UCRL-JC-129930
PREPRINT

Automatic Generation of Warehouse
Mediators Using an Ontology Engine

T. Critchlow, M. Ganesh, R. Musick

This paper was prepared for submittal to the
5th International Workshop on Knowledge Representation
Meets Databases (KRDB'98)
Seattle, WA
May 31, 1998

March 4, 1998

Thisisa preprint of a paper intended for publication ina journalor proceedings. Since
changes may be made before publication, this preprint is made available with the
understanding that it will not be cited or reproduced without the permission of the
author.

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for advertising
or product endorsement purposes.

Automatic Generation of Warehouse Mediators
Using an Ontology Engine
T. Critchlow, M. Ganesh, R. Musick

Center for Applied Scientific Computing
Lawrence Livermore National Labratory (LLNL)

{critchlow | ganesh | rmusick } @lInl.gov

1. Introduction

The DataFoundry research project at LLNL is investigating data warehousing in
highly dynamic scientific environments. Specifically, we are developing a data
warehouse to aid structural biologists in genetics research. Upon completion, this
warehouse will present a uniform view of data obtained from several heterogeneous data
sources containing distinct but related data from various genetics domains. Our
warehouse uses a mediated data warehouse architecture in which only some data is
represented explicitly in the warehouse; remote access is required to obtain the non-
materialized data. Mediators are used to convert data from the data source representation
to the warehouse representation and make it available to the warehouse.

The major challenge we face is reducing the impact of source schema changes on
warehouse availability and reliability: based upon previous efforts, we anticipate one
source schema modification every 2-4 weeks once all of the desired sources have been
integrated. Incorporating these modifications into the mediators using brute force results
in an unacceptable amount of warehouse down-time. We believe that extensive use of a
carefully designed ontology will allow us to overcome this problem, while providing a
useful knowledge base for other applications. In addition to automatically generating the
transformation between the data sources and the warehouse, the ontology will be used to
guide automatic schema evolution, and provide a high level interface to the warehouse.

This paper focuses on the use of the ontology to automatically generate mediators,
because reducing the effect of source changes is a critical step in providing reliable
access to heterogeneous data sources. An overview of the role mediators play in this
process is provided in the next section. Section 3 briefly describes the ontology, and
Section 4 outlines how it is used to generate the mediators.

2. The Role of Mediators

Figure 1 outlines our approach to loading the warehouse: parsing the data,
transforming it to the desired format, and entering it into the warehouse. In practice,
these steps are not always distinct. Often, a single program will parse the input file, and
transform the data before storing it in an internal specification. This internal
representation can then be directly entered into the warehouse. This intermingling of the
parser and mediator is permitted because the mediator API is rarely defined. However, a
carefully designed API is critical to reducing the maintenance requirements of the
warehouse; if the API does not remove or redefine methods once they are created, the
ontology and warehouse can evolve without affecting the parser.

We have defined a set of ontologies that describe the data sources and the
warehouse, the abstract concepts being represented, and the transformations required to

Data Source ' Mediator | W
Al ' Warehouse
| Input Output :
Y D R S —>
E Class Class !
T E
Data Population
Parser Transformations Code

Figure 1 The Integration Process

map between them. In Section 4, we discuss how our ontology engine (OE)
automatically constructs the API and mediators based on these ontologies.
Unfortunately, we are not yet able to either automatically generate the initial parser for a
data source, or modify it when a source schema changes.

3. The Ontology

Our ontologies are represented as a single repository defined in Ontilingua [1]. It
contains abstractions of domain specific concepts, database descriptions, mappings
between them, and transformation functions to resolve differences in representation.
Figure 2 contains an example of the first three types of information, which are discussed
below. The transformation functions are not shown, but are simply methods associated
with an abstraction. Strict naming conventions ensure the source and target
representations are easily identifiable.

Abstractions are the heart of the ontology. They contain the aggregate of all
information known about a particular domain concept. Each concept is represented by a
collection of attributes representing the various components of the concept. These
attributes can be grouped into characteristics, combining related attributes or alternate
representations. For example, the abstraction afoms has a characteristic representing its
position, and that characteristic has three attributes for the cartesian coordinates that
make up its 3-D position.

A database description consists of language independent class definitions that
closely mirror the physical layout of a relational database. This information may be
automatically obtained from the metadata associated with most DBMSs; the table name is
followed by a list of the column names, data types, and arity. Unfortunately, most flat file
data sources do not maintain any metadata, so this information must be manually entered
for them.

Because an abstraction contains aggregate information about a concept, including
all alternative representations used by the data sources, there is always a direct mapping
between database attributes and attributes of the corresponding abstraction. However,
due to representational differences this mapping may require data from multiple classes
(i.e. ajoin). Our example demonstrates how information associated with the atoms
abstraction is obtained from both the warehouse atom and res_in_model classes.

(define-instance dw (relational-db)
:def (=dw *
((atom
((“self” oid key)
(“model_res” oid
(res_in_model “self))
(“x” float 1)
(“y” float 1)
(“z” float 1)
(“temp” float 0)
(“element” (string 4) 1)))

Warechouse Descr.

(define-instance map (translation)
:def (= map ‘({(genomics atoms)
(dw atom res_in_model)
((atoms “res_key)
(res_in_model “residue”))
((atoms “mod_key”)
(res_in_model “model”))
((atoms “short_el”)
(atom “element”))
((atoms “x”) (atom “x’"))
((atoms “y”) (atom “y’’))
((atoms “z”) (atom “z”))
((atoms “temp”)
(atom “temp’)))

Mapping

(define-instance gene-abs
(genomics-details)
:def (= gene-abs ‘(genomics
((atoms
(id (“key” oid key)
(“warehouse_key” oid))
(links (“mod_key” oid
(model “key’))
(“res_key” oid
(residue “key”))
(position (“x” float)
(*y” float)
(“z” float))
(flexibility (“temp” float))
(element
(“short_el” (string 4))))

Genome Abstractions

Figure 2 Examples of Ontology Data

4. Generating the Mediator

Figure 3 outlines how the information expressed in the ontology relates to the
various components of the mediator. The entire interface and the vast majority of code
will be automatically generated from the ontology using the OE — these components are
shown with a solid frame. The mediator functionality is decomposed into two
components: the translation library and the mediator class. The API available to the
parser is a combination of the individual APIs. The translation library is a C++ library
containing a set of classes corresponding to, and automatically derived from, the
abstractions; of course, the transformation methods must be explicitly entered. The
mediator uses the abstraction classes and mapping ontology to perform the
transformation from the input data format, obtained from the parser, to the warehouse
representation, as described by the ontology. While converting data to the target
representation may require multiple steps (based on the methods available) the naming
convention makes this a relatively straightforward search process. Once the data
transformation has been performed, the SQL interface is used to load the data into the

warehouse.

Incorporating a new data source requires the DBA to describe the data source,
map the source attributes to corresponding abstraction attributes, ensure that all
applicable transformation methods are defined, and create the parser. The OE then
creates the new mediator class, and expands the data class API if needed. Once a
database has been integrated, adapting to minor source schema changes often requires
only modifying the parser to read the new format.” Significant changes in the data
representation may require the ontology to be modified and a new mediator created.

Database
Description

SQL

Interface

Data
Mappings

Transformation
Descriptions

: Method User-defined
Abstractions Description
methods
Data
_____________________________ Definition

Figure 3 The Ontology and Mediator

5. Conclusion

In a dynamic scientific environment, maintaining the consistency and availability
of a data warehouse requires quickly adapting to changes in the source schemata. We
believe our extensive use of an ontology to represent information about the participating
databases will dramatically reduce the effort required to manage these changes. We have
defined the ontology data, and are currently coding the OE. We expect to have a
functional prototype in place by July 1998, at which time we will begin exploring other
uses for the ontology information.

References

(1] T. Gruber. Ontolingua: A Mechanism to Support Portable Ontologies. Stanford.
Knowledge Systems Laboratory. Tech Report KSL-91-66. November 1992.

Work performed under the auspices of the U.S. DOE by LLNL under contract No. W-7405-ENG-48

Technicallnformation Departments Lawrence Livermore National Laboratory
University of California « Livermore, California 94551

