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Abstract

In this paper we present an adaptive projection method for modeling unsteady, low-
Mach reacting flow in an unconfined region. The equations we solve are based on a
model for low-Mach number combustion that consists of the evolution equations for
density, species concentrations, enthalpy, and momentum coupled with a constraint on
the divergence of the flow. The algorithm is based on a projection methodology in which
we first advance the evolution equations and then solve an elliptic equation to enforce
the divergence constraint. The adaptive mesh refinement (AMR) scheme uses a time-
varying, hierarchical grid structure composed of uniform rectangular grids of varying
resolution. The integration scheme on the grid hierarchy is a recursive procedure in
which a coarse grid is advanced, fine grids are advanced multiple steps to reach the
same time as the coarse grid, and the coarse and the fine grids are synchronized. The
method is valid for multiple grids on each level and multiple levels of refinement.

The method is currently implemented for laminar, axisymmetric flames with a re-
duced kinetics mechanism and a Lewis number of unity. Two methane-air flames, one
steady and the other flickering, are presented as numerical examples.

1 Introduction

The computational modeling of reacting flows with limited computer resources can be made
difficult by the presence of multiple length scales and by the large number of species in a
sufficiently detailed reaction mechanism. The problem of limited resources has generally
been overcome in combustion modeling by the use of globally refined, nonuniform grids.
In this paper we present a method based on a different approach, local adaptive mesh
refinement (AMR). We develop an AMR algorithm to solve a system of equations for un-
steady low-Mach number reacting flow in an unconfined region. This system is based on a
generalization of the low-Mach number combustion model in [29, 23]. The system includes
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evolution equations for density, velocity, enthalpy, and species concentrations, coupled with
a constraint on the divergence of the flow.

Our approach to AMR uses a hierarchical grid structure approach first developed by
Berger and Oliger [10] and Berger and Colella [9] for hyperbolic conservation laws. The
grid structure is dynamic in time and is composed of nested uniform rectangular grids of
varying resolution. By using grids of finer resolution in both space and time in the regions
of most interest, AMR allows one to model large problems more efficiently. The integration
algorithm on the grid hierarchy is a recursive procedure in which a coarse grid is advanced,
fine grids are advanced multiple steps to reach the same time as the coarse grid, and the
coarse and the fine grids are synchronized. The method is valid for multiple grids on each
level and for multiple levels of refinement.

The methodology presented here is based on a single grid algorithm developed by Pem-
ber et al. [27, 28]. The single grid method is a fractional step scheme in which we first
advance the evolution equations and then solve an elliptic equation to enforce the diver-
gence constraint and update pressure. The solution of the evolution equations essentially
follows the approach described in [3, 1]. In order that the method be second-order accu-
rate in time for nonlinear differential equations with source terms, however, a sequential,
predictor-corrector treatment of the equations is used. The sequential approach ensures that
all implicit finite difference equations are linear and can be solved by standard multigrid
techniques, while the predictor-corrector formulation guarantees second-order accuracy in
time. A simple extension of the second-order approximate projection algorithm in [3, 1] to
low-Mach number compressible flows is employed to enforce the divergence constraint and
update the pressure. A pressure relaxation term is added to the numerical representation
of the divergence constraint to account for the fact that the sequential approach cannot
simultaneously conserve mass and satisfy the equation-of-state.

The single grid algorithm is coupled to an extension of the conservative adaptive mesh
refinement scheme for variable density, constant viscosity incompressible flow (IAMR) de-
veloped by Almgren et al. [2, 1]. In the present paper the IAMR algorithm is extended to
account for the thermal expansion of the flow due to heat transfer and combustion, i.e.,
the non-zero divergence of the velocity. Additional enhancements ensure that the vari-
ous relationships among the state quantities, in particular, density, enthalpy, temperature,
and species concentrations, are always satisfied by the numerical solution. The treatment
of scalars in [1] is also extended to account for evolution equations such as those for en-
thalpy and species concentrations. These two sets of extensions ensure that the method
is freestream preserving with respect to primitive quantities as well as conservative and
freestream preserving with respect to conserved quantities. Spatial and temporal variation
of viscosity and of thermal and mass diffusivity are also accounted for.

The method is currently implemented for laminar, axisymmetric flames with a reduced
kinetics mechanism and a Lewis number of unity. Results from two numerical examples, a
steady methane-air diffusion flame [30] and a flickering methane-air flame [33, 39, 32], are
presented.

There are numerous references to the use of globally refined, non-uniform grids in com-
bustion modeling. We refer the reader to Bennett [7], Bennett and Smooke [8], and the
references therein. Local adaptive mesh refinement and local rectangular refinement meth-




ods have been used to model steady, low-Mach number combustion. In addition to the two
references above, see Coelho and Pereira [11], de Lange and de Goey [13], Mallens et al.
[24], Smooke et al. [31], and Somers and de Goey [34]. The authors are unaware of any
previous work using local adaptive mesh refinement to model unsteady low-Mach number
combustion. Projection methods without mesh refinement have been used in the unsteady
case; see Dwyer [14], Lai [20], Lai et al. [21], Najm [25, 26], and Yam et al. [39].

The remainder of this paper is organized as follows. In §2, we discuss the model for
low-Mach number combustion and the governing equations solved with our approach. We
describe the single grid algorithm in §3 and the adaptive algorithm in §4. Numerical results
are shown in §5.

2 Model for Low-Mach Number Combustion and Governing Equations

The system of equations for reacting flow considered here is based on a model for low-Mach
number combustion[29, 23], which we now briefly review. (See Table 1 for the nomencla-
ture.)

For flow in a spatially open domain the underlying assumption in the low-Mach number
model is that M is sufficiently small (say M < .3) so that the pressure p can be written as
the sum of a temporally and spatially constant part pp and a dynamic part 7,

p(rv Z, t) = Po +7('(T, 2y t): (21)

where 7/py = O (M?) . All thermodynamic quantities are considered to be independent of
7. The perfect gas law for a multi-component gas in a flow satisfying the low-Mach number
assumption is then

p=po/ (TR) = po/ (TR/W) = po/ (TR >/ Wz)) - (2.2)
l

Differentiating (2.2) with respect to time and using continuity, the following constraint on
the divergence of the velocity is obtained:
1 DT Z 1 DY, _

We consider flows that are axisymmetric without swirl. In addition, we assume a Lewis
number of unity and neglect radiative heat transfer. The system of governing differen-
tial equations thus consists of the divergence constraint (2.3) and the following evolution
equations for density, velocity, enthalpy, temperature, and species concentrations:

dp _
6t+v pU = 0 (2.4)
DU r
- = P09 -Vp+V.7 (2:5)
ag:‘+v pUh = V-(M\c,) VA (2.6)




¢pi(T) specific heat of species ! at p = po

¢p(T)  specific heat of the gas mixture at p = po

D molecular mass diffusivity

D/Dt d8/ot+U-V

E, activation energy in Arrhenius law

g magnitude of acceleration due to gravity: 9.81 m /sec2

h enthalpy of gas mixture, 3, i (T)Y;

hi(T)  specific enthalpy of species ! at p = pp,
including the heat of formation

l subscript denoting species, fu (fuel),
oz (oxidizer), pr (product)

Le Lewis number, Sc/Pr = A/pDc,

M Mach number

p pressure

Po ambient pressure: 101325 N/m?

Pr Prandt] number, pc,/A

universal gas constant

gas constant of mixture

Reynolds number, pUL/u

radial coordinate

right hand side of divergence constraint

Schmidt number, u/pD

temperature

velocity

radial component of velocity

axial component of velocity

mass fraction of species |

axial coordinate

thermal conductivity

viscosity

dynamic pressure, p — po

density

stress tensor

specific mass production rate of

species | by chemical reactions

TTAT AN QNDN Y T A

£

Table 1: Nomenclature: Physical Model

DT
poopr = V-AVT+ Elj pDVY, - Viy(T) — 2; wihy(T) (2.7)

9pY '
__gt_l_}_v.pUY] = V.pDVY, + w. (2'8)

In this system, equations (2.6) and (2.7) are redundant because the enthalpy h is defined
by
h=> Yih(T). (2.9)
1

Numerically, equation (2.9) is used only to define the initial and inlet values of h; otherwise,
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h is found as the solution of (2.6). Moreover, in our numerical method, equation (2.7) is
used solely to define intermediate values of T'; otherwise, T is computed using A, Y}, and
(2.9). The specific heat of the gas mixture ¢, is found by

& =Y Yiep(T). (2.10)
l

The system of equations are overdetermined in two other ways. Equations (2.4) and
(2.8) are redundant because p = Y_; pY;. We account for the redundancy numerically by
computing V - pU as 3_; V - pUY]. By using (2.4) in addition to (2.8), we are able to use a
simpler discretization of (2.8) and thereby use a simpler solution strategy. Equations (2.4)
and (2.2) are also redundant. We use (2.4) to ensure conservation of mass. The sequential
approach used numerically makes it impossible, in general, to simultaneously satisfy the
continuity equation and the equation of state; see §3.1 for further discussion.

For the calculations shown in this paper, a one-step reaction model [18] for methane
oxidation is used: _

natural gas + 9.57 air — 10.57 product. (2.11)

The rate of fuel consumption is given by
—Wfy = pZquKJzA €Xp (-EG/RT) ) (2.12)

where A = 10%m3/(kg-sec) .and E,/R = 1.84 x 10* K. Polynomial curve fits are used
for ¢poz, Cppr, [36] and cp sy [15]. We use a heat of formation of 4.855 x 107J/kg for
natural gas[36]. The viscosity, 4, is computed by the curve fit u = uo(T/To)” [17], where
po = 1.85 x 1075 kg/m-sec and Ty = 298K. pD and )/c, are determined from p by
pD = A\/c, = p/Pr. We use a fixed Prandtl number of .7.

3 Single Grid Algorithm

The algorithm used to advance the solution from time £ to " + At = ¢**! on a single grid
follows the general approach used in [28] for the case of simple boundaries and incorporates
many of the details of the single grid algorithm described in [1]. The reader is referred to
[6, 4, 5, 3, 27] for additional discussion. We use a uniform grid of rectangular cells with
widths Ar and Az indexed by ¢ and j. (See Table 2 for the nomenclature.) At the beginning
of the time step, the numerical solution, except for pressure, represents the flow at time "

-1
n-h represents the pressure at the previous

at cell centers. The solution for pressure, p, gt

half-time step, t*~ 7, on cell corners.

The method is essentially a second-order projection method [6]. The overall approach,
then, is that of a fractional step scheme. In the first step (which we call the advection-
diffusion-reaction step), values of k,T, and Y; are computed at time ¢"*! using a higher-
order upwind method for the convective terms and Crank-Nicholson differencing for the
diffusive and the reactive terms. In addition, values of U, denoted by U* or (u*,v*), are
computed in this step which do not necessarily satisfy the divergence constraint at **1. In




1,5 cell indices in r—, 2z~ directions

Ar cell width in r-direction

Az cell width in 2-direction

At time step used to advance solution from ¢" to ¢"+!
Gp a cell-centered gradient for a node-based pressure p

T3 r-coordinate of center of cell ij, iAr

Tiv1/2 r-coordinate of upper r-edge of cell ij

S right hand side of the numerical divergence constraint
t? time at the end of the n-th time step

1 t1/2 "+ At/2

()i value at center of cell ij at time ¢»

or average value over cell ij at t”

ntle o+l oxial and radial components of velocity

AT

N N before enforcement of divergence constraint

. Z.'H"’ predicted value at center of cell ij at time t™
(-):}"'1/2 value at center of cell 35 at time t* + At/2
(.)?4‘_“11/22’]_ value at upper r-edge of cell ¢j at time t" + At/2
():‘;":{ ?2 value at upper z-edge of cell ¢j at time " + At/2
(-);‘_:‘f/;d +1/2  value at upper corner of cell ¢j at time t™ + At/2
()5 value at center of cell ¢j at time ¢t + At

Table 2: Nomenclature: Numerical Algorithm

the second step (the projection step), the divergence constraint is imposed on the velocity
via a node-based projection [3].. This step yields U™*? and p:‘_:'lzz 4 the pressure at "7,
The first step uses a predictor-corrector formulation and consists of the following steps:

(1) Compute At:

(3.1)

Ar Az \' 2min (Ar,Az) p
ij

At = omin | —, —,
g\ ug v I(O: —Q)T - (Gp)i,j

where the CFL number ¢ satisfies o < 1.
(2) Compute discrete approximations of the convective terms in the governing equations
at time " + At/2:
1,
(V- pUgo)Z-':— % for o = h,Y; and
U - V(p)?;r/z for ¢ = u,v,T.
(3) Compute
1
Pl = o — AL (V- pUY) (3.2)
!
1/2
and p:-;-"' 2 = (pf] + p?j“) /2.
(4) Compute predicted values ¢"*1? of the solution at ! for the flow quantities ¢,
¢ =Y, T, and h using the Crank-Nicholson method.




(5) Compute corrected the values of Y}, T, h, and (u*,v*) to provide the solution at time
t"*! again using Crank-Nicholson differencing. _

In step (2), a MAC projection [16] is performed so that the edge velocities used to
form the convective derivatives satisfy the divergence constraint. In steps (4) and (5) the
equations for each of the flow quantities Y;, h, T, and (u*,v*) are solved sequentially so
that only linear systems of equations result from the Crank-Nicholson differencing. The
update for (u*,v*) is a coupled solve due to the tensor nature of 7. In the predictor step,
T is advanced using (2.7); this approach is typically less computationally expensive than
solving (2.9) for T"*1P. In the corrector step, T7"*! is found by solving (2.9) for 7.

The species update is itself performed sequentially in two steps, one accounting for
convection and diffusion and the other for kinetics, in order to facilitate the use of complex
kinetics mechanisms. In the kinetics update, the system of equations 9pY;/0t = wj is
integrated with an implicit difference scheme.

The spatially implicit finite difference equations that arise in the MAC projection, the
Crank-Nicholson differencing steps, and in the nodal projection are solved with multigrid
techniques [38, 1]. The cell-centered solves use V-cycles with red-black Gauss-Seidel relax-
ation and conjugate gradient at the bottom of the V-cycle. The nodal solve uses a similar
approach.

In the remainder of this section, we present the above algorithm in more detail.

3.1 Numerical divergence constraint

The right hand sides of equations (2.7) and (2.8) can be used to obtain the following
expression for S:

1
S = — [V AVT 4+ DVY;-Vh | +
P%T( 2. PPV ’)
W 1 1 (W RT)
—_ —V -DpVY + - —_— - . 3.3
p ow DoV P‘?(Wz cpT)w’ 9

Numerically, w;/p is approximated by AY;/At, where AY; is the change in Y; due to chemical
reactions during the time step. The other terms are approximated by central differences.

If equation (3.3) is used without modification, however, the algorithm may suffer from
a mild instability due to the fact that the sequential approach cannot simultaneously con-
serve mass and enforce the constraint py = pRT; at the very least, the solution drifts from
this constraint. (Analytically, this is not an issue; the equation of state and the continuity
equation (2.4) are equivalent {23].) In our approach, expression (3.2) guarantees conserva-
tion of mass. To stabilize the method, we add an extra term to the discrete form of the
divergence constraint (3.3) which accounts for the discrepancy between the value of p found
by continuity and that found using the equation of state. The value of the right hand side
of the divergence constraint used numerically, 3, is found by incrementing S as follows,

S Gt f (5o — Cpij — Rij
Sz] Szg“‘f(pz:) Damb) Atcp,ijﬁij (3'4)




where p;; = R;;p;;T;; and f is a constant satisfying f < 1.0. The extra term in the numerical
divergence constraint is found by approximating Dp/Dt in the enthalpy equation for non-
isobaric flow [19] by (Dij — Pams) /At, rewriting the resultant equation in terms of T, and
using (2.3). The term f(B;j — DPams)/At acts to drive the solution back to the constraint
Dij = Pamp- Similar treatments have been used in numerical petroleum reservoir simulation
[35].

Equation (3.4) is evaluated once per time step, immediately prior to the projection step,
to determine S™*+1. S is used whenever an evaluation of V - U™ is needed.

For the MAC projection, we also need an estimate of 85/ 6t in order to approximate S
at t"1/2, We use

95\" 8- 5
() -8 o

3.2 Advection-Diffusion-Reaction Step
3.2.1 Computation of convective derivatives

The approximation of the convective derivatives generally follows the approach described in
[1]; see [4] for additional discussion. There are two primary components to this computation:
a higher-order upwind scheme [12] to determine edge states and a MAC projection [16] to
enforce the divergence constraint on the edge velocities.

The general procedure can be summarized as follows:

(1) Compute values of uz_:};/zj and v::'}/zj, and u ;_I_/f/z

edges, respectively, using the higher-order upwind scheme.

(2) Compute advection velocities uﬁg/;’j and ”54311";2 by projecting the edge velocities

found in (1) so that they satisfy the divergence constraint.
n+ + +3 + + -+ +}
(3) Recompute u, +1/£23, vﬁ%{zj, u; ] +/?/ ,and 'U:lJ +/§, , and compute T';l/fj, sz +{Z (p Yl)f_l_l/ﬁj,
1,
(le)?,;:i-/f/z’ (ph);fl}f ;> and (ph):’;’"_{j/ using the higher-order upwind scheme.
(4) Form discrete approximations of convective terms.

The first step follows the approach in [1]. First, time-centered left and right edge states,

UZ:;Z;’L nd U':';/yf] »» at all r-cell faces and bottom and top edge states, U;Tf_'zz 5 and

Ui';i/,jz’T, at all z-cell faces are found with Taylor expansions that use monotonicity-limited
approximations to the spatial derivatives in the convective terms. (Other spatial derivatives

are evaluated by standard central difference approximations.) The time-centered edge states

U;T;/ZZJ at all r-cell faces and U, "':_/ljz at all z-cell faces are then found by an upwinding
procedure.
In step (2), we use a MAC projection to enforce the divergence constraint (3.4). The

equation

and v, on all » and z- cell

ZJ+1/ ’

mac 1 Amac _ { AMACTm+Y. an . At3S"
(D o = (preu Z)ij_ St S Bty (36)

ij

is solved for ¢, where 5™ and 85 /8t" are given by (3.4) and (3.5), and DMAC and GMAC
are the standard discretizations of the divergence and gradient operators on a staggered




grid [1]. The advection velocities are then computed by

Apy __ ,ntlh MAC
Uity = Uipnp;— pz+y2 P -—(G ¢)z+1/2 4 57
ADpv  _ ntlh MAC ’
Ui,]""/z - vz1.7+]7/2 p’L ]+]/2 (G ¢)7',.7+V2

where the edge values of p are averages of the adjacent cell centered values.

1
In step (3), we recompute U, _;/fj and U, 'f;_/f/ , and compute TT’—;&&J’ TiT,L;jZ’ ( py)?_ﬁ/ﬁj’

and (pY)Z;'zf/z, again using the approach in [1]. In this step, the upwind states are found
using the MAC projected edge velocities from step (2).

(ph)::ﬁ;ﬁ ; and (ph)?j_:/f/z are computed in a slightly different manner. The edge values
of T are used to compute edge value of hy(T') for all species I. These values of h; and the
edge values of pY] are then used to compute edge values of ph using (2.9).

In step (4), the convective derivatives are approximated by

ADV +¥ +
(V.U )n+1/2 T Yih 5 (P‘P)?#/:,j Ty Ui, (P‘P):l—l/:,j "
Py ;i Ar
vADV n+l vADV n+Y
Vit (p<p)”+1/2 ~ Y=Y (p(p) i,5—%
fo h,Y, 3.
Az or p=h,Y;and  (3.8)
ADV ADV n-+Y2 n+¥,
U-v )p;{-1/2 _ ( Yitlh,j + Uiy, .7) (‘pﬂ-‘/z,y N (pz—l/z,a) +
®lij 2Ar
ADV ADV n+¥ n+¥%
+ v L. — . .
( Vi i+l m+’7’2) (‘pz,ﬁ‘/z (Pw—l/z) _
oA for ¢ = u,v,T. (3.9)

The higher-order upwind scheme used in steps (1) and (3) uses a second-order Taylor
series expansion in time and space about (r;, z;,£,) to determine left and right (bottom and
top) states at time t**1/2 at r— (z—) edges. The time derivative in the Taylor expansion
is expressed in terms of the spatial derivatives and lower order terms by using a quasilinear
form of the appropriate governing equation. The particular form of the quasilinear equation
for a given state variable ¢ depends on whether we compute pp or ¢ at edges. In the
former case, py is computed directly — there is not a separate computation of p — and in
the quasilinear equation, V - pUyp is expressed as U - V (pp) + ppV - U. Note that in the
case of pY;, we omit the w; term from the quasilinear equation because of the operator split
treatment of the kinetics.

The edge values of ph are computed in the manner described to ensure that the numerical
scheme is freestream preserving with respect to temperature in the presence of multiple
species. The advection scheme uses van Leer slope limiting [37] in the approximation of the
first-order spatial derivatives. The advection scheme is hence monotonicity preserving but
also necessarily nonlinear [22]. In particular, then, if the edge values of ph were computed
in the same manner as pY, edge values of pY and ph would not necessarily satisfy (2.9)
under isothermal conditions; the scheme might then incorrectly generate a non-constant
temperature field.




3.2.2 Crank-Nicholson differencing

In steps (4) and (5) of the advection-diffusion-reaction step we solve difference equations
obtained by applying the Crank-Nicholson method to the governing equations. The differ-
ence equations are solved using the multigrid strategy outlined above. By using a sequential
approach and a predictor-corrector formulation, these difference equations are linear and
uncoupled in the sense that we can solve for T, h, Yj,, Yoz, Ypr, and (u*,v*) separately.
In step (4), we compute predicted values of temperature, species mass fractions, and en-
thalpy at time n + 1. Note that we do not need to find predicted values of (u*,v*) because
the equations have no coupled or nonlinear dependencies on the velocity. In step (5), we
compute corrected values of T, Y}, and h, as well as (u*,v*). In the corrector step, T"*! is
found directly by solving (2.9) given values of A”+! and ¥;"+.

The difference equations for T, A,Y;, and U are summarized below; the cell indices ij
are suppressed. The details of the discretizations of the divergence and gradient operators,
except in the case of of V - 7, are discussed in [1]. The discretization of V - 7 uses similar
strategies and will be discussed in detail in a future paper. Note that in all the discretiza-
tions, edge-based values of the appropriate diffusivity are needed. These are found by simple
averages of the cell-based values.

Temperature. In the predictor, we compute T™*1? by solving the difference equation

n+lp _ n
pn+1/2c;z (L—Z_l—t_T— +(U- VT)n+1/2) = % (V-VAx(T™)yvT"

+V - VA(T™) VT™H1P)

(17
+5 zl:vm (T) - VY.

Note that w is not included because of the operator split treatment of kinetics.
Enthalpy and Species. In the corrector, the discretization of the evolution equations
for ¢ = h,Y; has the form

n+l, n+l _ n._n 1

p 14 . n+l/2 _ 2 L ARYT, n+1l,p7, n+l
~ + (V- pUo) 2(v APV + APy

7

where AV = p(TN)/Sc when ¢ = Y] a,ndp,(TN)/(Pr cgf) when ¢ = h for N = n or
n + 1,p. The equations used in the predictor are found by substituting "1 and A™ for
¢™*! and APt1P. As was the case for the temperature equation, w is not included for ;.

Velocity. The discretization of the momentum equation is a coupled difference equation
for U* = (u*,v*):

pn+1/2 Qf_“_UTi

At =%((V-r)"+(V-7)n+1)—P"+1/2(U'VU)"+%—(VP)"—%- (3.10)

The viscosities in (V - 7)" and (V - 7)™ are evaluated using T™ and T™+1, respectively.

10




3.3 Projection Step

A projection [3] is now used to approximately enforce the divergence constraint (3.4) and
determine p"*t7%2. In the advection-diffusion-reaction step, we use (3.10) and a time-lagged
pressure gradient to compute a velocity that does not necessarily satisfy the divergence
constraint (3.4). In the projection we enforce

U“ 1
p:;+‘/2————At =3 ( ny+ Leh) - o (U - VUYETE — (Vo)
v-opt = St (3.11)
From (3.10) and (3.11), we see that
' Uptt - U; | U -UR
A m +,/2 (Vé),; == (3.12)
Pz]
where 6;,1, 511, = p:l;;’:] i~ pf_:lzz, fn Taking the divergence of (3.12), we obtain the

following equation,

] Ui U\ _ 5o g

which we solve using a standard finite-element bilinear discretization. U™*! and p"*% are
then found by .

upt = Uy - Ak (G9),
i y Pij : (3.14)
n n—
p z"1'1/22,]'+’/2 =P i+1/22:j+1/2 + 6i+’/2,j+Vz

where (G6) represents the cell average of Gd over cell ij.

4 Extension to Adaptive Mesh Refinement

In this section we describe the extension of the single grid algorithm to an adaptive hierarchy
of nested rectangular grids. The methodology is based on the IAMR algorithm described
by Almgren et al. [1]. Many of details of the present algorithm are identical, or very nearly
s0, to those of the IAMR algorithm. The reader is referred to [1] for these. In the following
subsections, we review the features common to both algorithms to provide context but
otherwise emphasize those that are specific to the modeling of low-Mach number reacting
flow.

4.1 Grid Hierarchy and Overview of Time-Stepping Procedure

The adaptive mesh refinement (AMR) algorithm uses a hierarchical grid structure, which
changes dynamically, composed of rectangular, uniform grids of varying resolution. The
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collection of grids at a given resolution is referred to as a level. By definition, level 0 covers
the entire problem domain. The widths of the cells in the level £ grids differ from those at
£+ 1 by a even integer factor Ry called a refinement ratio; Ry is typically 2 or 4. In space,
the levels are properly-nested, i.e., there must always be a region at least one cell wide at
level £+ 1 separating levels £ and £ + 2. (See Figure 1).

levely

level;

levels

Figure 1: A properly nested hierarchy of grids

On the full adaptive mesh, the AMR timestep consists of separate timesteps on each
of the levels, plus synchronization operations to insure correct behavior at the coarse-fine
interfaces, plus regridding operations which permit the refined grids to track complex and/or
interesting regions of the flow. The ratio of the level £ and the level £ + 1 time steps is R;.
Figure 2 shows a space-time diagram of a single level 0 timestep, during which a regridding
operation moves the interface between levels 1 and 2. The timestep is a recursive procedure
which proceeds as follows on level £:

1. Advance level £, using boundary information from level £ — 1 as needed but ignoring
levels £+ 1 and higher.

2. Advance level £ + 1 R, times.(This will involve advancing levels £ + 2 and higher,
recursively.)

3. Synchronize levels £ and £ + 1.

4. If the appropriate regridding interval has passed, tag cells at level £ that require
refinement according to some predefined user criteria, determine new level £+ 1 grids
to cover this region, and transfer data to new grids (using conservative interpolation
from level £ if necessary).

In the remainder of this section, we refer to steps 1 and 2 as a complete coarse level advance
or time step; step 1 is referred to as a level advance or a level £ advance.

The algorithm to advance a single level uses the same sequence of steps as the single
grid algorithm presented in §3. Note that the MAC projection, the Crank-Nicholson solves,
and the nodal projection must be done on all grids in a level simultaneously. The only
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Figure 2: Multilevel timestep structure

significant modification in adapting the single grid algorithm to a level advance is that the
level 0 value of At is always used in the pressure relaxation term in S (3.4) regardless of
the level index.

A detailed treatment of boundary conditions for the level advance is presented in [1].
For our purposes, we need only mention that boundary conditions for the advection and the
Crank-Nicholson steps are essentially implemented by filling ghost cells of the grids. The
ghost cells which are interior to the problem domain but exterior to all of the level grids
are filled by conservative interpolation from the underlying coarser level grids.

4.2 General State Variable Considerations

In the adaptive algorithm, the low quantities whose values persist from one time step to the
next are the dependent variables in the evolution equations, and, additionally, § and 85/8t.
The last two quantities are persistent for algorithmic simplicity and efficiency. The values
of § and 85/t at a given level £ are computed by (3.3) and (3.5) only before the projection
step during the level advance. Otherwise, they are computed by averaging down (at the
end of a complete level £ time step in cells covered by level £ + 1 cells) or by conservative
interpolation to level £ cells (in level £ cells that are newly created or that are ghost cells not
contained within existing level £ grids.) The choice to consider S and 85/d% as state-like
quantities was made in particular to minimize the complexity of the synchronization step.

The treatment of the primitive quantities T, Y}, and h also requires discussion. Whenever
ph and pY; have been defined by conservative interpolation or redefined by synchronization,
T is recomputed according to (2.9). Within a given level, Y; and h are defined in the obvious
way. In ghost cells completely exterior to a level, Y; (k) is defined by first conservatively
interpolating p and pY; (ph).

The conservative interpolation of the quantities p, pY;, and ph is the final area requiring
general discussion. As in the single level advection step, the conservative interpolation
algorithm uses van Leer slope limiting [37] in the approximation of spatial derivatives. For
the same reasons discussed in §3.2.1, if the conservative interpolation scheme were used
without modification, interpolated values of ph and pY would not necessarily satisfy (2.9)
under isothermal conditions. Further, interpolated values of p and pY; might not satisfy
p = 2 ;pY;. In order to overcome these shortcomings, we modify the slope calculation
procedure used in the interpolation scheme. In a given cell, we compute van Leer-limited
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slopes and unlimited central-difference slopes of p, pY;, and ph. We then compute the
minimum of the ratios of the limited slopes to the unlimited slopes, where the ratio is
defined to be one if the slope is zero. The slopes dp, ¢ = p, ph, pY;, used in interpolation
are then defined to be this minimum ratio times the unlimited slopes, i.e.,

| %imPh Gimp . [ SlimPYi
d¢ = min me UM oy | ATV ) S .o, for o = p, ph, pY;, (4.1
Y (‘5unlimph Ounlim? ¢ \9unlimPY! unlim®: for © = p,ph,pY:, (4.1)

where dy;, and dyp1i, denote the van Leer limited and the unlimited slopes. In the syn-
chronization step, corrections for p, ph, and pY; at a given level may need to be interpclated
to finer levels. The interpolation of these corrections follows the same strategy.

4.3 Synchronization

The general synchronization issues for the present algorithm are roughly the same as those
for IAMR [1]. Before discussing details specific to low-Mach number combustion, we briefly
review these.

The advance of a single level entails a number of convective and diffusive solves as well
as projections. During the advance of a given fine level, each such operation obtains its
Dirichlet boundary data from next coarser level. Even though the solution within each level
is consistent, there is a mismatch at the coarse-fine interface at the end of a complete coarse
grid advance prior to the synchronization step. Specifically, there are four mismatches
between a coarse and a fine level after a complete coarse level time step (we adopt the
notation from (1]):

(M.1) The solution in coarse cells underlaying fine grid cells is not synchronized with the
overlying fine grid solution.

(M.2) The composite advection velocity, properly defined, does not satisfy a properly de-
fined composite divergence constraint at the coarse-fine interface.

(M.3) The convective and diffusive fluxes from the coarse and the fine levels do not agree
along the coarse-fine interface.

(M.4) The coarse and fine cell-centered velocity do not satisfy a properly defined composite
divergence constraint at the coarse-fine interface.

The purpose of the synchronization step is to correct the effects of each mismatch. We
use the notation (S.n) to refer to the correction for mismatch (M.n). In the remainder of
this section we outline the correction strategies. The details will be presented in a future
paper.

(M.1) is corrected by averaging the fine grid data onto the coarse grid data following the
approach in [1]. Note that here we average S and 85/8t onto the coarse grid as well. We
also average T onto the coarse grid to provide the temperature used to compute diffusivities
in (S.3).




Mismatch (M.2) is corrected with exactly the same approach as that used in [1]. During
the coarse and fine grid level advances, the difference between the coarse and the fine grid
advection velocities at a given cell edge along the interface are accumulated in a time and
area weighted fashion.

In (S.2), the accumulated differences appear as the right hand side of a MAC sync solve
whose result is a correction to all the coarse grid advection velocities. Because the coarse
and fine grid velocities both satisfy the divergence constraint within their respective levels,
the velocity correction is divergence free; hence, the elliptic equation that is solved in this
step is identical to that used in [1] for incompressible flow. Because the advection velocities
used in the original coarse level advance did not contain this correction, we repeat the coarse
level advection step to generate flux corrections that account for the convective transport
due to the advective velocity corrections. Note that in this computation, which we call the
MAC sync advection step, we follow the same prescription for ph that was used in §3.2.1.

The correction for (M.3) uses the same general approach as in [1]. There are, however,
a number of modifications and additional details. For a given coarse cell edge along the
coarse-fine interface, the differences between the coarse and fine level fluxes (both convective
and diffusive) are accumulated. A cell-centered correction field is defined on the coarse grid
cells by combining the accumulated flux differences, which are associated with the coarse
cells along the interface outside the fine grids, and the divergence of the flux corrections
computed in the MAC sync advection step.

Unlike (S.1), (S.3) affects the solution at the coarse level and all finer levels. We first
define the coarse grid corrections to the scalar fields. We denote the scalar correction fields
by RHS,, RHS,, and RHS,y,. The values of the state quantities after (S.1) but prior to
(S.3) are denoted by (-)"*5!. First, we redefine RHS, to be ¥, RHS,y;. p"*! is then

found by
pn+1 — pn+1,S.1 +RHSp

For ¢ = h,Y;, we can write
(p¢)n+1 _ (p‘p)n+1,s.1 — pn+1 ((pn+1 _ (pn+1,S.l) + (pn+1,S.1 (pn+1 _ pn+1,S.1) .(4.2)

We see that there are two components to the correction to py: a correction to p and a
correction to ¢. The correction to py therefore has two steps. We first solve the difference
equation

At o Tn+1,S.1
p”+190corr _ —2—V X —(E—)V%oﬂ = RHS,, - (Pn+1,S.1 (pn+1 _ pn+1,S.l) (4.3)

for Yeorr, Where @eorr denotes @"+! — 1S (pp)"* s then computed by

(pQD)n_'-l — (pgo)n-!-l,s‘l +pn+1(pcm"r + (p'n,-i-l,s.l (pn+1 _ pn+l,S.1) .

The coarse grid velocity correction in (S.3) follows the same approach used in [1], with
straightforward modifications for non-constant viscosity and the tensor form of 7. All the
coarse grid corrections are conservatively interpolated to the overlying fine grid cells in all
finer levels. Finally, T is recomputed on the coarse and all finer levels using equation (2.9).
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The final mismatch, (M.4), is corrected with a similar approach to that used in [1].
During the coarse and fine grid level advances, a composite residual is accumulated at
the coarse nodes at the coarse-fine interface that measures the extent to which the level
projections fail to satisfy the composite projection equations at the interface.

Unlike the case of the MAC projection, there is a contribution to this residual due to
the compressibility of the flow. At a given coarse node at the coarse-fine interface, there
is a contribution to the residual from the value of 85/8t (3.5) in each coarse cell outside
the fine grid which shares the node and each fine cell bordering any of these coarse cells.
The total residual Res$3™*® (the “SP” subscript denotes sync projection) equals the resid-
ual ResF 5% for incompressible flow [1] plus the finite-element weighted contributions

of 85/8t from the coarse cells, plus the time and space averaged finite-element weighted
contributions from the fine cells, i.e.,

> .. 08 o
Res3p*® = ResZpyy=o + coarse grid 5 contributions +

1 RCOO-TS&

fine grid 95 contributions.
Beoarse k=1 ot

Note that the fine grid contributions are first computed at the fine nodes and then averaged
to the coarse node. See Figure 3 for an example.

A

Figure 3: Schematic showing contributions of coarse and fine grid cell-centered values of
0S/0t to the node-based residual for a refinement ratio 2.
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The remainder of (S.4) is identical to the case for incompressible flow reported in [1].
The composite residual is combined with the divergence of the velocity corrections found
in (S.3) to form the right hand side of a multilevel sync projection. Corrections to both the
velocity and the pressure at the coarse and all finer levels result.

5 Computational Results

In this section we present two numerical examples illustrating the methodology described
above. In both examples, Ar = Az and the CFL number ¢ = .4.




5.1 Steady Laminar Methane-Air Diffusion Flame

The first example is the calculation of the steady, unconfined coflowing methane-air dif-
fusion flame previously computed by Smooke et al. [30]. The experimental configuration
is illustrated in Figure 4. The radius of the inner fuel jet is .2 cm and the radius of the
coflowing air jet is 2.54 cm. At the inlet, the temperature is 298 K and the fuel velocity is
u =0, v = 5.0 cm/sec. The inlet air velocity is u = 0, v = 25.0 cm/sec; Re = 760 for a
reference length equal to the outer diameter of the air jet.

fine ! \
: extent of

computational
domain

6.4cm

solid
wall

Figure 4: Sketch of specification of unconfined coflowing methane-air diffusion flame.

In our computation, the flame is ignited by a small hot patch (7' = 1200K) next to the
inlet. We use a 16 x 40 level 0 grid to cover a 2.56 cm by 6.4 cm problem domain. There
are three additional levels of refinement. The refinement ratio Ry = 2 for £ =0, 1,2, so that
the equivalent uniform grid is 128 x 320. The inlet boundaries are refined to level 3 so that
they align with level 3 grid lines. The region T' > 2000 K is refined to level 2.

Figure 5 shows the early development of the flame. The unsteady phase is characterized
by a vortex ring which appears as a “mushroom” shape in the plots. The ring forms due to
the initial expansion of gas following ignition and ultimately rises out of the computational
domain. The boundaries of the level 1, 2, and 3 grids are also shown as thin lines in the
plots.

Figure 6 shows the flame at steady-state. We compute a flame length and a maximum
temperature of 1.68 cm and 2197 K, respectively; Smooke et al. compute values of 1.25
cm and 2053 K. Qualitatively, our calculation shows the same general flame shape and
the same rapid increase of axial velocity along the centerline. We speculate that our high
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Laminar methane-air flame: early time

l

0.0123 sec

n/ .
0.0520 sec 0.0675 sec

|

0.1248 sec 0.1386 sec

‘0.0000 sec

}

0.0824 sec 0.0969 sec

0.0000 sec 0.0123 sec 0.0343 sec 0.0520 sec 0.0675 sec
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0.0824 sec 0.0969sec  0.1110 sec 0.1248 sec 0.1386 sec
Figure 5: Unconfined coflowing methane-air laminar diffusion flame: early time

temperatures may be due to using a reduced kinetics mechanism and/or species-independent
mass diffusivities.

Note that after the initial projection, the maximum axial velocity vmaz = 1 m/sec;
at steady state, vpmg, = 1.8 m/sec. The computed acceleration is consistent with the
acceleration due to buoyancy. However, the use of a hot patch to ignite the flow, and the
resultant large initial velocity due to the imposition of the divergence constraint, probably
results in too rapid a development of the computed flow. A possible approach to computing
a more realistic picture of the early time flow would be to ramp the inlet velocity in time
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Laminar methane-air flame: late time (0.419 sec)

4

m/sec Radial velocity Axial velocity

Mass fraction ‘ Air Mass fraction Product
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Figure 6: Unconfined coflowing methane-air laminar diffusion flame: late time (0.419 sec).
pRT is plotted to show how well the scheme meets the constraint pg = pRT. The two
values differ significantly only along the edge of the flame.

and to model ignition as a transient source in the enthalpy equation.

5.1.1 Timings

We now present timings of the code for the steady laminar flame problem discussed above.
All refinement ratios equal two. Four cases are reported: the 16 x 40 base grid with three
levels of refinement discussed above, a 32 x 80 base grid with two levels, a 64 x 160 base grid
with one level, and a uniform 128 x 320 grid. In the two additional refined cases, the inlets
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and the region T > 2000K are refined to the finest level. The calculations were all run on
a 300 MHz single processor DEC Alpha workstation to a final time of .10412 sec. Table 3
shows the CPU time used to complete the calculation, the total number of cells advanced,
the CPU time per cell, and the approximate peak memory usage. The total number of
cells advanced is the sum over all levels of the number of cells advanced at that level. The
numbers show that the adaptive mesh refinement scheme can reduce the computational cost
in terms of both CPU time and memory usage. For the examples run, however, the CPU
time per cell does increase with the number of levels of refinement; the time for the level
three case is double that of the level zero case. The results suggest that the refinement
strategy used must be judicious; if too large a portion of the domain were refined, grid
refinement would not lower the computational cost.

Gridding CPU Time Cells Advanced || Peak Memory Usage
Total(s) || pus/cell Number Mb
128 x 320, uniform | 45810. 615 74547200 33
64 x 160, R = 2 14380. 1085 13255808 16
32x80,R=2,2 7260. 1171 6201536 10
16 x 40,R =2,2,2 8039. 1208 6654496 9

Table 3: Timings for uniform grid and refined grid calculations on a single processor of a
four-processor DEC Alpha for the steady laminar flame problem presented in Section 5.1.

5.2 Flickering Methane-Air Diffusion Flame

The other example is the calculation of a flickering, unconfined coflowing methane-air dif-
fusion flame. The computation models the coannular burner used by Smyth et al. [33, 32]
in a flame study performed to help develop better models of soot formation. They report
results that include the effect of acoustic forcing [33] and those that do not [32]. The latter
case is the one computed here. Yam et al. [39] have also simulated this flow using a single
grid projection method.

The experimental configuration is conceptually similar to that modeled in the previous
section. The coannular burner consists of a fuel inlet with a radius of .55 ¢cm surrounded
by an annpulus of coflowing air with an outer radius of 5.1 cm. The velocity of both inlet
streams is 7.9 cm/sec.

In our computation, the flame is ignited by a small hot patch (T° = 1200K) next to the
inlet. We use a 32 x 128 level 0 grid to cover a 6.4 cm by 25.6 cm problem domain. There
are two additional levels of refinement. The refinement ratio By = 2 for £ = 0,1, so that
the equivalent uniform grid is 128 x 512. The inlet boundaries are refined to level 2 so that
they align with level 2 grid lines. The region T > 1950 K is also refined to level 2.

During the early development of the flow, the flame grows in length and oscillates in-a
non-periodic manner; see Figure 7 for the time history of the flame length. After approx-
imately .75 sec, the flame reaches a “steady-state” in which it exhibits a highly periodic
oscillatory behavior best described as flickering. The flame oscillations are caused by a
buoyancy induced Kelvin-Helmholtz type of instability. Figure 8 displays the temperature
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field during a single flame oscillation. We compute a flickering frequency of 12.2 Hz; Smyth
et al. report a value of 12 Hz. The computed time-averaged flame height is 6.94 cm; the
experimental value is 7.9 cm. Yam et al. compute values 15.7 Hz and 5.51 cm. As in the
calculation reported in the previous section, our computed temperatures are again too high;
see the discussion above. We also compute a larger flame height oscillation (roughly 3 cm)
at steady-state than do Yam et al. (1 cm).

Flame Length

(axial location of temperature maximum)

T N T T T. T ¥ T i T T 4 T M T T T
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0.060

flame length (m)

0.040
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0-000 i ] A 1 L | L I} " ! 2 1 L I 2 I N I

0.00 025 050 0.75 1.00 125 150 1.75 2.00 225
time (sec) »

Figure 7: Axial position of the maximum temperature of the flickering flame along the

centerline axis as a function of time.

6 Conclusions and Discussion

We have presented an adaptive projection method for computing unsteady, low-Mach num-
ber combustion. The adaptive mesh refinement scheme incorporates a higher-order projec-
tion methodology and uses a nested hierarchy of rectangular grids which are refined in both
space and time. The algorithm is currently implemented for laminar, axisymmetric flames
with a reduced kinetics mechanism and a Lewis number of unity. Numerical results for two
test problems are favorable with the exception that the computed temperatures are signifi-
cantly higher than the values reported elsewhere. We speculate that the high temperatures
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Flickering laminar methane-air flame: 1 cycle

1.9649 sec 1.9799 sec 1.9957 sec

20121 sec 2.0276 sec 2.0464 sec
Figure 8: Temperature field of flickering flame during a single flame oscillation.

may be due to the use of a reduced kinetics mechanism and/or species-independent mass
diffusivities.

Future directions for this work include incorporating detailed chemistry and species
dependent mass diffusivities, and extending the methodology to three-dimensional and tur-
bulent flows and to realistic engineering geometries.
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