, analysis of the accuracy of the resulting model, or evaluation of the degree 
of confidence one should have in the results, and finally possibly returning to one of the 
previous steps to refine the process. 

The scalable pattern recognition work we propose in this project concentrates on the later half 
of the data mining process, namely, the search for patterns, and knowledge evaluation. Much of 
the effort in pattern recognition is shared across domains and has similar qualities independent 
of the domain. Suitably isolating the algorithms and research issues from the specific problem 
domains should allow a research effort to be applicable to many different applications. 

For example, the data central to the synthetic radiographs (SRG) and the MACHO applica- 
tions described above appear at first to be quite different. The SRG data is much smaller 
in aggregate than the MACHO data, the error in a CCD image has a different form than the 
error in a radiograph, and in MACHO, classification will be used to build models, while in SRG 
probabilistic models will be constructed directly out of experimental data. However, both of 
the domains are characterized by noisy 2D image data that represent 3D artifacts. The images 
are time series data, which has a substantial impact on the correlation of the data. The main 
goals in both domains are to extract features of interest in a pre-processing step, use those 
features to compare the images, and along the way improve the scalability of the techniques 
being applied. 

The research issues outlined below focus on scalable pattern recognition, and therefore are 
targeted at the application independent aspects of these problems. In this way, the results of 
this research can be applied to various application areas around the Laboratory. Collaborations 
with the programs will supply the domain-specific knowledge that is needed, and assistance in 
applying the research results in domain-specific projects. 

3.2 Research Issues 

Data-mining, especially for large complex data-sets, is very much in its infancy. The algo- 
rithms with better predictive power are far too expensive to apply to anything but small and 
relatively low-dimensional data. The less complex approaches currently scale to medium-sized 
data. However, there are often difficult tradeoffs to make between the time needed for a data 
mining task, the expected accuracy of the results, the complexity and the power of the se- 
lected algorithm, the sample size of the data used, and the number of features used to build 
a pattern. One of the largest examples in a scientific domain in today’s literature is of a sky 
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mapping survey done at NASA JPL. The problem domain is similar to the MACHO project 
described above, except there is no time series data, and the total data size is about two orders 
of magnitude smaller. The JPL data set consisted of about 100GB of image data. From this 
data, 50 features were used to describe each object. The run time was measured in days. 

There are strong programmatic reasons to scale pattern recognition techniques to data of the 
current size of the MACHO corpus, and the near future sizes of ASCI data. The following 
barriers, which all have a major impact on the overall viability and efficiency of a data mining 
algorithm, will have to be addressed in some way: 

l Size of data: Manipulating such large data requires dealing with issues such as stor- 
age, and data transport across networks and through the storage hierarchy from tertiary 
storage to disk to main memory. 

l Type of data: Handling data types that are native to individual domains requires mapping 
from native data formats into the flat data structures used by modern data mining algo- 
rithms. This mapping can explode the number of features of each object, and potentially 
lose information in the process. 

l Algorithmic Complexity and Efficiency of Implementation: Data-mining algorithms 
are powerful learning devices, but they have high algorithmic complexity associated with 
them. For example, simple naive Bayes, a fast but limited predictor, can be linear in the 
number of features + training examples. Decision trees, which are excellent classification 
tools, can range from O(nZogn) to O(n2) or worse, depending on the type of pruning done. 
Model induction algorithms (e.g. belief networks) with built-in assumptions that reduce 
complexity start at O(n4D2) where n is related to the number of features, and D is the 
average domain size for the variables. More complex algorithms are exponential, making 
them infeasible for large data sets. 

Due to this high algorithmic complexity, these algorithms can be computationally time- 
consuming. Ideally, the process should be interactive, providing the end-user a quick way 
of analyzing their data. However, the implementation of current data-mining algorithms 
is often inefficient, and rarely uses the advances in high performance scientific computing 
to reduce compute time. 

l Quality of the results: Data mining is frequently used as a decision making tool. As such, 
if the tool is poorly understood, then expensive and incorrect decisions could easily be 
made based on the output (e.g. treatment decisions in the medical world). Data mining 
tools generate models that have built in biases, and are often the product of heuristic, 
non-exhaustive searches through a problem space. Unfortunately the quality of these 
models (or inferences) are rarely measured, leaving the user to rely on intuition as to how 
far to trust the results. 

If data mining techniques are to be trusted tools of any profession where the (real and 
opportunity) cost of a mistake is high, then the quantification of the inference results must 
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be addressed. However, there is little to no work currently being done on practical, formal, 
mathematical modeling for measuring the quality of the results generated by data-mining. 

3.3 Summary of Approach 

We believe that research with a focus on moving towards a more interactive model of computer- 
assisted data exploration and analysis has the highest potential benefit. To achieve this, we 
are considering: 

l Techniques from high performance computing to improve the computational efficiency of 
the implementation of data-mining algorithms. This includes using the latest methods 
in numerical analysis, efficient implementation on a single processor, and use of parallel 
programming techniques and parallel processors. 

l Hybridizing approaches from soft computing and computational science such as neural 
nets or genetic algorithms with singular value decomposition or wavelets. Hybrid algo- 
rithms typically produce much more accurate patterns in practice than the individual 
component algorithms. 

l Applying and extending techniques from stochastic modeling and robust statistics in or- 
der to provide the information needed to evaluate and validate the computational models 
derived from the pattern recognition process. This information is crucial in making ap- 
propriate use of the results of the pattern recognition algorithms. It also plays a central 
role in allowing one to control the tradeoff between accuracy and the amount of effort 
expended to achieve that accuracy. 

l Exploring the use of random sampling and multi-resolution in the tradeoff described 
above to enable interactive data exploration. This is useful in cases where the user is 
more interested in light exploration rather than deep analysis, or in domains where early 
detection of an event in progress can allow scientists to closely monitor the event. 

4 Leveraging 

There are significant resources that this effort will be able to leverage: 

1. High performance computing competence - CASC and the Computation Directorate have 
a history of excellence in large-scale parallel computing, including parallel I/O and sci- 
entific visualization. Many of the issues faced in these areas are similar to the challenges 
facing large-scale data mining. The expertise is local, well within reach of this project. 

2. Computing resources - We have access to a cluster of DEC 8400’s, limited access to HPSS 
platforms, and the teraflop-capable ASCI machines. 
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3. Large-scale applications - LLNL houses efforts that are visible at the national level in 
stockpile stewardship, astrophysics, energy, materials science, environmental sciences, hu- 
man genome, and more. All of these domains have similar characteristics regarding their 
need to analyze large, complex data. 

In addition, we will be able to leverage expertise being developed in a funded LDRD project 
with the Human Genome effort: “Data warehousing and integration for scientific data man- 
agement”. One of the project goals is to initiate a data mining project in the genome area. 

Finally, the CASC personnel involved in this proposal have strong research backgrounds in 
high performance computing, data mining and large-scale data management. Our team is well 
positioned to have significant programmatic impacts, as well as to influence both the theoretical 
and practical aspects of this new field of large-scale data mining. 

5 Glossary 

Data mining: An alternate name for Pattern recognition used by statisticians and database 
researchers. Data mining is one step in KDD (Knowledge Discovery in Databases), which 
is defined as the non-trivial process of identifying valid, novel, potentially useful, and ul- 
timately understandable patterns in data. KDD includes the cleaning and pre-processing 
of the data, data-mining, and finally, the visualization and interpretation of the patterns. 

Feature: A feature is any extractable measurement or attribute used in a pattern recognition 
system. Features can be low-level entities such as signal intensities, color, weight, pressure 
etc. or high level entities such as aspect ratio, Euler number etc. 

Figure of merit: A metric that measures the goodness between experimental and computa- 
tional models. 

Neural nets: A more complex, predictive model than linear regression. Unfortunately, the 
resulting learned model is basically impossible for the domain scientist to understand, 
and model training times can be unpredictable and long. 

Pattern: A pattern is essentially an arrangement or an ordering in which some organization 
of underlying structure can be said to exist. It can also be referred to as a quantitative 
or structural description of an object or some other item of interest. 

Pattern recognition: Pattern recognition is the application of algorithms to extract patterns 
(models) in data. It deals with automatic techniques for partitioning or assigning input 
patterns or measurements into meaningful categories. 

Statistics: A general method of reasoning from data. It is a basic approach shared by people 
in today’s society to draw conclusions and make decisions in business and in life. It lets 
us communicate effectively about a wide range of topics from sales performance to quality 
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of computational models to operational efficiency. Statistics is the way that we reason 
effectively about data and chance in everyday life. 

SVD: Singular value decomposition is a technique used to decompose a matrix into several 
component matrices, exposing many interesting properties of the original matrix. The 
ability of the singular value decomposition to split a vector space into lower dimensional 
sub-spaces is used in pattern recognition to reduce the number of features under con- 
sideration. Also referred to as the Karhunen-Loeve transformation, principal component 
analysis, or the Hotelling transformation. 
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