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A general method for including various collisional effects, such as the drag and
diffusion of test particles due to background plasmas, the effect of particle source
and sink, and the like-particle Coulumb collisions, is presented. The marker density
g is generally unknown along the particle traject.;ory, and its evaluation depends
on the way particles are initially loaded and new particles are injected into the
simulation. The method is demonstrated for the problem of the nonlinear evolution
of the Toroidicity Induced Alfven eigenmode, driven by energetic o particles. The
saturation amplitude is found to scale with the collision rate in a way as predicted
by theory.
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I. Introduction

The §f method!? has been widely used in particle simulation of kinetic phenomena, where
the particle distribution, f = fo + df, is characterized by an equilibrium distribution f,
and a small deviation éf. The essence of this method is the following. Each particle in
the simulation is assigned an initial weight which then evolves in such a way that, at
any moment, the collection of simulation particles (called markers), together with their
associated weights, provide a proper (Monte Carlo) representation of §f, rather than f, at
that moment. Typically the number of particles used in a §f simulation can be reduced
from that used in a simulation of the complete distribution function by a factor of §f/f,
while achieving the same accuracy.

Despite the wide application of the §f method, there is still some conceptual difficulty
concerning the interpretation of the particle weight, particularly in the case of diffusive
particle motion. The §f method was initially proposed for nondiffusive, mostly Hamiltonian
particle motion!. If the phase space is initially divided into many contiguous volume
elements, these volume elements will remain contiguous, although their shapes might be
continually deformed. It is then possible to define the particle weight in terms of Jf at the

particle position, i.e.,

w = 0f /g (1)

where g is the numerically evolved simulation particle distribution?3. With this definition,
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the evolution equation for w can be derived straightforwardly from the kinetic equation for
df, using the fact that g is either constant (for incompressible motion) or can be advanced
(for compressible motion®) along particle trajectories. However, this definition causes dif-
ficulty in deriving the weight equation when the pa ticle motion is diffusive, where the
“characteristic line”, along which the derivative %w is to be evaluated, is stochastic. The
diffusion causes initially contiguous elements in phase space to mix with each other during
the subsequent evolution, and this feature makes it impossible to define the particle weight
in terms of the local §f. Indeed, the systematic treatment of collisions, including both
the scattering of test particles due to background plasma and, more fundamentally, binary
Columb collisions as described by the nonlinear Landau collision operator, is an important
challenge in §f simulation®. There have béen a number of applications of the collisional §f
method*™", where collisional terms in the kinetic equation are simply implemented with a
Monte Carlo model in which particle velocities are changed stochastically, while no formal
derivation of the weight equation is given. Since the simulation particles (the markers) do
not directly represent the physical particle distribution déf, it is not clear whether the re-
sulting algorithm correctly solves the original kinetic equation, in the limit of large particle
number.

The purpose of this paper is to present a generalized collisional §f method. We abandon

the definition for the particle weight given by Eq. 1, and treat w as a new dimension of the

particle motion, in addition to the usual dimensions of z-v space. The simulation particles




are described by a marker distribution function, Fjs, in the extended phase space. This
distribution satisfies a new kinetic equation, the marker kinetic equation. Eq. 1 is replaced

by an equation which relates the particle Weight to of,
f(x,v,\,t) = /FM(x,v, A, w, Hwdw. (2)

The equation for w is chosen such that the new kinetic equation, the original §f equation
and Eq.2 are consistent. The approach adopted here allows a rigorous derivation of the
weight equation. In particular, a nonlinear binary collisional algorithm, suitable for like.
particle collisions, is given. A prominent feature of the present §f method is the uncon-
ventional role of the simulation particle distribution g, which always appears in the weight
equation. In some previous applications of the §f method with collisional effects*®, spa-
tially uniforn Maxwellian distributions are preserved by collisions, even in the presence of
perturbations. In general it is impossible to know g exactly in advance. Fortunately, good
approximations to g exist, as long as §f/f < 1.

In some important problems, such as the problem of the nonlinear interaction between
the Toroidicity-Induced Alfven eigenmode (TAE) and energetic particles in a tokamak,
particle birth due to fusion reactions or neutral beam injection, and particle loss (from
the phase space region of interest) due to collision processes such as drag and diffusion,
play an essential role in the physical process. In such cases it is necessary to introduce new
particles during the simulation to keep the region of interest in phase space well populated.
In this work issues such as the initialization of the newly injected particle weights, and the
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appropriate initial loading are discussed. It is demonstrated that collisions can provide a
mechanism for renewing the particle distribution in the resonant domain, thereby allowing
a steady state saturation even in the presence of a finite background damping®. The
observed saturation amplitude also scales with the collision rate as predicted by theory.
The paper is organized as follows. In Section II we describe the collisional §f method
using a model drift-kinetic equation. Relations to previous algorithms are discussed. In
section IIT we apply the §f method to two model problems. The first is a simple one
dimensional (1-D) diffusion problem, which we use to illustrate the different approaches
to treating g. We then apply the §f method to the problem of nonlinear TAE evolution.

Conclusions are presented in Section IV.




I1. The §f method with collisions

A. Weight equation

To facilitate the discussion, we consider the following collisional drift kinetic equation for
a species with distribution f(x,v,),t) (A = v;/v), in the presence of a particle source,

annihilation due to charge exchange, slowing down and pitch angle scattering.
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where Vg(x,v,A,t) is the guiding center velocity, om(x,v, A, t), Ax(x,v, ), t) are the rate
of change of velocity and pitch, respectively. The subscript H denotes that this part of the
particle motion is Hamiltonian, which conserves the magnetic moment y. The frequencies
v(x) and v4(x,v) are the slowing-down rate and pitch-angle scattering rate, S(x,v, ) is
the particle source and v,(x,v) is the annhilation rate. This equation describes a dillute
species where collisions among the species can be neglected.

An external perturbation due, for example, to an electromagnetic wave, is included in

Vi, v and /'\H by adding terms Vg, vy and j\ng i.e.,

Ve=Vge+Vm (4)
b = V1 (5)

/.\H = j\HO + /.\Hl-




Since the zeroth order Hamiltonian motion conserves energy, vgo = 0.

Assume f = fo + df, where the unperturbed distribution fy satisfies
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they have a new dimension, the weight w, which evolves according to,

dw )
i w(x,v, A, w,t)

where the function w(x,v, A\, w,t) is to be determined.
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where I'(¢) is (Gaussian) white noise with < I'(t) >= 0 and < T'(¢)I'(¢ + 7) >= §(7).

(8)

)

Particle trajectories in the phase space (x,v, ) can be identified from Eq. 8 or Eq. 3 as,
(10)

()
(12)

The markers in the simulation follow the trajectories defined by Eq. 10-12. In addition,

(13)




To derive the weight equation it is most convenient to introduce a marker distribution
function in the extended phase space (x, v, A, w), Far(x, v, A, w,t), which, according to the
equivalence between Langevian equations and the Fokker-Planck equation, satisfies the

following marker kinetic equation,
D it L (@Fu) = Su(x,0, 0 0,1 (14)
Dt M Sw WM = OoM{X,V, A, W, ) 3

where in anticipation of possible marker loss in the simulation, we have allowed a source Sis
for the markers, to provide, in addition to thé initial loading, further control of the marker
population. Note that the left-hand side of Eq. 14 is not in the standard Fokker-Planck
form. It can be converted into the standard form using the fact thé,t the Hamiltonian part
of the motion is incompressible.

In the simulation Fjs is represented as
Faa(, v, 0w, 1) = 3 8(x = x;(£))3(0 = v;(8)5(A — Ai(2))3(w — w;(1)) (15)
j
and d&f represented as
5(06,0,0,1) = 3 wid(x — %, (8))8(v — ()3 = (1)) - (16)
i
This suggests that the smooth functions Fis and &f be related by
8f(x,v, A\, ) = / Fu(x, 0,0, w,t)wdw . (17)

The weight change rate, W, can be determined by requiring that Eq. 8, Eq. 14 and
Eq. 17 are consistent. Multiply Eq. 14 by w and then integrate over w, and compare the
resulting equation to Eq. 8. Noticing that Vg, vy, Ay are independent of w, we find,
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/ wFysdw. (18)

To get an explicit weight equation we assume w to be independent of w, therefore w

can be taken out of the integral on the left-hand side. Defining the integrated marker
distribution function in the original phase space,

g(x,v,\t) = /FM(x,v,)\,w,t)dw (19)
we find the weight evolution equation for the §f method to be
I / wFyrdw] . (20)
This is indeed independent of w. The functional dependence of @ on the distribution
Fyr can be compared to, for example, the dependence of the electrostatic force on the
particle distribution in a 1-D particle simulation, as described by the Poisson equation. In
general, the annihilation term can be replaced by any term that might involve integrals of
df and hence Fjy, such as that resulting from linearizing the full collision operator. That g
appears in the denominator of the weight equation is familiar in éf algorithms. Intuitively,
to correctly account for the increment of &f at (x,v, ), the total increment, the source

term in Eq. 8, should be evenly distributed to all the markers at that point.

The distribution ¢ satisfies

D
It is the distribution Fjs that is being sampled by the markers, and the markers are

to be added to or removed from the phase space according to the source Sps, which can
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be chosen in any convenient form. In particular, new simulation particles do not have
to be created according to the physical particle birth rate S, nor do they have to be
removed according to the annihilation rate of physical particles. This feature makes it
possible to arrange the marker density g in favor of phase space domains of interest, such
as the resonance domains in wave-particle interaction problems. The initial distribution,
Fp(x,v, A, w,t = 0), according to which the markers are to be loaded initially, can also be

arbitrary as long as the initial condition for &f is satisfied,
/ wFM(x, v, A, w, 0)dw = &f ((x, v, \, ¢ = 0). (22)

Boundaries should be treated in a manner consistent\with the physical boundary conditions.
For example, if physical particles are considered to be lost at the boundary r = a, then
markers hitting this boundary should be removed from the simulation. The evolution of
weight is unbounded. Serious questions concerning the well-posedness of Eq. 14 might
arise when particles are absorbed at the boundary of a dimension along which the motion
is diﬂ"usive, as in this case g = 0 (as well as Fjy = 0 and fo = 0) must hold at that
boundary, causing a formal singularity in Eq. 20 and Eq. 14. To avoid such a singularity,
one can replace g in Eq. 20 by g + 4. It can be argued that the simulated §f approaches
the exact solution for small §, except at a small boundary layer. Approximations to g will

be discussed later in this paper.




B. Nonlinear collisional algorithm

The collisional algorithm just described is restricted to a linearized collision operator when
applied to like particle collisions. Consider the Landau collision operator for a one compo-

nent plasma C(f, f) with the operator C defined as
3} / 0 0 '
C(fl,f2) = Fb; : /dv U(u) ) (E - W)fl(xav ,t)fz(X,V, t) (23)

with I' = ¢*lnA/4re2m?, u = v — v and U(u) = (vl — uu)/ud.

The nonlinear operator C(f, f) can be expanded as

C(f1 f) - C(fO'/ fo) = C(f0a5f) + O(Jf’ fO) + C((Sfa 5f) (24)

The first term on the right hand side represents drag and diffusion of test particles (rep-
resented by &f) due to the zero order distribution fp. If the nonlinear term C(4f,df) is
neglected, then C(f, f) can be treated using the previous approach, with C(df, fo), which
involves only intégrals of §f, included in the weight equation as a generalization of the an-
nihilation term in Eq. 8. The nonlinear term C(f, §f) can not be treated similarly because
it involves diﬁ'erentials of §f. As we shall show, the binary approach naturally takes care
of this term.

In a binary collisional algorithm for full- f particle simulations® !, the collision operator

is treated as follows:

1. The simulation system is divided into a number of spatial cells with a size such that

plasma properfies across each cell do not vary substantially.
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2. Particles in each cell are paired in a random way.

3. Small angle collisions are performed pairwise. Let v and v' be the velocity of the

particles in the pair. After collision, the change in relative velocity u = v — v’ is

given by
Up U, . .
Auy, = —u, stn® cos® — —Lu sin® sin® — u,y(1 — cosO) (25)
Uy Uy
Auy = ™, 5in®© cos® + —Zy sin® sin® — uy(1 — cosO) (26)
Uy U,y _
Au, = —u, sin® cos® — u,(1 — cosO) (27)

where u, = (u2 + u;‘:)ll % £ 0, © is a Gaussian random variable with mean 0 and
variance 16T At/u?, and @ is a uniform random value in (0,27). The changes to v

and v are given accordingly by,

Av = =Au (28)

Av = —=Au (29)

The small angle collision in step 3 conserves the energy and momentum pairwise, and
particle number is conserved automatically in a full-f simulation. Over many time steps,
the random choice of pairing for a particular test particle in step 2 in effect performs the
integral over field particles in Eq. 23.

This binary algorithm can be adopted for &f simulatioﬁ. In particular, particles inside
a spatial cell are randomly paired regardless of their weights. We must consider how to
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include collisional effects in the weight equation. It is clear that the total perturbed particle
number §N = 3°; w;, kinetic energy 6K = 3°; wje; (¢; = 1/2mv}) and momentum §M =
>; wimv; are not conserved if collision effects are included merely through such binary
collisions, with the equation for particle weight unchanged. It is also impossible to change
the particle weights such that these quantities are conserved pairwise, although it is possible
" to pairwise conserve the particle number and enel;gy. In any case, simulation schemes which
solely enforce these conservation properties, while useful in some applications, do not treat
the collision operator faithfully, regardless of the particle number used.

To find the exact weight evolution equation for the binary collisional algorithm, let
us consider how to represent the binary collision in the kinetic equation for the marker
distribution Fir(x,v,w,t). Since we randomly pair the particles in a spatial cell, regardless
of their weights, and particle velocities change in the same manner as in full-f simulation,

the corresponding collision operator for Fjy is

a } ! 8 a ! ]
Caa(Foz, Far) =I5 / dw / dv'U() - (5 = 5) Farlx, v, 1) Fa(x, v, w, 1) (30)

This collisional operator for Fis is equivalent to the following in the §f equation, -

[ dw wCr(Far, Far) = Cg,81) (31)

where we have used g = [ Fyrdw and §f = [wFpdw. If we choose the initial loading and
marker source Sys such that g = f, then this collision term covers the first and third term
on the right hand side of Eq. 24. Hence the weight equation should include a term .,
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o, = zllowf, £) (32)

Interestingly, this is the same term we would add to the weight equation if we had used the
linearized collision operator using the previous algorithm. This might be expected since
the binary collision algorithm adopted here only provides an alternative way of treating
the random marker trajectory in (x,v) space, except that it is fully nonlinear. A more
thorough binary approach would have treated the particle weights the same way as the
velocities, i.e., making all the collisional modifications to the weights at the binary collision
step. Such an algorithm has been considered previously for the linearized collision operator,
and is found to be impractical for §f simulation, because the number of markers increases
rapidly as a function of time®.

We emphasize that to achieve a fully nonlinear collisional algorithm in the §f method,
we lose the freedom of choosing an arbitrary marker distribution g, and are forced to
load and evolve the simulation particle population according to the physical distribution
f. A vectorization scheme for the collisional steps 1-3 has been previously discussed!®
for a full-f gyrokinetic simulation. A remark on the evaluation of C(éf, fo) is in order.
Consider a particular marker with index m. Since C(f, fo) can be converted to an integral
of §f(Xm, V) over v at the marker position X,,, it can in principle be expressed as a sum
over all the markers in the spatial cell to which marker m belongs, using Eq. 16. However,
due to the U(u) (singular when u = 0) dependence of C(df, fo), contributions from those
markers with velocities close to v,, will cause numerical difficulties. One solution is to
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discard the contributions from those particles with velocity v’ close to v, [V — V| < &,
for some . Another possibility is to expand df in terms of some basis functions, with the
expansion coefficients evaluated by summing over markers, and the contribution of each
basis function to C(df, fo) calculated in advance. It is also possible in some applications
to replace C(df, fo) by a simpler term which is not singular, yet ensures some desired

conservation properties®?.

C. Relation to other algorithms

If we take Sy = 0 and v, = 0, Eq. 20 takes the form similar to Eq. 11 in a previous work?.
However, Eq. 1, which is crucial for the derivation of the weight equation in nondiffusive
motion, does not hold here. Due to the diffusive motion, particles located in any (arbitrarily
small) region of (x, v, A) will have different weights even if they all start with w = 0. In the
case of Hamiltonian motion or nondiffusive motion in general, if we start all the markers
with w = 0, then the solution of Eq. 14 has the form Fiy = g(x,v,A)d(w — w(x,v, A)),
hence §f(x,v,A) = g(x, v, A)w(x,v,A) and we recover the previous result Eq. 1.

When only the charge exchange term —v,df, or a Krook collision model is retained in
Eq. 3, it’s effect can be accounted for by adding a term —v,w in the weight equation®. This
makes w dependent on w, but Eq. 18 is still satisfied. Alterna,tively, particle annihilation
can be taken into account by removing randomly selected markers from the simulation

using the Monte Carlo technique, with the weight equation unchanged. This amounts to
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including a term —1,Fjs in Sy. In principle one can include any of the derivative terms
except the first term in the operator I)D—t in w and let the rest of % define the characteristics
of the markers. In the extreme case where only the % term is used to define the char-
acteristics, one arrives at a finite difference algorithm for the partial differential equation
Eq. 8. Since integrals can be evaluated using Monte Carlo methods more accurately than
derivatives, generally only non-differential terms are retained for the weight equation.
If Eq. 21, with some choice of Sy, allows an explicit solution, for example, with Sps = 0,
g = 1 when the motion is Hamiltonian or only pitcil angle scattering is considefed, or g is
given by a spatially uniform Maxwellian distribution*®, that distribution can be chosen to
load the markers, and the evaluation of g at the marker position is avoided. Howgver, this

is generally impossible when the drag or diffusion coefficient is velocity dependent, as the

case considered here.

D. Evaluation of g

So far in the applications of the §f method the evaluation of g at the marker position has
been avoided, by loading the markers according to a known explicit solution of the kinetic
equations®®, or by using the fact that in nondiffusive motion g or equivalently, the volume
element, can be advanced élong the particle trajectory®. Estimating g from the marker
density Eq. 15 is statistically demanding, and should be avoided whenever possible. One

solution is to choose Fis(0) = f(0)d(w) and Sy = Sé(w)—veFpr. Eq. 21 and Eq. 3 are then
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identical and we have ¢ = f. One can then estimate g through Jf according to ¢ = fo + 4f,
with much reduced noise. Often it is easy to choose Sys and the initial loading Fas(¢ = 0)
such that at a later time g(¢) is only slightly perturbed from g(¢ = 0), in the same spirit
as f is only slightly perturbed from f,. One can then approximate g by g(0), although
always evaluated at the marker position. We envision this as the most practical approach,
and will use it for the TAE problem in Section III. However, when applied to steady state
problems, such as the evaluation of the steady state plasma current®, this approximation
might cause a secular change in the total particle number, as will be illustrated by an

example in Section III.




IT1I. Examples
A. 1-D diffusion

Let us solve the following 1-D problem using the §f method,

of 8 f
= T3 (V(@)f) = Do =0 (33)

f(xat = 0) = fO(x)

with periodic boundary conditions at z = 0 and z = 2. Here V(z,t) = sin(z) + Vi(z, 1)
with Vi(z,t) = ecos(z —wt), D a constant, and fo(z) = ezp(—Fcos(z)) is the steady state
solution of Eq. 33 with ¢ = 0. Let (5f = f — fo. According to the previous discussion, §f
can be simulated using markers whose position (the only coordinate for this problem) and

weight advance according to,

dz

= = V(@) + 2D)’I(t) (34)
(fi—i: = ——%%(ecos(m — wt)fo) (35)

Where we have chosen Sy = 0. We load Fur(0) = fod(w), thus g = f. We compare the

three schemes for evaluating g:

1. Use the approximation g =~ fy.

2. Evaluate g from Eq. 15, by dividing the domain [0,27] with a mesh with a spac-

ing of equal length, and counting the number of particles in the grid (with proper

normalization).




3. Estimate g from f = fo + ¢f.

Take D = 0.3, ¢ = 0.1, w = 5, with 10000 particles. The simulated §f at ¢ = 10 is shown in
Fig 1 using scheme 1, together with the exact solution (computed using a finite difference
method). The otherl two schemes gi\./e comparable results. For w = 0., scheme 2 and 3 still
provide an accurate estimate for §f. Scheme 1, however, causes the total particle number
to increase secularly with time, and by the time ¢ = 10 the simulated Jf is totally invalid.
This can be explained as follows.

Without particle source and sink, particle number should be conserved, or,

9
= f Sfdz=0. (36)

In the §f method this conservation is not enforced and is subject to noise. When approxi-
mations to g are used, secular change to total particle number might occur. By replacing

g in the weight equation with another function g, we are solving the following equation,

aof 0
ot T 9z

0%of
Oz2

(V(2)sf) - Doy = —52 (Vi) (37)

therefore the total (perturbed) particle number changes according to
d g 0
- / §fde = — f e lo)da (38)

For w = 0, eventually g will approach a steady state, and the right-hand side of Eq. 38
will approach a finite value, causing secular change in particle number, unless ¢’ = g. for

w > 0, this expression oscillates and only a small secular change in particle number occurs.
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If one is only interested in a quantity involving integrals of §f, the particle number used

in the simulation can be reduced significantly. As an example, consider the quantity
I(t) = — / Vi(e,t)sin(e — wt + 7)8fd. (39)

With 300 particles, the computed I is shown in Fig 2 for w = 0.

B. TAE problem

Consider the evolution of a Toroidicity-Induced-Alfvén-Eigenmode (TAE) in a tokamak,
excited by alpha particles, whose distribution satisfies the drift kinetic equation Eq. 3.
The collisionléss guiding center motion is the same as that described in Wu et.al.?2. The
unperturbed magnetic field is B = gV¢ + IV, where g and I are related to the poloidal

and toroidal current. The guiding-center Hamiltonian is
1
H = EpﬁBz +uB+ o (40)
with four Hamiltonian variables

¢7 07 P¢=9Pc—¢p, P9=IPc+¢t . (41)

where p. = py + &, py = v)/B, v is the toroidal flux with dy,/dy, = q. ® is the mode
electric potential and & gives the magnetic perturbation of the mode through dB = V xaB.
The Hamiltonian motion conserves y. Vg, vg and Am in Eq.3 are implicitly given by

oM . oH

By=-
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OH . OH

By=

When collisions are included, each particle pushing step consists of a collisionless step
which advances the particle following the Hamiltonian equations, and a collision step which

performs the velocity slowing down and random scattering of the pitch angle.

The MHD displacement of the TAE is assumed to be of the form

£(x,t) = A(t)n(x)sin(wt + a(t)) (44)

with eigenfrequency w, mode structure n(x). The amplitude A(¢), and phase a(t) are
assumed to be slowly-varying. Starting from the linearized kineticc MHD equation!?, one

can derive the following equations for mode amplitude and phase,

% =< /qVH -Edfdr > [(W*A) — 1A . (45)
doe _ 10E 2 42 '
—=-< / Vi =S 0 dr > (@A) (46)

where dr = d®rd®v, E = —0¢/0t x B the mode electric field, ¥ = 42 /A the growth rate,
74 is the background damping rate. The damping mechanism might cause a phase shift
term in Eq. 46 as well, but that is neglected.

The nonlinear evolution problem involves self-consistently solving the drift-kinetic equa-
tion Eq. 3 and Eqs. 45-46 for mode amplitude and phase, starting from a small initial am-
plitude and the unperturbed distribution fy. This problem is important for predicting the

TAE mode activity in an ignited tokamak. The importance of collisions in such problems®

21




is that they provide a mechanism for refreshing the particle distribution in the resonance
domain, therefore allowing a steady state solution even when a finite background damping
is present.

Let 7z denote the linear growth rate of the mode without damping and collisions,
and v,.5s denote the rate at which a resonant particle would move out of resonance due
to diffusion®. It has been shown that pitch angle scattering dominates this process, and
Veff = vg(w/wp)?, where wp is the bounce frequency of particles trapped in the wave.
Generally the nonlinear response of the mode amplitude is very complicated, depending on
the three parameters 7z, 74 and vess. However, when damping is weak, vefs > 74, steady

state response is predicted, with the steady state amplitude scaling as

A ~ (ypvaw® [ya)*® . (47)

Consider a tokamak with circular cross section. The equilibrium magnetic field is
defined by ¢ = 1 and I = r?/q with ¢(r) the safety factor!*. Assume v, = 0, v = const
and v4 = cv}/v® with ¢ a constant of order unity.' We take ¢ = 1. Particles moving beyond
the r = a surface are considered lost. We also restrict the simulation to a velocity domain
(vs,v1), i.e., a particle is also considered to be lost when its velocity moves out of this
- domain. This is acceptable if (v, v¢) includes the most important resonance velocities. We
now specify Sy and Fpr(t = 0), i.e., the source that controls the injection of new markers
and the initial loading. The important domains in this problem are those where resonance

wave-particle interaction is strong, but the criterion is very complicated when the orbits
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have finite widths due to drift, and we simply choose

Sm(x,v,A,t) = (v — v;)é(w) (48)

which specifies that markers are constantly created with zero weight at velocity v = vy,
uniform in space and pitch. To be consistent with the exact Hamiltonian guiding center
equations, the steady state marker density go and particle distribution fo should be com-
puted by solving Eq. 21 (with 2 = 0) and‘Eq. 7 numerically. For simplicity we use the

following approximations

folryv) = e=18 (P 1 o) | (49)

go(r,v) = 1/(v° + v}) (50)

with A = a/3. The equilibrium is maintained by the balance of particle source and particle
slowing down. Markers are initially loaded according to Fa(t = 0) = go(w), and we use
g = go in Eq. 20 for advancing particle weights.

In the following simulation we choose parameters as: on-axis By = 67", major radius
Ry = 8m, inverse aspect ratio € = 0.375. V7 = 0.35vp, with v the birth velocity of o
particles. The velocity domain (vs,v:) = (0.32v0,v0). The n = 3 mode is considered,
with mode angular frequency w = 1.12 x 10732, where Q is the on-axis gyro-frequency
of alpha particles. Mode structure and the g(r) profile are shown in Fig 3. The mode
structure and frequency are computed by the NOVA-K code'®, using the corresponding

low-£ equilibrium.
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The time step chosen was At = 0.17 where T' = 2w Ry /vo, the on-axis transit time.
Initially 93000 particles were loaded. Particles are injected into the simulation periodi-
cally (according to Eq. 14), typically every hundred steps. During the simulation the total
particle number drops slightly, due to p?rticle loss induced by the mode. For the cases con-
sidered here, the final number is above 90000, which is consistent with the approximation
g = go. For v1, = 0.015w, 74 = 0.003w, Fig 4 shows the simulated amplitudes for different
collision rates. Our normalization is such that the actual peak value ‘of éB,./ By is about
10 times the amplitude shown. The “natural” saturation corresponds to v4 = 0, v = 0,
which is computed by turning off the collision step and the particle injection. In this case
we have the exact solution for marker density, g(x(t), v(t), A(¢),t) = g(x(0), v(0), A(0),0),
but the approximation g =~ go is still used.

For given ~; and ~, saturation amplitudes increase with the collision frequency, and
amplitudes both above (v = 20ms™!) and below (v = 150ms~!) the natural level are
observed. The saturation amplitude can not be determined accurately, as is evident from
Fig 4, therefore it’s difficult to perform a detailed study on the A ~ v scaling. If saturation
amplitudes are taken to be A,—o5 = 7 x 107% and A,—o0 = 1.95 x 107%, as indicated in

Fig 4, we have

AI/=2.O

=2.8
AV=0.5

which agrees well with that predicted by Eq. 47,
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IV. Conclusion

In this paper we presented a general method of including various collisional effects in the
0f particle simulation. The method features a new interpretation of the particle weight,
the unconventional role of thé marker density g, the capability of tréating both drag and
diffusion of test particles due to background plasmas, the capability of treating fully non-
linear binary collisions, and the capability of including the effect of particle source and

sink. We demonstrated this generalized method for the important problem of nonlinear

TAE evolution.
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Fig. 1.

Fig. 2.

Firn 1

Simulated df vs. exact solution, dash line the exact value

1(t)

Fig. 2

I [Eq. 39] from simulation with 300 particles, dash line the exact value
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Fig. 3

Fig. 3. Mode structure for n = 3 and g-profile
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Fig 4

Fig. 4. Mode evolution for a: 74 = 0.003w, v = 20ms™. b: 74 =0, v = 0. ¢: 74 = 0.003w,

v = 150ms~1. Natural saturation corresponds to b.
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