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ABSTRACT

A kinetic description of intense nonneutral beam propagation through a periodic solenoidal
focusing field B**/(Z) = B,(2)€, — (1/2)B.(z)(z€, + y&,) is developed, where B,(z + S) =
B.(z), and S = const. is the axial periodicity length. The analysis is carried out for a thin
beam with characteristic beam radius r, < S, and directed axial momentum y,mpc (in
the z-direction) large compared with the transverse momentum and axial momentum spread
of the beam particles. Making use of the nonlinear Vlasov-Maxwell equations for general
distribution function f,(Z,7,t) and self-consistent electrostatic field E*(%,t) = —V¢*(Z,1)
consistent with the thin-beam approximation, the kinetic model is used to investigate detailed
beam equilibrium properties for a variety of distributions functions. Examples are presented
both for the case of a uniform solenoidal focusing field B,(z) = By = const. and for the case
of a periodic solenoidal focusing field B,(z + S) = B,(z). The nonlinear Vlasov-Maxwell
equations are simplified in the thin-beam approximation, and an alternative Hamiltonian
formulation is developed that is particularly well-suited to intense beam propagation in
periodic focusing systems. For the case of a uniform focusing field, the nonlinear Vlasov-
Maxwell equations are used to investigate a wide variety of azimuthally symmetric (8/80 = 0)
intense beam equilibria characterized by 8/8t = 0 = 8/0z, ranging from distributions that

are isotropic in momentum dependence in the frame of the beam, to anisotropic




distributions in which the momentum spreads are different in the axial and transverse direc-
tions. As a general remark, for a uniform focusing field, it is found that there is enormous
latitude in the choice of equilibrium distribution function f2, and the corresponding prop-
erties of the beam equilibrium. Introducing the axial coordinate s = z, use is made of the
nonlinear Vlasov-Maxwell equations to investigate intense beam propagation in a periodic
solenoidal field B,(s + S) = B,(s), in which case the properties of the beam are modulated
as a function of s by the focusing field. The nonlinear Vlasov equation is transformed to
a frame of reference rotating at the Larmor frequency Q(s) = —Z;eB,(s)/2%mc, and the
description is further simplified by assuming azimuthal symmetry, in which case the canoni-
cal angular momentum is an exact single-particle constant of the motion. As an application
of this general formalism, the specific example is considered of a periodically focused, rigid-
rotor Vlasov equilibrium with step-function radial density profile and average azimuthal
motion of the beam corresponding to a rigid rotation (in the Larmor frame) about the axis
of symmetry. A wide range of beam properties are calculated, such as the average flow
velocity, transverse temperature profile, and transverse thermal emittance. This example
represents an important generalization of the familiar Kapchinskij-Vladimirskij beam dis-
tribution to allow for average beam rotation in the Larmor frame. Based on the present
analysis, the Vlasov-Maxwell description of intense nonneutral beam propagation through
a periodic solenoidal focusing field g”’(:?:’) is found to be remarkably tractable and rich
in physics content. The Vlasov-Maxwell formalism developed here can be extended in a
straightforward manner to investigate detailed stability behavior for perturbations about

specific choices of beam equilibria.
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I. INTRODUCTION

Periodic focusing accelerators [1-4] have a wide range of applications ranging from basic
scientific research, to applications [5-7] such as heavy ion fusion, tritium production and
nuclear waste treatment. Of particular importance, at the high beam currents and charge
density of practical interest, are the effects of the intense self fields produced by the beam
space charge and current on detailed equilibrium, stability and transport properties. One of
the challenges of intense beam propagation is to understand and avoid the effects of collec-
tive instabilities [8-17] and nonlinear mechanisms for halo formation [18-21], which become
particularly virulent when space-charge forces are comparable to the external focusing force.
Over the years, considerable theoretical progress has been made [8-24], both analytical and
in numerical studies, in describing collective processes and the nonlinear beam dynamics for
an intense beam propagating through a periodic focusing field. The equilibrium and stability
properties of one particular distribution function, the Kapchinskij-Vladimirskij (KV) beam
equilibrium [24], which has an inverted population in phase space, has received considerable
attention. While providing useful insights, analyses restricted to the KV beam distribution
tend to be limited in scope, since it is well known in plasma physics that the detailed non-
linear dynamics and equilibrium and stability properties can exhibit a sensitive dependence
on the form of the distribution function f,(Z, p,t).

It is the purpose of this article to develop and apply a kinetic description of intense
nonneutral beam propagation through a peroidic solenoidal field Beot (Z) based on the non-
linear Vlasov-Maxwell equations for general distribution function f,(Z,7,t). The present
article uses the Vlasov-Maxwell formalism to investigate detailed beam eciuilibrium prop-
erties for a variety of distribution functions, both for the case of a uniform solenoidal
focusing field Byé,, where By = const., and for a periodic solenoidal focusing field [25]
B*oY(Z) = B,(2)&. — (1/2) B.(2)(x€, + ¥&,), where B,(z + S) = B,(z) and § is the axial pe-

. riodicity length. The intense nonneutral beam propagates axially (the z—direcﬁon) through

the applied field B! (Z), and the beam is assumed to be thin with characteristic beam radius




7y small in comparison with the axial periodicity length S of the focusing field. In addition,
the average directed axial momentum ,mpByc of the beam particles is assumed to be large
in comparison with the transverse particle momentum and the axial momentum spread.
The self-field intensity, which is proportional to the beam current and density, is allowed
to be arbitrarily large, subject only to the condition required for radial confinement of the
beam particles by the applied field, and the requirement that Budker’s parameter v satisfy
v = N,Z2e?/mc?* < v,. Here, N, = [ dzdyn, is the number of beam particles per unit axial
length, Z;e is the charge, and y,mc? is the characteristic energy.

The organization of this paper is the following. The theoretical model and assumptions
are presented in Sec. I1. In Sec. III, the nonlinear Vlasov-Maxwell equations and the single-
particle equations of motion are simplified in the context of these assumptions (Sec. III.A),
and an alternative Hamiltonian formulation is developed that is particularly well-suited
to describing intense beam propagation in periodic focusing systems (Sec. IIL.B). For the
case of a uniform focusing field Boé, [26], in Sec. IV the kinetic formalism based on the
nonlinear Vlasov-Maxwell equations is used to investigate a wide variety of azimuthally
symmetric (8/80 = 0) intense beam equilibria characterized by 8/8t = 0 = 0/8z, ranging
from distributions that are isotropic in momentum dependence in the frame of the beam
(Sec. IV.A), to anisotropic distributions in which the momentum spreads are different in
the axial and transverse directions (Sec. IV.B). A density inversion theorem is demonstrated
(Sec. IV.C) for the class of anistropic distributions considered in Sec. IV.B, and a general
radial force constraint condition is derived (Sec. IV.D) that relates the mean-square radius
(r?) of the beam to the strength of the focusing field, the transverse thermal emittance
€, and other system parameters. As a general remark, for a uniform focusing field, it
is found that there is enormous latitude in the choice of equilibrium distribution function.
In Sec. V, introducing the axial coordinate s = z, we make use of the kinetic formalism
based on the nonlinear Vlasov-Maxwell equations to investigate intense beam propagation

in a periodic solenoidal field B,(s + S) = B,(s), in which case the properties of the beam




are modulated as a function of s by the periodic focusing field. Following a transformation
of the nonlinear Vlasov equation to a frame of reference rotating at the Larmor frequency
QL(s) = —Z;eB,(s)/2vwmc (Sec. V.A), the description is further simplified (Sec. V.B) by
assuming azimuthal symmetry (8/88 = 0), in which case the canonical angular momentum
P, is an exact single-particle constant of the motion. As an application of the general
formalism developed in Sec. V.B, we consider the specific example (Sec. V.C) of a periodically
focused rigid-rotor Vlasov equilibrium with step-function radial density profile and average
azimuthal motion of the beam corresponding to a rigid rotation (in the Larmor frame) about
the axis of symmetry. A wide range of beam properties are calculated, such as the average
flow velocity, transverse temperature profile, and transverse thermal emittance. Finally, the
method of characteristics is summarized (Sec. V.D) as an approach for solving the nonlinear
Vlasov equation for intense beam systems with periodic focusing.

As a general remark, based on the analysis in Secs. [I-V, a Vlasov-Mawell description of
intense nonneutral beam propagation through a periodic solenoidal focusing field Bt (%) is

remarkably tractable and rich in physics content.




II. THEORETICAL MODEL AND ASSUMPTIONS
In the present analysis, we consider an intense nonneutral ion beam propagating in the
2-direction with characteristic axial velocity Byc and kinematic energy y,mc® through a pe-
riodic focusing solenoidal magnetic field g3°’(:i:'). In the electrostatic approximation, the
distribution function f,(Z,p,t) of the beam ions in the six-dimensional phase space (Z,p)

evolves according to the nonlinear Vlasov equation (1,26]

Ofy . Of 1.z | ga] O
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8t+v 85+Z,e[ V¢ +cvx(B +B)] o5 (1)
Here E*(Z,t) = —V¢*(Z,t) is the self-electric field due to the beam space charge, and

B*(z,t) = V x A'S(:E', t) is the self-magnetic field due to the current carried by the beam
ions. Note in Eq. (1) that the inductive electric ‘ﬁeld, —c 19A°/8t, has been assumed to be
negligibly small in comparison with —V¢®. In Eq. (1), +Z;e is the ion charge, ¢ is the speed
of light in vacuo, and the mechanical momentum p and kinematic energy ymc? are related

by
p = ymi,
(2)
ymc® = c(m?c + )2,

where 7y is the relativistic mass factor, and m is the ion rest mass. Of course the self-field

potentials, ¢°(Z,t) and A_‘s(a":', t), occurring in Eq. (1) are determined self-consistently in terms

of the beam charge density and axial current density from the Maxwell equations

V2 (E,1) = —AnZeny(Z,t)
(3)
= —47TZi6fd3p,fb(f1if’t)’
and
VEA(Z,t) = —4nZieny(Z,t)Vo(E, 1)
(4)
= —47I'Ziefd3ﬁ.6fb(j’,ﬁ7t)’

where 1,(Z, 1) is the density of beam ions and V;(%,1) is the flow velocity. In the regime of

practical interest, it is assumed that the characteristic beam radius 7 is small in comparison




with the axial periodicity length S of the focusing field, i.e.,
7 & S (5)

In this case, the applied solenoidal magnetic field can be expressed to good approximation

in the beam interior as B*!(%) = V X A(), where [25]
A'sol { = 1 > =
(@) = LB (2)(~v2 + 25), ©

and

B*(7) = B,(2), — -;—B;(z)(wé'x +y8,). (1)

Here, €, and €, are unit Cartesian vectors perpendicular to the beam propagation direction
(€,), z€; + Y€, is the transverse displacement from the beam axis at (z,y) = (0,0), the
superscript ‘prime’ denotes d/dz with B.(z) = dB,(z)/dz, and the axial component of
magnetic field satisfies

Bi(z +5) = B.(2), ®)

where S is the axial period of the focusing field.

Consistent with the thin-beam approzimation in Eq. (5), the distribution of the beam
ions described by f,(Z,p,t) is assumed ’to have large momentum directed predominantly in
the axial direction and centered about p, = ympf,c, with a narrow spread in momentum
satisfying

Iﬁ, pi, (p. — YwmPBye)?, (p: — Wmbse)mPye K ’73 m*c. (9)

Here, v = (1—2)~1/2 is the relativistic mass factor, and y,mc? is the characteristic kinematic
energy associated with the axial motion. Also consistent with Eq. (9) and the thin beam
approximation in Eq. (5), we neglect the self-magnetic field produced by transverse beam
currents in Eq. (4) and approximate A*(,t) = A3(Z,t),. Treating the axial variation of
beam properties as a function of z as weak in comparison with transverse spatiél variations,

Egs. (3) and (4) can then be approximated by [see also Eq. (5)]




Vig* = ~tnZie [ h(E B 0), (10)

and
V2 A = —AnZe / &35, f,(Z, B,1), (11)

where V2 = 82/0z2 + 8/0y?. Finally, the present analysis also assumes that
-7”— = N,Z2e*[yyme® < 1, (12)
b

where v is Budker’s parameter and N, = [ dzdyn, = [ dzdy [ d*pf, is the number of ions per

unit axial length of the beam. Equation (12) is equivalent to the condition that 2¢c/wp, > 74,

1/2

where ¢/wps is the collisionless skin depth, and wy, = (47 Z2e2n,/vym)'/? is the characteristic

ion plasma frequency. Equation (12) assures that the self-field intensity is sufficiently weak

that
Zi CAz

YormiCc?

& Bo. (13)

However, the analysis does permit the self-field potential energy Z;e¢® to be comparable in
magnitude with the transverse kinetic energy (p2 + p2)/2vym of a beam ion.

To summarize, the subsequent analysis is based on the nonlinear Vlasov-Maxwell equa-
tions (1), (10) and (11), supplemented by the definitions of B*! and A'j"’ in Egs. (6) and (7),

and the thin-beam approximation as described by the inequalities in Egs. (5), (9) and (12).




III. NONLINEAR VLASOV EQUATION AND
SINGLE-PARTILCE EQUATIONS OF MOTION
We now simplify the single-particle equations of motion (Sec. III.A) and the nonlinear
Vlasov-Maxwell equations (Sec. 111.B) for beam propagation through a periodic focusing
solenoidal field in the context of the theoretical model and assumptions summarized in
Sec. II. Particuiar emphasis will be placed on the case where the beam distribution function

and field configuration are azimuthally symmetric (0/90 = 0).

A. Single-Particle Equations of Motion
The Hamiltonian for particle motion in the field configuration described in Sec. II can be

expressed as

H =ymc®+ Zeg®
(14)
— c(m2c2 +ﬁ’2)1/2 + Zie¢s-

Here, the mechanical momentum p'is related to the generalized canonical momentum P by
7= P — (Zie/c)A, where A = A% + AZ€, is the vector potential defined in Egs. (6) and

(11). Substituting in Eq. (14) then gives

, 2 g 2 _ 271/2
H=c [m?c2 + (P,, - Z'GA:) + (Rc - Z’CA;OI) + (Py _ Z’CA;d) } + Zieg. (15)

c ¢ c
The single-particle equations of motion are given by

¥ OH

a _oH 16
at 9P (16)
dP  8H
FZr 1)
Substituting Eq. (15) into Egs. (16) and (17), we obtain the expected result
i
Z = (18)
dﬁ 3 v A'sol =
E-t-:Zie -V¢ +ZXVX(Ai + Ale,)| . (19)




In obtaining Eqs. (18) and (19), use has been made of dP/dt = dp/dt + (Z:e/c)dA/dt, where
dA Jdt = BA'/Bt + (7- V)A. Furthermore, consistent with the electrostatic approximation
made in Sec. I, we have neglected c~19A® /8t in comparison with V¢* in Eqs. (18) and (19).

Comparing Eq. (1) with Egs. (18) and (19), it is important to note that the orbit equations
(18) and (19) are the characteristics of the nonlinear Vlasov equation (1). That is, Eq. (1)

can be expressed in the equivalent form

dfy
- =0, (20)

where d/dt denotes the total time derivative following the particle motion in Egs. (18) and
(19). From Eq. (14) we also find

— - S 8 3
di _ 7 dp  ,, (17 vg + 22 ) = 222 (21)

dt ym dt ot
where use has been made of Egs. (18) and (19). That is, whenever ¢*(z,y,2,t) is time-
stationary (0/0t = 0), the Hamiltonian H is an exact single-particle constant of the motion

(dH/dt = 0). The canonical angular momentum F defined by

Z.,-e s0 Z,-e 30l Z.,;El
PB=zP~yF=x (py + "'C—Ay l) -y ( z + —C—Am l) = :Epy——ypz—kgc—-(mz-i-yz)Bz(z) (22)

is also a quantity of considerable physical importance. Here, A5 = (z/2)B.(2) and A} =

—(y/2) B, (2) follow from Eq. (6). From Egs. (18), (19) and (22) it is readily shown that
ah _ —Ze (:L'E— - y—a—) é°. (23)
Y

Therefore, in circumstances where the beam distribution function and field profiles are
azimuthally symmetric about the beam axis (8¢/38 = 0), it follows from Eq. (23) that
the canonical angular momentum F, is an exact single-particlé constant of the motion
(dPy/dt = 0). If the electrostatic potential is independent of time and azimuthally sym-
metric, i.e., 3¢°/3t = 0 and 8¢°/80 = 0, then ¢* = ¢*(r, z), and both H and F, are exact
single-particle constants of the motion. In this case the equilibrium beam distribution func-

tion (9f2/8t = 0) can be constructed from the single-particle consistants of the motion H

8




and Py with f? = f)(H, P,). This follows because

dH 3f) dP Bff

fO(HP") @ ot a o | (24)

whenever dH/dt = 0 = dPy/dt.

A further important quantity characterizing the single-particle motion is the axial canon-
ical momentum P, = p, + (Z;e/c)A]. Neglecting A;/0t consistent with the electrostatic
approximation in Sec. II, some straightforward algebra that makes use of Egs. (18) and (19)

gives

P L (oo 2o a) = 2l [ 4 dnar LB -], @)

where use has been made of Egs. (6) and (7), and dA2/dt = (¥, - 8/9F,)AS +v.0AS Dz with
By = —0A;/0z and B; = 0A;/dy. In circumstances where the beam properties are axially
uniform with 8¢°/8z = 0 = HA2/dz, and the solenoidal field is uniform with B,(z) = By =
const. (independent of z), then 8/8z = 0 on the right-hand side of Eq. (25) and it follows
trivially that the axial canonical momentum P, is an exact single-particle cdnstant of the
motion (dP,/dt = 0). Note that this does not imply that the axial mechanical momentum
is conserved, because dp, /dt = (Zie/c)(¥ x B?), # 0 generally follows from Eq. (25) even
when 8/8z =0

To summarize, if field quantities are time independent (8/8t = 0), azimuthally symmetric
(0/06 = 0), and independent of z (8/8z = 0), then H, P,, and P, are all single-pérticle
constants of the motion, and the equilibrium beam distribution function (With af /ot — 0)
can be constructed from H, Py, and P, with f2 = fo(H, Py, P,). This follows because

dH 0f)  dP, 8f  dP, Off

f"(HPa’P)~dt oH " 4t 9B, | dt 0P,

=0 (26)

whenever dH /dt = dP,/dt = dP,/dt =0
A further point is evident from Eq. (25). In circumstances where the periodic focusing
field B,(z) produces a slow axial modulation of ¢° and AZ, then the z-variation on the

right-hand side of Eq. (25) is weak in comparison with spatial variations perpendicular to




the beam propagation direction. That is, |8/9z| < |8/0z|, |0/3y|, consistent with the
thin-beam approximation in Sec. II. It then follows from Eq. (25) and the perpendicular
components of Egs. (18) and (19) that the change in p, (or P;) is small in comparison with
changes in the transverse momenta p, and p,. Specifically, a simple estimate shows that the
variation in axial momentum Ap, over one lattice period S is smaller than Ap, or Ap, by
a factor of order of 7,/S <« 1. Although the axial canonical momentum P, is not an exact
constant of the motion when there is a slow variation in the focusing field B,(2), it is clear
from Eq. (25) that the changes in P, are small. |

The dynamical equations are further simplified in Sec. III.B in the context of the thin-
beam approximation and the assumption of narrow spread in axial momentum summarized
in Sec. II. For future reference, throughout the remainder of this article we make use of a
simple relation between the self-field vector potential AZ and the electrostatic potential ¢*
calculated from Egs. (10) and (11). Because the distribution of beam particles is assumed
to have axial momentum strongly peaked around p, = ywmpsc, an important consequence of
Egs. (9), (11) and (13) is that the axial current density Z;e [ d®pv, f, occurring in Eq. (11)

is given to good approximation by

J. = Zie [ Epo.fy & Ziepre [ &5 (27)

where ny = [d3pf, is the ion density. Comparing Egs. (10) and (11), and making use of
Eq. (27) we conclude that A2 can be approximated by

A; = Byd’ . (28)

in the present analysis.

B. Alternative Hamiltonian Formulation and Nonlinear Vlasov Equation
The discussion in Sec. III.A has been a fairly general treatment of the particle motion
based on the relativistic Hamiltonian in Egs. (14) and (15). We now examine the particle

dynamics making explicit use of the thin-beam approximations in Egs. (5) and (13), and

10




the assumption of narrow momentum spread about p, = ywmfyc in Eq. (9). This can be
done by making direct use of the form of the Hamiltonian H in Egs. (14) and (15), and the
equations of motion in Egs. (16) and (17) (see Appendix A). Alternatively, we adopt here the
approach often used in accelerator physics [2] and transform from the canonical conjugate
variables (z, F;), (y, P,) and (2, P,) to new canonical conjugate variables (z, P;), (y, P,) and
(t,—H). This is done by making use of Eq. (15) to eliminate the canonical momentum P,
in the axial direction, which is the principle direction of beam propagation, in favor of the
Hamiltonian H defined in Eq. (15). Furthermore, as is customary in accelérator physics,
we denote by s the configuration space coordinate measured along the principle direction of
beam propagation, i.e.,

s =z : (29)

We assume that all particles are moving in the forward direction with p, = P, — (Z;e/c)AS >

0, and make use Eq. (15) to introduce a new Hamiltonian H(z, Pr;y, By; t, ~H; s) defined by
H(.’B, Py, Py;ta "H;s) = "Pz(z, Py, Py§ t,—H,; s)- (30)

Solving Eq. (15) for (P, — Z;eA2/c)? and taking the positive square root readily gives
1/2

e [(1”-— By it (p. - Z2am) - (n-2 eA‘“")2] - &, a)

c

where A; = (,¢°, and A% and A2 are defined in Eq. (6). In terms of the new Hamiltonian

H, it is readily shown that the equations of motion are given by

dr OH dP, oH

ds 8P, ds oz’
dy OH dP, OH |
= _ = — 3
ds 9P, ds oy’ (32)
dt oW d(-H) 3M
ds  O(—H) ds ot

The quantity dt/ds = dt/dz in Eq. (32) will be recognized as v;?, where v, is the axial

velocity. It will become apparent in the subsequent analysis that several simplications occur

11




when the Hamiltonian representation in Eq. (31) is used, particularly when system properties
are time-stationary (9/3t = 0).

Treating s as the dynamical variable following the particle motion, the nonlinear Vlasov
equation for the distribution function fy(z, Py;y, Fy;t,—H;s) in the new variables can be

expressed as df,/ds = 0, or equivalently,

Ofe , ,Ofe , ,0fs , Ofs | 5 Ofs | 00 n. Of
ZJo . 3
= +tat+”ax+yay+P”aP +Bigp + (CH) 5 s =0 (33)

Here, a superscript ‘prime’ denotes d/ds, e.g., t' = dt/ds, ' = dz/ds, etc. The nonlinear
Vlasov equation (33) is fully equivalent to Eq. (1) and the analysis based on the dynam-
ical variables used in Sec. III.LA. What is apparent from Egs. (32) and (33), however, are
the simplifications that occur naturally when equilibrium beam properties are considered,
corresponding to 8/9t = 0. Treating ¢°(z,y, s,t) as time-independent (9¢°/8t = 0) in the
subsequent analysis, it follows from Egs. (28) and (31) that H does not depend explicitly on
t. Therefore 9H /8t = 0, and

—(~H)=0 (34)

follows from Eq. (32). Furthermore, the corresponding time-independent equilibrium dis-
tribution function f, = f(z, Ps;y, Py; —H, s) necessarily satisfies 8f,/0t = 0 in Eq. (33).
Setting —H' = —dH /ds = 0 and 8f,/8t = 0 in Eq. (33) then gives

8fl? /afl? afO /afﬂ rafb _
e toa + e +P,,aP +Py3P =0 (35)

for the evolution of f2(z, Py;y, Py;—H,s). Here, ¢* and A2 = [,¢° are determined self-
consistently in terms of f; from Poisson’s equation (10). Moreover, the characteristics z’, ¥/,
P, and P, of the nonlinear Vlasov equation (35) are determined from Eq. (32). Note also in
Eq. (35) that the energy constant of the motion, — H, occurs parametrically as a variable in
the argument of the distribution function fJ.

We now simplify Eqgs. (31) and (32) and the characteristics of the Viasov equation (35)

by making use of the thin-beam approximation in Egs. (5) and (13), and the assumption
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of narrow momentum spread about p, = yymfByc in Eq. (9). In this regard, we define the

effective kinematic momentum of a beam particle by
po = (H*/& — m?*&)/? | (36)

and denote p, = yymPB,c, where yymc? = H and v, = (1 — B2)~Y/2. While Eq. (36) implies
that ps, v, and f, are (known) functions of H, keep in mind that the distribution of beam
particles has a very narrow spread in momentum and energy. Making use of Egs. (9) and (13),
and assuming p2, pf, < p¢, we Taylor expand Eq. (31) to quadratic order in the transverse
canonical momenta, and retain terms linear in the electrostatic potential ¢°. Eqﬁation (31)

can then be approximated by
1 Z; 2 ; 21 HZ Z;
H=—py+ { (P-Z2a) + (P, - Z2ap) J + 28 224, (31)
D c c DsC c

where py(H) = ysmfyc is defined in Eq. (36) and H = y,mc?. Making use of A? = £,¢° from
Eq. (28), the expression for H in Eq. (37) becomes

1 Zie oo\’ Zie oo\’ Zie
_-— —_— _— = ASe Sy L S 3
H = —ppmPye + . [(Pz A7 ) + (Py A ) + »/gﬁ,,c"” (38)

- where use has been made of (1—52)¢* = ¢* /12, and ¢°(z, y, $) is determined self-consistently
in terms of f{ from Poisson’s equation (10).

Solution to the nonlinear Vlasov equation (35) requires determination of the transverse
orbits z(s) and y(s) from Eq. (32). To the level of accuracy of the expression for H in
Eq. (38), we readily find from dz/ds = OH/OP, and dP,/ds = —9H/z that

dz 1 Ze P
—=— (P - == ""’) = =, 39
ds  wmpPyc ( c A YomBsc (39)
dP, _ d Zie ,en Zie 8¢° = Z;eB,(s) ( : Zie ,)
—_— T — —_A%0t} _ __ __ M pso 40
s  ds (pz L Az ) Y Bc Oz + 2y,mPByc? 5 c A7) (40)

where A(z,y,s) = —yB.(s)/2 and A:(z,y,s) = zB,(s)/2, and use has been made of
8B:* [0z = B,(s)/2. Similarly, from Egs. (32) and (38), the y-motion is determined from

dy 1 Zie z) Dy
bt P Ase) = &Y 41
ds yWmpc (Py Ay (41)

c B ’meﬁbc’
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dP, _d ( Zie ,) Zie 0¢*  ZieB,(s) ( Zie ,)
Sy 2 La) = - Py — 2L pt) 42
V)= TRk By 2pmbid c (42

ds ds Pyt
We introduce the normalized Larmor frequency /&, (s) and normalized electrostatic potential
¥(z,y,s) defined by

Z:eB,(s ‘
Voule) = e, (43)
1/’(% Y, 3) = W‘ﬁs(a” Y, s)' (44)

Substituting p, = yympBycdz/ds into Eq. (40) and p, = y,mfBycdy/ds into Eq. (42) then gives

the orbit equations for z(s) and y(s),

2\/ _“ - y \/ K.(s) = —%(/;—:a (45)
d2y

Sz t2 fcz(s)%g— +xa-d; Ko(s) = —'g%, (46)

In Egs. (45) and (46), ¥(z,y, s) is determined in terms of the density of particles n,(z,y, s) =
J @®pf from Poisson’s equation (10), which can be expressed as
(5}2 + gj—z) v=-L [ (47)
As a further point, in circumstances where f{ and ¢ are azimuthally symmetric about
the beam axis and depend on z and y only through the radial coordinate r = (z% +1?)'/?, it
follows that 8f0/80 = 0 = &v/88, where 8/86 = x8/8y — y8/8z. Equations (45) and (46)
then give

dp, _ d
—— = —(eP, —yR) =0, (48)

corresponding to conservation of canonical angular momentum Py. Here, P, can be expressed

as

dy d |
() Po = 252 —y== + [0 (6) (2 +97), (49)

which should be compared with Eq. (22). Therefore, as expected, whenever 8/86 = 0 the
canonical angular momentum is an exact single-particle constant of the motion (dP; /ds = 0).

We conclude that if field quantities are both time independent (8/8t = 0) and azimuthally
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symmetric (8/80 = 0), then H and P, are single-particle constants of the motion. In this
case, the equilibrium distribution function (8f?/0s = 0) can be constructed from —H and
P, with f? = f{(—H, P). This follows because

_d(=H) 3fy  dRdfy
257 (~H B = =5 a(—H) | s 6P,

=0 (50)

whenever d(—H)/ds = 0 = dPs/ds. Of course, if other single-particle constants of the
motion C; with dCj/ds = 0 follow from Egs. (45) and (46), then f? = f(—H, P, C;)
necessarily solves the nonlinear Vlasov equation (35) with (d/ds)f}(—H, P, C,) =0, where
d/ds denotes the total derivative with respect to s in Eq. (35) (see Sec. V).

In Sec. V, we will make use of Eqgs. (35) and (45)-(47) to investigate periodically focused
beam equilibria for a solenoidal focusing field described by Eq. (7) with B,(s + S) = B,(s).
For future reference, it is convenent to transform the transverse dynamical equations (45)
and (46) to a frame of reference rotating about the beam axis at the local Larmor frequency
defined in normalized units by Qp(s) = —@ = —Z;eB,(s)/2vwmfBsc?. We introduce
the accumulated phase of rotation from sp to s defined by 0.(s) = — f;,ds\/l—cz_(s—), where
dl./ds = Q. Then the transverse orbits, £(s) and §(s), in the rotating frame, are related

to z(s) and y(s) in the laboratory frame by

z(s) = £(s) cos 0L(s) — §(s) sin . (s),
(51)
y(s) = £(s) sinfL(s) + F(s) cos bL(s).

We further assume that the beam equilibrium properties are azimuthally symmetric (8/00 =
0), so that ¥(z,y,s) = ¥(r,s) in Eqs. (45) and (46), where r = (2% + y2)¥/2 = (32 4 §?)1/%.
In this case,

o zd W _yoy . .
dr ror’ By ror (52)

where ¥(r, s) is determined in terms of nd(r, s) = [ d3pf? from Poisson’s equation (47), which

can be expressed as

10 @ 47rZ22/d3

e R & 9
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Substituting Eq. (52) into Eqgs. (45) and (46), and making use of Eq. (51), it is readily shown

that the transverse orbits #(s) and §(s) in the Larmor frame solve the dynamical equations

ZZ‘;’ + K.,(s) + %%‘f- F=0, (54)
d?j 1.
ds‘Z + z( ) + ——2 |g=0, (55)

where k,(s) = [Z;eB,(s)/2vmBc?|?, and 1(r,s) satisfies Poisson’s equation (53) with r =
(£2+°%)"/%. Note from Eqs. (54) and (55) that the dynamical equations for Z(s) and §(s) are
identical in structure. In the laboratory frame, the z- and y-motions are naturally ‘coupled
by the magnetic force contributions in Eqgs. (45) and (46). On the other hand, in the Larmor
frame, it is evident from Egs. (54) and (55) that the magnetic forces in the Z- and §-directions
are decoupled and restoring (because x, > 0), with F5'®" = —k,% and F;'“" = —k,§. The Z-
and g-motions determined from Egs. (54) and (55) are generally coupled through the electric
field contribution proportional to =184 /8r, where r = (£2 4+ #°)!/2. This is true except for
the special case where the beam density is uniform in the beam interior, in which case 1 is
proportional to 72, e.g., when f{ corresponds to the Kapchinskij-Vladimirskij distribution
function [24]. Conservation of canonical angular momentum also takes on a particularly

simple form in the Larmor frame. For 8/96 = 0, we note that

d (_dy _dz
ds( 25~ a:) 0 (56)
follows trivially from Eqs. (54) and (55). From (56), conservation of canonical angular

momentum in the Larmor frame then becomes dPg/ds = 0, where

- dgy _d%
(wmByc) ' Po = i -

as Vi (57)

Some of the simplifications evident in Eqs. (54) and (55) from transforming to the Larmor

frame will be utilized, as appropriate, in Sec. V.
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IV. INTENSE BEAM EQUILIBRIA IN A
UNIFORM SOLENOIDAL FOCUSING FIELD
In this section we consider intense ion beam equilibria (8/8t = 0) in the special circum-

stances where the applied solenoidal field B**(%) is a uniform focusing field with

B.(s) = Bo = const. | (58)

It is further assumed that all equilibrium properties are azimuthally symmetric (8/86 = 0)
about the beam axis and independent of axial coordinate (8/0z = 0). While limited in
scope because 8/90 = 8/0z = 0 is assumed, we will find that the analysis in this section
_permits a broad range of beam equilibria fP to be considered [26], with correpondingly
different equilibrium profiles for the beam density, pressure, etc., as well as different stability
properties depending on the choice of f. In this regard, the analysis in this section is
best viewed as a smooth-beam approzimation to a periodic solenoidal focusing system, which
provides valuable insights into the properties of intense nonneutral ion beams and can be
used to benchmark numerical simulation codes and understand laboratory experiments.
Using the notation and formalism developed in Sec. III.A, for /86 = 0 and 8/9z = 0, it
follows from Egs. (23) and (25) that the canonical angular momentum Fj and axial canonical

momentum P, are exact single-particle constants of the motion (dP/dt = 0 = dP,/dt), where

P, = = 59
0 =Tpg+ % e, (59)
and

Po=p.+ —Z;;eAj(r). | (60)

Here, A3(r) = Bp¢°(r) follows from Eq. (28), and p’ = (p,, ps, . ) is the mechanical momentum
in cylindrical coordinates (r, 8, z). Similarly, for ¢°/0t = 0, the Hamiltonian H defined in
Eq. (14) or Eq. (15) is a conserved quantity (dH/dt = 0). Consistent with the thin-beam
approximation in Egs. (5) and (13), and the assumption of narrow momentum spread in

Eq. (9), we expand the expression for H in Eq. (14) about p, = y,mpBsc, and retain terms to
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quadratic order in ép, = p, — vwmpPsc, p. and p,. This readily gives the approximate form
1 _
H = yme® + T 2mBachp: + (6p:)% + 1% + P}] + Zieg®. (61)

In Eq. (61), 7 = (1 = 82)~Y/2 is the relativistic mass factor, and ¢° = ¢*(r) when 8/8z = 0.
Expressing p. = P, — (Zie/c)AS®, p, = P, — (Zie/c)AS* and p, = P. — (Zie/c)A;, where
(P, Py, P;) is the canonical momentum, Egs. (16), (17) and (61) can readily be used to
determine the dynamical equations of motion consistent with the thin-beam approximation
(see Appendix), although a detailed knowledge of the particle orbits is not réquired for the
Vlasov equilibrium analysis in this section. For future reference, it is convenient in Eq. (61)
to eliminate the linear term 8p, in favor of B, ie., 6p, = P, — (Z;e/c)AS — wmfByc. This

readily gives

1 1 Ze
H = —mc? )2+ P2+ PR + 22 g 62
e A VB 4 ot l0p)” + m 4 B+ 54 - (62)

where V; = fyc, and use has been made of yymc? —ympBic? = mc?/y and ¢° — B Al = ¢° /.
Equation (62) provides a useful expression for the linear combination H — V, P,. Because H
and P, are individually conserved quantities, it follows that H —V, P, is also a constant of the
motion with d(H — V,P,)/dt = 0. It should also be pointed out that the expression H — VP,
in Eq. (62) can be obtained by Lorentz transformation of the full relativistic expression for
H ~ VP, to a frame of reference moving with axial velocity V,€; relative to the laboratory
frame, and expanding the kinematic energy for small momentum in the beam frame.

To summarize, for 8/00 = 8/8z = 8/8t = 0 and uniform focusing field B,(2) = By =
const., the canonical angular momentum F,, axial canonical momentum F,, and energy H,
defined in Eqs. (59), (60) and (62), respectively, are single-particle constants of the motion
in the equilibrium field configuration [26]. Therefore, as discussed in Sec. III.A [see Eq. (26)],
the equilibrium distribution function (with 8f0/8t = 0) can be constructed from H, Py and
P, ie.,

fy = f(H, Fo, P). (63)
In general there is considerable latitude in specifying the functional form of ff in Eq. (63),
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although the specific choice of distribution' function should be guided by experiment, in-
cluding the technique used for beam formation. Because the expressions for P, and H in
Egs. (60) and (62) depend explicitly on A3 = B8,¢° and ¢° it is clear that any equilibrium
analysis based on Eq. (63) must be supplemented by a self-consistent determination of the

electrostatic potential ¢*(r) from Poisson’s equation (10), i.e.,

10 8, 5mr0 |
Cr—¢" = —dnZe / d*FfO(H, By, B,), | (64)

where nd(r) = [d®Ff? is the ion density.

In the remainder of Sec. IV, we present several examples of intense beam equilibria in a
uniform focusing field B,(s) = By = const. for two classes of distribution function 12, corre-
sponding to isotropic (Sec. IV.A) and anisotropic (Sec. IV.B) equilibria in the beam frame.
Finally, a density inversion theorem is developed (Sec. IV.C), permitting a determination of
the distribution function from the density profile nd(r), and a generalized force constraint is
derived (Sec. IV.D) that relates the mean square beam‘radius (r?) to the transverse thermal

emittance €;, and other system parameters for general choice of distribution function f?.

A. Isotropic Beam Distribution and Thermal Equilibrium
A very interesting class of isotropic beam equilibria occurs when fP(H, Py, P,) depends
on the constants of the motion Py, P, and H defined in Egs. (59)-(61) exclusively through a

linear combination. In this case, f? is of the form
fy = f(H + Py — V,P.), - (65)

where ), and Vj, are constants related to the angular velocity of mean rotation and the
average axial velocity of the beam particles (see below). No matter how complicated the
functional form of the distribution function fO(H + Py — V3 P,), or the corresponding radial
dependence of the self-consistent equilibrium profiles for beam density n)(r) = [ d*pf?, radial
electric field E, = —8¢°/dr, etc., a very important stability theorem pertaining to the entire

class of nonneutral beam equilibria described by Eq. (65) has been developed by Davidson
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[26]. Specifically, whenever the distribution function fJ(H +,Ps — V, P,) is a monotonically
decreasing function of the argument H +Q, Py —V,P,, the beam equilibrium is stable to small-
amplitude electrostatic and transverse electromagnetic perturbations. Indeed, this class of
distribution functions can be shown to be nonlinearly stable to electromagnetic perturbations
with arbitrary polarization. The reason can be summarized briefly as follows. In a frame of
reference moving the the average velocity of the beam, the distribution function f? in Eq. (65)
is isotropic. Therefore, for a one-component nonneutral beam, whenever f{(H +Q, P —V,P,)
is a monotonically decreasing function, no free energy is available to drive inétability.

Returning to Eq. (65), the combination H — V,P, is determined in terms of (6p,)?
P2+ p? = p? + p}, and ¢° from Eq. (62). Making use of Egs. (59) and (62), and expressing
D% + 2%mQurps = (po + Yemer)? — ¥Em2Q2r2, it is readily shown that

1 1
H + pra - Vb.Pz = ;;mc"’ + m{pﬁ + (pa + ’meQbT‘)z + (pz — 7bm,3,,c)2] + V(’I”) (66)

Here, ép, = p, — vsmfic, Vs = Bic, and V(r) is the effective potential defined by

vi) = yum (%) - (- 52) ]+ o 7

where r = (x%+y?)!/2 is the radial distance from the beam axis, and Qg = Z;eBy/yymec is the
relativistic cyclotron frequency in the focusing magnetic field By. Whatever the functional
form chosen for f2(H + QB — V,P,), it is clear from Eqs. (66) and (67) that certain simple
properties of the beam equilibria follow for the general class of distribution functions in

Eq. (65). For example, the average macroscopic velocity V;(Z) is readily shown to be

- d3 g 0 . .
Vo = ! I}.(g!;}zn)fb = Byc€, — ey, (68)
b

where use has been made of Egs. (65) and (66). Evidently, from Eq. (68), the average
beam motion corresponds to a constant axial velocity B¢ plus a rigid rotation about the
beam axis at constant angular velocity —),. The coefficient of 7% in the definition of the
effective potential V(r) in Eq. (67) is proportional to (Q/2)% — (s — Qes/2)? = Qs — Z,

which is required to be positive for the (focusing) magnetic force to exceed the (defocusing)
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centrifugal force due to beam rotation. Note that this coefficient acquires its largest positive
value, (£2¢/2)%, whenever the beam rotation frequency is equal to the Larmor frequency,
ie., QO = Qau/2. Note also that this coefficient is negative (defocusing) whenever € < 0 or
Q > Q. In these ranges of ), the beam equilibrium is not radially confined. A further
interesting general equilibrium property pertaining to the class of distribution functions
described by Eq. (65) relates to the pressure tensor Py defined in the usual manner as the
average flux relative to the mean of momentum relative to the mean. From Egs. (65) and

(66), it is readily shown that

Pu@) = (wm) ™! [ &1~ 3omVi) (7 = wmP) 13 = Ru(r)! (69)
Here, | = €€, + &¢€p + €;€; is the unit dyadic, and P,(r) is the scalar pressure defined in

terms of the average kinetic energy of random motion (relative to the mean) by

Br) = nr)Tilr) = g [ 455 I+ (po+ wmor )+ (= wmBolfS. (70

Therefore, for the class of Vlasov equilibria described by Eq. (66), the beam pressure is
isotropic. Moreover, once the radial dependence of the scalar pressure P,(r) and density
nd(r) = [ d*pf? are calculated for specific choice of f2, Eq. (70) can be used to determine
the effective temperature profile Ty(r) = Py(r)/nd(r). | |

Thermal Equilibrium Distribution
We now consider the specific choice of distribution function f? corresponding to thermal

equilibrium [26], i.e.,

fO _ ﬁbexp(mcz/’)’kaT) - (_— H + QbP@ - ‘/bPz) ) (71)
b @rwmksT)? ksT ) -

Here, kp is Boltzmann’s constant, and €2, V4 = B¢, 71, and T are constant parameters. We
substitute Eq. (66) into Eq. (71) and evaluate the density profile nd(r) = [ d®5f?. Because

the momentum dependence of f has the form of a shifted Maxwellian, this readily gives

. 2Z;e
nd(r) = iy exp {- 51-‘% [(Q,,Qc,, — 2y 4 24e ] } : (72)

¢
Yom
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Withaiit loss of generality we take ¢*(r = 0) = 0 so that 7, = n(r = 0) can be identified
with the density on-axis. Substituting Eq. (72) into Poisson’s equation (64) gives a nonlin-
ear differential equation for the electrostatic potential ¢*(r), which can generally be solved
numerically. Once the functional form of ¢*(r) is determined self-consistently, the radial
dependence of the density profile n(r) can be obtained from Eq. (72). As a general remark,
provided that the defocusing effects of beam rotation and space charge do not exceed the
focusing effect of the applied solenoidal field, the density profile calculated from Egs. (64)
and (72) is bell-shaped, assuming a maximum value of 7; at » = 0, and decreaéing monoton-
ically as r increases. The important control parameter that defines the condition for radially
confined beam equilibria can be determined by examining Eqs. (64) and (72) near the beam
axis (small values of ), where nd(r) & 7, and ¢*(r) & —wZ;efpr?. The condition for ng(r)
to decrease as r increases from r = 0, which is also the condition that (d*V/dr?),—¢ > 0,

where V(r) is the effective potential defined in Eq. (67), can be expressed as
t:)% = (905/2)2 - G)pb/Q'y,f > (Qb - ch/2)2. | (73)

Here, @2, = 4w Z%e®,/vym is the on-axis plasma frequency-squared, use has been made of
Qe — 2 = (Ve /2)% = (% — Neb/2)?, and &g is the betatron frequency for small-amplitude
oscillations in the transverse orbit (in the rotating frame) near the beam axis. Whenever
@ is ‘closely tuned’ to (€ — Q/2)%, the density profile calculated from Eqgs. (64) and (72)
tends to be radially broad in units of the Debye length Ap = (12ksT/4nh,Z2e?)Y/2, with
ny(r) = Ay = const. in the beam interior (0 < r < 1), and decreases abruptly to expoentially
small values of over a narrow sheath region about a Debye length in thickness {26]. Typical
numerical results obtained from Egs. (64) and (72) are presented in Fig. 1, where n)(r)/f,
is plotted versus /Ap. |

A further interesting equilibrium property is the scalar pressure P,(r) defined in Eq. (70).
Substituting Egs. (66) and (71) into Eq. (70) readily gives the pressure proﬁle.

Py(r) =ny(r)ksT, | (74)
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wheré!T' = const. is the thermal equilibrium temperature. As expected from Egs. (65) and
(71), the temperature is isotropic (', = T} = T in thermal equilibrium, and independent
of radius r. It should also be pointed out that radial force balance on a beam fluid element

is readily derived by taking the r-derivative of Eq. (72). This gives

Bno Z,'C
k BTB_rb = —ymng (e — Q)1 + —’Y?ngE',, (75)
where E, = —8¢°®/0r is the equilibrium radial electric field determined from Poisson’s equa-

tion (64). Equation (75) is simply a statement of radial force balance between the (outward)
pressure gradient, centrifugal and electric forces and the (inward) Vg€s X Bo€, magnetic
force on a fluid element. It should be emphasized that for the general class of isotropic beam
equilibria described by Eq. (65), a force balance equation identical in form to Eq. (75) can
be derived with kzTdng/8r replaced by 8P;/8r, where P,(r) is the scalar pressure defined
in terms of f? by Eq. (70).

It is customary in accelerator physics to define the statistical average (1) of a function

1 defined on the phase space (z,y, pz, Py, P:) by
(W) = N;”* [ dedydp.dp,dp.y53. (76)

Here, fdzdy--- = 2r [°drr--- for azimuthally symmetric f2 and 9 with 8/80 = 0, and
N, = [ dzdydp,dp,dp, f0 = 21 [° drrnd(r) is the number of beam ions per unit axial length.
For example, making use of the definition of canonical angular momentum F; in Eq. (59), it

follows from Egs. (66) and (76) that
(Po) = %m(Qen/2 — Q){r?) (77)

for the choice of thermal equilibrium distribution f? in Eq. (71), and indeed for the entire
class of isotropic rigid-rotor Vlasov equilibria f@(H + Q3P — V3 P,) described by Eq. (65).
Equation (77) is a powerful constraint condition that relates the average (Py) directly to the
angular rotation velocity Q, and the mean-square radius {r%) of the beam, no matter how

complex the functional form of the density profile nd(r). A second constraint condition can

23



be obtained directly from the radial force balance equation (75). We make use of Poisson’s
equation (64) to express E, = 8¢°/0r = (4nZ;e/r) [§ drrn)(r), and operate on Eq. (75) with

27 f5°drr? .-, Some straightforward integration by parts and rearrangement of terms gives

(/2 — (O = Qu/2r?) = 22T 1 2T, (78)

which relates the mean-square beam radius {r?) to the temperature T' and the number of
particles per unit axial length N,. Equation (77) can be used (for example) to eliminate

(82 — 2c/2)? in favor of (P;)? in Eq. (78). Equation (78) can then be expreséed as

Z,-262N5 1 <Po)2 2kBT< )
e e

(Qeb/2)%(r?) ~ (79)

It is convenient to introduce the self-field perveance K, solenoidal field focusing coefficient
K0, Toot-mean-square transverse thermal emittance ¢, (emittance relative to the average

rotational motion in the laboratory frame), and effective beam radius r;, defined by [1,25]

2Z2 e2N,
’meﬁfcz , ‘
Z,'CBO 2 ch 2
20 = =\sr.] 8
0 (2’meﬁb02) (2ﬁb0) (80)
2 2 2 2
€th = ’7?m2,3302 (7’ )(pr + (p9 + ’meQbr) )3
rZ = 2(r?).

Making use of Egs. (70),(74) and (80), the condition in Eq. (79) can be expressed as

_ KN 1(, 4(P,)?
(o= %)= (4 + s e

Equation (81) is identical in form to the familiar envelope equation [25] in the smooth-beam
approximation (d%r,/ds? = 0), allowing for average beam rotation relative to the Larmor

frame, i.e., (Fy) # 0 whenever ), # Q/2 [see Eq. (77)].
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Monoenergetic Beam Distribution
As a second example of an isotropic beam equilibrium fP(H + QP — V, P,), we consider
the case where the distribution function of beam ions is monoenergetic in the moving frame,

ie.,

3. mc’) ’ (82)

)= 4vr~rbm(37i:bm:i",,)1 6 (H + Py = VP = 51— ==
Here, H + Py — V, P, is defined in terms of » and the mechanical momentum variables
(pr, Po, p) in Eq. (66), and 7, and T}, are positive constants which will be identified below with
the on-axis (r = 0) values of beam density and temperature, respectively. It is convenient to

introduce the shifted momentum variables (f,, fy, 5,) and normalized potential y,(r) defined

by

- - . 2V (r
Pr=Dr, Po=ps+wmUhr, pP.=p.—nwmbec, W(r)=1-— 3,} )- (83)
b

Making use of Eqgs. (66) and (83), the distribution fuention in Eq. (82) can then be expressed

as
My
fP

" 20 @ymTy)2 8 7 = 3umTithn(r)], | (84)

where 9,(r) and V(r) are defined in Eqgs. (83) and (67), respectively. The density profile
nd(r) = [d3pf? calculated from Eq. (84) is non-zero only for () > 0 and zero whenever
¥s(r) < 0. Therefore, the outer beam radius r, is calculated self-consistently from ,(r) = 0,
or equivalently, V (r,) = 3T},/2.

Expressing [d®p- - = 4w [° dpf? - - -, where P = P2 + pg + P2, it is readily shown that
the density profile nd(r) = [ d3pf? calculated from Eq. (84) is given by |

ﬁb[’([)b(’l")]lﬂ, 0 <r <y,
ny(r) =

(85)
0, T > Th

where ¥,(r) = 1 ~ 2V (r)/3T} and V(r,) = 37}/2. Similarly, substituting Eq. (84) into
Eq. (70), the temperature profile Ty(r) for the choice of monoenergetic beam d_istributidn in
Eq. (82) is readily shown to be

Ty(r) = Tiho(r) - (86)
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over the radial extent of the beam (0 <7 < 13).

Note from Eqgs. (85) and (86) that the pressure profile Py(r) = nd(r)Ty(r)
= (T}/72)[n%(r)]? scales as the cube of the local density nd(r). Also, ¢s(r) = 1 — 2V (r)/3T}
decreases monotonically from ¥,(r = 0) = 1 on the beam axis to ¥,(r = r,) = 0 at the
outer beam radius v, where V(r,) = 3T3/2. Correspondingly, the density profile nd(r)
and temperature profile T;(r) defined in Eqs. (85) and (86) decrease monotonically from
maximum values of 7, and T}, respectively, at 7 = 0, to zero at the beam edge r = r,.
To determine the radial dependence of nd(r) self-consistently, it is nec&ssary to substitute
Eq. (85) into Poisson’s equation (64). Making use of 9,(r) = 1 — 2V (r)/3T,, where V (r)
is defined in Eq. (67), some straightforward algebra gives the nonlinear differential equation
for y(r),

rara) - {Z[(%) - (-3 ] -wowe). e
Here, an effective Debye length defined by Ap = (3127, /87 Z?€%1;)!/? has been introduced
as a radial scale length, and W2, = 4wZ2e?/y,m is the on-axis value of plasma frequency-

squared. In Eq. (87), 4,(0) = 1, and for physically allowed solutions () must decrease as

r increases from r = 0. This readily gives the condition

3% -0 .

which is required for existence of radially confined equilibrium solutions. Note that Eq. (88)
is identical to the inequality in Eq. (73). Furthermore, whenever 0 < € < 1 is satisfied,
it is found from Eq. (87) that radial profile is very broad in units of the Debye length Ap.
That is, (r) decreases monotonically to zero at ¥,(r = ) = 0, where r, > Ap. Although
an analytical solution for ,(r) does not appear to be accessible from Eq. (87), numerical
solutions are readily obtained for 1/,(r) versus r/r, and different values of the dimensionless
parameter € defined in Eq. (88). Typical numerical results are shown in Fig. 2, where
nd(r) /i = [Ws(r)]*/? and Ty(r)/Ty = ¥s(r) are plotted versus r /1y for several values of e.

As expected, the beam radius satisfies r, 3> Ap whenever ¢ is sufficiently small. Other
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equilibrium properties can also be calculated for the choice of monoenergetic distribution
function in Egs. (82) and (84). For example, as in Eq. (77), it is readily shown tha_t‘ the
average canonical angular momentum (F;) is related to the mean-square radius by (P) =

Ym(Qep /2 — ) (r?).

General Isotropic Beam Distribution

Equilibrium properties can also be calculated for other choices of isotropic distrubution
function fQ(H + Py — V,P,). For completeness, we establish here useful expréssions for the
density and pressure profiles as well as the nonlinear Poisson equation for general choice of
2. It is. convenient to introduce 2 = p2 + (pg -+ 1mr)? + (p; — WmBye)?, and make use of
Eq. (66) to express H +Q, Py — V, P, = (2ym) ™5 + Vo (r), where Vo(r) = V(r) +mc? /v, and
V(r) is the effective potential defined in terms of ¢°(r) and other equilibrium parameters in
Eq. (67) Some straightforward algebra then shows that the density profile nd(r) = [ d*3f?
and pressure profile Py(r) = (2/3) [ &*5(5%/2vsm)f? can be expressed as

n(r) = 2n(m)®? [ UV = Vo)) (89)

and

R = Fewm) [* Wy -%@PERe). ()

(4]

Here, we have introduced the integration variable U = p? / 2vym + Vp(r). Comparison of
Egs. (89) and (90) shows that 8P,/8V, = —nd(r), or equivalently, 8P,/8r = —nl(r)dVy/8r.
Making use of Eq. (67) to evaluate 8V, /dr = 8V/3r then gives

8P, Zie
arb = —mmny (WQe — B)r + —5np B, (91)
Yo

where E, = —8¢°/dr is the radial electric field. Equation (91) will be recognized as the con-
dition for radial force balance on a fluid element for general choice of equilibrium distribution
function f? [compare with Eq. (75))].

The effective potential V(r) occurring in Eqgs. (89) and (90) must of course be determined

self-consistently from Poisson’s equation (64). Making use of the definition of V(r) = Vy(r)—
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mc? /v, in Eq. (67), and the expression for nd(r) in Eq. (89), Poisson’s equation (64) can be

expressed in the equivalent form

10 8 _ ch 2 ‘QCb 2 6)35
2o (8- %) - .

In Eq. (92), &2, = 4wy Z2e?/vm, where fi, = 2m(2ym)>2 [52,., dUU — me?/m]| /2 f2(U)
is the on-axis (r = 0) beam density, and F(V;) is defined by

Joom aU[U — Vo(r)]'2f(U)
Sz QUU — me2 |V (U

For the special case of the monoenergetic distribution in Eq. (82), we make the identification

Vo(r) = me /v, + (3T3/2)[1 — 9(r)], and Eq. (92) reduces exactly to Eq. (87) for 1(r), as

F(w) = (93)

expected.

For the general choice of distribution function f2(U), the solution for V,(r) is required
to increase monotonically from its on-axis value Vp(r = 0) = mc?/y, as r is increased.
This assures radial confinement of the beam equilibrium and that the density profile nd(r)
defined in Eq. (89) decreases as a function of increasing r. From Eq. (93), F(V;) = 1 at
r = 0 where Vp(r = 0) = mc?/~,. Examination of Egs. (92) and (93) then shows that the
condition for Vp(r) to increase monotonically as r is increased is identical to the inequality
in Eq. (88). While further examples of isotropic beam equilibria fo(H + QP — V, P,) will
not be considered here, it is clear that Eqs. (89)-(93) can be used to investigate equilibrium

properties for a variety of choices of f7.

B. Anisotropic Beam Distributions
In this section, for a uniform solenoidal focusing field with B,(s) = By = const., we
consider anisotropic beam equilibria f(H, P, P,) in which the average kinetic energy spread
(relative to the mean) in the transverse (r,6) plane differs from that in the axial direction.
Such anisotropics are well known in plasma physics to provide the free energy to drive various
collective modes and instabilities [26]. Examining the §p, contributions to the expanded

Hamiltonian H in Eq. (61), and expressing ép, = p, — vvmbyc = 6P, — (Zie/c)As, it is
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readily shown that ‘
(Z,' CA: ) z

1 2 _ s (6Pz)2 Z;GA: . »
o [2ysmBuc(bp.) + (6p2)°]) = Bucd P, — ZiefBrAg + T wp—— 6P, + o mc2 , (94)

where A%(r) = f,¢°(r) follows from Eq. (28). Comparing the size of the terms on the right-
hand side of Eq. (94), we conclude that the fourth term is negligibly‘small in comparison
with the first, and the fifth term is negligibly small in comparison with the second, by virtue
of the assumption |Z;eA? /yymc?| < B, in Eq. (13). Therefore, in the remainder of Sec. IV,

we approximate

1 2] . 8 (5Pz)2
2%m[2’Yl>"”'7"3(513z) + (8p.)*] = Becd P, — Z;efpA; + S ~ (95)

in application of the Hamiltonian H in Eq. (61).‘ Making use of Egs. (61) and (95), a
Hamiltonian H, for the perpendicular motion is introduced, where H, is defined by

(P2 1

HJ_EH—-'ybmcz—ﬂ,,cEP,— 27bm ——2me

Zie s ’
(P2 +pd) + 73'¢ . (96)

In Eq. (96), p? + p§ = p2 + p2, and use has been made of ¢* — $,A; = ¢°/1%. Because H, is
constructed from the constants of the motion H and P,, the perpendicular Hamiltonian H
is also a constant of the motion to the level of accuracy of Eq. (95).

In the remainder of this section, we consider anisotropic beam equilibria f(H, Py, P;) of

the form

ff = Fb(HJ_ + Qng)G(Pz), (97)

where Py, P;, and H, are defined in Egs. (59), (60) and (96), respectively, and equilibrium
properties are assumed to be azimuthally symmetric (/8¢ = 0) and independent of axial
coordinate (8/0z = 0). Making use of Egs. (59) and (96), the argument H; +Q, P occurring

in Eq. (97) can be expressed as
1
H + QP = 5-—[1’3 + (po + 1m&r)?] + V(r), (98)
m '

where V(r) is the effective potenital defined in terms of r and the electrostatic potential

#*(r) in Eq. (67). As in Sec. IV.A, Q; = const. corresponds to the angular velocity of mean
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rotation of the beam, i.e., Vau(r) = (vrm) (S d*fipa f7)/(J d°Pf7) = —Sr for general choice
of Fy(H, + % FP) and G(FP,). In addition, the distribution in axial canonical momentum
G(FP,) is assumed to be strongly peaked about P, = p, + (Zie/c)As(r) = ywmPBsc = const.,
where A = B,¢°. Of course many choices are possible for the functional form of G(P,),
such as a symmetric step-function centered at P, = fybmﬂbc, or a resonance distribution, or
a Gaussian distribution, to mention a few examples. For the case of a Gaussian distribution,

we express

G(R) _ _ (Pz — ,melec)2:| ' (99)

@rymTy) 72 P [ 2ymTs
where Tj, = const. is an effective temperature associated with the axial motion, and G(F;)
has been normalized according to f*°_ dp,G(P,) = 1. For general perpendicular distribution
function Fy(H; +QPs), and G(P,) specified by Eq. (99), it is readily shown that the average
axial flow velocity is V,, = (ysm)~1(f d3pp.f2)/(f 351 = Boc(1+ Z;e A2 /vernBic?). Beéausev
|Zie A2 /vomc?| < P is assumed in Eq. (13), it follows that the axial flow velocity is given
to good approximation by V,, = B¢ = const. Similarly, the z-2 component of the pressure
tensor, which provides a measure of the axial velocity spread of the beam particles, is given
by
Bip(r) = wm / &*p(p, [yem = Vao)*fy = my () T (100)

Here, use has been made of Egs. (97) and (99), and the density profile n)(r) = [ d*pf? can

be expressed as

ni(r) = [ PER(HL + DR, (o)

where [d?p--- = [dp,dps---. Note from (100) that the axial temperature is uniform and
equal to Ty, = const. for the choice of G(P,) in Eq. (99). Of course, in the cold limit
with Ty, — 0, Eq. (99) gives G(P;) — 6(P, — vwmpBuc). Finally, making use of Egs. (97)

and (99), the pressure tensor defined as in Eq. (69) is found to be of the form P,(Z) =

Pyy(r)(E &, + Ep€) + Pjy(r)€.€;, which is diagonal, but generally anisotropic. Here, Pyp(r)
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is the parallel pressure defined in Eq. (100), and the perpendicular pressure is defined by
Pu(r) = S / &*5 [pZ + (po + wmSr)?|f;
2’)‘bm r .

1 -
=== 2—’7-;;71- /dzp ng + (po + ’ymebT)leb(HJ_ + QbPo) (102)
= ng(r)T_u,(r).

Once the radial dependence of P,,(r) and nd(r) are calculated from Egs. (101) and (102)
for specific choice of Fy(H, + QF;), Eq. (102) can be used to determine the radial profile
of the effective perpendicular temperature T ,(r) = Pyy(r)/nd(r).

The perpendicular and parallel distribution functions in Eq. (97) can be specified inde-
pendenﬂy. In the remainder of Sec. IV.B, assuming the normalization [ dp,G(F,) = 1, we
make use of Egs. (101) and (102) to determine the density and pressure profiles for various
choices of Fy(H, + Q,F)), where H, + P, is defined in Eq. (98). In this regard,~it is con-
venient to express p2 = p2 + (ps + ¥mQr)?, and represent [d%5--- = [ dp, [ dps--- =
7 [o°dp? - - in Egs. (101) and (102). This density and perpendicular pressurev profiles can

then be expressed as

00 ']
ng(r) =1 /‘; dﬁﬁ_Fb [ 2::;" + V(r)] , (103)
00 ~2
BT = [Tt n [ Bove], oo

where V(r) = (7m/2)(QQa — Q2)r? + (Zie/18)¢*(r) is defined in Eq. (67). Of course, for
specified Fy(H, +$,P;), the electrostatic potential ¢*(r) must be determined self-consistently

from Poisson’s equation (64), which becomes

19 9
=T

ror -3—1:(]5

I YU Al i -
= —47?Z;e /0 di? Fy [2%m+V'(r)]. (105)

Depending on the choice of Fy(H; + O Fp), Eq. (105) is generally a nonlinear differential

equation for ¢°(r).




Thermal Equilibrium Transverse Distribution
As a first example, we consider the case where Fy(H, + (0, F;) is specified by

- i . (_ H, +QbPa) |
2nymT Ty ’

where 7, and T, are positive constants. Substituting Eq. (106) into Egs. (103) and (104)

(106)

readily gives

o) = mexp{— 222 (00 - e+ 2, (107
and Pi,(r) = nd(r)T1s. As expected, the transverse temperature profile calculated from
Eq. (106) is isothermal with T’ () = T\ = const. Furthermore, Eq. (107) is identical to the
expression for n)(r) in Eq. (72) obtained for the isotropic thermal equilibrium distribution
in Eq. (71), provided we make the replacement kgT. — T, in Eq. (72). The essential
difference between Eq. (71) and Eq. (97), with Fy(H| + Q, P,) specified by Eq. (106), is that
Eq. (97) allows for an energy anisotropy (T’ # Tjj») between the perpendicular and parallel
directions, whereas Eq. (71) does not. Because of the similarity between Egs. (72) and (107),
virtually all of the analysis in Sec. IV.A pertaining to the choice of f in Eq. (71) can be
applied to Eq. (106), provided we make the replacements kgT — Ts. This includes the
condition for radially confined equilibria [Eq. (73)], self-consistent profiles for nd(r) (Fig. 1),

and radial force balance equation |[Eq. (75)], and constraint conditions on (r?) and (Fp)

[Egs. (77)-(79)).

Monoenergetic Transverse Distribution
As a second example, we consider the case where the transverse distribution function
Fy(H) + Q4 Py) is monoenergetic with [26]

~

n

zm';ma(m + QP — T1y), (108)

where #, and T, are positive constants. Substituting Eq. (108) into Eq. (103) gives the

Fy(HL+%F) =

density profile

ng(r)zfzbfoood( Al )5[ P +V(f)—TLb , o)

2vym 2vym
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where V(r) is defined in Eq. (67). As in Sec. IV.A, we take ¢°(r = 0) = 0, and therefore
V(r = 0) = 0. It is clear from Eq. (109) that nd(r) = 0 whenever V(r) > T\;, and
nd(r) = Ay = const. whenever 0 < V(r) < T;. Therefore, as V(r) increases (from zero)
with increasing r, the outer beam radius 7, is determined from V(ry) = T,. Carrying out

the integration over $2 in Eq. (109) thus gives the rectangular density profile (Fig. 3)
fi, = const.,, 0 <7r <y,
ny(r) = (110)
0, T > T

Substituting Eq. (110) into Poisson’s equation (105), we obtain for the electrostatic potential
—Ziemiyr?, 0<r<m,
¢°(r) = | (111)

—Zientyri[l + 2In(r/r)], T > 7
Making use of Eq. (67), the effective potential V(r) in the beam interior (0 < r < 1) can be

expressed as

1 Qu\2 Q)2 Z2e*Nyr? )
vo-pn|(3) -(-) - Tt

where Ny = 2r [{°drrnd(r) = wfsrE is the number of particles per unit axial length. As
noted earlier, the outer beam radius 7}, is determined from V(r) = T_u,, which can be

expressed as

Qe 2 Qa\?] , 211 272N,
e Q- = . 113
[( 2 ) (Qb 2 ) = em + Bm -y

Equation (113) can be used to determine the beam radius 7, in terms of £, Tio, Ny and
other system parameters. Because (r?) = rZ/2 for the uniform density profile in Eq. (110),
note that Eq. (113) is similar in form to the constraint conditon obtained in Eq. (78) for the
thermal equilibrium distribution f in Eq. (71). Furthermore, because {P) = 1m(Qe/2 —
Q)(r?) for the entire class of anisotropic rigid-rotor equilibria described by Eq. (97), the
angular rotation term proportional to (s — Q./2)? in Eq. (113) can be eliminated in‘favor
of (B} /yem(r?).

Comparing Eqs. (112) and (113), it follows that T\, — V(r) = T1,(1 — r2/r2) in the
beam interior (0 < r < ;). Substituting Eq. (108) into Eq. (104) for the transverse préssureA
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profile, we obtain

nQ(r)Tws(r) = s /0°°d( A ) A 5{ A, (1 —g)} (114)

2vem ) 2vym | 29ym b

for 0 < r < 1. Equation (114) readily gives the parabolic temperature profile (Fig. 3)

2

Tip(r) = T (1 - ;—2-), 0<r<m, (115)
b

which decreases from a maximum value of 7', at r = 0, to zero at the beam edge (r =7s).
Note that T ,(r = 7,) = 0 is expected for the monoenergetic transverse distribution in
Eq. (108) because r = r; represents the outer envelope of turning points in the transverse

orbits.

Step-Function Transverse Distribution
As a third example, we consider the case where the transverse distribution function

Fy(H + Q,Py) is specified by the step-function distribution [17]

F=—2—U (HL TQ"P"). (116)
2mymIL, Ty

Here, i, and T, , are positive constants and U(z) is the unit step-function defined by U(z) =1
for 0 <z < 1, and U(z) = 0 for z > 1. Note that T, = const. is the maximum allowed
value of H, + QP in Eq. (116). Substituting Eq. (116) into the expressions for nd(r) and
na(r)T1s(r) in Egs. (103) and (104) readily gives

{ fip[1 — V(r)/TJ_;,], 0<r<m,
() = (117)
0, T >y,
and . X
R Tun(r) = s [ - V?(f)} = 2oy (118)

for 0 < r < 1. Here, the outer beam radius 7 is determined from V(r,) = T1s. Note
from Eq. (117), as V(r) increases from zero at r =0 to V(r,) = T1, at 7 = 7y, the density
decreases from nj(r = 0) = 7, to nj(r = r) = 0. Furthermore, the perpendicular pressure

in Eq. (118) scales double adiabatically, with P, ,(r) proportional to [nd(r)2.
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To determine the effective potential V(r) = (1,m/2)(QQs — Q2)r2 + (Z;e/73)¢°(r) self-
consistently, we substitute Egs. (116) and (117) into Poisson’s equation (105). This readily

yields the (linear) Bessel’s equation for V(r),

180 0, , 4 (, V
rarrarV = 2’)’bm [Qbﬂcb Qb 273 (1 T_Lb):’ : (119)

in the beam interior (0 < r < 7). Here, @3 = 47 Z7%€?/yym is the on-axis plasma
frequency-squared. Solving Eq. (119) for V(r), and defining A% = ~A2T',/4w7,Z2€2, we
obtain -
V(r) = 2pmA3, (a,,nc,, —F - ;%) [10 ({;) - 1] L 0<r<m, (120)
where Ip(z) is the modified Bessel function of the first kind of order zero. Setting V(r =

1) = T, then gives

2 2
T'p wpb/Q’Yb
— = 1

which is a nonlinear transcendental equation that determines the normalized beam radius
s/ )\D self-consistently. Note from Eq. (121) that the beam radius 7, is large in comparison
with the effective Debye length Ap whenever (2,82 — ) is ‘closely tuned’ to &%, /277.
Finally, substituting Eqs. (120) and (121) into Eq. (117) gives for the density profile
(Fig. 4)

T - el 02

in the beam interior (0 < r < ), and nl(r) = 0 for r > 7. Note from Eq. (122) that
nd(r = 0) = fi, and nd(r = r,) = 0, as expected. Here, use is made of Io(0) = 1.
As a fourth and final example for a uniform focusing field B,(z) = Bo = const., following

development of the density inversion theorem in Sec. IV.C, we will consider the case where

the density profile has the parabolic form n{(r) = (1 — r?/rZ) for 0 < r < 73,

C. Density Inversion Theorem
For the class of anisotropic beam distributions ff = Fy(H| +QP)G(FP,) in Eq. (97), the

configuration- and mometum-space dependences of f7 are so interconnected [see Eq. (98)]
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that a specification of the radial dependence of a macroscopic equilibrium profile, such as the
density nd(r) = [ d3pf, is sufficient inforfnation to reconstruct the detailed functional form
[26] the transverse distribution function Fy(H1 + QF%). To illustrate this point, we note
from Eq. (103) that the density profile nd(r) depends on the radial coordinate r exclusively
through the effective potential V(r) = (1:m/2)(QQes — Q)r* + (Zie/7§)#°(r) defined in
Eq. (67). Taking the derivative of nJ(V') with respect to V' in Eq. (103) gives

‘;"‘, (2mpm) [ dU-——F},[U + V), | (123)
where the variable U = $2 /2yym has been introduced in Eq. (123). Assuming that F[U +
V(r)]luv—co = 0, and integrating by parts on the right-hand side of Eq. (123) gives

| 1 (ang

F(H, + WF) = - S \ 3V

) (124)
V=H, +Pp

for the transverse distribution function Fy(H) + QuFs).

The density inversion theorem can be summarized as follows. For specified nd(r) we
calculate the electrostatic potential ¢*(r) from Poisson’s equation r~1(8/8r)(rd¢®/0r) =
—4nZ;eny(r), and the effective potential V (r) from the definition V(r) = (1%m/2)(QQe —
Q2)r?+(Ziend)¢°(r) in Eq. (67). Solving then for r(V), assumed to be monotonic, we evaluate
Ony/dV = (9nl/8r)(8r/8V) in Eq. (124), which determines the transverse distribution
function Fy(Hy + QWFs).

By any measure, this density inversion theorem is a remarkable result, which can be used
to determine the (assumed) distribution functions Fy(H. + Q0 Ps) in Egs. (106), (108), and
(116) from the (derived) density profiles in Egs. (107), (110) and (122), respectively. To
illustrate this point, we consider the prescribed parabolic density profile (Fig. 5)

(1 = 72/r2), 0<r<my, .
o-|

0, T > T

0

n, (125)

Making use of Poisson’s equation (105) and the definition of the effective potential V(r) in
Eq. (67) gives

m w2re r?
V(r) = 122- [(Qbﬂcb ~ Q2)r? - Jb—2'73 (1 - :i'r_,?)] (126)
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for 0 < r < r,. Inverting Eq. (126) for r2(V) gives

1/2
r3 (V) (Qbﬂcb -Q2 - cbpb/2fyb2)2 16V / Qe - OF — w2 /242 (a27)
T? % [4nE Yomriis, /72 0% [4E ’

where 02, = 4miv,Z}e? [yym. Substituting Eq. (127) into Eq. (125) and evaluating 9ny/dV,
it is readily shown from the density inversion theorem in Eq. (124) that the transverse
distribution function Fy(H, + QFs) which is consistent with the parabolic density profile
assumed in Eq. (125) is given by

B = 'flb ’nm’r‘fcbgb
* T 2rpm 3292

-1/2

2
= + H, +Q,PF,
16’)’3 wpb/ 4’7’3 ) * oo T

In Eq. (128), U(z) is the unit step-function defined by U(z) = 1for0 <z < 1,and U(z) =0

y [fybrmbzbrbz (Qchb — Q — &5/27; U (_Hl__f_g_z"_P") . (128)

for z > 1. Note from Egs. (125)-(128) that the outer beam radius r; is determined from

V(ry) = T_u, = const., which can be expressed as

oT 302
—f)';:f = (Qchb - Qg)?’g e 8—’)%27‘3 (129)

For the parabolic density profile in Eq. (125), the number of particles per unit length is
Ny = 2r [5°drrn(r) = why,rE /2. Therefore, Eq. (129) can be expressed as

Qep\ 2 Qep\ 2 2T, 322N,
[(f) - (Qb - _22) }rf - ’yb;‘f + Bm . (130)

Note that (r?) = r2/3 for the parabolic density profile in Eq. (125), and that Eq. (130) can
be used to determine r? self-consistently in terms of €, Ty» and N, for a broad range of
system parameters. Not surprisingly, Eq. (130) is similar in form to Eq. (113) derived for a
uniform density beam.

To summarize, the density inversion theorem in Eq. (124) applies to the entire class
of anisotropic beam distributions f7 in Eq. (97) and is clearly a very powerfui result. For

specified density profile nd(r), the corresponding expression for V/(r) is inverted to determine
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r(V). Equation (124) can then be used to determine directly the transverse distribution

function Fy(H; + 3 F,) that self-consistently generates the assumed density profile nd(r).

D. Force Constraint Relating the Mean-Square
Radius (r?) to the Transverse Thermal Emittance

The entire class of anisotropic beam distributions f? = Fy(H, + Q:Ps)G(F;) in Eq. (97)
can be characterized by a universal force constraint condition that relates the mean-square
radius (r?) to the transverse thermal emittance €, number of beam particles per unit
axial length N,, and angular rotation velocity ,. This constraint condition is analogous
to Egs. (113) and (130) extended to arbitrary choice of Fy,(H, + QWF).

From Eq. (104) and some straightforward integration by parts, it is readily shown that
AP, /0r = —nd(r)0V (r)/Or, where V(r) is the effective potential defined in Eq. (67), and
Py = nd(r)T1s(r) is the perpendicular pressure defined in Eq. (102). This gives the condition

for local radial force balance, which can be expressed as

OP 2
G:b = —')q,mng(Qchb - Qz)r 47rZ ¢ nb/ drrnb (131)

Here, Poisson’s equation (105) has been integrated to give 8¢°/0r = —(4wZ;e/r) f§ drrnd(r),
and Eq. (131) is valid for general choice of transverse distribution function Fy(H, + QF;).
Comparing Eq. (76) and Eq. (102), it is clear that the spatial average of Piy(r) and the

statistical average (p? + (ps + 7742, 7)?) are related by

0o N, N, vemB2cel
d — 0 2 2y __ 2B e tth
2m fo rrPy Q,me(pr + (po + %mr)®) = 2 o (132)
where €y, = (4/7Fm?B3c*)(r*)(p2 + (ps + 1mS%r)?) is the unnormalized transverse thermal
emittance defined in Eq. (80). Returning to Eq. (131), we operate with 2r f;°drr?--. and

carry out some straightforward integration by parts that assumes P ,(r — oo0) = 0. This

gives
2,2
Zie* Ny

g (133)

'ymeb / drrPiy = (W — O2)(r?) — ==—
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where (r?) = (2a/\y) J5° drrnd(r) and N, = 2r [3°drrnd(r). Expressing (2, — (2 =
(Qe/2)? — (U — Np/2)?, and making use of (Pp) = 1m(Qep/2 — D) {r?) to eliminate (Qp —

Qe/2)2, the constraint condition in Eq. (133) can be expressed in the equivalent form

Z?Csz N 1 [(Po)z

1
@2ty - et - NG S, (130)

where use has been made of Eq. (132) to express 27 f[;° drr Py, in terms of the thermal
emittance.

Equation (134) is a powerful constraint condition that relates the mean—squé,re radius (r?)
to N, {Ps) and €, for the entire class of anistropic beam equilibria ff = Fy(H, +QPy)G(F;)
in Eq. (97), no matter how complicated the corresponding self-consistent profiles for the
density n)(r) and perpendicular pressure P;,(r). Indeed, because the local radial force
balance equations (91) and (131) are identical in form, the constraint condition in Eq. (134)
also applies to the entire class of isotropic beam equilibria f? = fO(H — V,P, + Q,F5) in
Eq. (65). Finally, only in the special case where (F;) = 0 and Q, = Q/2 is the term

proportional to (Fp)? absent in Eq. (134).
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V. INTENSE BEAM EQUILIBRIA IN A
PERIODIC FOCUSING SOLENOIDAL FIELD

A. Theoretical Model and Basic Equations

We now consider the case of a periodic focusing solenoidal field B,(s + §) = B.(s)
described by Eq. (7), and employ the formalism developed in Sec. III.B that utilizes the
nonlinear Vlasov-Poisson equations (35) and (47) to advance the distribution func-
tion f(z, Pe;y, P,; —H, s) and the normalized effective potential ¥(z,y, s) = (de/fyfmﬂ,?cz)
x¢*(z,y,s). Here, the characteristics of the nonlinear Vlasov equation (35) are given in
Egs. (39)-(42), and the transverse particle orbits 2(s) and y(s) satisfy Eqgs. (45) and (46).
As discussed in Sec. II1.B, the advantage of transforming to the new canonical variables
(z, Py;y, Py;t,—H; s) is that for time-stationary equilibria with 8¢°/8t = 0 and 8f,/0t = 0,
it necessarily follows that d(—H)/ds = 0. The formalism developed in Sec. III.B, while
consistent with the thin-beam approximation in Sec. 11, is otherwise quite general and can
incorporate a (small) spread in axial momentum p, or total energy H of the beam particles.
[See discussion following Egs. (36) and (37) where p,(H) = ymfsc depends on H.] For our
purposes here, however, we specialize to the case where the spread in H is negligibly small

and express
fl?(mv Px: Y, Py) _H,S) = ﬁb(H)é(H - ’?bmc2)F~;J($, Pa:,y, RH 3), (135)

where 4; = const., and H = y,(H)mc?® = [m2c* + p(H)]/? and By(H) = [1 — v, 2(H)]V/2.
From Eq. (31) or Eq. (38), for a thin beam with small transverse momentum consistent with

Egs. (9) and (13), it follows from Eq. (135) that
0 _ Oz 0 _ . .
dpsz - dHa_ﬁfb = ["b(ZII,P,,,y,Py,S), (136)

where use has been made of Eq. (31) and

dp, H/e 1

BH ~ (H2J —m22)12  Gy(H) (137)
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Substituting Eq. (135) into Eq. (35) and operating with [dp,--- = [dH(8p,/0H)--- then

gives for the evolution of the reduced distribution function ﬁ‘b(x, P.;y,Py;s)

ok, ,0F, 3F, _,0F, _,0F,
~0. !
s 1T YV Thpp thgp =0 (138)

Here, the characteristics z', 3/, P} and P, of Eq. (138) are defined by Egs. (39)-(42) (for sim-
plicity of notation, we drop the ‘hat’ on 4, and 3), and ¥(z,y, s) = (Zie/v¥mB2c?)¢*(x, y, s)

solves Eq. (47), where the beam density n,(z,y,s) = [ d3Ff0 is expressed in terms of F} as
no(z, 5, 5) = / dP,dP, F. (139)

For notational simplicity in the analysis of Eq. (138), it is convenient to introduce the
normalized transverse canonical momenta defined by B,=P, /1smBsc and Py = P, /vwmpbsc,

and the normalized transverse Hamiltonian H, = H, /y,mc defined by [see Eq. (38)]

Ay = 1Pt /i) + 1B, - o/m ) + (z,9,). (140)

In Eq. (140), \/x,(s) = Z;eB,(s)/2vmpyc? is the solenoidal coupling coefficient defined in
Eq. (43), and ¥(z,y,s) = (Zie/vimpBic?)$*(z,y,s) is the normalized potential defined in
Eq. (44). We readily find from dz/ds = 8H, /8P, and dP,/ds = —8H, /dz,

dzr .
% = P, + yy/k: (), (141)

dd]:x _ _.g% + /Ko (8)[By — /K (8)], (142)

and from dy/ds = 8H, /0P, and dP,/ds = —8H, [y,

dy .
i Py — z\/k.(s), . (143)

e X ! (144)

Equations (141)-(144), derived from the transverse Hamiltonian in Eq. (140), are equivalent

to the dynamical equations (39)-(42) obtained in Sec. III.B, but are now expressed in terms
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of the convenient quantities B, and P,, «.(s), and 1. We further express Eq. (138) in terms
of the variables (z, £,;y, Py; s) and introduce the distribution function F; defined by

F},(.'E, Pz;y) py; S) = ('7bm13bc)2pba (145)

which is scaled by the constant factor (1,mB,c)? relative to F,. Making use of Eqgs. (139)
and (145) to express ny, = [ szdPyF'b =f dPEdPyFb, the nonlinear Vlasov-Poisson equations
(47) and (138) become

oF, OF; OF; oF, oF;

Tl 1Y ! 2
24P —=0 146
5t TV, +anPz+ voB, (146)
and
8 o 4 Z2€? A
L V=258 [apdb,F, 147
(57 * 87) = s [ aPeabons (47

Equation (146) describes the nonlinear evolution of the distribution function
Fy(z, }5,; Y, Py; s) determined self-consistently in terms of 1(z,y, s) from Poisson’s equation
(147). Moreover, the characteristics =/, P!, 4 and 13; of the nonlinear Vlasov equation
(146) are given directly in terms of (z, P,;y, P,;s) by Eqs. (141)-(144). Equations (146)
and (147) have a wide range of applicability consistent with the thin-beam approximation
and the (albert restrictive) assumption of negligibly small spread in total energy H and
axial momentum spread made in Egs. (135)-(137). No assumption of azimuthal symmetry
(0/98 = 0) has yet been made in Egs. (146) and (147).

It was noted briefly in Sec. II1.B that simplifications occur in the transverse orbit equa-
tions by transforming to the Larmor frame of reference rotating with normalized angular
velocity Q.(s) = d/ds = —/k,(s) relative to the laboratory frame. We now perform
a canonical transformation from laboratory-frame variables (z, P,; v, Py) to Larmor-frame

variables (Z, P4, f’y) by introducing the generating function
Fy(&, By; §, Py; s) = [ cosBy,(s) + ysinb,(s)| B, + [~z sinO(s) + ycosb,(s)|P,,  (148)
where 01,(s) = — [, dsy/k.(s). The generating function in Eq. (148) defines the transforma-
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8F2/6P = :ccosﬂL + ysinfp,
(149)

tion
o £ =
§ = 0F/oP, = —:csm0L + ycos by,
and - o
. e = OF/0z = Px cosfy, — Py sin OL,
) (150)
P, = 9F;/0y = P,sinb + P,cosfy,
or equivalently, | 3 ) )
P, = P,cosf,+ P, sinfy,
- (151)

13,; = —P sinf + 13,, cos ;.

The new perpendicular Hamiltonian in the Larmor frame is H, = H, + 8F,/ds expressed
in Larmor-frame variables (%, P,;§, P,) From Eq. (148) and df; /ds = —/k,(s), we obtain

% = —/Fo(—zsin by +ycos8.) P, + /R, (x cosb, +ysinb,) P, = \ /&, (zP, — yP,), (152)

where use is made of Eq. (150). From Eqgs. (140) and (152), it follows that
(153)

OF,

3 _1 » H2 1 2 2

P2+P2and:c +1y? =2+ ¢

Making use of Eqgs. (149) and (151) to express P2 + P2

the new transverse Hamiltonian H, expressed in Larmor-frame variables is given by
(154)

~ = = 1, - ~ 1 o . .
Ho (%, Psi 9, By ) = 5(F7 + B)) + 55:(s) (& + %) + (&, 9, 9).
The equations of motion in the Larmor frame are given by dZ/ds = 8H, /8P, dP,[/ds =

—8H, /0%, d/ds = AH,)BP, and dP,/ds = —8H, /83. From Eq. (154) we readily obtain

dé¢ - dP, oy

ds ™ ds T (155)

dj - dP, . o

A =¥ - ——. 6
Y ds K:Y 9 (15 )

ds
The nonlinear Vlasov-Poisson equations (146) and (147) for Fy(Z, Pr; 9, P,; s) and ¥(%, 9, s)

in Larmor-frame variables become
oF, _O0F, _0F, -,0F, - OF,

+i&—+§—==+P, + P] =0, 157

o V9 ' *oB,  Yop, (157)
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(&+ 5‘;)@9--—@@’- [TV )

The eharacteristies &/, 7', B and P' of the nenlinear Viasev equation (157) are defined i
terms of (&, B §, B 8) by Bes. (158) and {186). Thsfefefs; Bq: (157) ean be engeggeé in
the equivalent form . .
—ﬂﬂrﬁga—@im% (mﬂr%&i)% (;s, g#%@-)g% o (159)
where Y(%, 4§, 8) is determined in terms of Fy(Z, By i, By; 9) by means of Poisson's equation
(188).

The Viasev-Peissen equations (158) and (159) ean be used to investigate the nenlinesr
evelution of the distribution funetion F} in the four-dimensionsl phass spaee (F, 5§, B)
for & wide range of system parameters and Ynitial’ eonditions (at ¢ = sy, s8y). Indeed,
Bqs: (158) and (159) generally allow for both radial (9/8F # b) and azimuthsl (9/66 # 6)
variatiens in the effective potentisl ¥ snd distribution funetion £

B. Viasev-Peissen Deseription for Asimuthally
S8ymmetric Beam Propagation (6/60 = 0)

In the remainder of Bee. V, we spesialize to the ease where the distribution funetion
F), and effective potencial 9 are azimuthally symmetric (8/6§ = 0), i.e., depend en & and
§ exclusively through the radial ecordinate # = (8% + §8)1/2, As neted in See. 111.B, this
leads to several simplifications in the transverse particle dynamies [see Eqgs. (52)-(56)], and
therefore in the nonlinear Vlasov-Polsson equations (158) and (159). For 8/66 = 0, it follows
that ¥ = (7, 8), and 8y /8F = (&/F)8y/6F and 8y /8f = (/F)8y /OF. Therefore, from the
orbit equations (155) and (156) it is readily shown that "

d A .=
b= —(a:P,, - §B;) =0, | (160)

corresponding to conservation of canonical angular momentum P (in the Larmor frame).

Two options are available for analyzing Egs. (158) and (159) when 8/ 80 = 0. One approach
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is to transform directly to the variables (7, P,;8, Py; s) in cylindrical coordinates, imposing
/8§ = 0 = F,/00 ab initio. The other is to continue the analysis of Eq. (159) in a
Cartesian representation, impésing the condition that ¢ = ¥(7,s). We discuss these two
approaches separately.

First, transforming directly to a cylindrical representation, we express P2 + P2 P2 +
P2/ and #* = %+ ¢ in the expression for the perpendicular Hamiltonian H, in Eq. (154).
This gives

H (7, P.;0,B;s) = (P2 fz) + %fcz(s)fz + Y(F, s). (161)

The equations of motion are d/ds = 8H, /8P, dP,/ds = —dH, /87, db/ds = BH, [3P,
and dP [ds = ~8H, /(‘90~ Because 8H, /80 = 0, this readily gives

T N .
o T Y T (162)
w_ b o dp o (163)

ds 72’ ds
Note from Eq. (163) that dPy/ds = 0, as expected. For azimutally symmetric beam dis-
tributions with 8F,/80 = 0, it follows from Eqgs. (159), (162) and (163) that the nonlinear

Vlasov equation for F(7, }Sr; 159; s) can be expressed as

6Fb ~ an - P92 a'l,b an
e + P, 5 (r;zr (164)

where k,(s + S) = &,(s) generally depends on s, and (7, s) is determined self-consistently

from Poisson’s equation

100 __ 4nZ3e 1
5 OF = T pmiE / dB.dB,F;. (165)

Here, use has been made of f dpxdpy oo =7 11dP.dP, ---. There are some advantages to
the cylindrical representation used in Eqgs. (164) and (165). First, Eq. (164) takes explicit
advantage, from the outset, of the fact that P; is a single-particle constant of the motion when
8/80 = 0. Second, the characteristics of Eq. (164) involve calculation of the radial orbits

in the two-dimensional phase space (7, P,). Indeed, Eq. (164) is particularly well suited to
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integration using the method of characteristics (see Sec. V.D for a brief discussion). Finally,
Eq. (164) can readly be used to describe equilibrium properties (9/0s = 0) for intense beam
propagation parallel to a uniform focusing field with «,(s) = .0 = const. (independent of
s). For s-independent %(7), it follows from Eq. (161) that H, (as well as P;) is an exact
single-particle constant of the motion (dH/ds = 0). In this case the equilibrium beam
distribution (8F) /s = 0) can be constructed from the single-particle constants of the motion
H, and By with F? = F?(H_, P;) (see also the discussion in Sec. IILA). That is, FO(H |, P)
solves the nonlinear Vlasov equation (164) exactly, because (d/ds) F(H 1, Ps) = 0 whenever
dH,/ds = 0 = dP,/ds. In this regard, is should be noted that distributions of the form
F,?(ff 1+ Qbf’o), where (), = const., correspond exactly to the class of rigid-rotor Vlasov-
equilibria considered in Sec. IV.B. Here, of course, —{}, = const. is the (appropriately
normalized) angular rotation velocity in the Larmor frame.

We now return to the Cartesian representation of the nonlinear Vlasov equation in
Eq. (159), allowing for axial variation of k,(s + S) = k(s), but assuming 8y /88 = 0,
i.e., ¥ = (7, s). Making use of 3/d3 = (&/7)p /D7 and /8y = (§/7)d/OF, the Vlasov
equation (159) can be expressed as

aF, - BF,, JF, . 10y _\ OF, - 16¢ dF},
s + Py +Py8y (nm+,ar )3Px (nz ~4 8P

The characteristics of Eq. (166) are identical to the orbit equations (54) and (55) for Z(s)

=0, (166)

and §(s). Following Courant and Snyder [28], it is convenient when analyzing the particle

motion to express the transverse orbits as

#(s) = Aw(s) cos ( / d?s) N ¢0) i(s) = Aw(s)sin ( . w;i(ss) | ¢0) (167)
where A and ¢ are constants (independent of s) and w(s) is the so-called envelope function.

Note from Eq. (167) that
P(5) = #(5) + (s) = A%u(s). ey

The equation advancing w(s) is readily obtained by substituting the expression for Z(s) or

%(s) in Eq. (167) into Eq. (54) or Eq. (55). For example, it follows from Eq. (167) that the
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Z-motion satisties

di dw s ds A s ds 1dw 1.
i (/30 w3 (5) +¢°) ~w (/ () ¢°) wds® " wt  (169)

d*s dw 1 s ds 1 (d*w 1Y\.
@ A (T - w—) (L o)t ¢°) =% (T B a') & (170)

Analogous equations can be obtained for dj/ds and d?§/ds®. Substituting Eq. (170) into

Eq. (54), and defining the self-field coupling coeflicient x,(s) by
10 .
Ka(s) = — [;-a;w(r, s)] ) (171)

it follows directly that the envelope function w(s + S) = w(s) solves
, »

Z570(5) + ) = ma(a)hol) = (72)
Equation (172) can also be obtained in a similar manner by substituting the espression for
4(s) in Eq. (167) into Eq. (55). In the special case where the density profile is radially
uniform with n,(7, s) = 7y(s) = Ny/wri(s) for 0 < 7 < rp(s), and n;,(r', s) = 0 for 7 > 71(s),
we note from Poisson’s equation (158), when d¢/80 = 0, that o = —(1/2)(K/rd)#® in’
the beam interior (0 < 7 < 7). Here, K = 2N,Z%e?/v¥mf2c? is the self-field perveance,
and N, = 2w [;° di ¥ n,, is the number of particles per unit axial length. In this case, the
expression for k4(s) in Eq. (171) reduces to the familiar result x,(s) = K/r2(s). In general,
however, for nonuniform density profile n,(7, s), the coefficient £4(s) in Eq. (171) depends
explicity on Aw(s), thereby increasing the complexity and nonlinearity of Eq. (172) for the
envelope function w(s).

The azimuthal symmetry of (7, s) places powerful constraints on the transverse orbits
Z(s) and g(s). Denoting ¥’ = dZ/ds, §' = dj/ds, and w’ = dw/ds, it is readily shown from
Eq. (167) that

2+ 4% = w?A?,

1
=12 4 =2 2 2
Tty —(w' +'—2)A,
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Sre(e-3) - "

Here, A = const., and w(s + S) = w(s) solves the nonlinear envelope equation (172). Note
that the constraint condition zj’' — y#' = A® in Eq. (173) corresponds to conservation of
canonical angular momentum. In addition, the third and fourth constraints conditions in
Eq. (173) cox;responds to conservation of the phase space area (equal to mA?) in the phase
spaces (Z,%') and (g, %) for the #- and §-orbits. Here, for radially nonuniform density profile
ny(7,s), we reiterate that the solution for w(s) obtained from Eq. (172) generally depends
on A, as evident from the expression for ks(s) and Eq. (171).

We now perform a canonical transformation from Larmor-frame variables (Z, P4, Py)

to new variables (X, Px;Y, Py) by introducing the generating function F, defined by

d
P, Pridy Bris) = = (Pe+ 222) + (B 4 I22), (174)
w 2ds 2 ds

where the envelope function w(s) solves Eq. (172). The generating function in Eq. (174)

defines the transformation

_OF, I _ OFy _37_
X=5h"w Y~ oB " w (175)
and
~ 6F2 1 dw ~ 6F2 1 _dw
= — —1. 76
F= 0%  w (PX ds) » B= 8y  w (PY + ds) (176)

The new Hamiltonian H, expressed in the variables (X, Px;Y, Py;s) is given by H, =
H, +8F;/8s, where H, and F, are defined in Eqs. (154) and (174)., respectively. Evaluating
OF;/8s from Eq. (174) and making use of the expression for H, in Eq. (154), we obtain for
H, (X, Px;Y, Py;s)

Hy= (P + )+ (V) [T ). 07
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Here, use has been made of Eqgs. (175) and (176) to eliminate (&, P;;§, P,) in favor of
(X, Px;Y, Py). Making use of Eq. (172) to express w™! d?w/ds?® + k,(s) = ks(s) + 1/w?,
Eq. (177) becomes

1,
Hi(X,Px;Y,Py;s) = M(Pf( +PE+X2+Y?) + 61/)(w(s)R, s). (178)

Here, from Eq. (171) and (177), the effective potential 81 occuring in Eq. (178) is defined
by

sp(wR, s) = |Y(F,s) — -;—f%zp(f, s)] =-3 {WE [ﬁw(f,s)]} (179)

f=wR F=wR
and R? = (X? +Y?) = (2% + 7%) /w?(s) = 72/w?(s) follows from Eq. (175). It should be
emphasized that 6y is directly related to the radial nonuniformity in the density profile
ny(7,s). For example, if F, corresponds to the Kapchinskij-Vladimirskij (KV) distribution
[24], then the denmsity profile is radially uniform with n,(7,s) = fs(s) = Np/nrE(s) for
0 < 7 < 1b(s), and ny(7, s) = 0 for r > 1,(s). As noted in the discussion following Eq. (172),
for this case ¥(7,s) = —(1/2)(K/r2)7? in the beam interior (0 < 7 < 7,), and therefore
6y = 0 follows directly from Eq. (179). Consequently, the term proportional to 6 in
Eq. (176) should be viewed as a measure of the departure of the system from a KV-like
beam distribution with characteristic step-function density profile and parabolic potential
(¢  #2) in the beam interior.

The equations of motion in terms of the new variables (X, Px;Y, Py) are given by
dX/ds = 8H, /dPx, dPx/ds = —8H, /80X, dY/ds = OH, /0Py and dPy /ds = —8H, /dY,
where H (X, Px;Y, Py; s) is defined in Eq. (178). For azimuthally symmetric ) (wR, s), if
follows that d61/0X = (X/R)06v/OR and 86vy/dY = (Y/R)Ob6¢/OR. Therefore, the orbit

equations become

i)_(_— Px aPx X __E_@_ (180)
ds w2(s)’ ds  w%s) R AR’
&y B dP, Y Yoy as1)

ds  wi(s) ds  wi(s) " ROR’




where R = (X% +Y?2)!/2 61/)(w(s)R, s) is defined in Eq. (179), and the envelope function
w(s + S) = w(s) solves Eq. (172). In terms of the new variables, the nonlinear Vlasov
equation (166) gives for the evolution of Fy(X, Px;Y, Py;s)

pF, Py OF, _Pl?ﬂ_()( xa&b) OF, (g’_ Ya&b) OB o (182)

D5 w2 X T w? oy * RoR ) 5Py ROR ) 3B,
The effective potential 8 occuring in the characteristics of Eq. (182) is defined in terms
of 1(, s) by Eq. (179), which is determined self-consistently in terms of Fy(X, Px;Y, Py;s)
from Poissons equation (158). Making use of Eq.(176) to express [dPdP,---
= w™?(s) [dPxdPy - - -, Eq. (158) becomes

19 81/) 4AnZ;e?
T 81' aF fyfmﬁ c? w2(s

/ dPydPy F, (183)

for azimuthally symetric 9(7, s). Equations (182) and (183), together with the definition of
&1 in Eq. (179) then provide a closed description of the nonlinear evolution of the system in
the new variables (X, Px;Y, Py;s).

It was noted earlier, for the azimuthally aymmetric case considered here, there are often
advantages to working directly in variables appropriate to cylindrical coordinates. [See the
discussion leading to the cylindrical representation of the nonlinear Vlasov-Poisson equations
(164) and (165) in the Larmor frame.] Therefore, to conclude Sec. V.B, we summarize briefly
the appropriate transformations leading to the cylindrical analogue of Egs. (182) and (183)
in the new variables (R, Pg;©, Po;s). Specifically, we transform from the Larmor frame
variables (7, 15,;5,159,3) used in Egs. (161)-(165) to the new variables (R, Pg; 9, Po;s) by
introducing the generating function F; defined by

. ~ 1 72 dw
Fy(7, P,;0, Po;s) = —TPR +6Ps + T_d? (184)

where the envelope function w(s + §) = w(s) solves Eq. (172). The generating function in

Eq. (184) defines the transformation

R=u2=-L =224, (185)
w




. 6F2 PR T dw ~ an
%2 R, TCOY = P 186
7 w wds’ Fo= E (186)
The new Hamiltonian H (R, Pg;©, Pe;s) is given by H; = H, + 8F;/0s, where H, is
defined in Larmor-frame variables by Eq. (161), and F; is defined in Eq. (184). Some

straightforward algebra shows that

1 P2 1o [ldw
Ho= gz (P4 32 b e [ S50 4 (0] (187)

Making use of Eq. (172) to eliminate w='d?w/ds® + &, in Eq. (187) readly gives

P

D + Rz) + 61/1(w(s)R s) (188)

. 1
H, (R, Pg;0, Pg;s) = 202(s) (P + =

Here, the envelope function w(s) solves Eq. (172), and éy(wR,s) is defined in terms of
(7, s) by Eq. (179). In the new variables, the equations of motion are dR/ds = 8H | /O Pk,
dPr/ds = —0H, [OR, d©/ds = OH /0P, and dPg/ds = —OH, /0O. Because 0H, /0O =

0, this gives
dR Py dPs 1 P2\ 96y
= — = — — - — 89
ds w?(s)’ ds w?(s) (R R3) oR’ (189)
i®__Po_ dPe _, (190)

ds w?(s)R?’ ds
Therefore, making use of Egs. (189) and (190), and assuming an azimuthally symmetric beam
distribution with F, /00 = 0, the distribution function Fy(R, Pg; Ps;s) evolves according

to the nonlinear Vlasov equation

OF, PRoF, |1 P2\ . 96y) 0F,
s ' W OR [wi’ (R 7 )" or|am =" (191)

OPg

Equation (191) should be compared with the cylindrical representation of the Vlasov
equation in Eq. (164) in the Larmor-frame. As before, the particularly simple form of
Eq. (191) when compared with the Cartesian representation in Eq. (182) has to do with the
fact that azimuthal symmetry (8/39 = 0) and the constancy of Pe are incorporated ab initio

in Eq. (191). The effective potential §y(wR, s) occurring in Eq. (191) is defined in terms of
Y(7, ) by Eq. (179), and w(s + S) = w(s) solves Eq. (172). Making use of Eq. (185) and
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(186) to express (1/7) fdP.dPy--- = (1/w*R) [ dPgdPs---, the Poisson’s equation (165)
can be expressed as

1_8_71% __4AnZie 1
FOF OF  ¥mpBiRwi(s)R

/ﬂ%ﬂ%ﬂ. (192)

Equation (192) relates F,(R, Pg; Ps;s) in the new variables to ¥(7, s), which in turn can be
used to determine the effective potential §1p(wR, s) defined in Eq. (179).

To summarize, in Sec. V.A we have presented a variety of representations of the non-
linear Vlasov-Poisson equations for axisymmetric beam propagation (8/ 80 = 0) through a
periodic focusing solenoidal field B,(s + S) = B,(s). These include both cylindrical repre-
sentations in Larmor-frame variables [Eq. (164)] and in tranformed variables [Eq. (191)], and
Cartesian representations in Larmor-frame variables [Eq. (166)] and in transformed variables
[Eq. (182)]. These equations have a wide range of applicability to beam distributions with
radially nonuniform density profile n,(r, s). Which representation is most appropriate to use
depends on the particular numerical or analytical technique that is best suited to the specific

application under consideration.

C. Periodically Focused Rigid-Rotor Vlasov Equilibria
We now make use of the theoretical formalism developed in Sec. V.B to consider a specific
example of azimuthally symmetric, periodically focused beam distributions F3.
As an example, we consider the case where the density profile is radially uniform over

the beam cross section with

Ny/7re(s), 0 <7 < mp(s),
ny (7, 8) = (193)

0, 7 > 1y(8).
Here, ry(s + S) = 74(s) is the outer radial envelope of the beam, and N, = 27 [;° df fn, =
const. is the number of particles per unit axial length. In this case, it follows from Poisson’s
equation for ¥(7, s) [see, for example, Eq. (158)] that

Wﬁﬂ:—zggﬁ (194)
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in the beam interior, 0 < 7 < 74(s). In Eq. (194), K = 2N,Z?e?/¥mpBic? is the self-field
perveance. Substituting Eq. (194) into Egs. (171) and (179) readily gives k4(s) = —K/r(s),
and

oyY(wR,s) =0. (195)

Equation (172) for the envelope function w(s + S) = w(s) then becomes

d? K
) 1ale) - ] wle) = s (196)

for the choice of step-function density profile in Eq. (193).

We choose to consider this example within the context of the nonlinear Vlasov-Poisson
equations (191) and (192) expressed in the transformed cylindrical variables (R, Pg; ©, Po; s).
The question posed is what choice of azimuthally symmetric distribution function
Fy(R, Pg; Pe;s) generates self-consistently the density profile in Eq. (193). Here, from

Eq. (192), the density profile can be expressed in terms of Fy(R, Pg; Pe;s) by
- 1
nb(r,s) = W/dPRdPer (197)

For 6¢(wR,s) = 0, the Hamiltonian in Eq. (188) becomes H, = (1/2)(P + P3/R* +
R?)/w?(s), and the orbit equations in Eq. (189) and the characteristics of the nonlinear
Vlasov equation (191) undergo corresponding simplification. Particularly important, while
the perpendicular Hamiltonian is not a conserved quantity (dH, /ds # 0, in general), the

scaled energy variable H, = w?(s)H, is conserved, where

_Llfpe, B) , 1,
H=1 (PR+ R2) + 3R (198)

This follows trivially from the orbit equations for Pg(s) and R(s) in Eq. (189), which give

d B dPr dR Pg _
dsH_L—-PR s +E;(R—ﬁ)_0' (199)

Here, use has been made of 6y =0 and dPg/ds =0. Therefore, any 'distribution
Fy(R, Pr; Po;s) = F?(H_, Ps) that depends on R, Py and Pe exclusively through H, and

Peo, necessarily satisfies the nonlinear Vlasov equation (191) (dF;/ds = 0), and is also an
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equilibrium solution to Eq. (191) with 8F,/8s = 0. This is true provided F?(H,, Pg) also
generates self-consistently the step-function density profile n;(, s) assumed in Eq. (193).

The only known distribution function F that self-consistently generate the density profile

in Eq. (193) is
N,
2m2ep

1
Ff(H_L,Pe) = ) [H_L + wpPe — -2'(1 - wf)eT . (200)

Here, |ws| < 1 is a constant parameter that measures the mean rotation of the beam in
the Larmor frame, and er =const. is the effective unnormalized transverse emittance, which
includes both the directed transverse motion of the beam particles, as well as the random (or
’thermal’) motion relative to the mean. Equation (200), recently considered by Chen, Pakter
and Davidson [23], is an important generalization of the rigid-rotor Vlasov equilibrium in
Eq. (108) (where 8/0s = 0) to the case of a periodic focusing solenoidal field B, (s + S) =
B.(s), as well as an important generalization of the Kapchinskij-Vladimirskij distribution
[24] to allow for an average beam rotation in the Larmor frame (w, # 0). Making use of the
definition of H, in Eq. (198), the argument of the §-function in Eq. (200) can be expressed

as

1 1 P N1 R?
H, +wpPe — §(l -—UJE)GT = § !:PI% + (_]% +wbR) } - 5(1 —_ wf)eT (1 - ;) . (201)

Substituting Eqgs. (200) and (201) into the expression for the density profile n,(7,s) in

Eq. (197) gives, after some strightforward algebra,

Ny/rw?(s)er, 0< Rje)f* <1,
no(7, 8) = (202)

0, R/ e;v/ 2> 1.
Equation (202) is identical to the assumed density profile in Eq. (193) provided ry(s) and

w(s) are related by
ro(s) = e 2w(s). | (203)

Here, from Eq. (185), keep in mind that R = 7/w, so that R/e;/2 = F/e;,/zw = 7/rs(s).

Therefore 0 < R/e}/ 2 < 1 in Eq. (202) corresponds to 0 < 7 < 7,(s), as required by
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Eq. (193). Substituting w(s) = 7s(s) /e.}./ ? from Eq. (203) into Eq. (196), readily gives the
familiar equation [25]
%rb(s) + [K.z(s) - é—éﬂ rp(s) = ﬁ_;T_Z’? (204)
for the beam envelope 74(s + 5) = 74(s). Equation (204) can be solved numerically for a
broad range of functional forms of k,(s + S) = k,(s), and choices of systein parameters K
and er.

Having shown that the choice of F(H,, Pe) in Eq. (200) self-consistently‘genera.te the
step-function density profile in Eq. (193), we now determine other statistical properties of
the beam equilibrium distribution in Eq. (200). The average of the phase-function ¢ in the

Larmor frame, over the momentum space variables (Pg, Pg), is defined by

1

W = SR

/ dPrdPs U F2. (205)

Making use of Eqs. (186), (200) and (201), some straightforward algebra shows that

~2

7 r Ewa o :

(Po)r = (Po)L = —wyR? = —wbwz(s) = (s) 72, (206)
Pp  fdw ldw,  r(s).

(B = < w | w ds> wds Pri rb(s)r’ (207)

where r4(s) = dry(s)/ds. Here, use has been made of e}-/ ®w(s) = ry(s) and R = #jw =
el 727 /ry. From Eq. (190), the average angular rotation velocity in the Larmor frame is
(©"), = {(Pe/w?R®) = (Po)/#* = —erwy/rE(s). Transforming to the laboratory frame, and
using dimensional units, we scale velocity variables by fyc, and make use of ¥ = r and
the fact that Larmor frame rotates with angular velocity, —Qu(s)/2 = —Z;eB,(s)/2yme,
relative to the laboratory frame [see Eq. (148) and related discussion]. It readily follows that
the average macroscopic beam velocity in the laboratory frame can be expressed as (with
r=7)

Vo(Z, 8) = E ;re, (s)rép + Boees, (208)
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where the angular rotation velocity Q(s) is defined by
Qu(s) = ZieB,(s) GTﬂwa

. 209
2yeme | r2(s) (209)
From Eq. (208), the average radial velocity is Vy4(r,s) = Byerry(s)/ry(s), which is slowly

modulated as a function of s as the beam envelope (s + §) = 74(s) oscillates. Also from
Eq. (208), the average azimuthal velocity in the laboratory frame is Vyy(r,s) = —Q,(s)r,
corresponding to a rigid rotation at angular velocity —)(s). This is similar to the property
obtained for the class of rigid-rotor Vlasov equilibria considered in Sec. IV fdr a uniform
solenoidal field, with the essential difference that the angular rotation velocity Qy(s + S) =
0,(s) is modulated by the periodic variation in the focusing field B,(s) and beam envelope
r5(8).

A further interesting property of the beam distribution in Eq. (200) is the effective
transverse temperature T (7, s) associated with the average kinetic energy relative to the
mean. Comparing Egs. (161), (186), (206) and (207), it follows that the transverse kinetic
energy K, of a beam particle relative to the mean can be expressed (in dimensional units)
in the Larmor frame as

Kip = gwmBe[(B=(B)) + 2 (B = (B))’]

— l 2 .2 1 2 1 2\2
= 27bmﬂ,,c [wz(s) PR + wz(s)Rz (Pe +wbR ) . (210)

The effective transverse temperature is then defined in terms of the beam distribution

F{ (M., Pe) in Eq. (200) by Tus(F,s) = (Kir)s, e,

L 1
Tl o) = o S )R

Substituting Egs. (200), (201) and (210) into Eq. (211) readily gives

T p(Fy8) = (1~ )eT%T('z;c (1 f:) T1s(7 = 0, )[ rjs)] (212)

in the beam interior, 0 < ¥ < 7(s). Here, use has been made of wR = 7 and ry(8) = e},-/ 2w(s)

/ dPrdPs K., F?. (211)

and the on-axis temperature is defined by

mpice

Tyo(F = 0,8) = (1 —w?)""z,,g(s) (213)
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The parabolic transverse temperature profile in Eq. (212) is identical in form to that obtained
in Sec. IV.B for a monoenergetic transverse distribution of beam particles in a uniform
focusing field. The important difference, however, is that the on-axis beam temperature
T\ 4(7 = 0,8) is modulated by the periodic oscilation of the beam envelope (s + .5) = r4(s).
Note from Eq. (213) that T ,(7 = 0, s)r2(s) = const. (independent of s).

We have implied that the constant ez occuring in the definition of F(H., Pe) in Eq. (200)
can be identified with the unnormalized ti‘ansverse emittance in the Larmor frame. In
this regard, the statistical average of an azimuthally symmetric phase funétion ¥ (with

P /90 = 0) over the four-dimensional phase space (R, Pg; ©, Pe) is defined by

_ [dRRAPrdPoyF?
" [dRRAPrdPsF?

(¥)r (214)

The unnormalized transverse emittance € in the Larmor frame is defined by

. P2 StL
e=2 [<P3 + ;§>F (#). - <fP,>r] : | (215)
where B, = w™!(Pg + #dw/ds) and P) = Pe follow from Eq. (186). Some straightforward
algebra that makes use of Eq. (186), (Pr)r = 0 and {Pe +wsR%)r = 0, shows that Eq. (215)
can be expressed as
1 1/2
e = 2 [<P§ + =5(Po + R + w,?R?>F <R2>r]
= 2|(-per (1= Z) wetwe) (m0) ]m - @)
bJer - bR B 0
where use has been made of Eqgs. (200) and (201). As 7 ranges from 7 = 0 to 7 = ry(s), the
intergration variable R covers the interval 0 < R < ,/ér [compare Egs. (193) and (202)].
Therefore, (R?)p = (o’ dRRR?)/(Jo" dRR) = er/2 follows from Eq. (214), and Eq. (216)

reduces to

€ = er, . (217)

which is the expected result. Note that de/ds = der/ds = 0, and the transverse emittance

is a conserved quantity.
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It is also convenient to introduce an unnormalized transverse thermal emittance € in
the Larmor frame, which is proportional to the transverse phase space area, subtracting out

the average azimuthal and radial motions. The thermal emittance can be expressed as

€n = 2 K 7,,2nlfﬁléc2>r <f2>r] "
=2[{(B = (B) + 5 (B = (B))") ()] ” (218)

. 1/2
=92 [<P}22 R2 (Pe +w¢,R2 > <R2 ] 3
where use has been made of Egs. (186), (206), (207) and (210). Comparing Eq. (218) with
Eq. (216), and making use of (R%)r = ¢/2, Eq. (218) readily gives

e =2|(@-ad)er (1-5)) (%), - aye, (219)

where averages (- - -)r are defined in Eq. (214) and are over the distribution F? in Eq. (200).

Because €2, = (1—w?)e2, it is clear that the thermal emittance €, is similar to €7, subtracting
out the directed azimuthal motion in the Larmor frame (proportional to w?).
The envelope equation (204) can be expressed in an alternate form by making use of

€2 = €2, + wie2 and Eq. (209) to express

G =+ 5 oo - °;ks)], (220)

where Q,(8) = Z;eB,(s)/vsme, and Q,(s) is the angular rotation velocity in the laboratory
frame. Substituting Eq. (220) into Eq. (204) and making use of x,(s) = (Q0/20sc)? the

envelope equation for 7,(s) can also be expressed as

d2 1 ch 2 ch(s) 2 K
a—'—s-é'rb(s) + {‘ﬁ_?c'i [(‘2—) - (Qb(s) = _2—') ] - ’I’E(S)} ( ) = ( ) (221)

Equation (221) is identical in content to Eq. (204), but connects more directly to the results
and notation in Sec. IV. For the special case of a uniform solenoidal field with Q. (s) and Q4(s)
constant (independent of s) and d*r,/ds? = 0, the envelope equation (221) resuces exactly

to the radial force balance equation (113) obtained in Sec. IV.B for the choice of equilibrium
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distribution function in Eq (108). Here, we make the identification 2T o /1empB2E = &, r?
in Eq. (113), which also follows from Eq. (213) and €3, = (1 — w})é2. _
The example of the periodically focused, rotating beam equilibrium F2(H,, Ps) consid-
ered in Eq. (200) has the important féature that the corresponding self-consistent density
profile n,(7,8) is the step-function profile in Eq. (193), with uniform density N,/ar2(s) in
the beam interior, 0 < 7 < 74(s), and outer radial envelope r;(s + S) = rb(s) described by
Eq. (204). Consequently, the effective potentioal 69 defined in Eq. (179) is 6y = 0, which
leads to corresponding simplifications in the analysis of the nonlinear Vlasov eqﬁation (191).
While other specific examples of periodically focused equilibrium solutions to Egs. (191) and
(192) have not yet been determined when 83 # 0 and the radial density profile is nonuni-
form, it should be emphasized that the cylindrical representatioh in the transformed variables
(R, Pgr; 8, Pe; s) in Egs. (191) and (192), together with the orbit equations in Eqs. (189) and
(190), are particularly well-suited to analytical and numerical investigations of self-consistent

distributions F} which depart from the ideal beam equilibrium F? in Eq. (200).

D. The Method of Characteristics

The method of characteristics [26] is a well-estabilished technique used in plasma physics
to integrate the nonlinear Vlasov equation and express the solution in terms of “initial”
conditions. This technique can be applied directly to the form of the Vlasov equation in
Eq. (159) which allows F, and 9 to depend both on 7 and &, or to the various forms of
the Vlasov equation developed in Sec. V.B for the case of azimuthally symmetric beam .
propagation with (‘9/(’379~ = 0. For a brief summary of the method of characteristics, we
now examine the cylindrical representation of the nonlinear Vlasov-Poisson equations given
by Egs. (164) and (165) in the Larmor frame. Here, 3/30~ =0is assumed; and‘the orbit
equations in Egs. (162) and (163) are the characteristics of the Vlasov equation (164).

In Egs. (162) and (163), we denote the effective ‘time’ (really ‘axial’) variabie by &, and
the corresponding tranverse orbits by #(s'), P!(s'), #(s') and P}(s'). From Eq. (162), the
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radial orbits #(s’) and P/(s') are determined from

d2 "(S') +Kz(sl)Fl(sl) _ ~'3f(’2’) a?./ (1-;’ s/),
Pl(s) = ’(3’) , (222)

Because dP}(s')/ds' =0, it follows from Eq. (163) that
Bi(s') = Py = const., (223)

which is independent of s'. We now consider the solutions for the orbits 7'(s’) and P!(s') in
Eq. (222) that pass through the phase-space point (7, P,) at ‘time’ s' = s. That is, Eq. (222)
is solved subject to the boundary conditions

d
01 = AT - P.
(s’ = s) =7, {ds’r (s )} . P, (224)
We further consider the function Fy[#(s’), P/(s); P)(s'); s'] that satisfies
LRI, BLY; BY(s); o] =0, (225)

Making use of Eq. (222), and the chain rule to evaluate (d/ds)Fy(#, P!; Py; s'), it readily
follows that Eq. (225) can be expressed as

3 df’a ., P? 3 Y B E

In Eq. (226), the radial orbits ¥'(s') and P/(s') solve Eq. (222), and 9(#, 8') is determined self-
consistently from Poisson’s equation (165). Most importantly, when Eq. (226) is evaluated
at s = ¢’ and use is made of Eq. (224), it follows that Eq. (226) corresponds ezactly to the
nonlinear Vlasov equation (164), where 7 and P, are phase-space variables.
The formal solution to the Vlasov equation is obtained as follows. From Eq. (225), it
follows that
F[7(s"), P/(s"); By(s"); 8] = const. (independent of s'), . (227)

which is simply a statement that F, is constant following the particle motion in the total

(applied plus self-consistent) field configuration. Therefore, evaluating Eq. (227) at &' = s,
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where (7, 13,5) = (7, P,) from Eq. (224), and also evaluating Eq. (227) at some initial s’ = sp,

we obtain for the distribution function at arbitraby (7, B,; By; 8),
Fy(7, P By; s) = R [i'(s' = s0), P'(s' = s0); P}; s' = sq- (228)

Equation (228) formally determines Fy(7, B;; Ps; s) in terms the ‘initial’ distribution func-
tion at ' = sp. The procedure to determine (e.g., numerically) the solution to the nonlinear
Vlasov equation (164) is therefore the following. First, specify the functional form of the
initial distribution function at s’ = so. Then, make use of the orbit equations (222) to de-
termine the orbits #(s’) and P/(s’) that pass through the phase-space point (7, 5) at s’ = s
[see Eq. (224)]. Finally, evaluate #(s’ = so) and P!(s' = so), and make use of Eq. (228) to
determine Fy(7, B; Py; s) in terms of the initial distribution function.

Although the method of characteristics has been illustrated for the nonlinear Vlasov-
Poisson equations (164) and (165) which assume azimuthal symmetry with 8/88 = 0, it
should be emphasized that an identical formalism can be developed in a straightforward
manner for the nonlinear Vlasov-Poisson equations (158) and (159) which allow for gen-
eral transverse spatial variation of the distribution function Fy(Z, B, Py; s) and effective
potential ¥(Z,§, s).

A very simple application of the method of characteristiscs when 8/ 80 = 0 can be illus-
trated for the special case of a uniform focusing field with &,(s) = &, = const. (independent
of 8). In this case, assuming that (%, s) does not depend explicity on s, it is readily shown

from Eq. (222) that

aiw = £ {3 [+ | + dmo@ o] =0, e

where H(s') is the energy in the Larmor frame. It follows trivially from Eq. (229) that
Hi(s"y= H,(s' =s) = H, (s’ = s9) = const. (independent of s'). Defining

H = 5 (P,2 et ") + %nzoﬁ +9(F), | (230)
it then follows that any distribution function initially of the form |

F, = FO(H,, By) | | (231)
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at s’ = sg, necessarily maintains the functional dependence on (7, P,; B) in Eq. (231) for
all values of s'. Therefore, for «,(s) = k,p = const., distribution functions of the form

F, = F(Hy, B)) are automatically equilibrium solutions to the nonlinear Vlasov-Poisson

equations (164) and (165) with (d/ds)F, = (8/8s)F, =0 (see also Sec. IV.B).
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VI. CONCLUSIONS
In this article we have developed and applied a kinetic description of intense nonneu-
tral beam propagation through a periodic solenoidal field B*(%) based on the nonlinear

- =
’

Vlasov-Maxwell equations for general distribution function fy(Z,7,t). Particular emphasis
was placed on using the Vlasov-Maxwell description to investigate detailed beam equilibrium
properties for a variety of distribution functions, both for the case of a uniform solenoidal
focusing field Byé,, where By = const., and for a periodic solenoidal focusing field B (%) de-
scribed by Eq. (7), where B,(z+S5) = B,(z) and S is the axial periodicity length. Following a
discussion of the theoretical model and assumptions (Sec. II), the nonlinear Vlasov-Maxwell
equations and the single-particle equations of motion were simplified in the thin-beam ap-
proximation (Sec. III), and an alternative Hamiltonian formulation was developed that is
particularly well-suited to describing intense beam propagation in a periodic focusing system.

For the case of a uniform focusing field Byé;, the kinetic formalism based on the nonlinear
Vlasov-Maxwell equations was used (Sec. IV) to investigate a wide variety of azimuthally
symmetric (3/00 = 0) intense beam equilibria characterized by 9/8t = 0 = 8/0z, ranging
from distributions that are isotropic in momentum dependence in the frame of the beam,
to anisotropic distributions in which the momentum spreads are different in the axial and
transverse directions. In addition, a density inversion theorem was demonstrated for the class
of anisotropic beam equilibria considered in Sec. IV, and a general radial force constraint
condition was derived that relates the mean-square radius {r?) of the beam to the strength
of the focusing field, the transverse thermal emittaﬁce €, and other system parameters. As
a general remark, for a uniform focusing field, it was found that there is enormous lattitude
in the choice of equilibrium distribution function f7, the corresponding equilibrium profiles
and properties of the beam, and the (likely) stability behavior.

Introducing the axial coordinate s = z, we then made use (Sec. V) of the kinetic formalism
based on the nonlinear Vlasov-Maxwell equations to investigate intense beam. propagation

in a periodic solenoidal field B, (s + S) = B,(s), in which case the properties of the beam




are modulated as a function of s by the periodic focusing field. Following a transformation
of the nonlinear Vlasov equation to a frame of reference rotating at the Larmor frequency
QL(s) = —Qw(s)/2, the description was further simplified by assuming azimuthal symmetry
(8/88 = 0), in which case the canonical angular momentum 5 is an exact single-particle
constant of the motion. As an application of the general formalism developed in Sec. V, we
considered the specific example of a periodically focused rigid-rotor Vlasov equilibrium with
step-function radial density profile and average azimuthal motion of the beam corresponding
to a rigid rotation (in the Larmor frame) about the axis of symmetry. This represents
an important generalization of the Kapchinskij-Vladimirskij beam distribution to allow for
average beam rotation in the Larmor frame, and an important generalization of the rigid-
rotor Vlasov equilibrium in Eq. (108) to include the periodic focusing effects of the solenoidal
field B, (s + S) = B,(s). Finally, the method of characteristics was discussed (Sec. V) as an
approach for solving the nonlinear Vlasov equation for intense beam systems with periodic
focusing.

As a general remark, based on the analysis in Secs. II-V, the Vlasov-Mawell description
of intense nonneutral beam propagation through a periodic solenoidal focusing field g‘"”(:ﬁ)
was found to be remarkably tractable and rich in physics content. Although much remains to
be done to apply the formalism developed in Secs. III and V to other choices of peroidically
focused beam distributions F, it is clear that the Vlasov-Mawell formalism developed here
for intense beam propagation through a periodic solenoidal focusing field has a wide range
of applicability, and can be extended in a straighﬁforward manner to investigate detailed

stability behavior for perturbations about specific choices of beam equilibria.
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Appendix: Particle Orbit Equations Determined
from the Approximate Hamiltonian ‘

In this Appendix, we make use of the approximate form of H in Eq. (61) obtained in the
thin-beam approximation to determine the dynamical equa.tions of motion for an individual
particle. For completeness, ¢*(z,y, z,t) is allowed to have full dependence on space and
time coordinates, and the solenoidal focusing field is allowed to depend on axial coordinate
z according to Eqgs. (6) and (7), where B*® = V x A% with A%® = —(y/2)B,(z) and
A% = (z/2)B.(z). In terms of the canonical momentum P =p+(Ze/c)A, thé Hamiltonian

H in Eq. (61) can be expressed as

1 Ze 2
— 2 —_— — 3 A8
H = yme® + BycdP, + ™ (613z " Az)

by {(P - Ze g} 4 (i, - —Z-;"-?A:"‘)z} + 2y, (A1)
where 6 P, = P, — yymf,c, and use has been made of ¢* — B,A2 = ¢°/7%. In Eq. (A1), note
that |6p,] < wmpBsc implies that the quadratic term proportional to (6P, — Z;eAZ/c)? is
typically small in magnitude in comparison with the term linearly proportional to 6 P,.

We now make use of Eq. (A1) to examine Hamilton’s equations of motion (16) and (17).

For the transverse z-y motion, it is readily shown from Egs. (16), (17), (18), (19) and (A1)

that
2. -,y—')lr-n- (A- %EA;"‘) -2 (43)

and
ey =g [ o S m o] a9
By ymY = i [_ o+ 25 - 2h,() - .g’-j;B;(z)w] @9

where v, = dz/dt, v, = dz/dt and v, = dy/dt. On the other hand, for the axial motion,
Egs. (16), (17) and (A1) give

dz 1 | Zie 5pz
= Be+ —— (6P, — ZCps) = o+ 2= (46
dt fre+ Yo (6P c A’) B A+ o1 (46)
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and
dép,  d’z 04 v, 0A: v, 042 1 _, '
at - aE T Zie[ 32 <cdz coy 56 B+ () avy —yus) (47

where 8p, = p, — 1ymPsc. Consistent with Eq. (25), we note that Eq. (A7) can be expressed

in the equivalent form

dsP, d . o Vige, 1 _
— = (5 +—A) [ ¢° + Az + 2ch(z)(a:'u,, yvz)] , (A8)

where 6P, = P, — yympByc.
The role of the quadratic term proportional to (6p;)? in Eq. (61) [or equivalently, in

Eq. (Al)] is an interesting one. From Eq. (61), we find

dH  p, dép, 1 dp. dp, d¢’
dt  wm dt = ywm (p dt rT dt + L dt’ (49)

where p, = 6p,+wmpicin Eq. (A9), and (d/dt)¢*(z,y, 2,t) = 6¢3/8t+'1')' -Vd)’ . Substituting
Egs. (A4), (A5), (A7) and ¥ = p/yym into Eq. (A9) then gii'es the expected result

dH __ 8¢
—dz- = Z;e ot (AIO)

by direct calculation. In this regard, to the level of accuracy of the orbit equations given
by Egs. (A4), (A5) and (A7), then energy conservation (dH/dt = 0 whenever 3¢°/9t = 0)
necessarily requires that the quadratic term proportional to (8p,)? in Eq. (61), '_Qr’ in Eq. (A1),
be retained in the definition of H.

Keeping in mind the discussion in the preceding paragraph, it is nonetheless useful to
further simply the equations of motion. Consistent with Eq. (9), we make use of |6p,| <«
wmPpc and it follows from Eq. (A6) that v, = dz/dt = p,/ym can be approximated to
leading order by

- % = B, | (A11)
Substituting Eq. (A11) and A% = B,¢° into the transverse dynamical equations (A4) and

(A5) then gives the approximate results,

dp, d?z 1 9¢° ldy ﬂb ,
= =Win—F = Z; ———9 B + B, Al
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dp, _ d*y 1984 1ldz
at - e "Ry cdt

where 7,2 = 1 — B2. If we make the identification z = s = fyct, then Egs. (A12) and (A13)

= Ze B,(z) - ﬂ"xB’ ' ()], (A13)

are identical to the transverse dynamical equations (45) and (46) obtained in Sec. III.B.
While dp, /dt = ymdu, /dt = 0 to the level of accuracy of Eq. (A11), we can make use of
Egs. (A7) or (A8) to calculate leading-order corrections to dp,/dt = 0. We readily obtain

AP, _d (¢ T\ _, 0[ ¢
=g (rr 2on) -zl |- Sr LB -w] . (4

or equivalently,

dép, d?z a¢* .
df = WM =2 [_ a‘i Be ( =5 +U“8y)¢ -—B 2 (2)(zyy, — yv,)] (A15)

Note that Eq. (A14) plays an important role in assuring energy conservation, when combined
with Egs. (A12) and (A13). To the same level of accuracy as Egs. (A12), (A13) and (A14),

and consistent with [6p,] < ywmpsc, we approximate Eq. (61) by
1
H = yymc? + Bycbp, + %(pf. + p;‘;) + Zied®, (A16)

or equivalently, Eq. (A1) by

1 Zie .o ( Zie o,) Zie
- 248 s ~ 28 g L. (A7
o {(P 5 ) = SoAY) |+ 2pen (A1)

Making use of Egs. (A12), (A13) and (A15), and d¢°/dt = 8¢°/6t + - V¢’, to calculate
dH/dt from Eq. (A16), we obtain the expected result that dH/dt = Z;ed¢°/dt, implying
that energy is conserved (dH/dt = 0) whenever 8¢°/8t = 0.
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Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

FIGURE CAPTIONS

Plot of normalized density n(r)/fi, versus r/Ap calculated numerically from

Egs. (64) and (72) for the choice of thermal equilibrium distribution in Eq. (71).
Here, Ap = (12kpT /4ni,Z%€*)'/? is the effective Debye length, and € is the
dimensionless parameter defined by € = (% ~ 02)/ (@%/273) - 1.

Plots of (a) normalized density nj(r)/f, and (b) temperature Ty(r)/T} versus

r/ry calculated numerically from Eqgs. (85)-(87) for € = 0.001, 0.01 and.0.1 with
corresponding values of Ap/r, = 0.088, 0.127 and 0.222. Here, the dimensionless
parameter ¢ is defined in Eq. (88), Ap = (3727, /SWﬁbZ?ez)l/ 2 is the effective Debye
length, and the equilibrium distribution is defined in Eq. (82).

Plots of normalized density n?(r)/#, and transverse temperature T’y 5(r)/T'15 versus
7/}, obtained from Eqgs. (110) and (115) for the choice of equilibrium distribution
in Eq. (108). Here, the beam radius is determined self-consistently in terms of
other system parameters from Eq. (113).

Plot of the normalized density n(r)/#; versus r/r; obtained from Eq. (122) for
the choice of equilibrium distribution in Eq. (116). Here, the two cases correspond
to the choices 7,/Ap = 5 and r,/Ap = 10 [see Eq. (121)]. |

Plot of the normalized density nd(r)/#, versus r/r, obtained from Eq. (125). The
density inversion theorem shows that the corresponding equilibrium distribution

that generates this density profile self-consistently is given by Eq.-(128).
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