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Recent Advances in Lattice Boltzmann Methods

Shiyi Chen, Gary D. Doolen, Xiaoyi He, Xiaobo Nie and Raoyang Zhang
Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los
Alamos, NM 87545

In this paper, we briefly present the basic principles of lattice Boltzmann
method and summarize recent advances of the method, including the applica-
tion of the lattice Boltzmann method for fiuid flows in MEMS and simulation
of the multiphase mixing and turbulence.

I. INTRODUCTION

In recent years, the lattice Boltzmann method (LBM) [1] has emerged as an alternative
and promising numerical scheme for simulating fluid flows and modeling physics in fluids.
Unlike conventional numerical schemes based on discretizations of macroscopic continuum
equations such as the Navier-Stokes equations, the lattice Boltzmann method is based on
mesoscopic kinetic equations and the particle distribution function. The fundamental idea in
the LBM is to construct simplified kinetic models that incorporate the essential mesoscopic
physics so that the macroscopic averaged properties obey the desired macroscopic equations.
By using a simplified version of the kinetic equation, one avoids solving complicated kinetic
equations such as the full Boltzmann equation; and one avoids following each particle as in
molecular dynamics simulations.

From the point of view of computational fluid dynamics, the kinetic nature of the LBM
provides three important advantages. First, the convection operator in the LBM is linear
allowing the incorporation of up-wind algorithms and avoiding the use of non-linear Riemann
solvers. Simple convection combined with a relaxation process (or collision operator) allows
the recovery of the nonlinear macroscopic advection through multi-scale expansions. Second,
the incompressible Navier-Stokes equations are obtained in the nearly-incompressible limit
of the LBM. This eliminates the necessity of solving the Poisson equation for the pressure,
which is the normal procedure for solving the incompressible NS equations. Third, in
contrast to traditional kinetic theory such as the continuum Boltzmann equation approach,
the LBM seeks the minimum set of velocities in phase space. Ounly very a few velocities
are used in the LBM, and the transformation relating the mesoscopic distribution function
and macroscopic quantities, including mass, momentum and energy, is greatly simplified,
consisting; of simple arithmetic calculations.

The lattice Boltzmann equation for the discrete particle distribution function, similar to
the kinetic equation in the lattice gas method [2], can be written as follows:

fi(x+ e;0r,t+ (5t) - f,-(x, t) = Q,-(f(x, t)), (2 =0,1--, M), (1)

where f; is the particle velocity distribution function along the ith direction; M is the
number of particle speeds; €; = Q;(f(x,%)) is the collision operator which determines the
rate of change of f; due to collision. The most straightforward choice of collision operator is
the linearized collision operator with a single relaxation time, 7, (or the BGK approximation

[3,4]):
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where fi("q) is the local equilibrium distribution function. {2; is required to satisfy conser-
vation of total mass and total momentum at each lattice site in order to recover the NS

equations:
Y=o, D Qe =0, @)
: i

where ), = Z,Mﬂ
The macroscopic quantities, such as density, p, and momentum density, pu, are defined -
as the particle velocity moments of the distribution function, f;,

P-_—Zfi’ pu:z.fiei, (4)

It is assumed that the lattice spacing Az and the time increment At in Eq. (1) can be
treated as small parameters of the same order, €. Performing a Taylor expansion in time and
space, we obtain the following continuum form of the kinetic equation accurate to second
order in &,
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To derive the macroscopic hydrodynamic equation, we utilize the Chapman-Enskog expan-
sion by assuming:

Q;
- (5)
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Likewise, the one-particle distribution function, f;, can be expanded formally about the

local equilibrium distribution function, f¢

i ?

fi=f+efe?. » (6)

Inserting the above formula into (5), we obtain, using simple algebra, the following mass
and momentum equations:

dp |, _
—3?*- V- pu=0, (7)
Opu _
—B—t——i-V-H—O, . (8)

which are accurate to second order in £. Here the momentum flux tensor, II, has the form:

Tap = Y (@alei)slff + (1 - 50177 ©)




(€:)o is the component of the velocity vector e; in the a-coordinate direction.

To obtain the detailed form of II, in the two-dimensional system we use a square lattice
with nine speeds: e; = (cos(w/4(i—1)), sin(r/4(i—1))) fori = 1,3,5,7, e; = V2(cos(m /4(i—
1)), sin(w/4(i — 1))) for i = 2,4,6,8; egp = 0 corresponds to a zero speed velocity. We also
assume that the equilibrium distribution has the following form [4]:

gzﬁ], (10

with wp = 4/9, w) = w3 = ws = w7 = 1/9, and wy = wy = we = wg = 1/36.
Inserting the above formula into (9), we obtain the resulting momentum equation

9
£ = puslL + 3e; - u+ (e )’ —

0

which is exactly as the same as the Navier-Stokes equation if the density variation &p is
small. :

II. LBM SIMULATION OF FLOWS IN MEMS

The LBM has been widely used for simulating fluid flows, including complex flows, fluid
turbulence, suspension flows and reaction diffusion systems (see the review {1]). Most of
the applications are related to flows in the incompressible limit whose dynamics can be
described by the macroscopic Navier-Stokes equations. Since the lattice Boltzmann method
is intrinsically kinetic, it is more general and can be used to simulate fluid flows with mean-
free-path effects associated with high Knudsen numbers, such as fluid flows in MEMS [5].
In this section we present LBM simulation results for flows in a micro-channel [6].

For flows in a micro-channel, the mean free path of fluid molecules could be the same order
as the typical geometric length of the device or larger. The continuum hypothesis which
is fundamental for the Navier-Stokes equation breaks down. An important feature in these
flows is the emergence of a slip velocity at the flow boundary, which strongly affects the
mass and heat transfer in the system. In our LBM simulation, the micro-channel consists
of two parallel plates separated by a distance h and the fluid flow is driven by the pressure
difference between the inlet pressure, P;, and exit pressure, F.. The channel length in the
longitudinal direction is L. The bounce-back boundary condition [1] is used for the particle
distribution functions at the plates (i.e., when a particle distribution hits a wall node, the
particle distribution scatters back to the fluid nodes in a direction opposite to its incoming
direction). The Knudsen number is defined as K,, = [/h, where ! is the mean free path of
the fluid molecular.

The slip velocity V; at the exit of the micro-channel is determined using the following
formula: :

u(y) =uo(Y - Y%+ Vp), (12)

where u(y) is the velocity along the flow direction at the exit and ¥ = y/h. ug and V; can
be obtained by fitting numerical results using the least squares method.

In Fig. 1, we plot the slip velocity V, and the normalized mass flow rate My = M /M, as
functions of Knudsen number when the pressure ratio » = P;/P, = 2. The normalization
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factor, My = WP () — 1), is the mass flow rate when the velocity slip is zero. Using a least
24y n 3

squares fit, from Fig. 1 we obtain:
V, = 8.7TK2. (13)

If we assume that the Navier-Stokes equation is valid for the micro-flow except that the slip
boundary condition V; in Eq.(13) is used to replace the traditional non-slip condition on
walls (the similar procedure has been used in the engineering model [7]), Egs. (11) and (13)
give the analytical mass flow rate:

In(n)

My =14+12V,(Ka) 727

(14)

For 1 = 2, (14) becomes My = 1+ 24.1K?2, which agrees with numerical results in Fig 1. In
Fig. 2 the mass flow rates as functions of pressure ratio 1 for K,, = 0.165 are shown for our
theory, the experimental work [8], the engineering model [7] and the LBM simulation. Our
theory and the LBM simulation agree well with the experimental measurements. It is noted
that for large pressure ratios (5 > 1.8), the lattice Boltzmann model agrees reasonably well
with Beskok et al. [7]. But for smaller pressure ratios, the difference increases.

III. LATTICE BOLTZMANN SIMULATION OF MULTIPHASE FLOWS

Since its first being proposed as an useful alternative to classical computational fluid dy-
namics (CFD) techniques, the lattice Boltzmann method (LBM) has proven to be useful for
simulations of multiphase flow. Instead of solving macroscopic equations such as traditional
CFD approaches, the LBM simulates fluid flow based on microscopic models and mesoscopic
kinetic equations. Consequently, the essential microscopic processes, such as intermolecular
interactions, can be easily incorporated. Phase segregation and interfacial dynamics, which
are essential in multiphase flow and are difficult to handle in traditional approaches, can be
accurately simulated in the lattice Boltzmann method.

There have been several LBM models proposed for the simulation of multiphase flows.
The first such model was proposed by Gunstensen et al. (9] based on a two-component lattice
gas model. In this model, red and blue particle distribution functions were introduced to
represent two different fluids. To maintain interfaces and to separate the different phases,
an extra step was introduced to force the colored fluids to move toward fluids with the
same color. The second LBM model proposed by Shan and Chen {10] used the concept
of microscopic interactions between particles. An interparticle potential was introduced to
model the phase segregation and surface tension. A third LBM model proposed by Swift et
al. [11] used a free-energy approach. In this model, the equilibrium distribution was modified
so that the pressure tensor is consistent with that derived from a free-energy function for
non-uniform fluids.

Although each of the LBM multiphase models was developed based on different physical
pictures and each appears to be different, a recent study [12] showed that all of them have an
origin in the kinetic theory. In another words, these models can be derived by discretizing
the continuous Boltzmann equation using different approximations. An improved LBM
model for multiphase flows can be obtained by systematically discretizing the continuous
Boltzmann equation. In this section, we report the latest development of the multiphase
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model proposed by He et al. [13] and present a benchmark study of the method applied to
the Rayleigh-Taylor instability.

In this new formulation of the LBM for multiphase fluid flows [13], we use an index func-
tion, f, and a pressure distribution function, g, for tracking the evolution of the multiphase
fluid. The reason for using these two distributions is that, for incompressible fluids, the
density is constant in each phase and only the pressure varies. In addition, if we do not
follow the density field, an index function must used to track the two phases. The evolution
equations for f and g are:

8fi | s fimf (ei-u)-F o
5 T Vhi= T (15)
and
09 . o, __gi—gi (ei-u)-(Fa+F,+G)
—8"{ +e; Vg; = -+ T g:7, (16)
where
Fr=V¥y),Fa= %V(pRT — ), Fs = xpVV?p, (17)

and G is the gravitational force. The index function ¥, the pressure, and the velocity are
calculated using:

Yv=3Y fup=) gnpu=Y_gie; (18)

¥ controls the rate of segregation of the different phases and x controls the surface tension.
The above governing equations are solved using a second-order finite differencing scheme.
The equilibrium distribution functions have the Maxwellian form:

e Y (e; —u)?
£= (2xRT)D7z &P [' 2RT ] ’ (19)

eq __ p _ (ei — u)2
%" = @zrT)D2 P [ 2RT ] ' (20)

For two-dimensional simulation, the discrete velocities are chosen to be the nine velocities
discussed above; for three-dimensional simulations, a fifteen velocity model can be used [4].

IV. RAYLEIGH-TAYLOR INSTABILITY

When a heavy fluid is placed on top of a light fluid in a gravitational field with gravity
pointing downward, the initial planar interface is unstable. Any disturbance will grow
and produce spikes of heavy fluids moving downwards and bubbles of light fluids moving
upwards. This is the so-called Rayleigh-Taylor instability. (For a review, see Sharp 1984

[14}.)




In this study, we will focus on the Rayleigh-Taylor instability for a single-mode distur-
bance. The amplitude of the initial perturbation is chosen to be ten percent of the channel
width. The computational domain is a two-dimensional square or three-dimensional box.
Non-slip boundary conditions are applied at the top and bottom walls. Periodic boundary
conditions are applied at the sides. The density ratio of heavy fluid to light fluid is 3. This
corresponds to an Atwood number of 0.5. [A=(pn — p1)/(pn + p1) With pp and p; to be
densities of heavy and light fluids, respectively]. The kinetic viscosity was assumed to be
the same for both heavy and light fluids. Surface tension was neglected in the simulation.

We present our results in terms of non-dimensional variables. We took the channel width
W as the length scale and T = VW as the time scale, where g is the gravitational
acceleration. The characteristic speed is then defined as \/AgW.

A. Two-dimensional simulation

A two-dimensional simulation was carried out on a 256x1024 grid. The Reynolds number,
Re = /gWW/v in this simulation was 2048. Fig. 3 shows the time evolution of the interface.
The interface was represented by 1¢ equal-spaced iso-density contours. As expected, the
heavy fiuid forms downward spikes while the light fluid rises to form bubbles. The interface
remains symmetric during the early stages of growth (¢ < 1.0). After that, the Kelvin-
Helmbholtz instability becomes important and the spike of the heavy fluid begins to roll up
at the edges. The role-ups become quite evident at ¢t = 2.5 and t = 3.0. Although many of
the previous Rayleigh-Taylor studies stop at this time, we continues our simulation to much
later times. As shown, the bubble and the front of the spike remain rather smooth and the
interfaces along the edge of the spike are stretched and folded into very complicated shapes.
The mixing of heavy and light fluids is considerable.

Previous theoretical and numerical studies showed that when the amplitude becomes
larger than 0.4 times the wavelength, the bubble speed approaches a constant. In our study,
the final bubble speed, Vg//AgW, was found to be 0.270. This result compares well with
the value of 0.265 obtained by Tryggvason using a front-tracking approach [15].

B. Three-dimensional simulation

A three-dimensional simulation was carried out on a 128x128x512 grid with a Reynolds
number of 1024. Fig. 4 shows snapshots of the interface at two different time steps. The
left panel is a view of the interface from the heavy fluid side, and the right panel is a view
of the interface from the light fluid side. As expected, the heavy and light fluids penetrate
into each other as time increases. The spike grows at about the same speed as the bubble
during the early stages (t < 1.0), but gradually the spike becomes faster than the bubble
(t > 1.0). The role-ups of the spike and bubble become obvious at the large-amplitude stage
(t = 3.0). The shapes of the bubble and spike are similar to the shapes observed by Li et
al. using a level set approach [16].




V. TWO-DIMENSIONAL ISOTROPIC MULTIPHASE TURBULENCE

Since there is no vortex stretching in two-dimensional Navier-Stokes, both the kinetic
energy and enstrophy (vorticity squared) are conserved. Therefore, there are two cascade
processes: the direct enstrophy cascade and the inverse energy cascade. A dimensional
analysis can be performed for both scalings, which shows that E(k) ~ 8%/3k~3 for the
direct enstrophy cascade range and E(k) ~ €2/3k~5/3 for the inverse cascade range. Here 3
and € are the enstrophy flux and the energy flux, respectively.

While single-phase two-dimensional turbulence has been studied extensively (See, for
example, the review article by Kraichnan and Montgomery, 1980 [17]), two-phase two-
dimensional immiscible turbulence is a relatively undeveloped field. Although a combined
approach using both analytical theories and direct numerical simulations hao been very
effective for the 2D single-phase turbulence, these methodologies cannot be extended to
two-phase immiscible fluid in a straightforward manner. Conventional numerical simula-
tions have limitations which do not permit a clear physical understanding of the interface
dynamics.

In order to achieve a statistical steady state, a large-scale forcing is applied in physical
space: F; = e; - Zkz +2.< Nz{kzn( —-A,sin¢ + B, cos¢)zz +K1,(Apsing — B, cosqb)zy}

with ¢ = k1, - £ + kop, - ¥ and k,, (k1n, kon)- In this way, the energy is injected into the
first three modes, N < 3, in physical space. Here E is the wave-vector, cis a parameter that
controls the force, A, and B, are the random numbers in the range [0,1]. This forcing is
periodic and satisfies the incompressibility constraint. The boundary conditions are periodic
in both directions.

To compare single-phase and two-phase turbulence in the enstrophy cascade range, we
present in Fig. 5(a) the energy spectrum for a stationary state from a single-phase LBM
simulation. This simulation was carried out using a 1024 x 1024 grid. The Taylor micro-
scale Reynolds number, Re,, is about 80. Re, is defined as u)/v, where u and X are the
root-mean-square of the velocity fluctuations and the Taylor microscale. Since the flow is
forced at the largest scales, only the enstrophy cascade range is well resolved. The power
law of the energy spectrum is seen for this LBM simulation to scale approximately as k=3
in the enstrophy cascade range. This compares well with the theoretical prediction {17].

Next, we present results from our simulations of two-dimensional two-phase immiscible
fluid turbulence subject to the same forcing at large scales. The simulation was carried
out using a scheme proposed by Gunstensen et al. [9] which colors the two components
“red” and “blue.” The viscosity and density of the two components are identical. Initially
we assume that the two fluids mix completely, i.e., the density at each point is assigned
to be identical. After introducing the large-scale stirring force, each component begins co
move, merge and segregate due to the competition between the external forces and surface
tension. Depending on the strength of the surface tension, different flow patterns appear.
After the energy spectrum reaches a stationary state, the flow properties are measured.
Fig. 6 illustrates the density and vorticity distribution of the two components at a late
time. It is seen that, under the influence of the large-scale force and the surface tension, the
two components are stretched and separated. Both large-scale and small-scale vortices are
observed.

In Fig. 5(b) we present the energy spectrum of the two-phase flow. It is seen that the
power law of energy spectrum is roughly ~ k=2 in the inertial range. This result is different
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from the k=2 behavior of single-phase turbulence and the results of Esmaeeli et al. [18].
Their energy spectrum from a low Reynolds number simulation of bubbly flows gives a
larger energy decay rate. The new scaling of k=2 is similar to the typical scaling of the
Burgers equation in which the shock structure dominates the dynamics of the velocity field.
We argue that in two-phase fluid turbulence, in particular when the surface phenomenon
dominates, the small scales are corapletely characterized by the surface velocity V' and the
surface thickness, 1/k, resulting in E(k) ~ k~2 from dimensional arguments.

V1. CONCLUDING REMARKS

In this paper, we have briefly presented the basic principles of the lattice Boltzmann
method and described several applications, including the LBM simulation of the micro-
chanpel, multiphase mixing and two-dimensional multiphase turbulence. Simulation results
from the LBM agree well with results from existing experimental and other numerical sim-
ulations. .

We would like to emphasize that the LBM is a useful mesoscopic dynamical description
of physical phenomena. The scheme is most suitable for fluid problems for which macro-
scopic hydrodynamics and mesoscopic statistics are both important. Even though the LBM
originates from particle dynamics and uses the particle distribution function, the scheme
describes the averaged macroscopic dynamics. In most cases the LBM has been treated as
a numerical scheme rather than as a mesoscopic physical model. However, the utilization of
the particle description or the kinetic equation provides the advantages of particle dynamics
and kinetic theory, including clear physical understanding, easy boundary implementation
and efficient parallel algorithms.
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Figure Captions

FIG. 1. The slip velocity and the normalized mass flow rate at the exit of a micro-channel
flow as functions of Knudsen number for = 2. The “+” and “x” indicate LBM
numerical results. The dashed line is for Eq.(13) and the dotted line for Eq.(14).

FIG. 2. The normalized mass flow rate as a function of pressure ratio for K,, = 0.165. The
solid line is for Eq.(14).

FIG. 3. Time-evolution of the interface for the two-dimensional Rayleigh-Taylor instability.
The Atwood number is 0.5, the Reynolds number is 2048 and the viscosity ratio is 1.
Surface tension is neglected.

FIG. 4. Interface shapes at two times in three-dimensional Rayleigh-Taylor instability.
The Atwood number is 0.5, the Reynolds number is 1024 and the viscosity ratio is 1.
Surface tension is neglected. The left panel is a view of the interface from the heavy
fiuid side, and the right panel is a view of the interface from the light fluid side. The
upper row is at £ = 1.0 and the lower row is at ¢ = 3.0.

FIG. 5. Energy spectrum for the two-dimensional forced single-phase (a) and two-phase
(b) turbulence.

FIG. 6. The density distribution of the two-dimensional forced immiscible two-phase tur-
bulence.
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