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: Abstract

A macroscopic fluid model is Heveloped to describe the nonlinear dynamics and collec-
tive processes in an intense high-current beam propagating in the z-direction through
a periodic focusing solenoidal field B,(z+S) = B,(z), where § is the axial periodicity
length. The analysis assumes that space-charge effects dominate the effects of ther-
mal beam emittance, Krf >> efh, and is based on the macroscopic moment-Maxwell
equations, truncated by neglecting the pressure tensor and higher-order moments.
Here, K = 2NyZ2e? /ﬁ/fmﬂgcz is the self-field perveance, Ny is the number of parti-
cles per unit axial length, and rp is the characteristic beam radius. Assuming a thin
beam with r, << S, azimuthally symmetric beam equilibria with 8/8t = 0 = 8/90
are investigated, allowing for an axial modulation of the beam density ny(r,z) and
macroscopic flow velocity Vi4(r, 2)&,+ Vigi (7, 2)89+ Vi (r, 2)&, by the periodic focusing
field. To illustrate the considerable flexibility of the macroscopic formaliém, assuming
(nearly) uniform axial flow velocity V; over the beam cross section, beam equilibrium
properties are calculated for two examples: (a) uniform radial density profile over
the interval 0 < r < rp(z), and (b) an infinitesimally thin annular beam centered at
r = rp(2). The analysis generally allows for the azimuthal low velocity Vi, (r, z) to dif-
fer from the Larmor frequency, and the model is used to calculate the (leading-order)
correction §V,;(r, z) to the axial flow velocity for the step-function density profile in

case (a) above.

PACS Numbers: 29.27; 41.75; 41.85
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I. INTRODUCTION

Periodic focusing accelerators!™ have a wide range of applications varying from basic
scientific research to industrial applications. There is growing interest in developing an
improved theoretical understanding of the nonlinear dynamics, and stability and transport
properties of nonneutral charged particle beams in advanced high-current acceleratorsS™
for applications such as heavy ion fusion, tritium production, and nuclear waste treatment.
Indeed, in many regimes of practical interest, the beam intensity (as measured by the charge
density and current density) is sufficiently high that self-field effects dominate the thermal
effects associated with the spread in momentum of the beam particles. A.kinetic treatment of
beam propagation based on the nonlinear Vlasov-Maxwell equations, 1724 although provid-
ing a complete description of collective processes, is often difficult to implement analytically.
It is the purpose of this paper to develop a macroscopic cold-fluid model® that provides an
adequate treatment of intense beam propagation through a periodic focusing solenoidal field
in circumstances where space-charge effects dominate the effects of thermal beam emittance.

By way of background, kinetic models of intense beam propagation based on the Vlasov-
Maxwell equations describe the nonlinear evolution of the distribution function f,(x, p,t) in
the phase space (X, p) and the interaction of the beam particles with the average electric and
magnetic fields, E(x,t) and B(x,t). On the other hand, a macroscopic fluid model of intense
beam propagation describes the nonlinear evolution of bulk beam properties such as the
beam density n;(x,t) = [ d°pf, and average flow velocity V;(x,t) = n;! f d®pv f;, and also
requires ancillary assumptions (such as negligibly small thermal emittance, or an assumed
equation of state for the pressure tensor) in order to truncate the macroscopic moment
equations. While not containing the detailed information on the distribution of particles in
momentum space, a macroscopic fluid model does describe the evolution in configuration
space of macroscopic quantities such as ny(x,t) and Vj(x,t). Such a macroscopic description
is intrinsically simpler theoretically than a kinetic model which describes the evolution of

the distribution function in the phase space (x, p).
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A third type of theoretical model describing intense beam propagation can also be devel-
oped!®16:17 in which rate equations are dervied for the nonlinear evolution of statistically-
averaged quantities, such as the center-of-mass beam coordinates, < > and < y >, the
mean-square beam radius {r2), the unnormalized beam emittance ¢, etc. Here, statistical
averages < --- > are over the distribution of beam particles in the accessible phase space.
Such models for the evolution of statistically-averaged quantities have been developed and
applied by Sacherer!'® for the case of an elliptical cross-section beam propagating through
a periodic quadrupole lattice, and by Lee and Cooper!” for an axisymmetric beam prop-
agating through a soelnoidal focusing field. Typically, such models also require ancillary
assumptions for closure of the rate equation, although for the case of a cylindrically sym-
metric beam propagating through a solenoidal focusing field, closure of the rate equations
for the mean-square radius, {r2), does occur for the class of so-called ’self-similar’ density
profiles considered by Lee and Cooper.!” As a general remark, such models for the evolution
of statistically-averaged quantities do not follow the detailed evolution of the configuration-
space dependence of the beam density ny(x,t) and flow velocity Vy(x,1).

As noted earlier, a principal purpose of this paper is to develop a macroscopic fluid
model that describes the nonlinear evolution of an intense nonneutral beam propagating
through a periodic solenoidal focusing field in the limit of negligibly small thermal emittance
(esn — 0). Pedagogical aspects of the paper are presented in Secs. II and III for the case
of a thin beam propagating in the z-direction through the applied solenoidal focusing field
B*9(x) described by Eq. (1). For the special case of time-stationary (8/8t = 0), azimuthally-
symmetric (8/86 = 0) flow, the electrostatic self-field potential ¢*(r, z), beam density n;(r, 2)
and average flow velocity components V,4(r, 2), Vap(r, 2), and V(r, z) evolve self-consistently
according to Egs. (12) - (16). The stability of the equilibrium profiles described by Egs. (12)
- (16) of course can also be investigated in such a cold-fluid model by linearizing Poisson’s
equation (2), the continuity equation (8), and the force-balance equation (8) for small-
amplitude perturbations about the equilibrium profiles.

To test the robustness of the macroscopic fluid model, in Sec. IV we specialize to the
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class of so-called ’fixed-shape’ or ’self-similar’ density profiles in Eq. (19) first considered
by Sacherer!® for an elliptical cross-section beam in a periodic quadrupole lattice, and by
Lee and Cooper!’ for an axisymmetric beam in a solenoidal focusing field. To lowest order,
we assume V,(r,2) ~ V, = const. over the radial cross section of the beam, and self-
consistent expressions are obtained for the equilibrium profiles for the electrostatic potential
#*(r, z) [Eq. (22)}, the radial flow velocity V,4(r, z) [Eq. (21)], and the azimuthal flow velocity
[Eq. (24)], allowing for average beam rotation (w; # 0) relative to the Larmor frequency. The
radial force balance equation (9) is used to derive (self-consistently) the envelope equation
for r4(z) for two examples: (a) a density profile which is uniform radially over the interval
0 <7 < 1p(2), and (b) an infinitesimally thin annular beam centered at » = r(z). As would
be expected, the envelope equation (28), derived for the case of a step-function density
profile, is identical in the zero-thermal-emittance limit (e;, = 0) to the result obtained by
Chen, et. al.,!® using a kinetic (Vlasov) model of a Kapchinskij-Vladimirskij-like distribution
that includes average beam rotation relative to the Larmor frequency, and tb the envelope
equation derived by Lee and Cooper'” based on a consideration of the statistically-averaged
rate equation for the rms beam radius including average beam rotation. Similarly, the
envelope equation (33) for a thin annular beam agrees with the envelope equation derived
in Ref. 17 when a similar form is assumed for the density profile. Also importantly, to
illustrate the versatility of the macroscopic cold-fluid formalism, in Sec. IV the leading-order
modification §V,; to the axial flow velocity V;, = Vj + 8V is calculated. Specifically, using
the lowest-order expressions for V4, Vg, and B§ = —9A:/9r obtained for a step-function
radial density profile, the axial force balance equation (16) is used to calculate the profile
for 8V,; to leading order [Eq. (38) and (39)).

To summarize, the macroscopic cold-fluid model is found to bev robust and flexible, and
offers several advantages in analytical simplicity relative to a theoretical description based on
the Vlasov-Maxwell equations. In the regard, it should be emphasized that the 'equilibrium
equations (12) - (16) for axisymmetric flow can also be applied in circumstances where the

density profile ny(r, 2) has more general r-z dependence that that incorporated by the class
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of fixed-shape density profiles in Eq. (19). Moreover, the cold-fluid formalism developed in
Secs. II and III can also be used to investigate detailed stability behavior for perturbations

with 0/06 # 0 and /8t # 0.

II. THEORETICAL MODEL AND ASSUMPTIONS

We consider a thin, intense charged particle beam with characteristic radius r; and axial

velocity V; propagating in the z-direction through an applied solenoidal field!
sol ~ 1 ) ~
B**(x) = B,(z)é, — §rB, (2)é,. (1)

Here, r = (22 + 3?)1/2 is the radial distance from the beam axis, z is the axial coordinate,
B,(z+ S) = B,(z) is the axial magnetic field with fundamental periodicity length S, prime
denotes derivative with respect to z, and 7, << S is assumed in the thin-beam approxi-
mation. Consistent with the thin-beam approximation, the transverse kinetic energy of a
beam particle is assumed to be small in comparison with its axial kinetic energy, and it
is also assumed that v/, = Z?e?Ny/4smc® << 1, where v is Budker’s parameter. Here,
Ny = [ dzdyny is the number of charged particles per unit axial length, §ymc? is the charac-
teristic energy of a beam particle, Z;e is the particle charge, m is the rest mass, and c is the
speed of light in vacuo. In the electrostatic approximation, the self electric field produced
by the beam space charge is E° = —V¢*(z,y, 2,t), where the electrostatic potential ¢° is

determined self-consistently from Poisson’s equation
V2 ¢ = —4nZ;eny, )

In Eq. (2), ns(z,y,2,t) is the particle density, and we have approximated V? ~ V% =
9%/8z® + 6%/6y? in the thin-beam approximation. In addition, the axial beam current,
ZienyV, produces a transverse self-magnetic field, B* = B;é, + Byé, = V X Aj&,, where

Ai(z,y, 2,t) is determined self-consistently from

V2 A® = —4AnZieny Vi, (3)
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Here, Vi(z,y, 2,t) is the axial flow velocity. In circumstances where the axial flow velocity
is approximately uniform over the beam cross section with V3, ~ V, = B¢ = const., a
comparison of Egs. (2) and (3) shows that the self-field potentials, ¢* and A2, are related
by the familiar expression® A2 = Gy¢°.

In many applications of practical interest, the beam intensity (as measured by the
charge density and current density) is sufficiently intense that self-field effects dominate
thermal effects associated with the spread in momentum of the beam particles. A use-
ful dimensionless measure of the self-field intensity is the self-field perveance! defined by
K = (2/%3B%)(Z2e2 Ny /mc?), where 4 = (1 — B2)~1/2 is the relativistic mass factor. When-

ever the beam intensity is sufficiently large that
K'I’g >> G?h, (4)

the motion of the particles composing the beam can be characterized as approximately
laminar, and described to good approximation by a macroscopic cold-fluid model. In Eq. (4),
7y is the characteristic radius of the beam envelope, and ¢, is the unnormalized transverse
thermal emittancel'* defined in terms of rms momentum spread relative to the mean. In
circumstances where the inequality in Eq. (4) is satisfied, the phase advance ¢ is highly
depressed by self-field effects.

In the remainder of this paper, consistent with Eq. (4), we 'develop a macroscopic cold-
fluid or zero-thermal-emittance model to describe the nonlinear dynamics of the beam.!®
In the six-dimensional phase space (X, p), the distribution function for a cold beam can be

expressed as

fb(xa | o t) = nb(xa t)5 [p - '7b(x’ t)mvb(x’ t)] ’ (5)

where n;(x, t) is the density, Py(x,t) = 1(x, t)mV,(x, t) is the momentum of a fluid element,

and

P2(x,)]"?
7b(xat) = [1+ 1’;126‘2 ]

~1/2

= [1-Vi(x1)/¢ (6)
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is the relativistic mass factor of a fluid element. From Eq. (5), note that the pressure tensor
Py(x,t) defined in the usual manner as the average flux relative to the mean of momentum

relative to the mean is identically zero, i.e.,

By(x,t) = f Ep(v — Vi)(p — Py) fy = 0. (7)

The distribution function f,(x,p,t) in Eq. (5) evolves according to the nonlinear Vlasov

equation.!® Taking successive moments of the Vlasov equation gives for the evolution of

ny = [ &®pfy and nyyymVy = [ d3pp f,

-+ - (nbV,,) = 0, (8)

o 0 1
g (& +V;- &) YemVy = nyZse (‘fo’s + Evb x B’

+1Vyx [B.(2)e, - 3B (8] ) ©)

where B* = Vx AJé,. By virtue of Eq. (7), V-P, = 0 and the pressure gradient contribution
to the force-balance equation (9) vanishes, thereby leading to a closure of the macroscopic
fluid equations. |

To briefly summarize, for a beam with intense self fields and negligibly small thermal
emittance [Eq. (4)], Egs. (2), (3), (8), and (9) provide a closed description of the nonlinear
evolution of the self-field potentials, ¢°(x,t) and A%(x,t), the density n;(x,t), and the flow
velocity Vp(x,t). Indeed, Egs. (2), (3), (8), and (9) can be used to investigate the detailed
dynamics of intense beam propagation through a periodic solenoidal focusing field described
by Eq. (1) for a broad range of system parameters consistent with Eq. (4) and the thin-beam
approximation described earlier in the paper. Making use of Egs. (6) and (9), it is readily

shown that

3

8 8 9
- (5 +V,- 5;) [vme® + Zieg*(x,1)] = nbzie%, - (10)

which is a statement of energy balance in the present cold-fluid model of beam propagation.

As expected, whenever 8¢° /0t = 0, total energy (kinetic plus electrostatic potential energy)
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is conserved. As noted earlier, it is assumed that the beam has large kinematic momen-

tum directed predominantly in the axial direction. In cylindrical coordinates, we express
Vi(x,t) = V&, + V€ + (Vi + 8V3p)8,, where Vj, = const., and expand v;(x, t) for V,5, Vi

and 6V,; small in comparison with V,. Correct to quadratic order, this gives
N 1,
(X, t)me® = fyme? + o hm [V,% + V& +2Vi(8Vis) + (éVzb)z] +..., (11)

where 43 = (1 — Vi2/c2)~1/2,

III. FOCUSED EQUILIBRIUM FLOW IN A PERIODIC SOLENOIDAL FIELD

In the remainder of this article, we specialize to the case of time-stationary flow (8/8t =
0) of azimuthally symmetric (8/86 = 0) beam equilibria, generally allowing for r-and-z
variations of the beam density ny(r, 2), and flow velocity components V,4(r, 2), Vg (r, 2), and
Vis(r,2) = Vo + 6Ve(r, 2). As noted earlier, for approximately uniform axial flow velocity
over the beam cross section it follows from Eqgs. (2) and (3) that A%(r, z) = Bg®(r, 2), where
By = Vi/c. In this case, the self-magnetic field is B* = V x A%é, = Bj(r,z)éy, where
By = —(3,0¢°/0r. For 8/8t = 0 and 8/86 = 0, it then follows from Egs. (2), (8) and (9)
that the self-field potential ¢°(r, z), beam density ny(r, z), and flow velocity components
Vis(r, 2), Vs (r, 2), and Vyp(r, 2) = V; + §V4(r, 2) solve

%_667?864:-8 —4AnZ;eny, (12)
22 (rmais) + o (mVaa) =0, (13)
and
- (vﬂ,% + V,b%) Vg - D ZV;Z" [— (1-226,) 52 + v, (z)] (14)
np (Vrb% + Vzb%) Voo + nbVibub = ?:n’:b [ 1 VeeB.(2) — l B:'(2) ] (15)



0 0, _Lem[ 0 Vauo# 1. .,
ng (Vrba'r +Vzbaz) Vi = P [— ~ By o +2c%sz (2)r]. (16)

In Egs. (13) - (16), the axial velocity V,; is typically large in magnitude in comparison with
the transverse components V,;, and Vy,. However, V,,8/8r and V,,,B/ Oz are allowed to be of
the same order.

In obtaining Egs. (14) - (16) from Eq. (9), we have expressed By = —(;0¢°/dr, and
made use of Eq. (11) to approximate 43(x,t) ~ 9;. Some straightforward algebra shows that
Eq. (15) can be expressed in the equivalent form

0 0 1
T (V;-b‘a_r + Vzb&) (7‘%6 + §ch(z)7‘2) =0, (17)

where Qu(2) = Z;eB,(z)/4smc is the cyclotron frequency in the axial magnetic field B,(z).
Note that Eq. (17) is simply a statement of the conservation of canonical angular momentum
following the motion of a fluid element. Multiplying Egs. (14), (15), and (16) by Vs, Vas,

and V,;, respectively, and adding, readily gives the energy. conservation relation
ﬁb (M‘bi + V:zb"g)’ [l?bm(vr% + Ve + V) + Zie¢s] = 0. (18)
or 0z) 12
Comparing Eq. (18) with Eq. (10) when 8¢°/8t = 0, and making use of V3 = V;, + 6V,
it is clear that Eq. (18) is the expected result to the level of accuracy of the approximate
expression for 4;(x,t) in Eq. (11).

To briefly summarize, for a thin beam with intense self fields and negligibly small thermal
emittance, propagating through a periodic solenoidal focusing field, Egs. (12) - (16) provide a
closed description of the equilibrium flow for 0¢° /0t = 0 and 8¢°/80 = 0. For determination
of Vi, note that Eq. (15) can be replaced by Eq. (17). Moreover, either of Egs. (14) or (16)

can be replaced by the energy conservation relation in Eq. (18).

IV. EXAMPLES OF PERIODICALLY-FOCUSED BEAM EQUILIBRIA

Evidently, Egs. (12) - (16) can be used to investigate focused equilibrium flow in a

periodic solenoidal field for a wide range of system parameters and classes of profiles for the
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beam density n; and flow velocity V;. For our purposes here, we illusfrate the application
of Egs. (12) - (16) for the simple case where the lowest-order axial flow velocity is uniform
with V,(r, 2) = V} = const., and the density profile ny(r, z) has the fixed radial shape, which
is modulated axially, described by617

ny(r, 2) = —3b f(rb:z)). | (19)

73 (2)

The class of ’fixed-shape’ or ’self-similar’ density profiles in Eq. (19) has previously been
considered by Sacherer'®, with appropriate generalization to the case of an elliptical beam
and periodic quadrupole lattice, and by Lee and Cooper!? for the case of an axisymmetric
beam and solenoidal focusing field considered here. Here, the functional form of f(r/r;) is
yet unspecified, Ny = 27 f5° drrng(r,2) = const. is the number of particles per unit axial
length, and the normalization of f(r/r}) is chosen to be [;° dXX f(X) = 1/2. If, for ex-
ample, f(r/ry) is the unit step function defined by f(r/r) = 1 for 0 < r/ry(2) < 1, and
f(r/ry) = 0 for r/ry(2) > 1, then the density profile described by Eq. (19) has rectangular
radial shape with ny = Ny/7r(2) for 0 < r < 73(2). For general choice of f(r/r3) in Eq. (19),
it is readily shown that the mean-square radius'®'7? is (r?) = N; 127 [$°drriny(r,z) =
r8(2)(2 ;° dX X X% f(X)). That is, apart from a constant multiplier, r(z) is equal to the
mean-square radius for general choice of f(r/r3).

We now proceed with an examination of Eqgs. (12) - (16) for the case where V;(r, z) =
Vi = const., and ny(r, z) has the form given in Eq. (19). First, substituting Eq. (19) and
V() =V} into the continuity equation (13) and integrating from r = 0 to » = r gives

_ o Nb r/r,,(z? :
rngVep = —%5 T Jo dXXf(X)
270 (2)
= r*——2my(r, 2)V}. 20
(2 o(r, 2)V% | (20)

Therefore, in the region where n; # 0, Eq. (20) readily gives

Valr) =r 23w, S

for the radial flow velocity. Furthermbre, substituting Eq. (19) into Poisson’s equation (12)

gives for the self-field potential




//b()dX

#(r,2) = 4N Zie f dX'X'f(X"), (22)

where ¢* = 0 at 7 = 0 has been assumed. Note from Eq. (22) that ¢* = ¢*(r/r(2)) for the
class of density profiles described by Eq. (19). We now make use of Eq. (17), or equivalently
Eq. (15), to determine the azimuthal flow velocity Vgy(r,z). Substituting Eq. (21) and
Vi =V, into Eq. (17) gives

wo 0 1 2) _
np (Vbr B +V 62) (rng + 2Qd,(z)r =0, (23)

For smooth, differentiable G(r/ry(2)), it is readily shown that [Vi(rry'/rs)d/0r +
Vu0/82]G(r/m) = 0. It therefore follows that the general solution to Eq. (23) can be

expressed as

7'2 r
rng(r,z) = ———;—ch(z)'rz +wb7'§0;%—(*5F (m;—)-) , (24)

where wyrZ, = const. (independent of r and z), and F(r/r) is a yet unspecified function.

Note that the term proportional to F(r/r;) in Eq. (24) allows the azimuthal beam rotation
to differ from the Larmor frequency —Q.(2)/2.
We now turn to the radial force balance equation (14). Substituting Eqgs. (21), (22),

(24), and V;; =V}, into Eq. (14), some straightforward algebraic manipulation gives

(i) i o[5BT

47’14,]\71,22 2
’)’bmr

fo " XX F(X). (@)

Here, use has been made of 1 — 82 = 1/4#, and Vg, has been expressed in terms of rQ(z)/2
and F(r/r;) by means of Eq. (24). Therefore, carrying out the derivative operations in

Eq. (25) readily gives

o (B3]~ oy ()]

4y, Ny Z2e2 ry(2) frims(?)
CER

dXX f(X)} =0, (26)
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where ny = (Ny/7r2) f(r/rs) is the beam density.

The radial force balance equation (26), valid at each value of r and 2, relates self-
consistently the density shape function f(r/r;), the effective rms beam radius ry(z) [see
discussion following Eq. (19)], and the (yet unspecified) function F(r/r;). At this writing,
consistent with the assumptions that the axial velocity profile is uniform (V,; = V3) in lowest
order, and that the density profile has the fixed radial shape at each value of z described by
Eq. (19), only two solutions for f(r/r,) have been determined. One corresponds to a step
function density profile extending from r = 0 to » = r3(z). The other corresponds to a thin
annular layer centered at r = rp(2). We discuss these two cases separately.

Step-Function Density Profile: As a first example, we consider the case where

(Tbr ) _ 1, 0 <7 < 1mp(2), @)

o(2)

0, »> rb(z).

In this case, it follows from Eq. (19) that ny(r, 2) = Ny/nri(z) in the beam interior, and that
Jim S axX X f(X) = r2/2r¥(z) for 0 < r < r4(2). Substituting Eq. (27) into Eq. (26), we
find that Eq. (26) is satisfied for all 7 and z provided F(r/r,) = const. (which we take to be

unity, without loss of generality), and the outer beam radius satisfies the envelope equation

d? Q4(z)  wird 2Ny Z%e?
2* cb _FbTh0 _ b4 —
Y dzzrb(z) + ( 4 r4(2) 7o(2) dmry(z)

Here, 2Ny Z2e2 /43m = V2K, where K is the self-field perveance defined in the usual man-

0. (28)

ner. Equation (28) is similar in form to the familiar envelope equation!? for a Kapchinskij-
Vladimirskij beam distribution® in a periodic solencidal field, assuming_ zero transverse ther-
mal emittance (e, = 0), and including the effects of an average azimuthal beam rotation®!”
of wyrZ, /72 relative to the Larmor frequency —Q4(2)/2. Not surprisingly, the envelope equa-
tion (28) is identical to the € = 0 limit of the envelope equation derived using a kinetic
(Vlasov) model®® of a KV-like distribution that includes beam rotation (w; # 0) in the
Larmor frame, as well as the corresponding limit (for a step-function density profile) of the

envelope equation derived by Lee and Cooper!” by examination of the rate equation for the
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(statistically-averaged) rms beam radius (7'2)1/ 2. From Eq. (24), for F(r/ry) = 1 we find
that the angular rotation velocity of the beam can be expressed for 0 < r < 7(2) as

2

Vau(7, 2 1
Qb('l‘, z) = i(——) = ——ch(z) +wb%0‘;)-.

. 5 (29)
Note that the term proportional to wirs,/r3(2) in Eq. (28) plays the role of an effective emit-
tance! contribution to the envelope equation associated with the directed azimuthal motion
relative to the Larmor frequency —Qc(2)/2. Moreover, the canonical angular momentum of
a fluid element is given in terms of the parameter wyr?, by Pa(r, z) = fymuwprgyr?/ré(z). In
particular, note that P (ry(2),2) = fsmwyrd, at 7 = 73(2).

Thin Annular Beam: As a second example, we consider the case where the density

profile corresponds to an infinitesimally thin annulus centered at r = r(2) with

fefn) =58/ =1), (30)
and
na(r, z) = %Z”(z)a[r — n(2)]. ()

We substitute Eqgs. (30) and (31) into Eq. (26) and operate on Eq. (26) with 27 [*dr....

Taking F(1)=1 without loss of generality, and making use of

1 fodr r 1 podrd (r LA !
5/0 ﬁré(r — 7';,)/0 drré(r — ) = Z/(; oy (/0 drré(r — rb)) =7 (32)
this operation on Eq. (26) readily gives ‘
d? 0%(2)  wirp Ny Z2e?
27 cb ed MY _ i =0.
Veganie)+ (F47 - 8 nto - B =0 3

Equation (33) describes the axial modulation of the radius 7;(2) of the annulus by the
periodic solenoidal field (z). While similar in overall form to the envelope equation (28)
for a beam with step-function density profile extending from r = 0 to r = 'rb(z), note that
the final term in Eq. (33) (associated with self-field effects) differs by a factor of two from
the final term in Eq. (28). This is associated with the fact that the radial self-electric field
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is E2 = —0¢°/0r = 0 for r < 73(z) for the annular beam described by Eq. (30), whereas
E? = —98¢°/0r = —2NyZ;er[r?(z) is non-zero for r < r(z) for the step-function density
profile in Eq. (27). The discontinuity in the radial self-field force when Eq. (26) is integré,ted
across the annulus at r = r,(z) then accounts for the difference by a factor of two in the
self-field terms in Eqgs. (28) and (33). While the example of a thin annular beam is not of
particular interest for the advanced high-current accelerators envisioned for heavy ion fusion
and tritium production, it does serve to illustrate the power of the macroscopic formalism
for intense beam propagation developed in this paper.

Determination of §V,;: We now return to the example of the step-function density
profile considered in Eq. (27), and the corresponding equation for the beam envelope r3(2)
in Eq. (28), and the expression for the angular velocity in Eq. (29). In deriving these results
we have assumed that the axial flow velocity is uniform over the beam cross section with
Ve = Vi = const. We now make use of the axial force balance equation (16) to calculate
the leading-order correction to the axial flow velocity. [The energy balance equation (18)
could also be used for this purpose.] We set V,;, = V} + 6V, on the left-hand side of
Eq. (16), and make use of Egs. (21) and (29) to express Vy, = Vprri(2)/rp(z) and Vi =
— Qo (2)7/2+wprhor /142(2) correct to leading order. Furthermore, substituting Eq. (27) into
Eq. (22) gives ¢° = —NpZ;er?/rp2(z) for 0 < r < rp(2). After some algebraic manipulation

and rearrangement of terms, Eq. (16) then becomes to lowest order

! Z~2 2 .

Ty or 0z ;;'b”l “7(2)
+=0 '(z) [w T — =2 (2)1 (z)]} - (34)
2 cb b7 b0 2 cb b b2( )'

Here, use has been made of 4,72 = 1 — 832, and 73(2) solves the nonlinear envelope equa-

tion (28). By inspection, the particular solution to Eq. (34) is of the form

2

V= vbf(z)rb;'—(z), (35)
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2N Z2e? ri(2) | 1o, 22 1 2
- f')‘/fm 7'1,(2) + §ch(z) [w,,rw - -iﬂcb(z)'l‘b(z)J . (36)

d
Vbzaf(z)?

In obtaining Eqs. (35) and (36), use has been made of [V;(rr} /7)0/8r+V,0/8z]r? ri(z) = 0.
Multiplying the envelope equation (28) by dr;/dz, it is readily shown that

d (1 o 2 lz(ch,)2 Lafrip| 1 5 (9% " 2N, Z2e vy
dz{zw'”’ tn\%) T2 T\ ) Y T (37)

Substituting Eq. (37) into Eq. (36) and integrating with respect to z, we obtain the closed

expression
2 2.4
V2 f(2) = const. + % {wbrfoﬂcb(z) ~ V& (z) — r2(2) [Qd;(z)] + ‘:;’Z:())} : (38)
_ b

Here, 73,(2) is determined by integrating Eq. (28) numerically, and the constant in Eq. (38)
can be evaluated by setting f(z = 0) = 0 (say). Also keep in mind that Egs. (35) and (38)
have been derived for the case where the density profile corresponds to the step-function in
Eq. (27).

To summarize, correct to first order, the solution for the axial flow velocity for 0 < r <

ralz) is
Vi = Vi [1 ¥ f(z)r—b;%} , (39)

where f(z) is defined in Eq. (38). Note from Eq. (39) that §V,; = 0 at r = 0, whereas §V,; is

largest near the outer edge of the beam. From Eq. (38), the characteristic maximum value

of 6V, is

I‘sv:zblmaw - ng"'g 7'!?
Vi 8V ' 282

(40)

For example, if 7/S ~ 1072, then Eq. (40) gives |6Vzblmaz ~ 0.5 X 10“4%, corresponding to a
very small deviation in the axial flow velocity from the constant value Vj. For a periodic field
with Qg(2+9) = Qu(z), and a matched beam with r,(2+S5) = 7;(2), we note from Egs. (38)
and (39) that the modulation of the axial flow is also periodic with §V,(r,2+5) = 6V,4(r, 2)

at each radial location r over the beam cross section. As a final point regarding Egs. (38)

15




and (39), it is important to note that the expressions for V,, Vg, and By = —0A:/0r are
only required to lowest order in order to determine the leading-order éV,, from Eq. (16). To
calculate the next higher-order corrections to V.4, Vg, and 8V,;, however, it is necessa.fy to
revisit the Maxwell equation (3) and calculate A to higher accuracy than A = §;¢°, which
assumes V,;, = V;, = const. This is accomplished (in an iterative sense) by substituting
Vis = Vp + 6V, into Eq. (3), where 8V,; is the lowest-order correction calculated in Eq. (39),
thereby permitting a determination of §Bj = 4w Z;er™! f§ drréV ynp.

Properties of Beam Envelope Equation: Finally, for completeness, we examine
briefly properties of the beam envelope equation (28) for r4(2), derived for the case of the
step-function density profile in Eq. (27). Scaling Eq. (28) by V;~2, the envelope equation for

75(z) can be expressed in the more familiar form?
2 ~2

& anile) + (nz(z) - Fg‘]((?)) ) = . (41)
Here, we have introduced the solenoidal focusing coefficient x, (z) = [Z:eB,(z)[2%mcVi)?,
and the self-field perveance K = 2N,Z2e?/43mV;2. Moreover, @ = wyri,/V; plays the role of
an unnormalized beam emittance associated with the directed azimuthal motion [the term
proportional to w? in Eq. (28)] relative to the Larmor frequency —Q(2)/2 [see Eq. (29)).
In the special case of a uniform solenoidal field with x,(z) = R, = const. (independent of
z), Eq. (41) can readily be solved for the equilibrium beam radius (denoted by r4,) in the

smooth-beam approximation (d?rs,/ds? = 0). This gives

2 ~211/2
rfs=K+[<K) +ﬂ] . - (42)

Note that 75, increases as the self-field intensity increases (increasing K), the beam rotation
increases (increasing @), or the focusing strength decreases (decreasing ). Whenever
@y = 0, we find from Eq. (42) that v, = K/, corresponding to.an exact balance of the
(defocusing) self-field force and the (focusing) magnetic force on a fluid element.

The more interesting case of a periodic solenoidal focusing field is illustrated in Figs. 1
and 2, where x.(z) is assumed to have the form of a periodic step-function lattice defined

(over one lattice period) by
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20 — t*, - 2 S S < 2,
wa(z) = | 0= O n/2 < z/S <nf (43)
0, n/2<z/S<1-u/2 ~

where n(< 1) is the filling factor. Equation (41) has been solved numerically for the case
of a matched beam with ry(2 + S) = r4(2). Typical numerical results are illustrated in
Fig. 1 where r;(z) is plotted versus z for the choice of system parameters S,/k;g = 2.5,
n = 0.5, K = 0.6 x 1073, and several values of the rotation parameter /S ranging from
0 to 5 x 1073. Note from Fig. 1 that the beam envelope is strongly modulated as a

function of z by the periodic solenoidal field. In addition, as expected, the average beam

—1 pso+S

radius 7 = S7* [;°"° dzry(2) increases as the rotational parameter @, /S is increased. Figure
2 shows plots of r3(2z) versus z for the choice of system parameters S,/%,0 = 2.5, n = 0.5,
@ /S = 1074, and several values of the self-field perveance K ranging from 10~ to 0.6 x 1073,

Evidently, the average beam radius 7, also increases as K is increased.

V. CONCLUSIONS

In conclusion, a macroscopic cold-fluid model has been developed to describe the proper-
ties of intense nonneutral beam propagation in a periodic focusing solenoidal field assuming
that space-charge effects dominate the effects of thermal beam emittance (KrZ >> €2).
The model is found to be robust and flexible, and offers several advantages in analytical
simplicity relative to a theoretical description based on the Vlasov-Maxwell equations. In
this regard, it should be emphasized that this cold-fluid formalism can also be applied to
circumstances where 8/86 # 0 and the equilibrium density profile is not restricted to have

the simple form in Eq. (19).
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Figure Captions
Fig. 1. Plot of the beam envelope 7,(z) versus axial coordinate 2 obtained numerically
from Eq. (41) for the choice of periodic step-function lattice in Eq. (43). System parameters
correspond to S\/K;g = 2.5, 7 = 0.5, K = 0.6 x 1073, and &/S = 0.0 (dashed curve),
2.5 x 1073 (dotted curve), and 5 x 10~3 (solid curve). The quantities 7;(z) and 2 are scaled
by the multiplier S~1. The periodic step function at the bottom of the graph represents (in

arbitrary units) x.(z) in Eq. (43).

Fig. 2. Plot of the beam envelope r,(2) versus axial coordinate z obtained numerically
from Eq. (41) for the choice of periodic step-function lattice in Eq. (43). System parameters
correspond to S/kz0 = 2.5, 7 = 0.5, @/S = 1.0 x 1074, and K = 1.0 x 10~* (dashed curve),
3.0 x 107* (dotted curve), and 6.0 x 10~# (solid curve). The quantities () and z are scaled
by the multiplier S~!. The periodic step function at the bottom of the graph represents (in

arbitrary units) «,(z) in Eq. (43).
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