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Abstract

In recent Deuterium-Tritium experiments on the Tokamak Fusion Test Reac-
tor(TFTR), both the Pellet Charge Exchange (PCX) [Phys. Rev. Lett. 75, 846
(1995)], [Nucl. Fusion 35, 1437 (1995) ] and the alpha Charge Exchange Recombina-
tion Spectroscopy (a-CHERS) [Phys. Rev. Lett. 75, 649 (1995)] diagnostics indicate
that sawtooth oscillations can cause significant broadening of the fusion alpha ra-
dial density profile. We investigate this sawtooth mixing phenomenon by applying a
Hamiltonian guiding center approach. A model of time evolution of the Kadomtsev-
type sawtooth [Sov. J. Plasma Phys. 1, 389 (1976)] is constructed. The presence of
Iﬁore than one mode in the nonlinear stage of the sawtooth crash is necessary to cause
significant broadening of the alpha density profile. Use of numerical equilibria allows
us to perform detailed comparisons with TFTR experimental data. Our results are

in reasonable agreement with a~-CHERS and show a broadening of alpha particles

similar to that seen in PCX measurements. M A STE R
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I. Introduction

In recent D-T experiments on the Tokamak Fusion Test Reactor (TFTR),! di-
agnostics including Pellet Charge Exchange (PCX)?*™* and Alpha Charge Exchange
Recombination Spectroscopy (a-CHERS)® have been used to measure the radial den-
sity profile of confined « particles. Results from these measurements indicate that
sawtooth instabilities can transport a significant number of alphas.from the core-
region into the outer region (r/a > 0.3). The observed sawtooth mixing is an issue
of fundamental importance for two reasons. First, it can reduce the alpha heating in
the central region where it is most efficient for sustaining the fusion reaction. Second,
it can enhance alpha particle losses by redistributing a fraction of the alphas onto
first-orbit loss or ripple-loss orbits, thus reducing the total alpha-heating available to
the bulk plasma, and producing an excessive heat load to the wall.

The model we present here adopts a fundamental approach by following the parti-
cle guiding center motion during a whole sawtooth crash cycle. It differs from previous
anaiytic or empirical models®® in that it automatically takes into account the effects
of finite orbit width and toroidal drift. In some experiments, the width of fast ion or-
bits is comparable to that of the sawteeth region. Furthermore, alpha particle energy
modification due to the time varying fields is essential to explain the redistribution
of deeply trapped « particles. The Monte Carlo method is used to generate particles
representing the alpha distribution (peaked) just before the sawtooth crash. The fact

that more than one poloidal harmonic is needed to cause significant broadening of the

alpha density profile indicates the important role the stochasticity of magnetic field




lines plays in this process. Since the PCX diagnostic only detects deeply trapped par-
ticles within a very narrow range (£0.001) of pitch angle around vy/v = —0.048, the
simulation and comparison with experiment becomes more subtle. In this case, field
line stochasticity is not sufficient to explain the data. We also need to introduce the
electric field which is non-negligible during the sudden crash. It is this electric field
that causes the particle diffusioﬁ in pitch angle and energy space. The electric field
parallel to B is zero due to the rapid response of the electrons, so energy is changed
only by the field perpendicular to B through cross field drift. Thus trapped particles,
with larger drift motion, are more strongly affected. Ripple effects are not considered
since the measured alpha loss rates® were not changed significantly (< 1%) during the
sawtooth crashes, indicating that in these experiments the sawtooth mixing results
in only an internal redistribution of « particles with no induced loss.

In Sec. IT we briefly describe the guiding center equations used for following par-
ticle trajectories. The models for the sawtooth mode stfucture, the evolution of the
sawtooth crash and the particle distribution are given in Sec. IIl, V and VI. The
simulation results and comparison with experimental measurements are presented in

Sec. VIL

II. Hamiltonian Guiding Center Equations
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The Hamiltonian guiding center equations, allow very efficient numerical eval-

uation of particle trajectories for times long enough to investigate fast ion transport

during sawtooth crashes. Since the particle’s drift motion is described by a set of




canonical variables which are closely related to the magnetic coordinates, this for-
mulation is convenient for plasmas with arbitrarily shaped cross sections. The con-

travariant and covariant forms of the equilibrium field are:

B = V( x Vi, + gVip, x V¥ (1)

B = gV( + IV0 + 6V, (2)

with 1, the poloidal flux, 8 the poloidal angle, and ({ the toroidal angle. For low
plasmas with primarily transverse magnetic perturbations, B is well described by

one function «(,,8,(,t), in the form:
§B=VxaB=Vx6A (3)

Now, let py = v)/§2, with Q being the particle’s gyro-frequency, then the canonical

momenta for the particle’s guiding center are given by:
e e
P = =lglpr + ) = ¥ = ~[gpe — ]

Py=-[I{py+ ) + ] = E[Ipc + 4] | (4)
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with ; the toroidal flux. Finally, let ¢ be the perturbed electric potential, the

particle’s Hamiltonian is then:

e’ B?

2mc?

(pe — @)* + uB +ed (5)

Therefore, we have the Hamiltonian guiding center equations:
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Substitute (P, Py) with (s, g;) by solving Eqgs. 4, and we obtain the set of differential

equations actually used in the code:
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Where,

e
D= E[gq+ I+p.(9I' — 1g')]

(7)

(8)

(10)

(11)

and primes refer to derivatives with respect to 1¥,. The above equations describing

the Hamiltonian guiding center motion are incorporated into the code ORBIT.}"12




III. Sawtooth Mode Structure

Since most TFTR plasmas have circular cross section, and sawtooth activities are
dominant within the ¢(r,) = 1 flux surface, with r, satisfying r;/R < 1, the mode
structure in the cylindrical limit is a good approximation. Near the ¢ = 1 flux surface
in a typical TFTR discharge, the resistive time and Alfvén time are 7 ~ 88 sec
and 74 ~ 4.0 x 1077 sec respectively. Therefore the magnetic Reynolds number is
S = 1g/Ta ~ 2.2X10% > 1, corresponding to the ideal magnetohydrodynamic (MHD)
limit. In this limit, the actual sawtooth mode shape is well approximated by that of
the ideal MHD sawtooth mode. For an ideal MHD eigenmod.e m/n, with {omn the

perturbation magnitude at ¢ = m/n flux surface, we have

_ Tomn (T )“W"(% ~2) cos(n¢ —m0 —wt)H (2 - q)

R
_ T mmen 1 g inemo—wty g (T
" R (rs) (q m)Re[e ]H(n q) (12)

with H the Heavyside step function. Fig. 1 shows the mode structure of a typical
TFTR case, with 1/1 and 2/1 modes present. For numerical reasons the Heavyside
functions are made smooth, so that they possess continuous derivatives, as we will
discuss below. This smoothing is equivalent to the inclusion of the effects of a sméﬂl
but nonzero resistivity. Because of the highly peaked nature of the alpha distribution
the mode structure is irrelevant much beyond the ¢ = 1 surface, so in fact thié
smoothing is important only for the m = 1 harmonic.

Parameters of a typical TFTR equilibrium are shown in Table 1:

Table 1: Parameters of a typical TFTR equilibrium
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Figure 1: Mode structure for TFTR run #84549 @ t= 4.4 sec. The frequency of saw-

tooth oscillation is w = 7.68kHz. The peak value of « corresponds to the perturbed

magnetic field of the order : [§B/B| ~ a/aq ~ 2.5%.
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Let & = rs(¢ = 1) = 25.0cm, the parameters for sawtooth modes are shown in Table

2:

Table 2: Values for different modes

Mode Rational Surface (16B}/ Bo)max Omax{cm) Frequency (rad/sec)
1/1 25.0 cm 0.0236 0.206 7.54 x 10°
4/3 40.0 cm 0.0413 0.318 5.78 x 10*
2/1 60.0 cm 0.953 1.559 2.0 x 10*

The sawtooth mode frequencies, determined by local diamagnetic effects, are given by
experimental measurements.!* To determine the peak value of the sawtooth modes,
we plot the Poincaré cross section of the magnetic field in the presence of two sawtooth
modes and scan through the magnitudes of the perturbations. When the Poincaré
plot shows a significant degree of stochasticity, indicating the onset of full magnetic
reconnection, we choose that set of perturbation magnitudes as the peak values for the
modes. This procedure is subjective to some extent, but the results were not sensitive
to the exact value of the magnitudes as long as the threshold for full reconnection
is reached. Fig. 2 shows the Poincaré plot of the magnetic field in the presence of
the two sawtooth modes shown in Fig. 1. At the peak values of magnitude of the

sawtooth oscillations, the topology of the magnetic flux surfaces are totally destroyed

9




by the nonlinear interaction of the two modes near the central region of the plasma.

100 T ' '
50 _
§ o .
N
—50F _
-100 i P T R R SR
150 200 250 300 350
R (ecm)

Figure 2: Poincaré plot for magnetic field lines.. Two sawtooth modes are present

with €(1/1) = 1.0r4(1/1), and €o(2/1) = 0.4r,(2/1).

IV. The Perturbation Induced Electric Field

To determine when the perturbation induced electric field is important, it is nec-
essary to look at the time scales of bounce motion of trapped and passing particles.

Fig. 3 shows how the poloidal bounce period of a 1 MeV «a particle varies with its

pitch angle (at the mid-plane) and poloidal flux.  The tips, corresponding to the
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Figure 3: Alpha particle’s bounce period. £ = 1MeV. TFTR run 86644 at t= 4.35

sec. The pitch is measured at mid-plane. ¥ is the normalized poloidal flux..
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trapped-passing boundary, are actually infinite, but numerical resolution truncates
them as shown. Since the typical crash time for a sawtooth in TFTR is of the order
Ter ~ lbusec, and the passing particle transit time is about 10usec, the perturbed
electric field is closer to resonance with trapped particles than with passing particles.
In addition, energy is transfered to the particles through E - V4, with V; the cross
field drift motion, much larger for trapped than for passing particles.

The perturbed electric potential can be written as a sum of Fourier components:

B9, 0,6,8) = > Guun(thp, 1) ™) (13)

m,n

Since ideal MHD is valid in the time scale of interest, the parallel electric field must

be shorted out by electrons,

E,,:B-(v¢—%?—)=5.(v¢~g(—gt5))=o | (14)
by using
B:V= (g + a5
we have:
B Vo= = 3 i(ng = m)ma(ty, ) (15)

Noting that
0. 0(aB) Baa

ot ot
B0 5 (2o _ g, )okomies 10

ot

Combining the above equations, we arrive at:

(99+1)
(m —nq)

¢mn("/’p; t) = (wamn + Z (17)
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For the purpose of implementation into the code, it is more convenient to relate
ma directly to €omn, the displacement corresponding to mode (m/n). In cylindrical

approximation:

e 8) = i(2) (2)" (oo + L) 1 (2 —g) (18)

Ts

Its derivative with respect to v, is then:

et =i () (e ) (-0

W) (et B L (2 9] o

Obviously, this derivative is singular at the rational surface, since the derivative of

a step function is a d-function! The singularity is due to our simplified assumption
of the ideal MHD limit and does not correctly represent the actual potential. Since
resistivity is non zero, a magnetic islc;md forms due to the perturbation. Inside the
island, flux surfaces close on themselves and modify the potential. As a first approx-
imation we take the electric potential to be flat around the rational surface within
the range of island width, rather than having a singularity as given by Eq. 19. The

island width (in terms of poloidal flux), is given by

4 1/2
A, = ;n (%ﬁ) x /o (20)

and increases with the magnitude of the perturbation which evolves with time. We
smooth the potential within the range of the island width around the rational surface,

thus avoiding the singularity.
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By imposing the condition of £y = 0, the last component of the guiding center

equations, Eq. 10 is modified as:

: da 1 , d 0
Py = —79%+-5{ — (pcd +q)65?—(1 —pcg)eg,%SJr
e*pl , Ja 0B 0Ja 0B da OB
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da 8 o D da 8¢ O O »
velo (G wan) ' (o ~ 50 20)| } 21

V. E\}olution of Sawtooth Modes

Not much detailed information is provided by the current experimental observa-
tions concerning the temporal evolution of a sawtooth cycle. Thus we take as a model
the simplest approximation, in which a sawtooth crash cycle can be characterized by
two time scales—one describing the re]at}vely slow build-up of amplitudes and the
other describing the sudden decline. A sawtooth crash cycle generally starts with
a single mode (in our case, the m/n = 1/1 mode) of small amplitude. This single
mode grows exponentially with time, until its magnitude becomes large enoﬁgh to
excite other nearby modes (such as the 2/1 and 4/3 modes). All modes continue
to grow until their nonlinear interaction leads to a flattening of the current density
and temperature profiles followed by a rapid crash to zero magnitude of the pertur-

bation, concluding a sawtooth cycle. We model this evolution using the following
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parameterized analytic form.

fg(exp<%> —1)/(e—=1), | for t < 7,
£(t) = (22)
fg(exp(-t—“—%'iz) ~1)/f(e=1), form <t<m+ 7.

where 7, € 71. We adjust 7, and 73 for each mode according to experimental data.
The crash time, 75, is much slower than the cyclotron rotation of the particles, thus
the conservation of magnetic moments is valid even in the crash phase. But 75 is of
comparable magnitude with the trapped particle bounce period and a partial reso-
nance causes the particles to diffuse in velocity space. A typical case of temporal

evolution is shown in Fig. 4.

VI. Monte Carlo Simulation of Alpha Distributions

In order to make sensible comparison with experimental measurements, it is im-
portant to interpret the output of the Monte Carlo simulations properly, and to
understand how the output would correspond to measurements from the PCX and
o-CHERS diagnostics. In fact, the correspondence can be quite subtle for the PCX
case.

Let F(¢,, E, 1) be’ the particle distribution in the phase space (x, v), and F(v,, E, i)
be the counter part in the phase space of (0,0, E, X). ( A is the mid-plane pitch and

has a one-to-one correspondence with magnetic moment u). Note that,
PPad®v = 4n*VEJ dip,d0dNdE (23)

with, 7 the Jacobian of the flux coordinate system. The number of particles per unit

15




2.0 '
- — 11
- - 21
15¢F .
oy
hes
E ' ]
= 1.0 .
£ L J
O]
0.
0.5 - .
L /"
// \
// \
L - \
i ”/ \
ool . o-T7 . 1
0 200 400

Time (# of transits)

Figure 4: Evolution of sawtooth amplitudes for 1/1 and 2/1 modes.. The duration
of one sawtooth crash cycle is ~ 2.3msec. The crash time is of the order: Tepash ~

15usec.
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phase space volume is,
dN = F (3, E, p)dzd®v = F(t,, E, p)dib,d0dINIE (24)

Therefore,

F (¥, B, ) = 4n*VET F (i, E, 1) (25)

For the case of a Gaussian radial distribution, n(r) = noexp(—(r/h)?), the peaked-
ness is determined by the single parameter h. Fig. 5 shows an example of how well
the Monte Carlo generated particle distribution represents the intended analytic dis-

tribution.

VII. Comparison with Experiments

The o-CHERS experiment was performed in a standard TFTR D-T super-shot
with toroidal magnetic field of 5.1T, and major and minor radii of R = 2.52m and
a = 0.87m, respectively. This diagnbstic measures the alpha particles with energies in
the 0.15-0.6 MeV range and positive pitch angles (with A € [0,1] and mostly passing
particles). We modeled the alpha radial density profile before the sawtooth crash

using a fit obtained from TRANSP analysis.®
T\2
n(r) = no(1 = (=)°)° (26)

The initial pitch distribution was taken to be uniform in the range of [0, 1]. After the
crash, the particle’s radial density profile is reconstructed by statistical analysis. Fig. 6
shows the simulation of the redistribution of passing particles with 0.15MeV < E <

0.6MeV. The results are seen to be in reasonable agreement with the experiment.
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Figure 6: The results from o-CHERS measurements are the ones with error bars.
Solid circles are pre-crash measurements and squares are the post-crash measure-
ments. Simulation of the a-CHERS diagnostics are the solid lines with the diamonds

indicating pre-crash density and triangles the post-crash density.
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We found that to simulate PCX diagnostics is more subtle. The PCX diagnostic
measures alpha particles with one single ;anergy value at a time, with 0.8MeV < F <
1.21MeV. Furthermore, only deeply trapped particles with pitch A = —0.048 - 0.001
are detected. It is easy to launch particles with a single value of pitch angle, but
it is statistically impossible to collect an acceptably large number of particles which
happen to be within a narrow range of pitch angle after the sawtooth crash. Among
the particles we launched at the beginning, all of which satisfying the criteria to be
picked up by the detector, about only half of them still satisfy that criteria at the
end of a sawtooth cycle. At the moment, we have to sacrifice accuracy for better
statistics by widening the range of acceptable pitch angles. Cofnparisons between the
experimental measurements and our simulations are displayed in Fig. 7, 8 and 9
for three different energies. Although the results are not as clear as in the case of
the a-CHERS simulation, both experiment and simulation show a broadening of the
particle distribution by roughly 10 cm.

A picture of the trapped particle motion will help us to understand this result. A
trapped particle passes the outer mid-plane twice in each bounce-period, with smaller
minor radius when passing with negative pitch angle and larger minor radius with
positive pitch angle. One mechanism for the depletion of the particles with small
negative pitches is induced transition by the mode into passing particles during the
positive pitch angle phase of the orbit (i.e. while they are relatively further away
from the magnetic axis). This would require only a small resonant eﬁergy transfer

to the particle. Supporting evidence is provided by a similar simulation in which we
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Figure 7: TFTR run #84549 @ t= 4.4 sec, E = 0.8 MeV, PCX, pre-crash measure-
ments are solid circles and post-crash are solid squares. The simulations are in solid
line: diamonds are pre-crash and triangles are post-crash.. Duration of the sawtooth

cycle is 2.6 msec. Mid-plane pitch range: A € [—0.4,0.0].
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Figure 8: TFTR run #84549 @ t= 4.4 sec, E = 1.0 MeV, PCX, pre-crash measure-
ments are solid circles and post-crash are solid squares. The simulations are in solid
line: diamonds are pre-crash and triangles are post-crash..  Duration of sawtooth

cycle is 2.6 msec. Mid-plane pitch range: X € [—0.4,0.0].
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find that the number of particles with small but positive pitch is increased by the

sawtooth crash cycle.

We do not see any significant loss of particles throughout our simulations.

VIII. Conclusion

A numerical model based on the Hamiltonian guiding center equations has been
developed for the analysis of the sawtooth mixing phenomena in TFTR D-T ex-
periments. There are two important processes in the « particle redistribution: the
stochasticity of magnetic field lines at peak perturbation amplitudes, and the large
perpendicular electric field during the sawtooth crash. The simulations for passing
particles with positive mid-plane pitch angles are in good agreement.with the o-
CHERS results. The simulations corresponding to PCX measurements suffer from
poor statistics and possibly incorrect treatment of the electric field in the nonlinear
stage. An improved model for the sawtooth crash would possibly allow more detailed

comparisons.
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